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Motivation

Learning kernels:

• appealing goal and active area of research.

• lots of questions!

Workshop opportunity:

• brief survey of latest theoretical results.

• brief survey of techniques and empirical results.
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This Talk

Theoretical results

Techniques and empirical results
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Hypothesis Set

Convex combination of   base kernels:

Hypothesis set [Lanckriet et al., 2004]:

K =
{ p∑

k=1

µkKk : µk ≥ 0,
p∑

k=1

µk = 1
}
.

H =
{
x !→

m∑

i=1

αiK(xi, x) : K ∈ K, α!Kα ≤ 1/ρ2
}
.

p
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Previous Learning Bounds

For any       , with probability at least       , for 
any        ,

But, bound always greater than one! [Srebro and Ben-
David, 2006]

Other bound for linear combination case ([Lanckriet 

et al., 2004]) also always greater than one.

R(h) ≤ R̂ρ(h) +
1√
m

[√
maxp

k=1 Tr(Kk)maxp
i=1

‖Kk‖
Tr(Kk)

ρ2
+ 4 +

√
2 log

1
δ

]
.

δ>0 1−δ
h∈H [Bousquet and Herrmann 2003; Lanckriet et al., 2004]
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Multiplicative Learning Bound

For any       , with probability at least       , for 
any        ,

Bound multiplicative in   (number of kernels).

δ>0 1−δ
h∈H

[Lanckriet et al., 2004]

R(h) ≤ R̂ρ(h) + O

(√
p/ρ2

m

)
.

p

6



pageMehryar Mohri - Courant & Google

Additive Learning Bound

Assume that for all                                 . Then, 
for any       , with probability at least       , for 
any        ,

Bound additive in   (modulo log terms).

• based on pseudo-dimension of kernel family.

• similar guarantees for other families.

δ>0 1−δ
h∈H

[Srebro and Ben-David, 2006]

p

7

k ∈ [1, p], Kk(x, x)≤R2

R(h) ≤ R̂ρ(h) +

√

8
2 + p log 128em3R2

ρ2p + 256R2

ρ2 log ρem
8R log 128mR2

ρ2 + log(1/δ)
m

.
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New Learning Bound

Assume that for all                                 . Then, 
for any       , with probability at least       , for 
any        ,

Very weak dependence on   , no extra log terms:

• analysis based on Rademacher complexity.

• bound valid for           .

[Cortes, MM, and Rostami, (2010)]

p

8

δ>0 1−δ
h∈H

k ∈ [1, p], Kk(x, x)≤R2

p! m

R(h) ≤ R̂ρ(h) + O

(√
(log p)R2/ρ2

m

)
.
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Plots

b=1.0
b=0.5

[Srebro and Ben-David, 2006]

Novel bound

ρ/R= .2
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p=10
p=m^(1/3)
p=m^(5/6)
p=m^(1)
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New Learning Bound - L2 Reg.

Assume that for all                                 . Then, 
for any       , with probability at least       , for 
any        ,

Mild dependence on   , no log terms.p

R(h) ≤ R̂ρ(h) + O

(
p1/4

√
R2/ρ2

m

)
.
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δ>0 1−δ
h∈H

k ∈ [1, p], Kk(x, x)≤R2
[Cortes, MM, and Rostami, (2010)]
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Learning Bound - L2 Regularization
Regression, KRR     regularization, stability bound:

• additive term with number of kernels   .

• technical condition (orthogonal kernels).

• suggests using larger number of kernels   .

R(h) ≤ R̂(h) + O
(√

p/m +
√

1/m
)

p

p
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L2

[Cortes, MM, and Rostami, 2009]
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This Talk

Theoretical results

Techniques and empirical results
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Brief Survey

Early learning kernel work.

Standard optimization problem.

L2 regularization.

Non-linear combinations.

13



pageMehryar Mohri - Courant & Google

Learning Kernels

Standard SVM dual optimization problem:

Structural Risk Minimization: select the kernel that 
minimizes an estimate of the generalization error.

What estimate should we minimize?

14

max
α

2α!1−α!Y!KYα

subject to α!y = 0 ∧ 0 ≤ α ≤ C
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Minimize Different Criterion                
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(Chapelle,Vapnik, Bousquet & Mukherjee, 2000)

T = R2/ρ2

T = 1
m

∑m
i=1 Θ(α!

i S
2
i − 1).

Alternate SVM and gradient step algorithm:

• solve SVM problem and obtain     .

• gradient step over criterion    to select kernel 
parameters:

• margin criterion                .

• span criterion

Other similar work:

• margin criterion                (Weston et al., NIPS 2001).

α!

T

T = R2/ρ2
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Empirical Results
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• Selecting the width of a Gaussian kernel and the SVM parameter C.

• 100x faster than cross-validation.

(Chapelle,Vapnik, Bousquet & Mukherjee, 2000)
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Experiments - Feature Selection

Comparison with existing methods:
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(Weston et al., NIPS 2001)

(Chapelle,Vapnik, Bousquet & Mukherjee, 2000; Weston et al., NIPS 2001)
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SVM - Learning Kernels Formulation
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(Lanckriet et al., 2003)

Optimization problem:

min
µ

max
α

F (µ,α) = 2α!1−α!Y!
( p∑

k=1

µkKk

)
Yα

subject to 0 ≤ α ≤ C ∧α!y = 0

µ ≥ 0 ∧
p∑

k=1

µkTr(Kk) ≤ Λ.

see also (Grandvalet & Canu, 2002)

Solution: SDP in general, QCQP or SILP for linear 
combination, or QP  for rank-1.



pageMehryar Mohri - Courant & Google

Empirical Results
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(Lanckriet et al., 2003)
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Empirical Results

Classification - cytoplasmic ribosomal class.

Performance measured wrt ranking criterion (AUC).
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(Lanckriet, De Bie, Cristianini, Jordan, & Noble, 2004)
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Hyperkernels

Kernels of kernels, infinitely many kernels.

     kernel parameters to optimize over.

SDP problem.
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(Ong, Smola & Williamson, 2005)

m2

K(x, x′) =
m∑

i,j=1

βi,jK((xi, xj), (x, x′))

∀x, x′ ∈ X, βi,j ≥ 0
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Empirical Results
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(Ong, Smola & Williamson, 2005)

K
(
(x, x′), (x′′, x′′′)

)
=

d∏

j=1

1− λ

1− λ exp
(
− σj

(
(xj − x′

j)2 + (x′′
j − x′′′

j )2
))
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Regression - L2 Regularization

Optimization problem:

Solution: 

• simple iterative algorithm.

• very efficient in practice.

Results: L2 regularization leads to better results 
(see also [Kloft et al., 2009, this conference]).

23

min
µ∈M

max
α

−λα"α−
p∑

k=1

µkα"Kkα + 2α"y

with M = {µ : µ ≥ 0 ∧ ‖µ− µ0‖2 ≤ Λ2}.

[Cortes, MM, and Rostami, 2009]
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Empirical Results - Rank-1 Kernels
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Non-Linear Combinations

DC-Programming algorithm (Argyriou et al., 2005)

Generalized MKL (Varma & Babu, 2009) 

Hierarchical kernels (Bach, 2008)

Polynomial combinations (Cortes, MM, and Rostami, 2009)
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Hierarchical Kernel Learning
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(Bach, 2008)

K(x, x′) =
∏p

i=1(1 + xix′
i)q

Ki,j(xi, x
′
i) =

(
q

j

)
(1 + xix

′
i)

j , i ∈ [1, p], j ∈ [0, q]

Example: 

• Sub kernel:

• Full kernel:

• Convex optimization problem, complexity 
polynomial in the number of kernels selected, 
sparsity through      regularization and 
hierarchical selection criteria.

L1
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Reality Check - HKL
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Conclusion

Theory: generalization bounds mildly dependent on p.

Empirical results: 

• not consistently significantly > even combination.

• L2 regularization seems to help.

• large number of kernels seems to help.

• non-linear combination seems to help.

• other benefits: feature selection, speed, ranking.

Question: can learning kernels improve performance?
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