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Motivation

Importance weighting used in variety of contexts:

• sample bias correction (e.g., Dudík et al., 2006; Zadrozny 

et al., 2003; Huang et al., 2006; Sugiyama et al., 2008).

• domain adaptation.

• active learning (Beygelzimer et al., 2009).

• analysis of boosting (Dasgupta and Long, 2003).

Guarantees?

• when is importance weighting successful?

• are there better reweighting techniques than the 
straightforward standard approach?
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Setting

Input space   , output space  .

Loss function                       .

Source distribution   .

Target distribution   .

Training sample   of size    drawn according to   .

Hypothesis set    .

Fixed target labeling function             .

Notation: for any         and        , 
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X Y

L : Y ×Y → [0, 1]

P

Q

Q

H

f : X→Y

S m

x∈X h∈H Lh(x)=L(h(x),f(x)).
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Importance Weighting

Emphasize loss of training point    by       :

• empirical loss:

• generalization loss:

Weight assumed known: 

• In practice, estimated weight       : effect of this 
error specifically analyzed by (Cortes et al., 2008).

Different scenarios: importance weighting/sampling.

• imp. weighting: finite sample of size       some   .

• imp. sampling: unlimited sampling, can choose   .
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x w(x)

�w(x)

w(x)=P (x)/Q(x).

Q

�Rw(h)= 1
m

�m
i=1 w(xi)Lh(xi).

R(h)= E
x∼P

[Lh(x)].

m Q∼
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Does Importance Weighting Work?
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Hypothesis class: hyperplanes tangent to the unit circle.

Best hypothesis chosen by empirical risk minimization.
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Outline

Preliminaries.

Learning bounds for bounded importance weights.

Learning bounds for unbounded importance 
weights (the most common case).

Alternative reweighting techniques.

6



pageImportance weighting

Rényi Divergences

Definition: for        ,

•          for all        .

•     coincides with the relative entropy (KL div.).

•      non-decreasing function of   .

Notation: 
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α≥0Dα≥0

D1

α≥0

Dα α

(Rényi, 1960)

dα(P�Q) = 2Dα(P�Q) =
��

x

Pα(x)
Qα−1(x)

� 1
α−1

.

Dα(P�Q) =
1

α− 1
log2

�

x

P (x)
�
P (x)
Q(x)

�α−1

.
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Properties

Properties of    :

Properties of       :
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w

E[w]=1 E[w2]=d2(P�Q) σ2(w)=d2(P�Q)− 1.

wLh

E
Q
[ �Rw(h)]= E

x∼Q
[w(x)Lh(x)]=

�

x

P (x)
Q(x)

Lh(x)Q(x)=
�

x

P (x)Lh(x)=R(h).

E
x∼Q

[w2
(x)L2

h(x)] =

�

x

Q(x)

�
P (x)

Q(x)

�2

L2
h(x) =

�

x

P (x)
1
α

�
P (x)

Q(x)

�
P (x)

α−1
α L2

h(x)

(Hölder’s inequality) ≤
� �

x

P (x)

�
P (x)

Q(x)

�α� 1
α
� �

x

P (x)L
2α

α−1
h (x)

� α−1
α

= dα+1(P�Q)

��

x

P (x)Lh(x)L
α+1
α−1
h (x)

� α−1
α

≤ dα+1(P�Q)R(h)
1− 1

α .



pageImportance weighting

Learning Bound - Bounded Case

Assumption (bounded case):

Theorem: let    be a finite hypothesis set. Then, for 
any        , with probability at least       , for any        ,

• similar result for infinite hypothesis sets.

• note the role of Rényi divergence.
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M =sup
x

w(x)=sup
x

P (x)
Q(x)

=d∞(P�Q)<+∞.

H

δ>0 1−δ h∈H

R(h) ≤ �Rw(h) +
2M(log |H | + log 1

δ )
3m

+

�
2d2(P�Q)(log |H | + log 1

δ )
m

.
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Lower Bound - Bounded Case

Theorem: assume that           and                        . 
Assume that    contains a hypothesis     such     
that                for all   .  Then, there exists an 
absolute constant              such that

• result based on proof of general lower bound 
theorem for maximal variance.
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M <∞ σ2(w)/M2≥1/m
H h0

Lh0(x)=1 x

c=2/412

Pr
�

sup
h∈H

��R(h)− �Rw(h)
�� ≥

�
d2(P�Q)− 1

4m

�
≥ c > 0.
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Unbounded Case

Assumption                     does not hold, even in 
some natural cases.

Examples: Gaussian distributions.

• even for             and        ,                       .

• but, for                 (e.g., example on the right, 
slide 2),                      , thus the second-moment 
of    is bounded.
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d∞(P�Q)<∞

P (x) =
1√

2πσP

exp
�
− (x− µ)2

2σ2
P

�
Q(x) =

1√
2πσQ

exp
�
− (x− µ�)2

2σ2
Q

�
.

σP =σQ µ �=µ� d∞(P�Q)=+∞
σQ >

√
2

2 σP

d2(P�Q)<+∞
w
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Learning Bound - Unbounded Case

Theorem: let    such that                                     
is finite. Assume that                       and             
for all   . Then, for any       , with probability at 
least       , for all        ,

• holds even for unbounded weights.

• based on new proof of general learning bound 
theorem for unbounded losses with bounded 
second-moment (Vapnik’s proof is incorrect!).
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H Pdim({Lh(x) : h∈H})=p

d2(P�Q)<+∞ w(x) �=0
x δ>0

1−δ h∈H

R(h) ≤ �Rw(h) + 25/4
�

d2(P�Q)
3
8

�
p log 2me

p + log 4
δ

m
.
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Alternative Weighting Techniques

Arbitrary              with        and for any        ,

Theorem: let    such that                                     
is finite. Assume that                          . Then, for 
any       , with probability at least       , for all        ,
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u : X→R u>0 h∈H

�Ru(h)=
1
m

m�

i=1

u(xi)Lh(xi).

H Pdim({Lh(x) : h∈H})=p

0<E
Q
[u2(x)]<+∞

δ>0 1−δ h∈H

|R(h)− �Ru(h)| ≤
���E

Q

�
[w(x) − u(x)]Lh(x)

����+

25/4 max
��

EQ[u2(x)L2
h(x)],

√
E bQ[u2(x)L2

h(x)]
� 3

8

�
p log 2me

p + log 4
δ

m
.
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Alternative Weighting Techniques

Trade-off between bias term                                
and second moment                                              .

Using upper bound independent of    leads to the 
optimization problem
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�
max

�
EQ[u2(x)L2

h(x)], E bQ[u2(x)L2
h(x)]

�
| EQ[(w(x)−u(x))Lh(x)]|

H

min
u∈U

E
Q

�
|w(x) − u(x)|

�
+ γ

�
E
Q
[u2],

with        a trade-off parameter.γ >0
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Alternative Reweighting - Example
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The variance is reduced in (3) by replacing    with 
the average weight per quantile.

w

(1) (2) (3) (4)



pageImportance weighting

Conclusion and Open Questions

Learning guarantees for importance weighting, 
including unbounded case (most common).

Analysis of cases where importance weighting can 
succeed.

Critical role of Rényi divergence of the 
distributions.

Preliminary exploration of other reweighting 
techniques.

Estimation of Rényi divergence from finite samples.
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