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Learning Kernels

Idea:

• standard: user commits to a single specific kernel.

• learning kernels: user specifies a family of kernels.

• let learning algorithm use sample to select both 
an appropriate kernel and a hypothesis.

Questions:

• what is the price to pay for relaxing the 
requirement from the user?

• how does the choice of the family affect 
generalization?
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Hypothesis Sets

Based on non-negative combinations of   base 
kernels:

• Most previous learning kernel studies, e.g., 
(Bousquet and Herrmann, 2003; Crammer et al., 2003; Lanckriet 
et al., 2004;  Sonnenburg et al, 2005; Argyriou at al., 2005; Cortes 

et al., 2008-2009).

3

∆q ={µ : µ≥0,
p�

k=1

µq
k =1}.

p

H
q
p =

�
h ∈ HK : K =

p�

k=1

µkKk, �h�HK ≤1, µ∈∆q

�



pageMehryar Mohri - Courant & Google

Single Kernel Margin Bound

Theorem (Koltchinskii and Panchenko, 2002): fix       . 
Assume that                   for all   , then, for 
any       , with probability at least       , for     
any          ,
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Rademacher Complexity

Empirical Rademacher complexity of    : for a 
sample                       ,

Rademacher complexity of    :
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Single Kernel Margin Bound

Lemma: for any sample    of size    , 

Theorem (Koltchinskii and Panchenko, 2002): fix       . 
Assume that                   for all   , then, for 
any       , with probability at least       , for     
any          ,
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This Talk

Previous work

Novel guarantees
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Early Learning Kernel Bounds

For any       , with probability at least       , for    
any          ,

• but, bound always greater than one (Srebro and Ben-

David, 2006)!

• other bound of (Lanckriet et al., 2004) for linear 
combination case also always greater than one!

δ>0 1−δ

(Bousquet and Herrmann 2003; Lanckriet et al., 2004)
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Multiplicative Learning Bound

Assume that for all                                 . Then, 
for any       , with probability at least       , for 
any          ,

• bound multiplicative in   (number of kernels).
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Additive Learning Bound

Assume that for all                                 . Then, 
for any       , with probability at least       , for 
any          ,

• bound additive in   (modulo log terms).

• not informative for         .

• based on pseudo-dimension of kernel family.

• similar guarantees for other families.

δ>0 1−δ

(Srebro and Ben-David, 2006)
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New Data-Dependent Bound

Theorem: for any sample    of size    , and positive 
integer   ,

• similarity with single kernel bound.
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New Learning Bound - L1

Theorem: assume that for all                                . 
Then, for any       , with probability at least       , for 
any         ,

• very weak dependency on   , no extra log terms.

• analysis based on Rademacher complexity.

• bound valid for           .

• similar bound, less favorable const. (Kakade et al., 2010).
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Comparison

ρ/R= .2
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Lower Bound

Tight bound:

• dependency           cannot be improved.

• argument based on VC dimension or example.

Observations: case                 .

• canonical projection kernels                        .

•      contains                                                   .

•                               .

• for        and         ,                   .

• VC lower bound:                             .
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Key Lemma

Lemma: Let    be a kernel matrix for a finite 
sample. Then, for any integer   ,

• proof based on combinatorial argument.

16

K
r

E
σ

�
(σ�Kσ)r

�
≤

�
23
22 r Tr[K]

�r
.



pageMehryar Mohri - Courant & Google

New Learning Bound - Lq

Theorem: let           with             and   integer. 
Assume that for all                                . Then, for 
any       , with probability at least       , for any         ,

• mild dependency on   .

• analysis based on Rademacher complexity.
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Lower Bound

Tight bound:

• dependency      cannot be improved.

• in particular     tight for     regularization.

Observations: equal kernels.

•                                        .

• thus,                                      for                  .

•                                   (Hölder’s inequality).

•     coincides with                                    .
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Comparison L1 vs L2
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Conclusion

Theory: tight generalization bounds for learning 
kernels with     or     regularization.

• mild dependency on   .

• similar proof and analysis for other regularizations.

Applications: can learning kernels improve 
performance? (Cortes, ICML 2009).

• results suggest using large number of kernels.

• recent results show significant improvements 
(Cortes, MM, Rostamizadeh, ICML 2010).
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