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Learning Kernels

A |dea:
® standard: user commits to a single specific kernel.
® |earning kernels: user specifies a family of kernels.
® |et learning algorithm use sample to select both

an appropriate kernel and a hypothesis.

B Questions:

® what is the price to pay for relaxing the
requirement from the user?

® how does the choice of the family affect
generalization?
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Hypothesis Sets

® Based on non-negative combinations of p base
kernels:

p
Hg:{h c Hpg: KZZ/“{:KIC? HhHHK Sl,,UJEAq}
k=1

p
Ag={p: p>0,3" pl =1}
k=1

® Most previous learning kernel studies, e.g.,
(Bousquet and Herrmann, 2003; Crammer et al., 2003; Lanckriet
et al., 2004; Sonnenburg et al, 2005; Argyriou at al., 2005; Cortes

et al., 2008-2009).
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Single Kernel Margin Bound

B Theorem (Koltchinskii and Panchenko, 2002): fix p > 0.
Assume that K (z,z) < R?for all z, then, for
any 0 >0, with probability at least 1—¢, for
any he Hy,

~ 2 /2 loo L
R(h)ng(h)+2\/R/p -/ =23

m 2m
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Rademacher Complexity

B Empirical Rademacher complexity of H: for a

sample S=(z1,...,2m),
st = B [y (o]

where ;s are independent uniform random
variables taking values in{—1, +1}.

B Rademacher complexity of H :

9{777,(11) — SNEDm[%S(H)]'
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Single Kernel Margin Bound

B [emma:for any sample S of size m,

&S(Hll) < TI[K].

m

B Theorem (Koltchinskii and Panchenko, 2002): fix p > 0.
Assume that K (z, z) < R for all z, then, for
any ¢ >0, with probability at least1—4, for
any he H,

R(h) < Ep(h) + 2\/ |
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This Talk

B Previous work

® Novel guarantees
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Early Learning Kernel Bounds
(Bousquet and Herrmann 2003; Lanckriet et al., 2004)

® For any¢ >0, with probability at least 14, for
any he H ),

p P 1 Kk ||
R 1 max, _, Tr(Kx) MAXy 1 717K, ) 1
R(h) < R.(h — i 4 21log —|.
(h) < R,(h) + _m{\/ e + 444/ 0g

® but, bound always greater than one (Srebro and Ben-
David, 2006)!

® other bound of (Lanckriet et al,, 2004) for linear
combination case also always greater than one!
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Multiplicative Learning Bound
(Lanckriet et al., 2004)
® Assume that for all k ¢ [1,p], Kx(x,z) < R*.Then,
for any 6 >0, with probability at least 1—4, for
any he H ),

R(h) < R,(h) + o<\/

m

pR2/02>_

® bound multiplicative in p (hnumber of kernels).
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Additive Learning Bound
(Srebro and Ben-David, 2006)
® Assume that for all k ¢ [1,p], Kx(x,z) < R*.Then,
for any 0 >0, with probability at least1—¢, for
any he H ),

2+ plog 128;2’;3]%2 + 256]/;‘5—22 log % log 128:;]3“2 + log(1/9)

R(h) < R,(h) + \/ 8

m

® bound additive in p (modulo log terms).
® not informative for p>m.
® based on pseudo-dimension of kernel family.

® similar guarantees for other families.
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This Talk

® Previous work

® Novel guarantees

Mehryar Mohri - Courant & Google page |l



New Data-Dependent Bound

B Theorem:for any sample S of size m, and positive
integer r,

with u = (Tr[K4],..., Tr[K,])".

® similarity with single kernel bound.

Mehryar Mohri - Courant & Google page 12



New Learning Bound - LI

® Theorem:assume that for all k € [1,p], K(x, ) < R*
Then, for any ¢ >0, with probability at least 1—¢, for

R(h) < R, (h) +2\/£€HOMR2/P2  [log s
> Iy |

m om

very weak dependency on p, no extra log terms.
analysis based on Rademacher complexity.

o
o
® bound valid for p > m.
o

similar bound, less favorable const. (Kakade et al., 2010).
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Comparison

100 -
i [Srebro & Ben-David, 2006]
10 — '\\
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01 N \ p=mA(3/5)
N — p=m»(1/3)
— — p=10
S \
0.01 - [Our bound, 2010]
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Lower Bound

B Tight bound:
® dependency +/logp cannot be improved.

® argument based on VC dimension or example.

® Observations: case X={-1, +1}”.
® canonical projection kernels K (x,x') =z}, .
o H; contains J,={x—sxp: k€[l,p|,s€{-1,+1}}.
® VCdim(J,)=(logp) .
e forp=1and heJ,,R,(h)=R(h).
® VC lower bound: Q(1/VCdim(J?)/m).
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Key Lemma

B Lemma: Let Kbe a kernel matrix for a finite
sample. Then, for any integer r,

E[(0TKo)] < (2 rTr[K])T.

o

® proof based on combinatorial argument.
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New Learning Bound - Lq

® Theorem:letq,r>1 with 2+ =1 and rinteger.
Assume that for all k£ € [1, p], Ki(z, 2) < RZThen, for
any 6 >0, with probability at least 1 -6, for anyh € H/,

R(h) < R,(h) + 2p$\/%TR2/p2 [l

m 2m

® mild dependency on p.

® analysis based on Rademacher complexity.
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Lower Bound

B Tight bound:

e dependency p? cannot be improved.

® in particular p1 tight for L regularization.

® Observations: equal kernels.
® > e M= (D)o ) K1

o thus, [[Alf%,, = (X5, ) |l3, for S50 e #0.

1 1 .
® > i1tk <prlply=p (HO
® H1coincides with {h ¢ H:
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der’s inequality).
b, < p2e}.
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Comparison LI vs L2
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m in Millions
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Conclusion

B Theory: tight generalization bounds for learning

kerne

® milc

s with L, or L, regularization.

dependency on p.

® simi

ar proof and analysis for other regularizations.

® Applications: can learning kernels improve
performance? (Cortes, ICML 2009).

® results suggest using large number of kernels.

® recent results show significant improvements
(Cortes, MM, Rostamizadeh, ICML 2010).
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