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|deal World

® Standard learning assumptions:
® same distribution for training and test.
e distributions fixed over time.

® |[ID sampling.
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|deal vs Real VWorld

time

domain

sampling
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Domain Adaptation

B Sentiment analysis: appraisal information for some
domains, e.g., movies, books, music, restaurants, but
no labels for travel.

Language modeling, part-of-speech tagging.
Statistical parsing.

Speech recognition.

Computer vision.

-3 Solution critical for applications.

Mehryar Mohri page 4



Domain Adaptation Problem

® Domains: source (Q, fg), target(P, fp).

| [nput: labeled sample S drawn from source,
unlabeled sample 7" drawn from target.

® Problem: find hypothesis . in H with small expected
loss with respect to target domain,

Lp(h, fp)= E [L(h(a:), fp(a;))]

x~ P
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Previous Work - Adaptation Theory

®  (Ben-David et al., NIPS 2006) & (Blitzer et al., NIPS 2007): bounds for binary
classification based on d adistance and Ay, 3 x error issue.

®  (Mansour, MM, Rostami, COLT 2009): learning bounds and analysis for general
loss functions based on discrepancy and optimal hypotheses, favorable under
plausible assumptions, pointwise loss guarantees for kernel algorithms.

®  (Ben-David et al.,AISTATS 2010): some negative examples for adaptation in
binary classification.

@  (Cortes, Mansour,and MM, NIPS 2010): analysis and learning guarantees for
importance weighting.

@  (Cortes and MM,ALT 201 I): simpler and more general learning bounds,
discrepancy minimization algorithm with kernels, efficient algorithm for solving
SDP using smooth approximation technique.
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Distribution Mismatch

Which distance should we use
to compare these distributions!?

Mehryar Mohri page 7



Discrepancy

(Mansour, MM, Rostami, 2009)
B Definition:

- _ / B /
disc(P,Q) = max ‘Lp(h h) — Lo(W,h).

® symmetric, verifies triangle inequality, in general
not a distance.

® helps compare distributions for arbitrary losses,
e.g. hinge loss, or L, loss.

® generalization of d A distance (Devroye et al. (1996); Kifer et
al. (2004); Ben-David et al. (2007)).
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Estimation from Finite Samples

B Theorem:for L, loss bounded by M, for any § >0,
with probability at least 14,

disc(P, Q) < disc(P, Q) + 4q 9‘{5 ) + %T

4
+3M(\/bg5 3)
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Theoretical Guarantees

B Two types of questions:

e difference between average loss of hypothesis i
on () versus P!

® difference of loss (measured on P) between
hypothesis i obtained when training on (@, fo)
versus hypothesis 1’ obtained when training

On(P7 fP)7

Mehryar Mohri page 10



Generalization Bound

® Notation:
o Lolhg, f)=minLq(h, f)
® »CP(h*Pa f) — }IL%I}}'CP(ha f)

B Theorem:assume that L obeys the triangle
inequality, then the following holds:

Lp(h, fp) <Lq(h,hg) + Lp(hp, fp) + disc(P, Q)
+ Lo(hly, hp).
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Some Special Cases

® When h* = hj) = by,
Lo(h, fp) < Lo(h,h") + Lp(h*, fp) + disc(P. Q).

® When fp € H (consistent case),
1Lp(h, frP) — Lo(h, fr)| < disc(Q, P).
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Kernel-Based Reg. (KBR) Algorithms

B Objective function:

Fg(h) = M|hll% + Rg(h),
where Kis a PDS kernel;
A>( is a trade-off parameter;and

R@(h)is the empirical error of h .

® family of algorithms including SVM, SVR, kernel
ridge regression, etc.
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Guarantees for KBR Algorithms
(Cortes, MM, 201 1)
B Theorem:let K be a PDS kernel with K (z, z) < R?
and La loss function such that L(-,y) is p-Lipschitz.
Assume that fp € H, then, for all (x,y) e X xY,

L(K(2),y) — L(h(z),y)| < uR\/ (P, Q) +

where n = max{L(fo(z), fr(z)): zesupp(Q)}.
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Adaptation Algorithm

B Search for a new empirical distribution ¢* with
same support:

AN

*

¢ = argmin  disc(P,q).
supp(q) Csupp(Q)

® Solve modified KBR problem:

m

Z ¢ (i) L(h(zi), yi) + Al %

1=1

1
1
min Fy- (h) = —
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Discrepancy Min. - Input space

® For L,lossand H={x — w'x: |w| <A}

min max

Qe llwll<1

Bl((w' = w)Tx)%) = Bl((w' = w) "7
lw'll<1

= min_ max | > (P(x) - Q'(x))[(w' — w)Tx]?

Q'co llwll<1

Iw'lj<1 *€5
— min max P(x) — Q'(x usz‘
i e | S (P0 - Q)"
. T D ~ T
= min max |u P(x) — Q' (x))xx u‘
i s o (5P @

= min max [u' M(z)ul,
lz]|x =1 [[u]|=1
z>0

m q
With M(Z) = Mo—zziMi, M, = Z P(Xj)XjX}r, M, = XiX;,i c [1,111]
1=1 J=m-+1
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Discrepancy Min. - Input space

® For L, loss and H={x — w'x: |w|| <A}, can be
cast as an SDP:

minimize ||[M(z)]||2 m

subject to M(z) = Mg — Z 2 M
q 1=1
M() — Z P(Xj)XjX;-r
J=m-+1

;i€ 1,m]

z'1=1Az>0.

Mi — XX

=3 what about if we want to use kernels!?
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Discrepancy Min. with Kernels

B For I;lossand H = {h € H: ||h||x <A}, proof that
it can be cast as a similar SDP:

minimize ||M'(z)||2

m
subject to M'(z) = My, — Z ziM,
i=1

M = K'/?DoK'/?
M, = KY/?D,K!/?
z'1=1Az>0.

-3 but, cannot be solved practically even for a few
hundred points, even with best public SDP solvers.
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Disc. Min. SDP Algorithm

® Smooth approximation:
® [': z— ||M(z)||2 not differentiable.

® G,:z— L Tr[M(z)?]7 : smooth unif. approximation.

Cl Algorithm: J = (<Mi7Mj>F)1§i,j§m-

Algorithm 2

Up < argmin, . uJu

for K > 0do
Vi« argming .o 22 (u — ug) J(u — up) + VG, (M(ur))'u
W — argming . 2p2 : (u— uO)TJ(u —uo) + Zz 0 z451 VGp(M(u ))Tu
Upt1 < %%Wk + k+éVk;

end for
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Convergence Guarantee

Let r rzneaécran( (z)) < max{ ,gran( )}

® Theorem:for any e > 0, the algorithm solves the
discrepancy minimization SDP with relative
accuracy € in O(\/rlogr/e) iterations.
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Guarantees for KBR Algorithms

® Theorem:let K be a PDS kernel with K (z, z) < R*

and Lthe L, loss bounded by M. Then, for
all (z,y)e X xY,

[L(W (2),y) — L(h(z),y)| < QRXM (5 + \/52 + 4)disc(P, @)),
where
6=min|| E_|(h(@) = fo(@)®x(@)| = B_|(h(z) - fr()) x(@)]|

x~Q x~P
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Discrepancy = Distance

B Theorem:let K be a universal kernel (e.g., Gaussian

kernel) and H = {h € Hg: ||h||x <A}.Then, for the L
loss, discrepancy is a distance.

® Proof: U: h— E,.p[h?(x)]—E..q[h*(x)] is Lipschitz
for norm|| - ||, thus continuous on C(X).
® disc(P,Q)=0 implies ¥(h)=0 for all hcH.
® sinceH is dense inC(X),¥V=0 over C(X).
® thus, Ep[f]—-Eg[f]=0forall f>0inC(X).
® this implies P=Q.
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Experiments - Time
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RMSE

Experiments - Performance
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B Multi-domain sentiment analysis data set (Blitzer etal.
2007). books,dvd, elec,kitchen.

B Treated as regression task.
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Conclusion

B Recent and upcoming:

® theoretical properties of discrepancy
minimization.

® explicit learning guarantees in terms of size of
unlabeled data.

® adaptation with small amount of labeled data:
analysis, theory, and algorithmes.
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