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Standard Learning Assumptions

IID assumption.

Same distribution for training and test.

Distributions fixed over time.
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Modern Large-Scale Data Sets

Real-world applications:

• Sample points are not drawn IID.

• Training sample is biased.

• Training points with uncertain labels.

• Multiple training sources.

• Distribution may drift with time.
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These problems must be addressed for learning 
to be effective.
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Domain Adaptation - Problem

Input:

• Labeled data from source domain.

• Unlabeled data from target domain.

Problem: use labeled and unlabeled data to derive 
hypothesis   with good performance on target 
domain.

• Thus, harder generalization problem than 
standard learning problem!
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Domain Adaptation - Examples

Sentiment analysis:

• appraisal information for some domains, e.g., 
movies, books, music, restaurants.

• but no labeled information for travel.

Language modeling, part-of-speech tagging, parsing.

Speech recognition.

Computer vision.
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Related Work

Single-source adaptation:

• language modeling, probabilistic parsers, maxent 
models: source domain used to define a prior.

• relation between adaptation and the     distance 
[Ben-David et al. (2006) and Blitzer et al. (2007)].

Multiple-source:

• same input distribution, but different labels 
[Crammer et al. (2005, 2006)].

• theoretical analysis and method for multiple-
source adaptation [Mansour et al. (2008)].

6

dA



pageLearning with Imperfect Data

This Talk

Domain adaptation problem

Discrepancy distance

Theoretical guarantees

Algorithm

Experiments

7



pageLearning with Imperfect Data

Learning Set-up

Distributions: source   , target   .

Target function(s):   , or     and    .

Input: labeled sample drawn from   , unlabeled 
sample drawn from   .

Problem: find hypothesis    with small expected 
loss with respect to distribution   ,
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LP (h, f) = E
x∼P

[
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h(x), f(x)
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Distribution Mismatch

9

PQ

Which distance should we use
to compare these distributions?
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Simple Analysis

Proposition: assume that the loss    is bounded 
by    , then

Proof:
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|LQ(h, f)− LP (h, f)| ≤ M l1(Q, P ).

|LQ(h, f)− LP (h, f)| =
∣∣∣E

Q

[
L

(
(h(x), f(x)

)]
− E

P

[
L

(
(h(x), f(x)

)]∣∣∣

=
∣∣∣
∑

x

(
Q(x)− P (x)

)
L

(
(h(x), f(x)

)∣∣∣

≤ M
∑

x

∣∣∣Q(x)− P (x)
∣∣∣.

 But, is this bound informative?
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Example - 0/1 Loss
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|LQ(h, f)− LP (h, f)| = |Q(a)− P (a)|
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   distance

Definition: 

For 0/1 loss, the natural choice is the set of all 
possible disagreement regions:
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dA

dA(Q1, Q2) = sup
a∈A

|Q1(a)−Q2(a)|.

where A is a set of regions or subsets of X 
[Devroye et al. (1996), Kifer et al. (2004)], Ben-David et al. (2007), 

Blitzer et al. (2007)]. 

A = H∆H = {|h′ − h| : h, h′ ∈ H}.
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Discrepancy Distance

Definition:

• Relationship with discrepancy in combinatorial 
contexts [Chazelle (2000)].

•      is a special case, 0-1 loss.

• helps compare distributions for other losses, e.g. 
hinge loss,      loss.

• symmetric, verifies triangle inequality, in general 
not a distance.
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disc(Q1, Q2) = max
h,h′∈H

∣∣∣LQ1(h
′, h)− LQ2(h

′, h)
∣∣∣.

dA
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Discrepancy - Properties

Theorem: the discrepancy distance can be estimated 
from finite samples for    with finite VC dimension. 
For     loss,                              , for any        , with 
probability at least       ,
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Lq Lq(y, y′) = |y − y′|q

disc(P, Q) ≤ disc(P̂ , Q̂) + 4q
(
R̂S(H) + R̂T (H)

)
+

3M

(√
log 4

δ

2m
+

√
log 4

δ

2n

)
.

δ>0
1−δ

H
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Theoretical Guarantees

Two types of questions: 

• difference between average loss of hypothesis   
on    versus   ?

• difference of loss between hypothesis h trained 
on    and    trained on   .
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Generalization Bound

Notation:

•  

•  

Theorem: assume that    obeys the triangle 
inequality, then the following holds:
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LP (h, fP ) ≤LQ(h, h∗Q) + LP (h∗P , fP ) + disc(P, Q)

+ LQ(h∗Q, h∗P ).

LQ(h∗Q, f) = min
h∈H

LQ(h, f)

LP (h∗P , f) = min
h∈H

LP (h, f)

L
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Some Special Cases

When                      ,

When            (consistent case), 
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h∗ = h∗Q = h∗P

LP (h, fP ) ≤ LQ(h, h∗) + LP (h∗, fP ) + disc(P, Q).

fP ∈ H

|LP (h, fP )− LQ(h, fP )| ≤ discL(Q, P ).
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Kernel-Based Reg. Algorithms

Algorithms minimizing objective function:

• family of algorithms including SVMs, SVR, kernel 
ridge regression, etc.
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F bQ(h) = λ ‖h‖2
K + R̂ bQ(h),

where    is a positive definite symmetric kernel,
                  is a trade-off parameter, and
                   the empirical error of    .

K
λ>0
R̂ bQ(h) h
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Guarantees for KBR Algorithms

Theorem: let    be a positive definite symmetric 
kernel with                       and the loss s.t.           
is  -Lipschitz. Assume that           and that     and  
coincide on the training sample. Then, for 
all                 ,
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L(·, y)
σ fP fQ

K

∣∣L(h′(x), y)− L(h(x), y)
∣∣ ≤ κσ

√
disc(P̂ , Q̂)

λ
.

x∈X, y∈Y

fP ∈H
∀x, K(x, x)≤κ
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Guarantees for KBR Algorithms

Theorem: same assumptions but     and     
potentially different on the training sample,   
bounded by    , and    the square loss; then, for 
all                 ,
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fP fQ

x∈X, y∈Y
∣∣L(h′(x), y)− L(h(x), y)

∣∣ ≤
2κM

λ

(
κδ +

√
κ2δ2 + 4λdiscL(P̂ , Q̂)

)
,

with δ2 = L bQ(fQ(x), fP (x))! 1.

H
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Empirical Discrepancy

Discrepancy distance                critical term in 
bounds.

Smaller empirical discrepancy guarantees closeness 
of pointwise losses of h’ and h.

But, can we further reduce the discrepancy?
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disc(P̂ , Q̂)
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Algorithm - Idea

The training sample is given, but we can search for 
a new empirical distribution     such that

• can be interpreted as reweighting training points.
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Q̂′

Q̂′ = argmin
bQ′∈Q

disc(P̂ , Q̂′),

where    is the set of distributions with support
             .

Q
supp(Q̂)
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Case of Halfspaces
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Min-Max Problem

Reformulation:

• game theoretical interpretation.

• gives lower bound:
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Q̂′ = argmin
bQ′∈Q

max
h,h′∈H

|L bP (h′, h)− L bQ′(h′, h)|.

max
h,h′∈H

min
bQ′∈Q

|L bP (h′, h)− L bQ′(h′, h)| ≤

min
bQ′∈Q

max
h,h′∈H

|L bP (h′, h)− L bQ′(h′, h)|.
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Classification - 0/1 Loss

Problem:
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min
Q′

max
a∈H∆H

∣∣Q̂′(a)− P̂ (a)
∣∣

subject to ∀x ∈ SQ, Q̂′(x) ≥ 0 ∧
∑

x∈SQ

Q̂′(x) = 1.



pageLearning with Imperfect Data

Classification - 0/1 Loss

Linear program (LP):

• No. of constraints bounded by shattering 
coefficient                         .
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min
Q′

δ

subject to ∀a ∈ H∆H, Q̂′(a)− P̂ (a) ≤ δ

∀a ∈ H∆H, P̂ (a)− Q̂′(a) ≤ δ

∀x ∈ SQ, Q̂′(x) ≥ 0 ∧
∑

x∈SQ

Q̂′(x) = 1.

ΠH∆H(m0 + n0)
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Algorithm - 1D
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Regression - L2 Loss

Problem:
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min
bQ′∈Q

max
h,h′∈H

∣∣∣ E
bP
[(h′(x)− h(x))2]− E

bQ′
[(h′(x)− h(x))2]

∣∣∣.
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Regression - L2 Loss
Semi-definite program (SDP): linear hypotheses.
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min
z,λ

λ

subject to λI −M(z) " 0
λI + M(z) " 0

1!z = 1 ∧ z ≥ 0,

where the matrix         is defined by:M(z)
elements of supp(Q̂)

M(z) =
∑

x∈S

P̂ (x)xx" −
m0∑

i=1

zisis"i .
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Regression - L2 Loss

SDP: generalization to    RKHS for some kernel   .
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min
z,λ

λ

subject to λI −M(z) " 0
λI + M(z) " 0

1!z = 1 ∧ z ≥ 0,

M(z) = M0 −
m0∑

i=1

ziMi

M0 = K1/2 diag(P (s1), . . . , P (sp0))K
1/2

Mi = K1/2IiK1/2.

with:

H K
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Experiments

Classification:

• Q and P Gaussians.

• H: halfspaces.

• f: interval [-1, +1].
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Experiments
Regression:
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Conclusion

Discrepancy distance: appears as the ‘right’ 
measure of difference of distributions for 
adaptation.

Theoretical analysis: generalization bounds and 
strong guarantees for a large class of algorithms.

Algorithm: discrepancy minimization algorithms for 
other loss functions, more efficient large-scale 
algorithms.

36


