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Motivation

® Learning kernels:
® appealing goal and active area of research.

® |ots of questions!

® Workshop opportunity:
® brief survey of latest theoretical results.

® brief survey of techniques and empirical results.
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This Talk

B Theoretical results

® Techniques and empirical results

Mehryar Mohri - Courant & Google page 3



Hypothesis Set

®m Convex combination of p base kernels:

p p
= {ZMkKki i > O,Z/Mc = 1}-
k=1 k=1

®m Hypothesis set [Lanckriet et al., 2004]:

:{ZIZHZO&Z (xi,2): K € K, aTKa<1/,0 }
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Previous Learning Bounds

® For any ) >0, with probability at least1—§, for
any h € H, [Bousquet and Herrmann 2003; Lanckriet et al., 2004]

p p Kkl
R 1 max,_, Tr(Kj) max;_ e 1
R(h) < Rp(h)+\/ﬂ_l|:\/ =l L Tr(Ke) +4+4/2log—=]|.

® But, bound always greater than one! [Srebro and Ben-
David, 2006]

® Other bound for linear combination case ([Lanckriet
et al,, 2004]) also always greater than one.
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Multiplicative Learning Bound
[Lanckriet et al., 2004]
® For any ) >0, with probability at least1—§, for
any he H,

R(h) < R,(h) + 0< WQ).

m

® Bound multiplicative in p (humber of kernels).
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Additive Learning Bound
[Srebro and Ben-David, 2006]
® Assume that for all k € [1,p], Kx(x,z) < R*.Then,
for any 6 >0, with probability at least1—¢, for
any he H,

2+ plog 128;2”;3]%2 + 256]/;‘5—22 log % log 128;7;]3“2 + log(1/9)

R(h) < R,(h) + \/ 8

m

® Bound additive in p (modulo log terms).
® based on pseudo-dimension of kernel family.

® similar guarantees for other families.
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New Learning Bound

[Cortes, MM, and Rostami, (2010)]
® Assume that for all k € [1,p], Kx(x,z) < R*.Then,

for any 6 >0, with probability at least 1—4, for
any he H,

R(h) < R, (h) +O<\/(logp)R2/pQ>.

m

® Very weak dependence on p, no extra log termes:
® analysis based on Rademacher complexity.
® bound valid forp > m.
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New Learning Bound - L2 Reg.

[Cortes, MM, and Rostami, (2010)]
® Assume that for all k € [1,p], Kx(x,z) < R*.Then,

for any 6 >0, with probability at least 1—4, for
any he H,

R(h) < R (h) + O<p1/4\/R2/p2).

m

® Mild dependence on p, no log terms.
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Learning Bound - L2 Regularization

[Cortes, MM, and Rostami, 2009]
®m Regression, KRR L; regularization, stability bound:

R(h) < R(h) +O(~/p/m + /1/m)

e additive term with number of kernels p.
e technical condition (orthogonal kernels).

e suggests using larger number of kernels p.
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This Talk

B Theoretical results

B Techniques and empirical results
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Brief Survey

® Early learning kernel work.
® Standard optimization problem.
| |2 regularization.

® Non-linear combinations.
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Learning Kernels

® Standard SVM dual optimization problem:

max 2a'1—a' Y'KYa

(84

subject to aTy:O AN ODO<a<C(C

Structural Risk Minimization: select the kernel that
minimizes an estimate of the generalization error.

B What estimate should we minimize?
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Minimize Different Criterion

(Chapelle,Vapnik, Bousquet & Mukherjee, 2000)
® Alternate SVM and gradient step algorithm:

® solve SVM problem and obtain ™.

® gradient step over criterion /' to select kernel
parameters:

® margin criterion T = R*/p°.

® span criterionT = = 3" O(a}S? — 1).

B Other similar work:
® margin criterion T = R”/p* (Weston et al., NIPS 2001).
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Empirical Results

(Chapelle,Vapnik, Bousquet & Mukherjee, 2000)

Cross-validation R?/M?* Span-bound

Breast Cancer 26.04 = 4.74 26.84 + 4.71 25.99 + 4.18
Diabetis 23.53 + 1.73 23.25 = 1.7 23.19 X 1.67
Heart 15:95 =k 3.26 15:92 +=3.18 16:13 = 3:11
Thyroid 4.80 + 2.19 4.62 =+ 2.03 4.56 = 1.97
Titanic 22.42 + 1.02 22.88 & 1.23° :22.5 = (.88

® Selecting the width of a Gaussian kernel and the SVM parameter C.

® |00x faster than cross-validation.
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Experiments - Feature Selection
(Chapelle,Vapnik, Bousquet & Mukherjee, 2000;VWeston et al., NIPS 2001)
B Comparison with existing methods:
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Figure 1: A comparison of feature selection methods on (a) a linear problem and (b) a
nonlinear problem both with many urrelevant features. The z-axis 1s the number of training
points, and the y-axis the test error as a fraction of test pomts.

Mehryar Mohri - Courant & Google

page |7



SVM - Learning Kernels Formulation

(Lanckriet et al., 2003)
see also (Grandvalet & Canu, 2002)

B Optimization problem:

p

minmax F(u, o) = 2a' 1 — aTYT< E ,ukKk>Ya

I o
k=1

subject to OgaSC/\aTy:O

p
p > 0N Z,ukTr(Kk) < A.
k=1

| Solution: SDP in general, QCQP or SILP for linear
combination, or QP for rank-1.
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Empirical Results

(Lanckriet et al., 2003)

K\ K2 K3 21 it K 2ibi L K best c/v RBF
Heart d=2 oc=05
HM Y 0.0369 0.1221 - 0.1531 0.1528
TSA 72.9 % 59.5 % B 84.8 % 84.6 % v 6 5 g
1/ p2 /s 3/0/0 0/3/0 0/0/3 -0.09/2.68/0.41 0.01/2.60/0.39
SM1 w3y 58.169 33.536 74.302 21.361 21.446
TSA 79.3 % 59.5 % 84.3 % 84.8 % 84.6 % 83.9 %
' 1 1 1 1 1
1/ 2/ s 3/0/0 0/3/0 0/0/3 -0.09/2.68 /0.41 0.01/2.60/0.39
SM2 Wgo 32.726 25.386 45.891 15.988 16.034
TSA 781% 59.0% 843 % 84.8 % 84.6 % 83.2 %
(04 1 1 1 1 1
p1 /e /s 3/0/0 0/3/0 0/0/3 -0.08/2.54/0.54 0.01/2.47/0.53
SM2,C W30 19.643 25.153 16.004 15.985
TSA 81.3 % 59.6 % 84.7 % 84.6 % 83.2 %
' 0.3378 1.18e+7 0.2880 0.4365
py/pe/py 1.04/0/0  0/3.99/0 0/0/0.53 0.01/0.80/0.53
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Empirical Results
(Lanckriet, De Bie, Cristianini, Jordan, & Noble, 2004)

®m (Classification - cytoplasmic ribosomal class.

Performance measured wrt ranking criterion (AUC).

Ksw Kpr K3 K Kp Kpgpi.re Kg7. .r12 TP1FP ROC

508 0.31 022 039 000 - - 88.21 + 1.73%  0.9933 + 0.0011
507 031 022 0.39 0.00 001 — 88.19 + 1.60% 0.9932 4+ 0.0011
5006 0.30 022 038 001 002 001 88.08 + 1.65%  0.9932 + 0.0010
1.00 1.00 1.00 1.00 1.00 - - 75.20 £ 2.38% 0.9906 + 0.0012
1.00 1.00 1.00 1.00 1.00 1.00 - 59.66 + 3.03% 0.9791 4+ 0.0017
1.00 1.00 1.00 1.00 1.00 1.00 1.00 12.87 + 2.59% 0.9620 + 0.0027
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Hyperkernels

(Ong, Smola & Williamson, 2005)
®m Kernels of kernels, infinitely many kernels.

® m?kernel parameters to optimize over.
m
K(il?, aj/) — Z 6’i,jK(($i7 wj)a (ZC, ZE/))
i,j=1
\VIZE,QZI c X, 6@',]’ >0

® SDP problem.
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Empirical Results

Data C-SVM v-SVM | Lag-SVM | Best other | CV Tuned SVM (C)
syndata | 2.84+24 | 19+19 | 24422 NA 5.945.4 (10%)
pima | 235+2.0 | 27.74+2.1 | 23.6+1.9 23.5 24.1+2.1 (10
ionosph | 66+18 | 67+18 | 64+1.9 5.8 6.1+1.8 (10°)
wdbc 33+12 | 38+12 | 3.0+1.1 3.2 52+1.4 (109
heart | 19.74+3.3 | 193424 | 20.1+2.8 16.0 23.24+3.7 (10%)
thyroid | 72+3.2 | 10.1440 | 6.243.1 4.4 52422 (10°)
sonar | 14.8+3.7 | 153437 | 14.7+3.6 154 15.3+4.1 (10%)
credit | 14.64+1.8 | 13.7+1.5 | 14.7+1.8 228 15.34+2.0 (10%)
glass 60+24 | 89426 | 6.04+2.2 NA 7.242.7 (10°)
K((ZE,ZC’) /// ) H 1 —A
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Regression - L2 Regularization

[Cortes, MM, and Rostami, 2009]
B Optimization problem:

p
min max —\a ' o — Z ,ukaTKka + 2aTy
peM o k=1

with M = {p: p > 0 A [|p — po* < A%}

| Solution:
® simple iterative algorithm.

® very efficient in practice.

®m Results: L2 regularization leads to better results
(see also [Kloft et al., 2009, this conference]).
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Empirical Results - Rank-1 Kernels
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Non-Linear Combinations

B DC-Programming algorithm (Argyriou et al., 2005)

® Generalized MKL (Varma & Babu, 2009)

® Hierarchical kernels (Bach, 2008)

® Polynomial combinations (Cortes, MM, and Rostami, 2009)
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Hierarchical Kernel Learning

(Bach, 2008)
B Example:

® Sub kernel:
Kostonal) = (1) (4 aialy, el e
® Full kernel:
K(z,a') = [[;21 (1 + i)

® Convex optimization problem, complexity
polynomial in the number of kernels selected,
sparsity through L; regularization and
hierarchical selection criteria.
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Reality Check

HKL

dataset n

#(V)

L’)

MKL

HKL

abalone 4177
abalone 4177

10 pol4
10 rbf

~10"

442413
43.040.9

44 .5+1.1
437410

43.3+1.0
43.0+1.1

bank-32fh 8192
bank-32fh 8192

32 pold
32 rbf

40.1+0.7
39.0+0.7

38.7+0.7
38.41+0.7

38.94+0.7
38.4+0.7

bank-32fm 8192
bank-32fm 8192

32

32 rbf

pold =~

6.0+0.1
5.740.2

6.140.3
5.940.2

5.140.1
4.610.2

bank-32nh 8192
bank-32nh 8192

32

32 rbf

pold =~

44.3+1.2
44.3+1.2

46.0+1.2
46.1+1.1

43.6+1.1
43.5+1.0

bank-32nm 8192
bank-32nm 8192

32

32 rbf

pol4 =~

17.240.6
16.9+0.6

21.040.7
20.940.7

16.810.6
16.4+0.6

boston 506
boston 506

13
13

pol4
rbf

17.1+£3.6
16.4+4.0

222422
20.742.1

18.1+3.8
17.144.7

pumadyn-32fh 8192
pumadyn-32fh 8192

32
32

pol4
rbf

57.310.7
57.710.6

56.410.7
56.5+0.8

56.440.8
55.740.7

pumadyn-32fm 8192
pumadyn-32fm 8192

32
32

pol4
rbf

6.9+0.1
5.040.1

7.010.1
7.140.1

3.1+0.0
3.440.0

pumadyn-32nh 8192
pumadyn-32nh 8192

32

32 rbf

pold =

84.2+1.3
56.5+1.1

83.6+1.3
83713

36.7+0 .4
35.540.5

pumadyn-32nm 8192
pumadyn-32nm 8192

32
32

pol4
rbf

60.1+1.9
157404

77.540.9
77.610.9

5.540.1
7.240.1
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Conclusion

® Theory: generalization bounds mildly dependent on p.

® Empirical results:

not consistently significantly > even combination.
L2 regularization seems to help.

large number of kernels seems to help.
non-linear combination seems to help.

other benefits: feature selection, speed, ranking.

® Question: can learning kernels improve performance?

Mehryar Mohri - Courant & Google page 28



