

Generalization Bounds for Learning Kernels

Corinna Cortes, Mehryar Mohri, and Afshin Rostami
Google Research and Courant Institute
mohri@cs.nyu.edu

Learning Kernels

■ Idea:

- standard: user commits to a single specific kernel.
- learning kernels: user specifies a family of kernels.
- let learning algorithm use sample to select both an appropriate kernel and a hypothesis.

■ Questions:

- what is the price to pay for relaxing the requirement from the user?
- how does the choice of the family affect generalization?

Hypothesis Sets

- Based on non-negative combinations of p base kernels:

$$H_p^q = \left\{ h \in \mathbb{H}_K : K = \sum_{k=1}^p \mu_k K_k, \|h\|_{\mathbb{H}_K} \leq 1, \mu \in \Delta_q \right\}$$

$$\Delta_q = \left\{ \mu : \mu \geq 0, \sum_{k=1}^p \mu_k^q = 1 \right\}.$$

- Most previous learning kernel studies, e.g., (Bousquet and Herrmann, 2003; Crammer et al., 2003; Lanckriet et al., 2004; Sonnenburg et al, 2005; Argyriou at al., 2005; Cortes et al., 2008-2009).

Single Kernel Margin Bound

- **Theorem** (Koltchinskii and Panchenko, 2002): fix $\rho > 0$. Assume that $K(x, x) \leq R^2$ for all x , then, for any $\delta > 0$, with probability at least $1 - \delta$, for any $h \in H_1^1$,

$$R(h) \leq \hat{R}_\rho(h) + 2\sqrt{\frac{R^2/\rho^2}{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.$$

Rademacher Complexity

- Empirical Rademacher complexity of H : for a sample $S = (x_1, \dots, x_m)$,

$$\hat{\mathfrak{R}}_S(H) = \mathbb{E}_{\sigma} \left[\sup_{h \in H} \frac{1}{m} \sum_{i=1}^m \sigma_i h(x_i) \right],$$

where σ_i s are independent uniform random variables taking values in $\{-1, +1\}$.

- Rademacher complexity of H :

$$\mathfrak{R}_m(H) = \mathbb{E}_{S \sim D^m} [\hat{\mathfrak{R}}_S(H)].$$

Single Kernel Margin Bound

- **Lemma:** for any sample S of size m ,

$$\widehat{\mathfrak{R}}_S(H_1^1) \leq \frac{\sqrt{\text{Tr}[\mathbf{K}]}}{m}.$$

- **Theorem** (Koltchinskii and Panchenko, 2002): fix $\rho > 0$.
Assume that $K(x, x) \leq R^2$ for all x , then, for any $\delta > 0$, with probability at least $1 - \delta$, for any $h \in H_1^1$,

$$R(h) \leq \widehat{R}_\rho(h) + 2\sqrt{\frac{R^2/\rho^2}{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.$$

This Talk

- Previous work
- Novel guarantees

Early Learning Kernel Bounds

(Bousquet and Herrmann 2003; Lanckriet et al., 2004)

- For any $\delta > 0$, with probability at least $1 - \delta$, for any $h \in H_p^1$,

$$R(h) \leq \hat{R}_\rho(h) + \frac{1}{\sqrt{m}} \left[\sqrt{\frac{\max_{k=1}^p \text{Tr}(\mathbf{K}_k) \max_{k=1}^p \frac{\|\mathbf{K}_k\|}{\text{Tr}(\mathbf{K}_k)}}{\rho^2}} + 4 + \sqrt{2 \log \frac{1}{\delta}} \right].$$

- but, bound always greater than one (Srebro and Ben-David, 2006)!
- other bound of (Lanckriet et al., 2004) for linear combination case also always greater than one!

Multiplicative Learning Bound

(Lanckriet et al., 2004)

- Assume that for all $k \in [1, p]$, $K_k(x, x) \leq R^2$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, for any $h \in H_p^1$,

$$R(h) \leq \hat{R}_\rho(h) + O\left(\sqrt{\frac{p R^2 / \rho^2}{m}}\right).$$

- bound multiplicative in p (number of kernels).

Additive Learning Bound

(Srebro and Ben-David, 2006)

- Assume that for all $k \in [1, p]$, $K_k(x, x) \leq R^2$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, for any $h \in H_p^1$,

$$R(h) \leq \hat{R}_\rho(h) + \sqrt{8 \frac{2 + p \log \frac{128em^3R^2}{\rho^2p} + 256 \frac{R^2}{\rho^2} \log \frac{\rho em}{8R} \log \frac{128mR^2}{\rho^2} + \log(1/\delta)}{m}}.$$

- bound additive in p (modulo log terms).
- not informative for $p > m$.
- based on pseudo-dimension of kernel family.
- similar guarantees for other families.

This Talk

- Previous work
- Novel guarantees

New Data-Dependent Bound

- **Theorem:** for any sample S of size m , and positive integer r ,

$$\widehat{\mathfrak{R}}_S(H_p^1) \leq \frac{\sqrt{\frac{23}{22}r\|\mathbf{u}\|_r}}{m},$$

with $\mathbf{u} = (\text{Tr}[\mathbf{K}_1], \dots, \text{Tr}[\mathbf{K}_p])^\top$.

- similarity with single kernel bound.

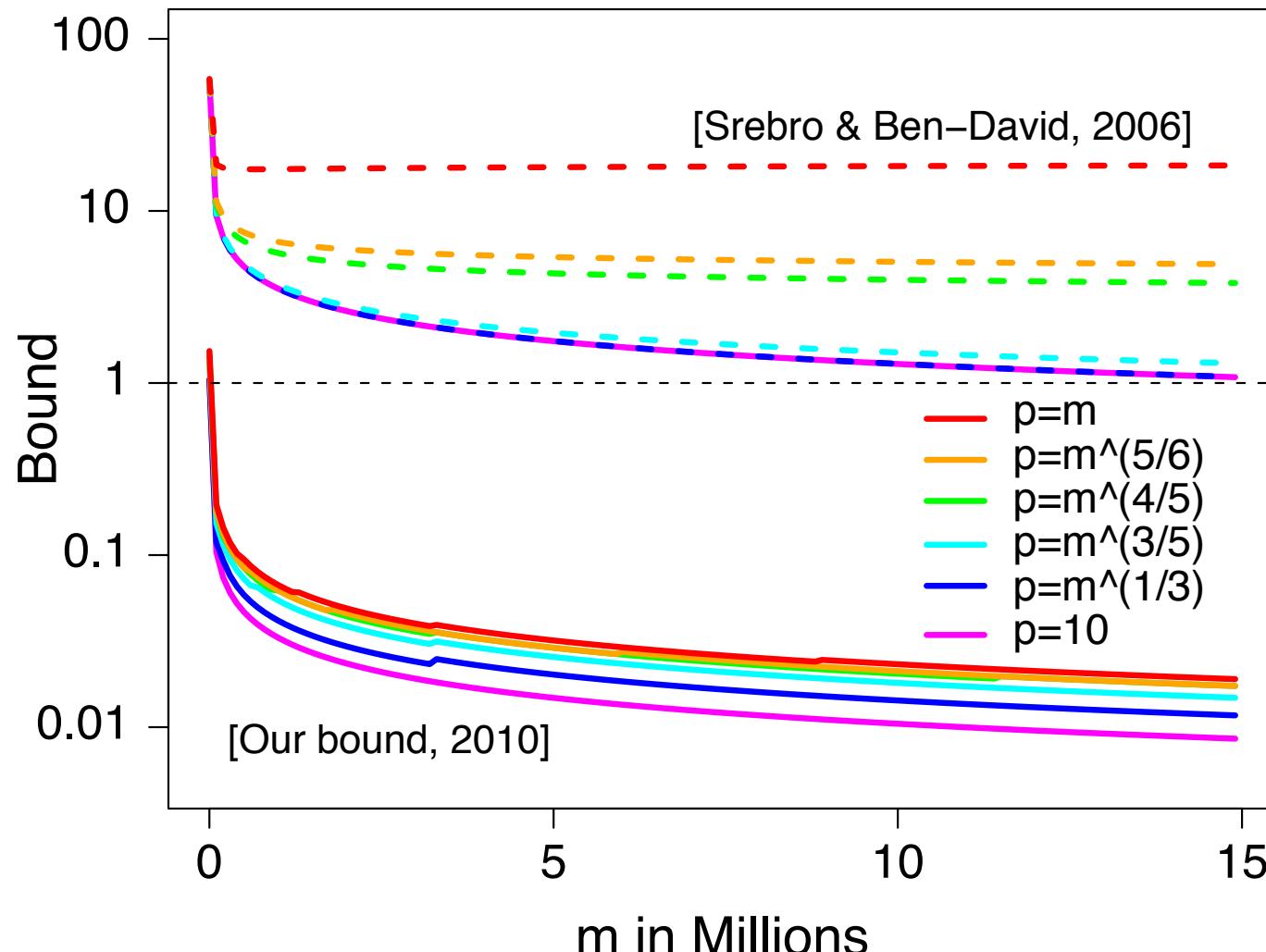
New Learning Bound - LI

- **Theorem:** assume that for all $k \in [1, p]$, $K_k(x, x) \leq R^2$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, for any $h \in H_p^1$,

$$R(h) \leq \widehat{R}_\rho(h) + 2\sqrt{\frac{\frac{23}{22}e\lceil \log p \rceil R^2/\rho^2}{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.$$

- very weak dependency on p , no extra \log terms.
- analysis based on Rademacher complexity.
- bound valid for $p \gg m$.
- similar bound, less favorable const. (Kakade et al., 2010).

Comparison



Lower Bound

■ Tight bound:

- dependency $\sqrt{\log p}$ cannot be improved.
- argument based on VC dimension or example.

■ Observations: case $\mathcal{X} = \{-1, +1\}^p$.

- canonical projection kernels $K_k(\mathbf{x}, \mathbf{x}') = x_k x'_k$.
- H_p^1 contains $J_p = \{\mathbf{x} \mapsto s x_k : k \in [1, p], s \in \{-1, +1\}\}$.
- $\text{VCdim}(J_p) = \Omega(\log p)$.
- for $\rho = 1$ and $h \in J_p$, $\widehat{R}_\rho(h) = \widehat{R}(h)$.
- VC lower bound: $\Omega(\sqrt{\text{VCdim}(J^p)/m})$.

Key Lemma

- **Lemma:** Let \mathbf{K} be a kernel matrix for a finite sample. Then, for any integer r ,

$$\mathbb{E}_{\boldsymbol{\sigma}} \left[(\boldsymbol{\sigma}^\top \mathbf{K} \boldsymbol{\sigma})^r \right] \leq \left(\frac{23}{22} r \operatorname{Tr}[\mathbf{K}] \right)^r.$$

- proof based on combinatorial argument.

New Learning Bound - Lq

■ **Theorem:** let $q, r \geq 1$ with $\frac{1}{q} + \frac{1}{r} = 1$ and r integer.
Assume that for all $k \in [1, p]$, $K_k(x, x) \leq R^2$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, for any $h \in H_p^q$,

$$R(h) \leq \hat{R}_\rho(h) + 2p^{\frac{1}{2r}} \sqrt{\frac{\frac{23}{22}rR^2/\rho^2}{m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.$$

- mild dependency on p .
- analysis based on Rademacher complexity.

Lower Bound

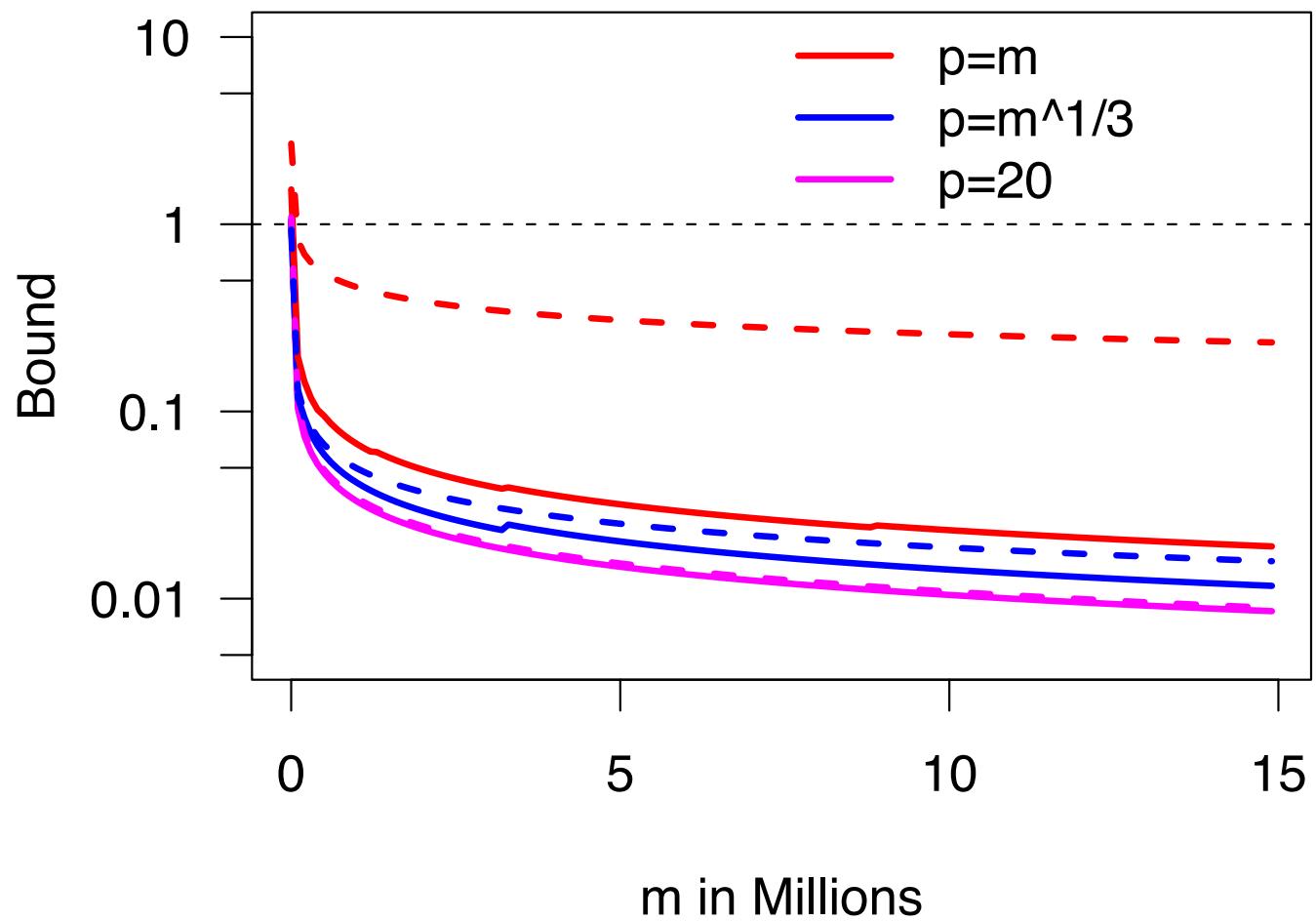
■ Tight bound:

- dependency $p^{\frac{1}{2r}}$ cannot be improved.
- in particular $p^{\frac{1}{4}}$ tight for L_2 regularization.

■ Observations: equal kernels.

- $\sum_{k=1}^p \mu_k K_k = \left(\sum_{k=1}^p \mu_k \right) K_1$.
- thus, $\|h\|_{\mathbb{H}_{K_1}}^2 = \left(\sum_{k=1}^p \mu_k \right) \|h\|_{\mathbb{H}_K}^2$ for $\sum_{k=1}^p \mu_k \neq 0$.
- $\sum_{k=1}^p \mu_k \leq p^{\frac{1}{r}} \|\mu\|_q = p^{\frac{1}{r}}$ (Hölder's inequality).
- H_p^q coincides with $\{h \in \mathbb{H}_{K_1} : \|h\|_{\mathbb{H}_{K_1}} \leq p^{\frac{1}{2r}}\}$.

Comparison L1 vs L2



Conclusion

- **Theory**: tight generalization bounds for learning kernels with L_1 or L_q regularization.
 - mild dependency on p .
 - similar proof and analysis for other regularizations.
- **Applications**: can learning kernels improve performance? (Cortes, ICML 2009).
 - results suggest using large number of kernels.
 - recent results show significant improvements (Cortes, MM, Rostamizadeh, ICML 2010).