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Standard Learning Assumptions

| |ID assumption.
® Same distribution for training and test.

m Distributions fixed over time.
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Modern Large Data Sets

® Real-world applications:

Sample points are not drawn IID.
Training sample is biased.

Training points with uncertain labels.

Multiple training sources.

Distribution may drift with time.

These problems must be addressed for learning
to be effective.
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Existing Techniques!?

B |Importance weighting technique.

Mehryar Mohri

applications, e.g., sample bias correction.
experiments: method does not always work.
can lead to performance degradation!

recent new analysis and learning guarantees
(Cortes, Mansour, and MM, NIPS 2010).

page 4



Non-ldeal World

drift

ideal sampling

adaptation
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This Talk

B Multiple source adaptation problem.

®m Related work:

® multiple sources but distinct problem: same
input distribution but different labels, modulo
disparity constraints (Crammer, Kearns, and Wortman,
2008).

® single-source adaptation problem, e.g., (Blitzer,
Crammer, Kulesza, Pereira, and Wortman, 2008), (Mansour,

MM, and Rostami, 2009).
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Motivation

® Adaptation: the problem of training and testing on
differing but somewhat similar distributions.

® A natural ability for humans, can adapt to new
tasks based on similar experiences.

B Examples:
® Speech Recognition: adapt to different accents.

® Sentiment Analysis: ratings available for TVs,
laptops and CD players, but, how to rate general
electronics!?
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Problem Formulation

| Given distributions and corresponding hypothesis:
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\V/i, ,C(DZ, h,,;, f) S €.

— —

N’
/ each hypothesis
~—— performs well in

u

nknown its domain.
 ———
target

Notation: £(D;, hi, f)= E, [L(hi(x), f(2))]
Loss L assumed non-negative, banded, convex and

continuous.
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Problem Formulation

® The unknown target distribution is a mixture
of input distributions.

-
>

B Task: choose a hypothesis mixture that

performs well in target distribution.
k k

2;D;(x)
ho(x) =) zihi(x) ho(z) =) —— hi(x)
i=1 i=1 ijl zjDj(x)
convex combination rule  distribution weighted combination

k

Mehryar Mohri page 9



Main Results

® Although convex combination seems natural, we
show that it can perform very poorly.

| Distribution weighted combination seems to be
the “correct” combining rule.

B There exists a single “robust” distribution weighted
hypothesis, that does well for any target mixture.

4 )
Vf,32,¥YA, L(Dx,hs, f) < e.

- J
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Known Target Distribution

B For some distributions, any convex combination
performs poorly.

distribution weights hypothesis output
Dt | Do | D f | ho | h

a (051110 a |l | 1]0

b ([05] 0 | | b0 I ]O

® Base hypotheses have no error within domain.

® Any convex combination has error of 1/2.
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Known Target Distribution

| [f distribution is known, distribution weighted
rule will always do well. Choose: z = ).

k

i) =2 zMi(D) B

& Proof
'C(DTah)\vf) — L(hA(x)vf(x))DT(x)
reX I
< ¥ 3 228 (o). @) Dr (o
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Unknown Target Mixture

B Zero-sum game:
® NATURE:select a target distribution D, .

® | EFARNER:select a z,i.e.a distribution weighted
hypothesis /..

® Payoff: L(D;, h,, f).
® Already shown: game value is at most €.

B Minimax theorem (modulo discretization of z):
there exists a mixture » _; a;h,, of combination

weighted hypothesis that does well for any
distribution mixture.
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Balancing Losses

® Brouwer’s Fixed Point theorem: for any compact,
convex, hon-empty set A and any continuous
function f: A — A, there exists z such that: f(x)==x.

Notation:
f [ﬁf:—L(Di,hz,f)]

2 L7
® Define mapping ¢ by:[¢(z)]; = =+
PPing ¢ by:|¢(2)] S oL
| By fixed point theorem (modulo continuity):
4 )
dz: Vi, 2, = Zj zjﬁj — Vi, L, = szﬁj =: 7.
N\ J J
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Bounding Loss

| For fixed point z,

k
L(Dz b f) =) Lk N2 2:Di(x)
:IJEX =1
z;l reX L
1=1 1=1

® Also, by convexity,

th<zz% z), f(x))D.

rxeX 1=1
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Bounding Loss

B Thus,y < eand for any mixture A,

-

-

~

k k
1=1 1=1

J
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Details

B To deal with non-continuity refine hypotheses:
k

M) — ziDi(z) +n/k (o
2 ;Zle Zij(SU)Jr??hZ( )

® Theorem:for any target function f and any J >0,

an > 0,z: VN, L(Dx,hl], f) <e+0.

B [f loss obeys triangle inequality:
V6 > 0,3z, > 0, VA, f € F, L(Dx,h], f) < 3e+ 0.

holds for all admissible target functions.
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A Simple Algorithm

® A simple constructive algorithm, choose z with
uniform weights:

k

L(Dx,hu, [) = ZDA (Z Z’?l_)i(l:;)-(x) hz‘@%f@))

=> <7 )\mDm(fv)> L <§: kDi(m) hi(x>vf(x)>
xJ = i=1 Zj:l Dj (:L’)
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Preliminary Empirical Results

® Sentiment Analysis - given a product review (text
string), predict a rating (between 1.0 and 5.0).

® 4 Domains: Books, DVDs, Electronics and Kitchen
Appliances.

B Base hypotheses are trained within each domain
(Support Vector Regression).

B We are not given the distributions. VWe model
each distribution using a bag of words model.

B We then test the distribution combination rule on
known target mixture domains.
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Uniform Mixture Over 4 Domains

2.1f

I (n-Domain
Out-Domain| |

1.9¢

1.8}

MSE

1.7¢

1.6}

1.5}

Mehryar Mohri page 20



Mixture = o book + (1 — a) kitchen
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Conclusion

B Formulation of the multiple source adaptation
problem.

B Theoretical analysis for mixture distributions.

| Efficient algorithm for finding distribution weighted
combination hypothesis!?

B Beyond mixture distributions!?
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Extensions - Arbitrary Target Distrib.

(Mansour, MM, and Rostami, 2010)
® Theorem:for any >0,

) Z)

P
Ad in terms of Renyi

divergence,

(.01~ 5 g

Iy, 2: VP, L(P, K7, f) < [da(PHQ)(e 5)}."‘
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Other Extensions

m Approximate distributions (estimated):
® similar results shown depending on divergence
between true and estimated distributions.
B Different source target functions f; :

® similar results when target functions close to f
on target distribution.
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