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Standard Learning Assumptions

& |ID assumption.
® Same distribution for training and test.

m Distributions fixed over time.
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Modern Large-Scale Data Sets

® Real-world applications:

Sample points are not drawn IID.
Training sample is biased.

Training points with uncertain labels.

Multiple training sources.

Distribution may drift with time.

These problems must be addressed for learning
to be effective.
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Domain Adaptation - Problem

& |nput:
® |Labeled data from source domain.

® Unlabeled data from target domain.

® Problem: use labeled and unlabeled data to derive
hypothesis h with good performance on target
domain.

® Thus, harder generalization problem than
standard learning problem!
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Domain Adaptation - Examples

® Sentiment analysis:

® appraisal information for some domains, e.g.,
movies, books, music, restaurants.

® but no labeled information for travel.
® Language modeling, part-of-speech tagging, parsing.
® Speech recognition.

® Computer vision.
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Related Work

® Single-source adaptation:

® |anguage modeling, probabilistic parsers, maxent
models: source domain used to define a prior.

® relation between adaptation and the d 4 distance
[Ben-David et al. (2006) and Blitzer et al. (2007)].
® Multiple-source:

® same input distribution, but different labels
[Crammer et al. (2005, 2006)].

® theoretical analysis and method for multiple-
source adaptation [Mansour et al. (2008)].
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Learning Set-up

® Distributions: source(), target P.
| Target function(s): f, or f5 and fp.

® |[nput: labeled sample drawn from @, unlabeled
sample drawn from P.

® Problem: find hypothesis i with small expected
loss with respect to distribution P,

Lo(h,f) = E_|L(h(x), f(z))|

r~ P
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Distribution Mismatch

Which distance should we use
to compare these distributions!?
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Simple Analysis

® Proposition: assume that the loss L is bounded
by M, then

Lo(h, f) — Lo(h, )] < ML(Q, P).

& Proof:
Lo, £) = Lp(h, ) = |E[L((h(z), £(2))] — B [L((h(z), f(2))]
=Y (Q@) — P@) L((h2), f(@))|

<MY |Q) — P(a)|

But, is this bound informative!?
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Example - O/ Loss

Lo(h, f) = Lp(h, )| = |Q(a) — P(a)



d 4 distance

B Definition:

da(Q1,Q2) = sup|Qi(a) — Q2(a)].

acA

where A is a set of regions or subsets of X

[Devroye et al. (1996), Kifer et al. (2004)], Ben-David et al. (2007),
Blitzer et al. (2007)].

® For 0/1 loss, the natural choice is the set of all
possible disagreement regions:

A=HAH = {|h' —h|: b,k € H).
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Discrepancy Distance

B Definition:

: _ / B /
disc(Qu, Q) = max | Lo, (W',h) — Lo, (W, 1)

® Relationship with discrepancy in combinatorial
contexts [Chazelle (2000)].

® d, is a special case, 0-1 loss.

® helps compare distributions for other losses, e.g.
hinge loss, L, loss.

® symmetric, verifies triangle inequality, in general
not a distance.
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Lear

ning with Imperfect Data

Discrepancy - Properties

® Theorem:the discrepancy distance can be estimated
from finite samples for H with finite VC dimension.

For Lyloss, Ly(y,y") = |y — y'|4, for any >0, with
probability at least 1—9,

disc(P, Q) < dlSC , ) + 4q(9A%S(H ))+
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Theoretical Guarantees

® Two types of questions:

e difference between average loss of hypothesish
on () versus P?

e difference of loss between hypothesis h trained
on @ and h'trained on P
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Generalization Bound

® Notation:
o Lolhg, f) =minLg(h, f)
* Lp(hp, f)=minLp(h, f)

® Theorem:assume that L obeys the triangle
inequality, then the following holds:

Lp(h, fp) < Lq(h,hg) + Lp(hp, fp) + disc(P, Q)
+ Lo(hly, hp).
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Some Special Cases
® When h™ = hzg = hp,

Lo(h, fp) < Lo(h,h*) + Lo(h*, fp) + disc(P, Q).

® When fp € H (consistent case),

ILp(h, fr) — Lo(h, fp)] < discr(Q, P).
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Kernel-Based Reg. Algorithms

® Algorithms minimizing objective function:

Fg(h) = M|} + Rg(h)

[}
/

where K is a positive definite symmetric kernel,
A> (0 is a trade-off parameter, and

R@(h)the empirical error of h .

e family of algorithms including SVMs, SVR, kernel
ridge regression, etc.
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Guarantees for KBR Algorithms

® Theorem:let K be a positive definite symmetric
kernel with Vx, K (x, x) <k and the loss s.t. L(-, y)
is o-Lipschitz. Assume that fp € H and that fp and f
coincide on the training sample. Then, for

allze X, yeYy,

LW (2).y) — L(h(z),y)| < m\/ st ,Q),

A
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Guarantees for KBR Algorithms

® Theorem: same assumptions but fp and f
potentially different on the training sample, H

bounded by M, and L the square loss; then, for
allre X, yey,

(W (x),y) = L(h(z),y)| <

2";\M (/16 4 \/,{252 + 4discy, (P, @))

with §% = L@(f@ (), fr(x)) < 1.
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Empirical Discrepancy

® Discrepancy distance disc(P, (Q)critical term in
bounds.

® Smaller empirical discrepancy guarantees closeness
of pointwise losses of h” and h.

® But, can we further reduce the discrepancy!?
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Algorithm - ldea

® The training sample is given, but we can search for
a new empirical distribution Q' such that

Q = argmin disc(ﬁ, @\’),
Q€9

where Q is the set of distributions with support

AN

supp(Q) -

® can be interpreted as reweighting training points.
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Case of Halfspaces
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Min-Max Problem

®m Reformulation:

Q' = argmin max IL5(R',h) — Lg, (R, Rh)].
B\ / ’ QN
Oeo hheH

® game theoretical interpretation.

® gives lower bound:

in |[L5(h,h) — LA,
JE%XHC%?;%‘ s, h) = Ls(

i LW, h) — LA
ggéh{g?g}[\ sl h) = Lg(

h',h)| <

n',h)|.
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Classification - O/1 Loss

® Problem:

. -~/ B ﬁ
min max |Q'(a) = P(a)

P

subjectto  Va € Sg, Q' (z) > 0 A Z Q'(z) = 1.
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Classification - O/1 Loss

® Linear program (LP):

min o
Q/

subjectto Va € HAH, @’( )— P(a) <6
VaEHAHP( ) —Q'(a) <

/\ZQ

JUESQ

>“U>

| \/

V € SQ,

® No. of constraints bounded by shattering
coefficient Il g A i (mo + no).
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Algorithm - |D
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Regression - L2 Loss

® Problem:

min max
O'cQh,heH

Bl(w (x) - h(z))®] - g[(h’(w) — h(z))7]].
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Regression - L2 Loss

® Semi-definite program (SDP): linear hypotheses.

min A
Z,\
subjectto AL — M(z) = 0
M+ M(z) =0

sz:l/\zzO,

elements of supp(@)
where the matrix M (z) is defined by:

mo

M(z) = Z ﬁ(X)XXT — Z 2iSiS; .

xeS 1=1
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Regression - L2 Loss

® SDP: generalization to  RKHS for some kernel K.

min A\
Z,\

subjectto A — M(z) =~ 0
M+ M(z) =0
1'z=1Az> 0,
mo
with: M(Z) — M() — Z ZzMz
1=1
M, = K2 diag(P(s1),. .., P(sp,)) K2
M, = K2, K'/2.
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Experiments

®m C(Classification:

® (Q and P Gaussians.

® H: halfspaces.

e f:interval [-],+1]. )

W/ min disc
0.9 —w/ orig disc

o*
.
.
o*
o

0-8" 4 | I ........ l .......... l evveerses s I

o
*
*
O [ *
; *
. o
L
U

06 [ | 7
05 \'/-I\\—)\Tr -

0% 0 40 60 80 100
# Training Points

Learning with Imperfect Data page 34



Experiments

B Regression:
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SDP solved in about |5s using SeDuMi on 3GHz CPU with
2GB memory.
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Conclusion

® Discrepancy distance: appears as the ‘right’
measure of difference of distributions for

adaptation.

® Theoretical analysis: generalization bounds and
strong guarantees for a large class of algorithms.

® Algorithm: discrepancy minimization algorithms for
other loss functions, more efficient large-scale
algorithms.
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