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Motivation

® [mportance weighting used in variety of contexts:

® sample bias correction (e.g., Dudik et al., 2006; Zadrozny
et al., 2003; Huang et al., 2006; Sugiyama et al., 2008).

® domain adaptation.
® active learning (Beygelzimer et al., 2009).

® analysis of boosting (Dasgupta and Long, 2003).

® Guarantees!
® when is importance weighting successful?

® are there better reweighting techniques than the
straightforward standard approach?
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Setting

Input space X, output spaceY.

Loss function L: Y xY —[0,1].

Source distribution Q.

Target distribution P.

Training sample S of size m drawn according to Q.
Hypothesis set H.

Fixed target labeling function f: X —Y.

Notation: for any re X and he H, Ly (z)=L(h(z) f(z)).
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Importance Weighting

® Emphasize loss of training point x by w(x):
® empirical loss: R,,(h) = L 3 w(zg) Ly ()

® generalization loss: R(h)= EP[Lh(x)].

B Weight assumed known: w(z)=P(x)/Q(x).

® |n practice, estimated weight w(x): effect of this
error specifically analyzed by (Cortes et al,, 2008).

| Different scenarios: importance weighting/sampling.
® imp. weighting: finite sample of size m ~some (.

® imp. sampling: unlimited sampling, can choose Q).

Importance weighting page 4



Does Importance Weighting Work!?

4 Ratio OQ/OP = 0.3 Ratio GQ/0P= 0.75
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® Hypothesis class: hyperplanes tangent to the unit circle.

B Best hypothesis chosen by empirical risk minimization.
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® Preliminaries.
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Renyi Divergences
(Rényi, 1960)
B Definition:fora>0,

Do (P|Q) =

log2ZP [ grl.

® D,>0forall a>0.
® D; coincides with the relative entropy (KL div.).

® D, non-decreasing function of a.

A Notation:

do (P Q) = 2P=(PI@) — [Z Q;(fa)}
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Properties

® Properties of w:

Elw]=1 E[u?]=dz(P|Q) o(w)=dz(P|Q) - 1.

® Properties of wLy,:

(R (1)) = E, 0@} Ln()] =Y 53 Ln(a) Qo) = 3 Pla)La(a)=R(h)
B B] = 30| g | B =X Pe)t | ges| Pe ' 1
(Holder's inequality) < [Z P(x) [ggg] ] : [ZP(@ LE (as)] N

X x

s (P|Q)] S P(a) L)L <x>] < dor s (P|Q) R(R) 5.

x
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Learning Bound - Bounded Case

m Assumption (bounded case):

=Sup w\xr)=—su P(Qj)
M= 1p () P o

B Theorem:let H be a finite hypothesis set. Then, for
any 6 >0, with probability at least1—4¢, for any he H,

=d (P||Q) < 400.

2M (log |H| + log ) N 2d2(P||Q)(log |H| + log 5)
3m m

R(h) < Ry (h) +

® similar result for infinite hypothesis sets.

® note the role of Renyi divergence.
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Lower Bound - Bounded Case

® Theorem:assume that M < oo and o?(w)/M?>1/m.
Assume that H contains a hypothesis /y such
that Ly, (x)=1 for all z. Then, there exists an
absolute constant c=2/417 such that

~ do(P||Q) — 1
Pr 2161[17)[ 'R(h) — Ry(h)| > \/ yr— } > c > 0.

® result based on proof of general lower bound
theorem for maximal variance.
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Unbounded Case

B Assumption d (P||@Q) <oo does not hold, even in
some natural cases.

® Examples: Gaussian distributions.

P(z) = \/%O'P exp [_ (372;]2/;) ] Qz) = \/%GQ exp _ _ ($2—Ug/)

® even forop=o0¢g and p# ', deo (P)|Q) = +c.

® but, for op > \/75013 (e.g., example on the right,
slide 2), d2(P||Q) < 4+o0, thus the second-moment
of w is bounded.
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Learning Bound - Unbounded Case

B Theorem:let H such that Pdim({L;(x): he H})=p
is finite. Assume that d>(P||Q) <400 and w(x) #0
for all z . Then, for any § >0, with probability at
least1—9,for allhe H,

N s [plog 22€ 4 Jog 4
R(h) < Ry (h) + 27%\/ds(P||Q) i/ — -

® holds even for unbounded weights.

® based on new proof of general learning bound
theorem for unbounded losses with bounded
second-moment (Vapnik’s proof is incorrect!).
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Alternative Weighting Techniques

® Arbitrary u: X —R withu>0 and for any h€ H,
. 1 &
Ru(h)= - ;u(azi)l}h(xi).

B T[heorem:let H such that Pdim({Ly(x): he H})=p
is finite. Assume that 0 < E[u?(z)] < +oc.Then, for
any ¢ >0, with probabilityQat least 1 -9, for all he H,

R(h) = Ru(W)] < | B [[w(e) — u(@)]La(x)] |+

2me i lOg %

|
s[plo
2/ max (Eq P @ B2 @], VEQ (@) LE(@))) i/ P

m
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Alternative Weighting Techniques

B Trade-off between bias term|Eq|[(w(z)—u(z))Ly(x)]

(
and second moment\/max(EQ[u2(x)L%(x)],E@[UQ(x)L%L(a:)]).

® Using upper bound independent of H leads to the
optimization problem

min E [Jw(x) - u(@)|] +7VE[u?]

uelU Q

with v >0 a trade-off parameter.
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Alternative Reweighting - Example

(1) (2) (3) (4)
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The variance is reduced in (3) by replacing w with
the average weight per quantile.
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Conclusion and Open Questions

B [earning guarantees for importance weighting,
including unbounded case (most common).

®m Analysis of cases where importance weighting can
succeed.

| Critical role of Renyi divergence of the
distributions.

® Preliminary exploration of other reweighting
techniques.

| Estimation of Renyi divergence from finite samples.
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