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Ideal World

Standard learning assumptions:

• same distribution for training and test.

• distributions fixed over time.

• IID sampling.
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Domain Adaptation

Sentiment analysis: appraisal information for some 
domains, e.g., movies, books, music, restaurants, but 
no labels for travel.

Language modeling, part-of-speech tagging.

Statistical parsing.

Speech recognition.

Computer vision.

4

Solution critical for applications.
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Domain Adaptation Problem

Domains: source           , target          .

Input: labeled sample    drawn from source, 
unlabeled sample    drawn from target.

Problem: find hypothesis   in    with small expected 
loss with respect to target domain,
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Previous Work - Adaptation Theory
 (Ben-David et al., NIPS 2006) & (Blitzer et al., NIPS 2007): bounds for binary 
classification based on     distance and     ,      error issue.

 (Mansour, MM, Rostami, COLT 2009): learning bounds and analysis for general 
loss functions based on discrepancy and optimal hypotheses, favorable under 
plausible assumptions, pointwise loss guarantees for kernel algorithms.

 (Ben-David et al., AISTATS 2010): some negative examples for adaptation in 
binary classification.

 (Cortes, Mansour, and MM, NIPS 2010): analysis and learning guarantees for 
importance weighting.

 (Cortes and MM, ALT 2011): simpler and more general learning bounds, 
discrepancy minimization algorithm with kernels, efficient algorithm for solving 
SDP using smooth approximation technique.
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Distribution Mismatch

7

PQ

Which distance should we use
to compare these distributions?
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Discrepancy

Definition:

• symmetric, verifies triangle inequality, in general 
not a distance.

• helps compare distributions for arbitrary losses, 
e.g. hinge loss, or     loss.

• generalization of     distance (Devroye et al. (1996); Kifer et 

al. (2004); Ben-David et al. (2007)).
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(Mansour, MM, Rostami, 2009)

Lp

disc(P, Q) = max
h,h�∈H

���LP (h�, h)− LQ(h�, h)
���.
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Estimation from Finite Samples

Theorem: for     loss bounded by    , for any       , 
with probability at least       ,
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Theoretical Guarantees

Two types of questions: 

• difference between average loss of hypothesis   
on    versus   ?

• difference of loss (measured on   ) between 
hypothesis    obtained when training on           
versus hypothesis    obtained when training 
on          ?
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Generalization Bound

Notation:

•  

•  

Theorem: assume that    obeys the triangle 
inequality, then the following holds:
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LP (h, fP ) ≤LQ(h, h∗Q) + LP (h∗P , fP ) + disc(P, Q)

+ LQ(h∗Q, h∗P ).

LQ(h∗
Q

, f) = min
h∈H

LQ(h, f)

LP (h∗
P
, f) = min

h∈H

LP (h, f)
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Some Special Cases

When                      ,

When            (consistent case), 
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h∗ = h∗Q = h∗P

LP (h, fP ) ≤ LQ(h, h∗) + LP (h∗, fP ) + disc(P, Q).

fP ∈ H

|LP (h, fP )− LQ(h, fP )| ≤ disc(Q, P ).



pageMehryar Mohri

Kernel-Based Reg. (KBR) Algorithms

Objective function:

• family of algorithms including SVM, SVR, kernel 
ridge regression, etc.
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F bQ(h) = λ �h�2
K + �R bQ(h),

where    is a PDS kernel;
                  is a trade-off parameter; and
                   is the empirical error of    .

K
λ>0
�R bQ(h) h
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Guarantees for KBR Algorithms

Theorem: let    be a PDS kernel with                   
and   a loss function such that          is   -Lipschitz. 
Assume that          , then, for all                   ,
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L

��L(h�(x), y)− L(h(x), y)
�� ≤ µR

�
disc( �P , �Q) + µη

λ
,

where η = max{L(fQ(x), fP (x)) : x∈supp( �Q)}.

K(x, x)≤R2K
L(·, y) µ

fP ∈H (x, y)∈X×Y

(Cortes, MM, 2011)
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Adaptation Algorithm

Search for a new empirical distribution     with 
same support:

Solve modified KBR problem:
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q∗

min
h

Fq∗(h) =
1
m

m�

i=1

q∗(xi)L(h(xi), yi) + λ�h�2
K .

q∗ = argmin
supp(q)⊆supp( bQ)

disc( �P , q).
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Discrepancy Min. - Input space

For     loss and                                    :
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H ={x �→ w�x : �w�≤Λ}L2
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i=1

ziMi, M0 =
q�

j=m+1

�P (xj)xjx�j , Mi = xix�i , i ∈ [1, m].



pageMehryar Mohri

Discrepancy Min. - Input space

For     loss and                                    , can be 
cast as an SDP:
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H ={x �→ w�x : �w�≤Λ}

what about if we want to use kernels?

minimize �M(z)�2

subject to M(z) = M0 −
m�

i=1

ziMi

M0 =
q�

j=m+1

�P (xj)xjx�j

Mi = xix�i , i ∈ [1, m]

z�1 = 1 ∧ z ≥ 0.

L2
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Discrepancy Min. with Kernels

For     loss and                                  , proof that 
it can be cast as a similar SDP:
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H = {h ∈ H : �h�K≤Λ}

minimize �M�(z)�2
subject to M�(z) = M�

0 −
m�

i=1

ziM�
i

M�
0 = K1/2D0K1/2

M�
i = K1/2DiK1/2

z�1 = 1 ∧ z ≥ 0.

but, cannot be solved practically even for a few
hundred points, even with best public SDP solvers.

L2
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Disc. Min. SDP Algorithm

Smooth approximation:

•                        not differentiable.

•                               : smooth unif. approximation.

Algorithm:
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F : z �→�M(z)�2
Gp: z �→ 1

2 Tr[M(z)2p]
1
p

Algorithm 2
u0 ← argminu∈C u�Ju
for k ≥ 0 do
vk ← argminu∈C

2p−1
2 (u− uk)�J(u− uk) +∇Gp(M(uk))�u

wk ← argminu∈C
2p−1

2 (u− u0)
�J(u− u0) +

Pk
i=0

i+1
2 ∇Gp(M(ui))

�u
uk+1 ← 2

k+3wk + k+1
k+3vk

end for

Fig. 2. Smooth approximation algorithm.

with Lipschitz-continuous gradient. This is the technique we consider in the following.
Recall the general form of the discrepancy minimization SDP in the feature space:

minimize �M(z)�2 (15)

subject to M(z) =
m�

i=0

ziMi ∧ z0 = −1 ∧
m�

i=1

zi = 1 ∧ ∀i ∈ [1,m], zi ≥ 0,

where z∈Rm+1 and where the matrices Mi∈SN
+ , i∈ [0,m], are fixed SPSD matrices.

Thus, here C = {z ∈ Rm+1 : z0 = −1 ∧
�m

i=1 zi = 1 ∧ ∀i ∈ [1,m], zi ≥ 0}.
We further assume in the following that the matrices Mi are linearly independent since
the problem can be reduced to that case straightforwardly. The symmetric matrix J =
[�Mi,Mj�F ]i,j ∈ R(m+1)×(m+1) is then PDS and we will be using the norm x �→�
�Jx,x�=�x�J on Rm+1.
A difficulty in solving this SDP is that the function F : z �→ �M(z)�2 is not dif-

ferentiable since eigenvalues are not differentiable functions at points where they co-
alesce, which, by the nature of the minimization, is likely to be the case precisely at
the optimum. Instead, we can seek a smooth approximation of that function. One nat-
ural candidate is the function z �→ �M(z)�2F . However, the Frobenius norm can lead
to a very coarse approximation of the spectral norm. As suggested by Nesterov [15],
the function Gp: M �→ 1

2 Tr[M2p]
1
p , where p ≥ 1 is an integer, can be used to give a

smooth approximation. Indeed, let λ1(M)≥ λ2(M)≥· · ·≥ λN (M) denote the list of
the eigenvalues of a matrix M∈SN in decreasing order. By the definition of the trace,
for all M∈SN , Gp(M)= 1

2

��N
i=1 λ2p

i (M)
� 1

p , thus

1
2
λ2 ≤ Gp(M) ≤ 1

2
(rank(M)λ2p)

1
p ,

where λ = max{λ1(M),−λN (M)} = �M�2. Thus, if we choose r as the maximum
rank, r = maxz∈C rank(M(z)) ≤ max{N,

�n
i=0 rank(Mi)}, then for all z∈C,

1
2
�M(z)�22 ≤ Gp(M(z)) ≤ 1

2
r

1
p �M(z)�22. (16)

This leads to a smooth approximation algorithm for solving the SDP (15) derived from
Algorithm 1 by replacing the objective function F with Gp. Choosing the prox-function
d : u �→ 1

2�u − u0�2J leads to the algorithm whose pseudocode is given in Figure 2,
after some minor simplifications. The following theorem guarantees that its maximum
number of iterations to achieve a relative accuracy of � is in O(

√
r log r/�).

J = (�Mi,Mj�F )1≤i,j≤m.
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Convergence Guarantee

Let                                                            .

Theorem: for any        , the algorithm solves the 
discrepancy minimization SDP with relative 
accuracy   in                     iterations.
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r = max
z∈C

rank(M(z)) ≤ max{N,
n�

i=0

rank(Mi)}

� > 0

� O(
�

r log r/�)
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Guarantees for KBR Algorithms

Theorem: let    be a PDS kernel with                   
and   the     loss bounded by    . Then, for 
all                   ,
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L

where

K(x, x)≤R2K

(x, y)∈X×Y
L2 M

δ = min
h∈H

��� E
x∼ bQ

��
h(x)− fQ(x)

�
ΦK(x)

�
− E

x∼ bP

��
h(x)− fP (x)

�
ΦK(x)

����
K

.

��L(h�(x), y)− L(h(x), y)
�� ≤ 2R

√
M

λ

�
δ +

�
δ2 + 4λdisc( �P , �Q)

�
,
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Discrepancy = Distance

Theorem: let    be a universal kernel (e.g., Gaussian 
kernel) and                                    . Then, for the     
loss, discrepancy is a distance.

Proof:                                                  is Lipschitz 
for norm         , thus continuous on         .

•                     implies             for all        .

• since    is dense in        ,         over         .

• thus,                         for all        in         .

• this implies         .
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K
H = {h ∈ HK : �h�K≤Λ} L2

C(X)� · �∞
disc(P, Q)=0 Ψ(h)=0 h∈H

H C(X) Ψ=0 C(X)

Ψ: h �→ Ex∼P [h2(x)]−Ex∼Q[h2(x)]

EP [f ]−EQ[f ]=0 f≥0 C(X)

P =Q
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Experiments - Time
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Fig. 4. The left panel shows a plot reporting run times measured empirically (mean ± one stan-

dard deviation) for the QP optimization and the computation of∇Gp as a function of the sample

size (log-log scale). The right panel compares the total time taken by Algorithm 2 to compute the

optimization solution, to the one taken by SeDuMi (log-log scale).

provides a cost per iteration of O((log p)(m + n)3), and thus depends on the com-

bined size of the labeled and unlabeled data. Figure 4 shows typical timing results ob-

tained for different samples sizes in the range m + n = 500 to m + n = 10, 000 for

p = 16, which empirically was observed to guarantee convergence. For a sample size

of m + n = 2, 000 the time is about 80 seconds. With 5 iterations of Algorithm 2 the

total time is 5× (80 + 2 ∗ 10) + 10 = 510 seconds.

In contrast, even the most efficient SDP solvers publicly available, SeDuMi, cannot

solve our discrepancy minimization SDPs for more than a few hundred points in the

kernelized version. In our experiments, SeDuMi (http ://sedumi.ie.lehigh.edu/)

simply failed for set sizes larger than m + n = 750! In Figure 4, typical run times for

Algorithm 2 with 5 iterations are compared to run times using SeDuMi.

7 Conclusion

We presented several theoretical guarantees for domain adaptation in regression and

proved that the empirical discrepancy minimization can also be cast as an SDP when

using kernels. We gave an efficient algorithm for solving that SDP using results from

smooth optimization and specific characteristics of these SDPs in our adaptation case.

Our adaptation algorithm is shown to scale to larger data sets than what could be af-

forded using the best existing software for solving such SDPs. Altogether, our results

form a complete solution for domain adaptation in regression, including theoretical

guarantees, an efficient algorithmic solution, and extensive empirical results.
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Experiments - Performance

Multi-domain sentiment analysis data set (Blitzer et al. 

2007):
Treated as regression task.
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Fig. 3. Performance improvement of the RMSE for the 12 adaptation tasks as a function of the
size of the unlabeled data used. Note that the figures do not make use of the same y-scale.

Theorem 5. For any �>0, Algorithm 2 solves the SDP (15) with relative accuracy � in
at most 4

�
(1 + �)r log r/� iterations using the objective function Gp with p∈ [q0, 2q0)

and q0 =(1 + �)(log r)/�.

Proof. The proof follows directly [14], it is given in Appendix A for completeness. ��

The first step of the algorithm consists of computing the vector u0 by solving the
simple QP of line 1. We now discuss in detail how to efficiently compute the steps of
each iteration of the algorithm in the case of our discrepancy minimization problems.

Each iteration of the algorithm requires solving two simple QPs (lines 3 and 4). To
do so, the computation of the gradient∇Gp(M(uk)) is needed. This will therefore rep-
resent the main computational cost at each iteration other than solving the QPs already
mentioned since, clearly, the sum

�k
i=0

i+1
2 ∇Gp(M(ui))�u required at line 4 can be

computed in constant time from its value at the previous iteration. Since for any z ∈ Rm

Gp(M(z)) = Tr[M2p(z)]1/p = Tr
�
(

m�

i=0

ziMi)2p
�1/p

,

using the linearity of the trace operator, the ith coordinate of the gradient is given by

[∇Gp(M(z))]i =�M2p−1(z),Mi�F Tr[M2p(z)]
1
p−1

, (17)

for all i ∈ [0,m]. Thus, the computation of the gradient can be reduced to that of the
matrices M2p−1(z) and M2p(z). When the dimension of the feature space N is not
too large, both M2p−1(z) and M2p(z) can be computed via O(log p) matrix multipli-
cations using the binary decomposition method to compute the powers of a matrix [5].
Since each matrix multiplication takes O(N3), the total computational cost for deter-
mining the gradient is then in O((log p)N3). The cubic-time matrix multiplication can
be replaced by more favorable complexity terms of the form O(N2+α), with α = .376.
Alternatively, for large values of N , that is N � (m + n), in view of Theorem 3, we
can instead solve the kernelized version of the problem. Since it is formulated as the
same SDP, the same smooth optimization technique can be applied. Instead of M(z),
we need to consider the matrix M�(z) = K1/2D(z)K1/2. Now, observe that

M�2p(z) =
�
K1/2D(z)K1/2

�2p = K1/2
�
D(z)K

�2p−1D(z)K1/2
.

books, dvd, elec, kitchen.
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Conclusion

Recent and upcoming:

• theoretical properties of discrepancy 
minimization.

• explicit learning guarantees in terms of size of 
unlabeled data.

• adaptation with small amount of labeled data: 
analysis, theory, and algorithms.
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