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Standard Learning Assumptions

IID assumption.

Same distribution for training and test.

Distributions fixed over time.
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Modern Large Data Sets

Real-world applications:

• Sample points are not drawn IID.

• Training sample is biased.

• Training points with uncertain labels.

• Multiple training sources.

• Distribution may drift with time.
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These problems must be addressed for learning 
to be effective.
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Existing Techniques?

Importance weighting technique.

• applications, e.g., sample bias correction.

• experiments: method does not always work. 

• can lead to performance degradation!

• recent new analysis and learning guarantees 
(Cortes, Mansour, and MM, NIPS 2010).
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Non-Ideal World
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This Talk

Multiple source adaptation problem.

Related work:

• multiple sources but distinct problem: same 
input distribution but different labels, modulo 
disparity constraints (Crammer, Kearns, and Wortman, 
2008).

• single-source adaptation problem, e.g., (Blitzer, 
Crammer, Kulesza, Pereira, and Wortman, 2008), (Mansour, 
MM, and Rostami, 2009).
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Motivation

Adaptation: the problem of training and testing on 
differing but somewhat similar distributions.

A natural ability for humans, can adapt to new 
tasks based on similar experiences.

Examples:

• Speech Recognition: adapt to different accents.

• Sentiment Analysis: ratings available for TVs, 
laptops and CD players, but, how to rate general 
electronics?
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Problem Formulation

Given distributions and corresponding hypothesis:

Notation:

� �� �
each hypothesis
performs well in
its domain.

h1

h2

hk

 D1

 D2

 Dk

f
...

... � �� �
unknown 

target

Loss L assumed non-negative, bounded, convex and 
continuous.
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L(Di, hi, f)= E
x∼Di

[L(hi(x), f(x))].

∀i,L(Di, hi, f)≤�.
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Problem Formulation
The unknown target distribution is a mixture 
of input distributions.

Task: choose a hypothesis mixture that 
performs well in target distribution.

 D1

 Dk

...
DT DT (x) =

k�

i=1

λiDi(x)

convex combination rule distribution weighted combination

hz(x) =
k�

i=1

ziDi(x)
�k

j=1 zjDj(x)
hi(x)hz(x) =

k�

i=1

zihi(x)
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Main Results

Although convex combination seems natural, we 
show that it can perform very poorly.

Distribution weighted combination seems to be 
the “correct” combining rule.

There exists a single “robust” distribution weighted 
hypothesis, that does well for any target mixture.
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∀f, ∃z, ∀λ, L(Dλ, hz, f) ≤ �.
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Known Target Distribution

For some distributions, any convex combination 
performs poorly.

Base hypotheses have no error within domain.

Any convex combination has error of 1/2.

f h0 h1

a 1 1 0

b 0 1 0

DT D0 D1

a 0.5 1 0

b 0.5 0 1

hypothesis outputdistribution weights
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Known Target Distribution
If distribution is known, distribution weighted 
rule will always do well.  Choose:          .

Proof:

z = λ
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L(DT , hλ, f) =
�

x∈X

L(hλ(x), f(x))DT (x)

≤
�

x∈X

k�

i=1

λiDi(x)
DT (x)

L(hi(x), f(x))DT (x)

=
k�

i=1

λiL(Di, hi(x), f(x)) ≤
k�

i=1

λi� = �.

hλ(x) =
k�

i=1

λiDi(x)
�k

j=1 λjDj(x)
hi(x).
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Unknown Target Mixture

Zero-sum game:

• NATURE: select a target distribution     .

• LEARNER: select a   , i.e. a distribution weighted 
hypothesis    .

• Payoff:                 .

• Already shown: game value is at most   .  

Minimax theorem (modulo discretization of   ): 
there exists a mixture               of combination 
weighted hypothesis that does well for any 
distribution mixture.

Di

z
hz

�

�
j αjhzj

z
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L(Di, hz, f)
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Balancing Losses
Brouwer’s Fixed Point theorem: for any compact, 
convex, non-empty set     and any continuous 
function             , there exists   such that:            .

Define mapping    by:

By fixed point theorem (modulo continuity):

x
A

φ

Notation:
A

f
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f: A→ A

Lz
i :=L(Di, hz, f).

[φ(z)]i =
ziLz

i�
j zjLz

j

.

=⇒∃z : ∀i, zi =
ziLz

i�
j zjLz

j

∀i,Lz
i =

�

j

zjLz
j =: γ.

f(x)=x
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Bounding Loss

For fixed point   ,

Also, by convexity,
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z

L(Dz, hz, f) =
�

x∈X

L(hz(x), f(x))
� k�

i=1

ziDi(x)
�

=
k�

i=1

zi

�

x∈X

Di(x)L(hz(x), f(x))

=
k�

i=1

ziLz
i =

k�

i=1

ziγ = γ.

γ = L(Dz , hz, f) ≤
�

x∈X

k�

i=1

ziDi(x)
Dz(x)

L(hi(x), f(x))Dz(x) =
k�

i=1

ziL(Di, hi, f) ≤ �.
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Bounding Loss

Thus,         and for any mixture   ,
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 f
...

Dλ1

Dλ2

Dλi

γ ≤ � λ

hz

L(Dλ, hz, f) =
k�

i=1

λiL(Di, hz, f) ≤
k�

i=1

λiγ = γ ≤ �.
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Details

To deal with non-continuity refine hypotheses:

Theorem: for any target function   and any       ,

If loss obeys triangle inequality:
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holds for all admissible target functions.

f δ>0

∃η > 0, z : ∀λ,L(Dλ, hη
z , f) ≤ � + δ.

∀δ > 0, ∃z, η > 0, ∀λ, f ∈ F , L(Dλ, hη
z , f) ≤ 3� + δ.

hη
z(x) =

k�

i=1

ziDi(x) + η/k
�k

j=1 zjDj(x) + η
hi(x).
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A Simple Algorithm

A simple constructive algorithm, choose z with 
uniform weights:
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L(Dλ, hu, f) =
�

x

Dλ(x)L

�
k�

i=1

Di(x)
�k

j=1 Dj(x)
hi(x), f(x)

�

=
�

x

�
k�

m=1

λmDm(x)

�
L

�
k�

i=1

Di(x)
�k

j=1 Dj(x)
hi(x), f(x)

�

≤
�

x

�k
m=1 λmDm(x)
�k

j=1 Dj(x)
� �� �

≤1

k�

i=1

Di(x)L (hi(x), f(x))

≤
k�

i=1

�

x

Di(x)L (hi(x), f(x)) =
k�

i=1

L(Di, hi, f) =
k�

i=1

�i ≤ k�.
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Preliminary Empirical Results

Sentiment Analysis - given a product review (text 
string), predict a rating (between 1.0 and 5.0).

4 Domains: Books, DVDs, Electronics and Kitchen 
Appliances.

Base hypotheses are trained within each domain 
(Support Vector Regression).

We are not given the distributions.  We model 
each distribution using a bag of words model.

We then test the distribution combination rule on 
known target mixture domains.
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Conclusion

Formulation of the multiple source adaptation 
problem.

Theoretical analysis for mixture distributions.

Efficient algorithm for finding distribution weighted 
combination hypothesis?

Beyond mixture distributions?
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Q=
� k�

i=1

λiDi : λ ∈ ∆k

�

Extensions - Arbitrary Target Distrib.

Theorem: for any       ,
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δ>0

∃η, z : ∀P,L(P, hη
z , f) ≤

�
dα(P�Q)(� + δ)

�α−1
α

.

P

measured in terms of Rényi 
divergence,

dα(P, Q)=
� �

x

Pα(x)
Qα−1(x)

� 1
α−1

.

(Mansour, MM, and Rostami, 2010)
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Other Extensions

Approximate distributions (estimated):

• similar results shown depending on divergence 
between true and estimated distributions.

Different source target functions    :

• similar results when target functions close to   
on target distribution.
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