

Learning Bounds for Importance Weighting

Corinna Cortes
Google Research
corinna@google.com

Yishay Mansour
Tel-Aviv University
mansour@tau.ac.il

Mehryar Mohri
Courant & Google
mohri@cims.nyu.edu

Special thanks to Ameet Talwalkar (UC Berkeley)

Motivation

- Importance weighting used in variety of contexts:
 - sample bias correction (e.g., Dudík et al., 2006; Zadrozny et al., 2003; Huang et al., 2006; Sugiyama et al., 2008).
 - domain adaptation.
 - active learning (Beygelzimer et al., 2009).
 - analysis of boosting (Dasgupta and Long, 2003).
- Guarantees?
 - when is importance weighting successful?
 - are there better reweighting techniques than the straightforward standard approach?

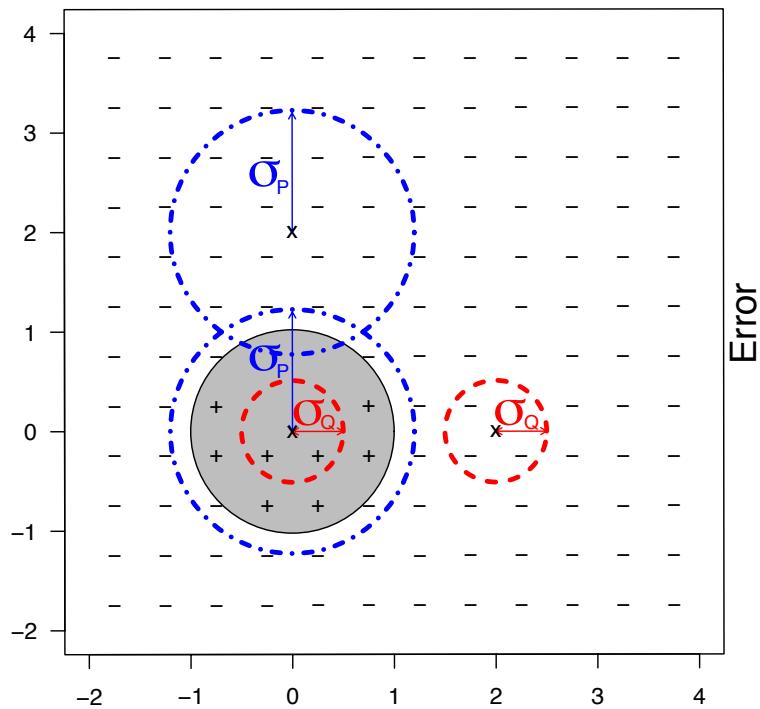
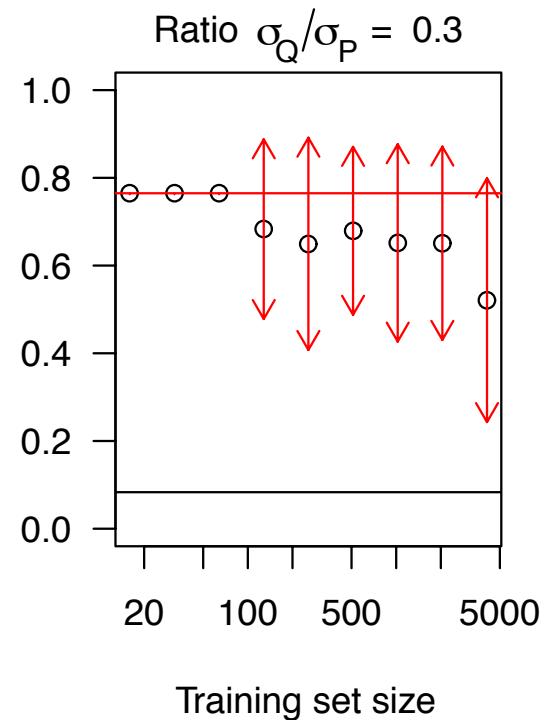
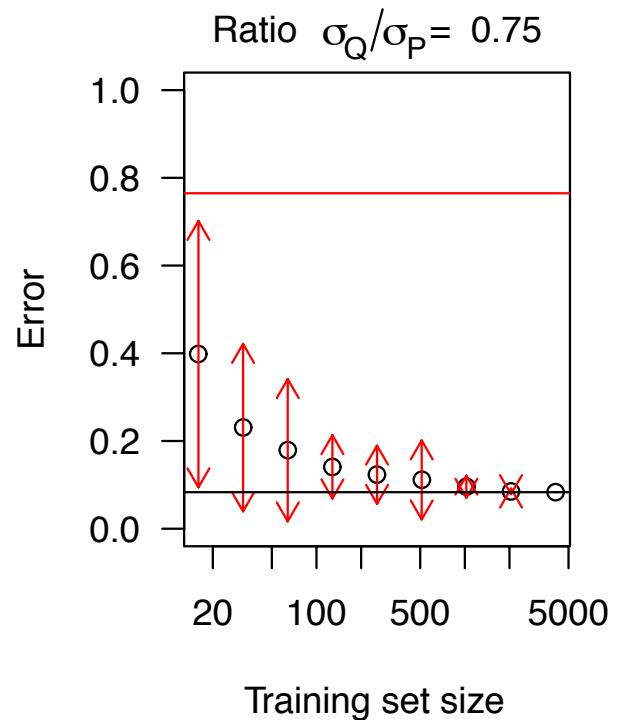
Setting

- Input space X , output space Y .
- Loss function $L: Y \times Y \rightarrow [0, 1]$.
- Source distribution Q .
- Target distribution P .
- Training sample S of size m drawn according to Q .
- Hypothesis set H .
- Fixed target labeling function $f: X \rightarrow Y$.
- Notation: for any $x \in X$ and $h \in H$, $L_h(x) = L(h(x), f(x))$.

Importance Weighting

- Emphasize loss of training point x by $w(x)$:
 - empirical loss: $\hat{R}_w(h) = \frac{1}{m} \sum_{i=1}^m w(x_i) L_h(x_i)$.
 - generalization loss: $R(h) = \mathbb{E}_{x \sim P} [L_h(x)]$.
- Weight assumed known: $w(x) = P(x)/Q(x)$.
 - In practice, estimated weight $\hat{w}(x)$: effect of this error specifically analyzed by (Cortes et al., 2008).
- Different scenarios: importance weighting/sampling.
 - imp. weighting: finite sample of size $m \sim$ some Q .
 - imp. sampling: unlimited sampling, can choose Q .

Does Importance Weighting Work?



- Hypothesis class: hyperplanes tangent to the unit circle.
- Best hypothesis chosen by empirical risk minimization.

Outline

- Preliminaries.
- Learning bounds for bounded importance weights.
- Learning bounds for unbounded importance weights (the most common case).
- Alternative reweighting techniques.

Rényi Divergences

(Rényi, 1960)

■ Definition: for $\alpha \geq 0$,

$$D_\alpha(P\|Q) = \frac{1}{\alpha-1} \log_2 \sum_x P(x) \left[\frac{P(x)}{Q(x)} \right]^{\alpha-1}.$$

- $D_\alpha \geq 0$ for all $\alpha \geq 0$.
- D_1 coincides with the relative entropy (KL div.).
- D_α non-decreasing function of α .

■ Notation:

$$d_\alpha(P\|Q) = 2^{D_\alpha(P\|Q)} = \left[\sum_x \frac{P^\alpha(x)}{Q^{\alpha-1}(x)} \right]^{\frac{1}{\alpha-1}}.$$

Properties

■ Properties of w :

$$\mathbb{E}[w] = 1 \quad \mathbb{E}[w^2] = d_2(P\|Q) \quad \sigma^2(w) = d_2(P\|Q) - 1.$$

■ Properties of wL_h :

$$\begin{aligned} \mathbb{E}_Q[\widehat{R}_w(h)] &= \mathbb{E}_{x \sim Q}[w(x)L_h(x)] = \sum_x \frac{P(x)}{Q(x)} L_h(x) Q(x) = \sum_x P(x)L_h(x) = R(h). \\ \mathbb{E}_{x \sim Q}[w^2(x)L_h^2(x)] &= \sum_x Q(x) \left[\frac{P(x)}{Q(x)} \right]^2 L_h^2(x) = \sum_x P(x)^{\frac{1}{\alpha}} \left[\frac{P(x)}{Q(x)} \right] P(x)^{\frac{\alpha-1}{\alpha}} L_h^2(x) \\ (\text{Hölder's inequality}) &\leq \left[\sum_x P(x) \left[\frac{P(x)}{Q(x)} \right]^\alpha \right]^{\frac{1}{\alpha}} \left[\sum_x P(x) L_h^{\frac{2\alpha}{\alpha-1}}(x) \right]^{\frac{\alpha-1}{\alpha}} \\ &= d_{\alpha+1}(P\|Q) \left[\sum_x P(x) L_h(x) L_h^{\frac{\alpha+1}{\alpha-1}}(x) \right]^{\frac{\alpha-1}{\alpha}} \leq d_{\alpha+1}(P\|Q) R(h)^{1-\frac{1}{\alpha}}. \end{aligned}$$

Learning Bound - Bounded Case

■ Assumption (bounded case):

$$M = \sup_x w(x) = \sup_x \frac{P(x)}{Q(x)} = d_\infty(P\|Q) < +\infty.$$

■ Theorem: let H be a finite hypothesis set. Then, for any $\delta > 0$, with probability at least $1 - \delta$, for any $h \in H$,

$$R(h) \leq \hat{R}_w(h) + \frac{2M(\log |H| + \log \frac{1}{\delta})}{3m} + \sqrt{\frac{2d_2(P\|Q)(\log |H| + \log \frac{1}{\delta})}{m}}.$$

- similar result for infinite hypothesis sets.
- note the role of Rényi divergence.

Lower Bound - Bounded Case

- **Theorem:** assume that $M < \infty$ and $\sigma^2(w)/M^2 \geq 1/m$. Assume that H contains a hypothesis h_0 such that $L_{h_0}(x) = 1$ for all x . Then, there exists an absolute constant $c = 2/41^2$ such that

$$\Pr \left[\sup_{h \in H} |R(h) - \hat{R}_w(h)| \geq \sqrt{\frac{d_2(P\|Q) - 1}{4m}} \right] \geq c > 0.$$

- result based on proof of general lower bound theorem for maximal variance.

Unbounded Case

- Assumption $d_\infty(P\|Q) < \infty$ does not hold, even in some natural cases.
- Examples: Gaussian distributions.

$$P(x) = \frac{1}{\sqrt{2\pi}\sigma_P} \exp\left[-\frac{(x-\mu)^2}{2\sigma_P^2}\right] \quad Q(x) = \frac{1}{\sqrt{2\pi}\sigma_Q} \exp\left[-\frac{(x-\mu')^2}{2\sigma_Q^2}\right].$$

- even for $\sigma_P = \sigma_Q$ and $\mu \neq \mu'$, $d_\infty(P\|Q) = +\infty$.
- but, for $\sigma_Q > \frac{\sqrt{2}}{2}\sigma_P$ (e.g., example on the right, slide 2), $d_2(P\|Q) < +\infty$, thus the second-moment of w is bounded.

Learning Bound - Unbounded Case

- **Theorem:** let H such that $\text{Pdim}(\{L_h(x): h \in H\}) = p$ is finite. Assume that $d_2(P\|Q) < +\infty$ and $w(x) \neq 0$ for all x . Then, for any $\delta > 0$, with probability at least $1 - \delta$, for all $h \in H$,

$$R(h) \leq \hat{R}_w(h) + 2^{5/4} \sqrt{d_2(P\|Q)} \sqrt{\frac{p \log \frac{2me}{p} + \log \frac{4}{\delta}}{m}}.$$

- holds even for unbounded weights.
- based on new proof of general learning bound theorem for unbounded losses with bounded second-moment (Vapnik's proof is incorrect!).

Alternative Weighting Techniques

- **Arbitrary $u: X \rightarrow \mathbb{R}$ with $u > 0$ and for any $h \in H$,**

$$\widehat{R}_u(h) = \frac{1}{m} \sum_{i=1}^m u(x_i) L_h(x_i).$$

- **Theorem:** let H such that $\text{Pdim}(\{L_h(x): h \in H\}) = p$ is finite. Assume that $0 < \mathbb{E}_Q[u^2(x)] < +\infty$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, for all $h \in H$,

$$|R(h) - \widehat{R}_u(h)| \leq \left| \mathbb{E}_Q [[w(x) - u(x)] L_h(x)] \right| + 2^{5/4} \max \left(\sqrt{\mathbb{E}_Q[u^2(x) L_h^2(x)]}, \sqrt{\mathbb{E}_{\widehat{Q}}[u^2(x) L_h^2(x)]} \right) \sqrt[3]{\frac{p \log \frac{2me}{p} + \log \frac{4}{\delta}}{m}}.$$

Alternative Weighting Techniques

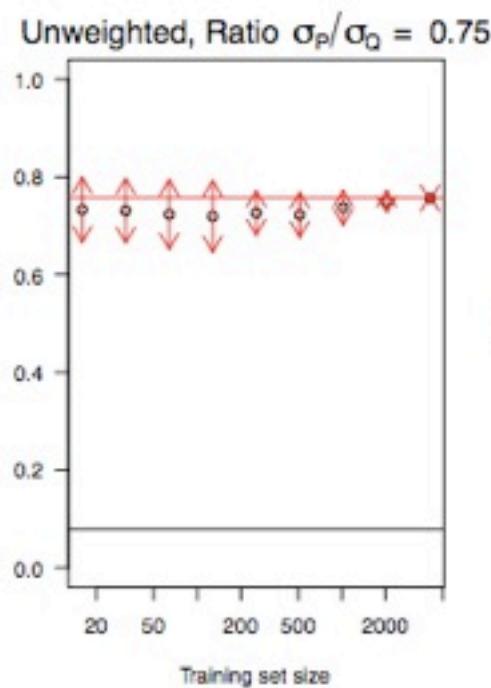
- Trade-off between bias term $|\mathbb{E}_Q[(w(x) - u(x))L_h(x)]|$ and second moment $\sqrt{\max(\mathbb{E}_Q[u^2(x)L_h^2(x)], \mathbb{E}_{\hat{Q}}[u^2(x)L_h^2(x)])}$.
- Using upper bound independent of H leads to the optimization problem

$$\min_{u \in U} \mathbb{E}_Q [|w(x) - u(x)|] + \gamma \sqrt{\mathbb{E}_Q[u^2]},$$

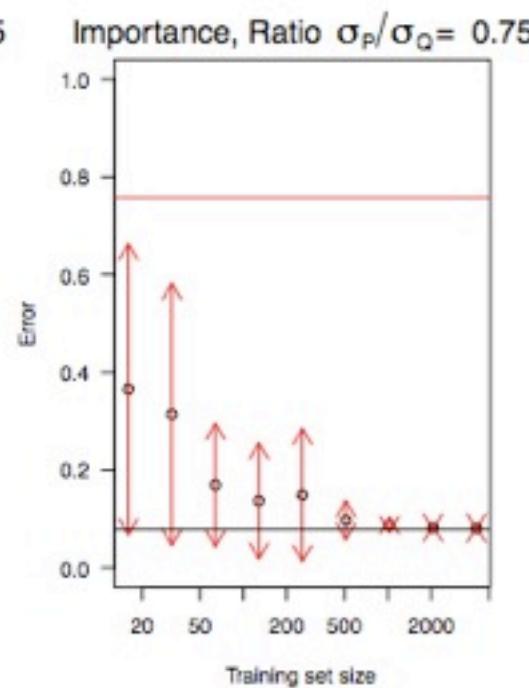
with $\gamma > 0$ a trade-off parameter.

Alternative Reweighting - Example

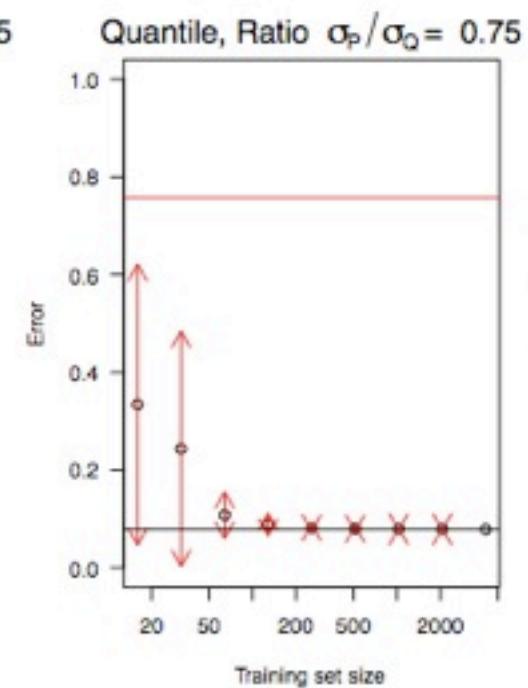
(1)



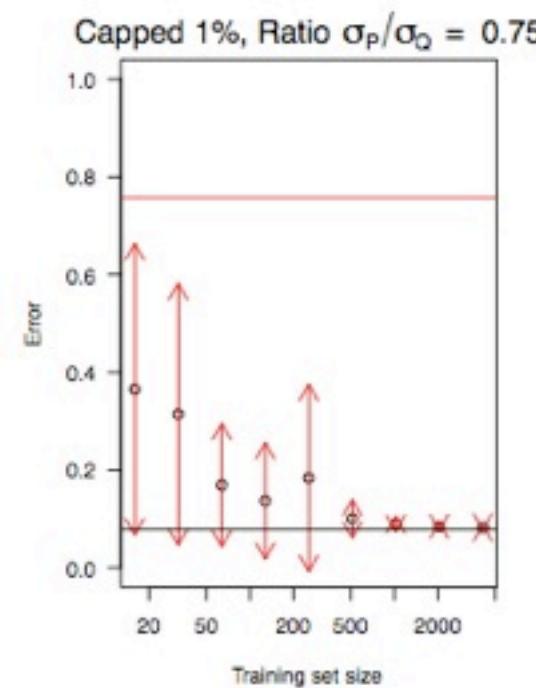
(2)



(3)



(4)



The variance is reduced in (3) by replacing w with the average weight per quantile.

Conclusion and Open Questions

- Learning guarantees for importance weighting, including unbounded case (most common).
- Analysis of cases where importance weighting can succeed.
- Critical role of Rényi divergence of the distributions.
- Preliminary exploration of other reweighting techniques.
- Estimation of Rényi divergence from finite samples.