

Learning Languages with Rational Kernels

Mehryar Mohri

Courant Institute and Google Research

mohri@cs.nyu.edu

Joint work with

Corinna Cortes and Aryeh (Leo) Kontorovich

State Merging/Splitting Paradigm

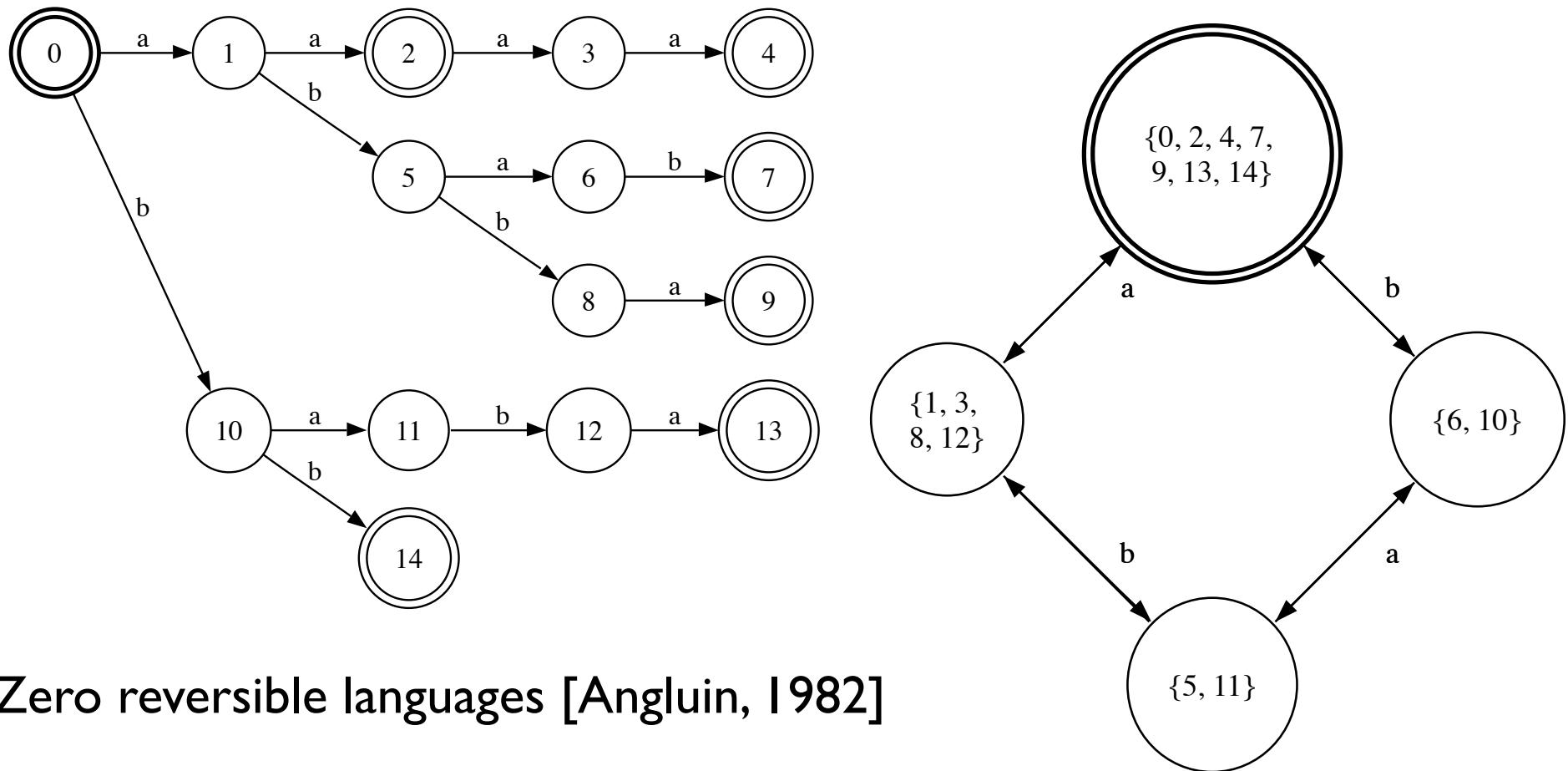
[Angluin 1982; Oncina et al. 1993; Ron et al. 1997; ...]

- Start with automaton or tree accepting all examples (finest partition).
- Iteratively merge states (partition blocks) while preserving some congruence.
- Return resulting automaton when no more merging is possible while preserving congruence.

→ choice of congruence fully determines the algorithm.

Example

■ Example: $L = \{\epsilon, aa, bb, aaaa, abab, abba, baba\}$.

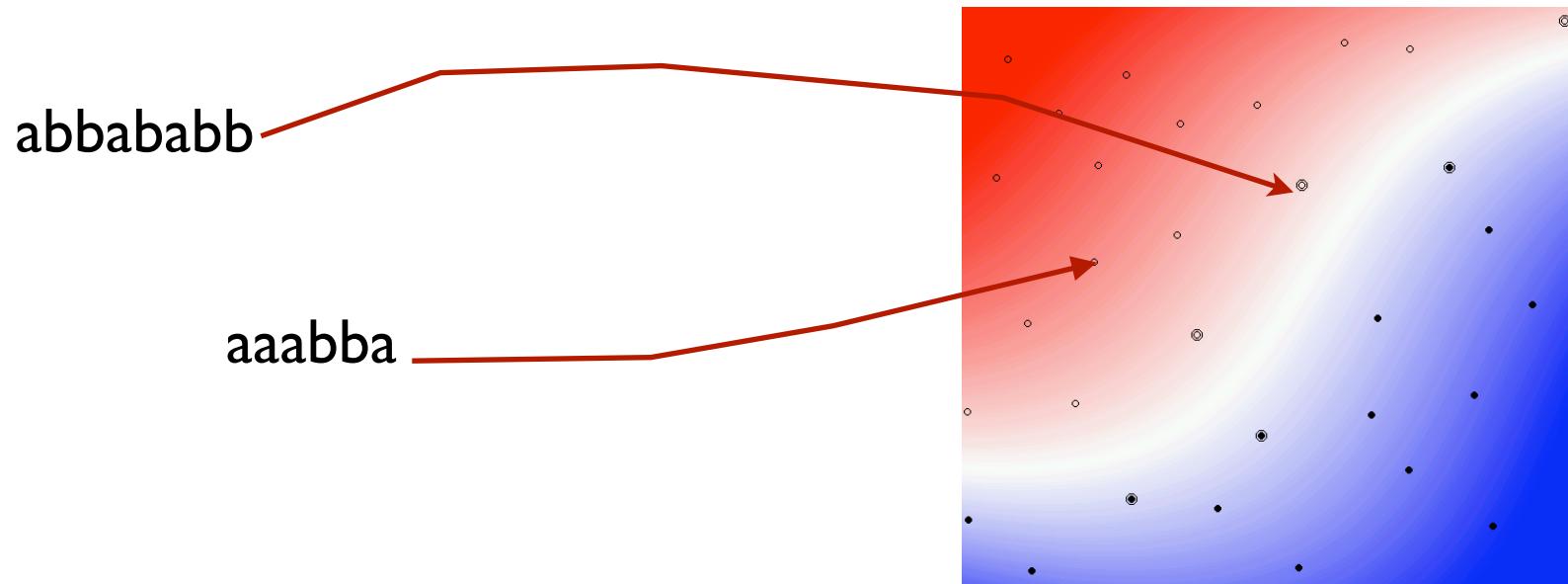


Zero reversible languages [Angluin, 1982]

Even number of as and bs.

New Language Learning Paradigm

- Map strings to a high-dimensional feature space
 $\Phi: \Sigma^* \rightarrow F$.
- Learn separating hyperplane in that space.
- Mappings can be implicitly defined via PDS kernels.



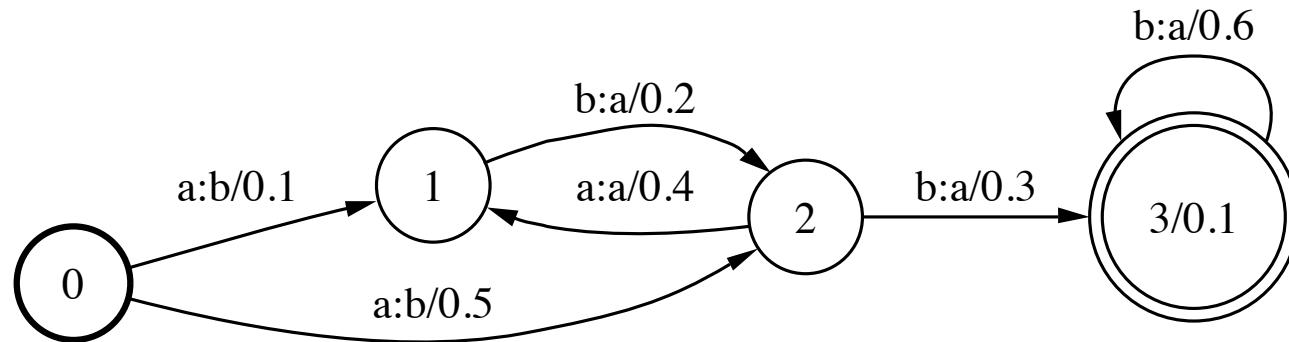
Which Sequence Kernels?

- The string kernels used in NLP and bioinformatics are all special instances of **rational kernels**:
 - **n-gram kernel, gappy n-gram kernels** (Lodhi et al., 2001).
 - **tree kernels** (Collins and Duffy, 2002).
 - **moment kernels** (Cortes and Mohri, 2005).
 - **locality-improved kernels** (Zien et al., 2000).
 - **mismatch kernels** (Leslie et al., 2003).

This Talk

- Weighted transducers
- Rational kernels
- Linear separability with rational kernels

Weighted Finite-State Transducers



$T(x, y) =$ Sum of the weights of all successful paths with input x and output y

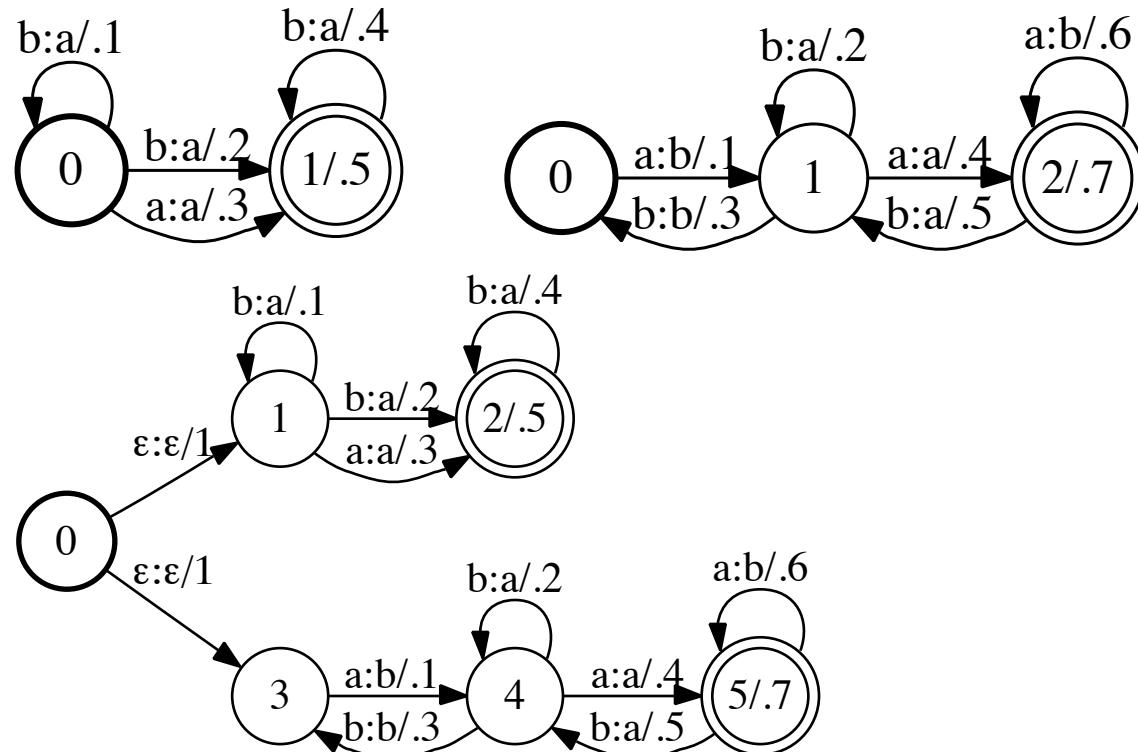
$$T(abb, baa) = .1 \times .2 \times .3 \times .1 + .5 \times .3 \times .6 \times .1.$$

Sum

■ Definition:

$$(T_1 + T_2)(x, y) = T_1(x, y) + T_2(x, y).$$

■ Illustration:

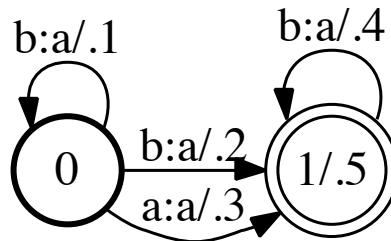
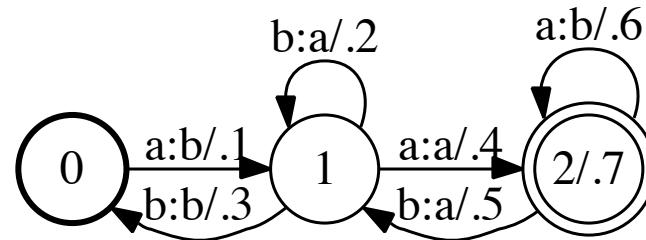
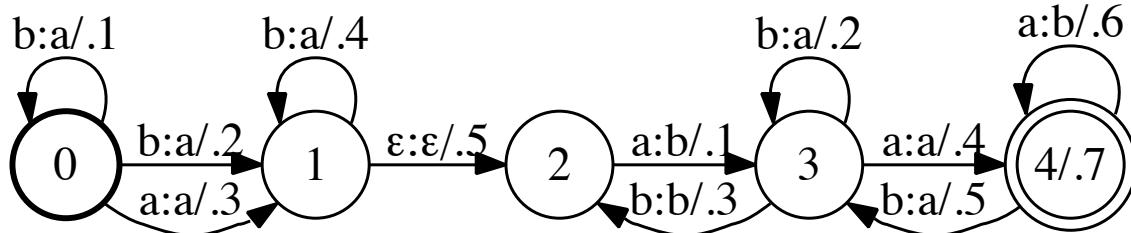


Product

■ Definition:

$$(T_1 \cdot T_2)(x, y) = \sum_{x_1 x_2 = x, y_1 y_2 = y} T_1(x_1, y_1) \cdot T_2(x_2, y_2).$$

■ Illustration:

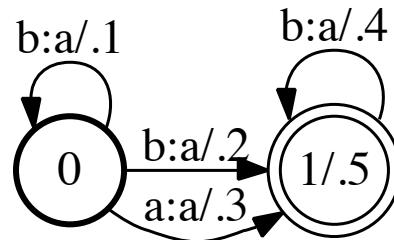
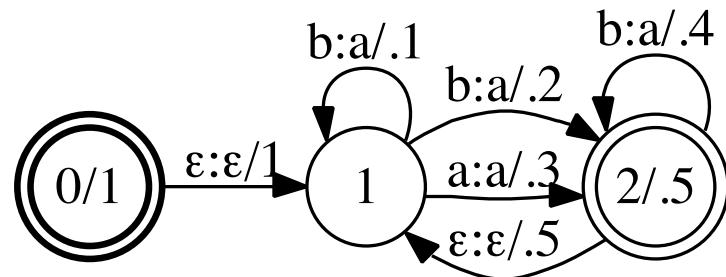


Closure

■ Definition:

$$T^*(x, y) = \sum_{n=0}^{+\infty} T^n(x, y).$$

■ Illustration:

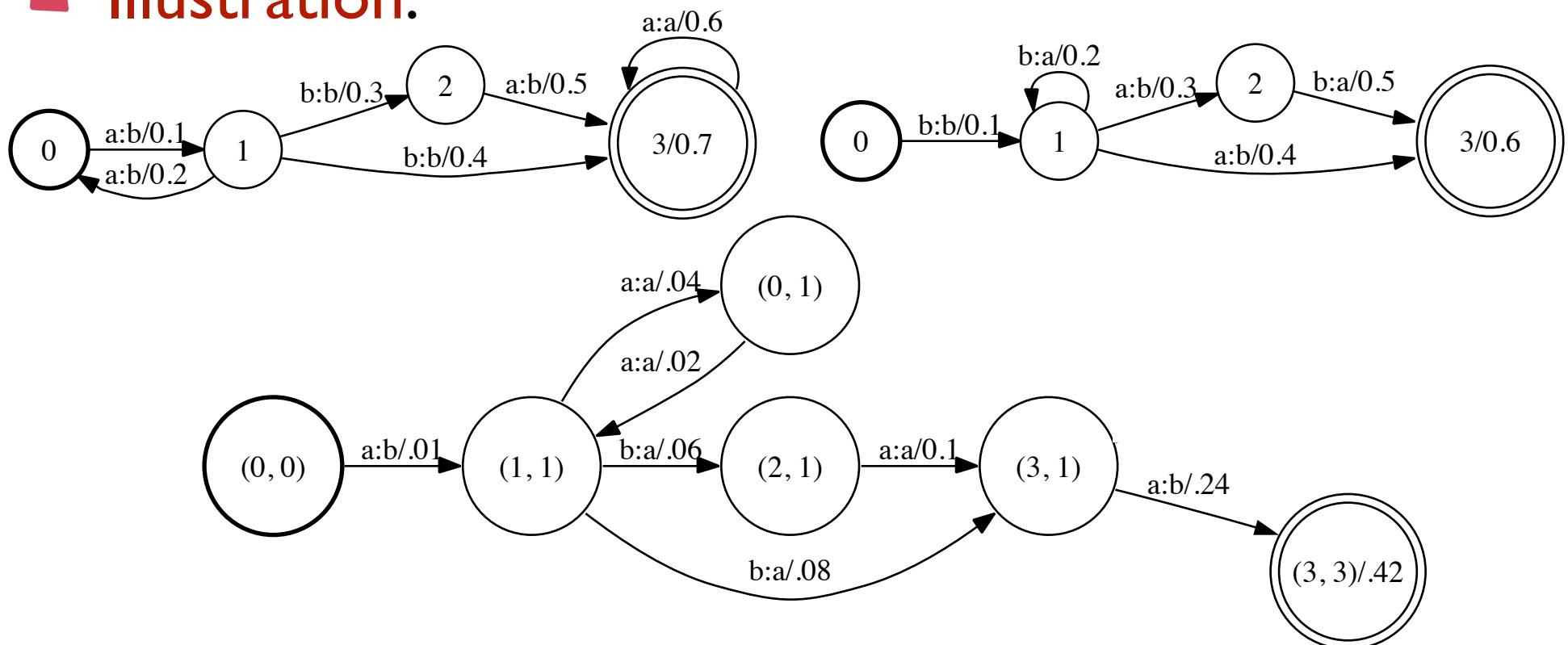


Composition

■ Definition:

$$(T_1 \circ T_2)(x, y) = \sum_{z \in \Sigma^*} T_1(x, z) T_2(z, y).$$

■ Illustration:



Sum of Path Weights

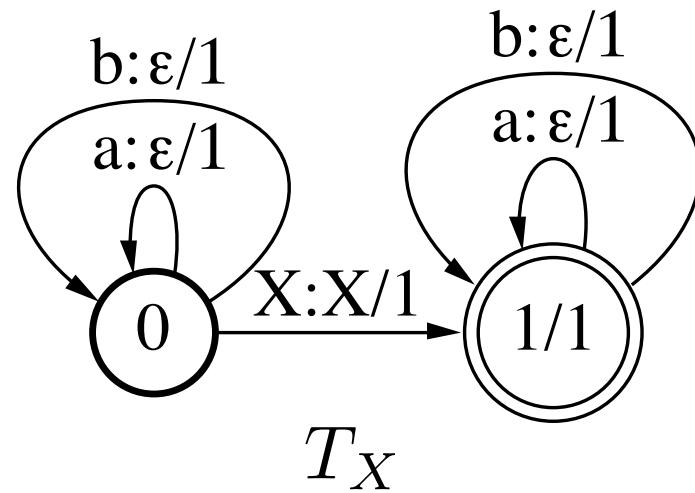
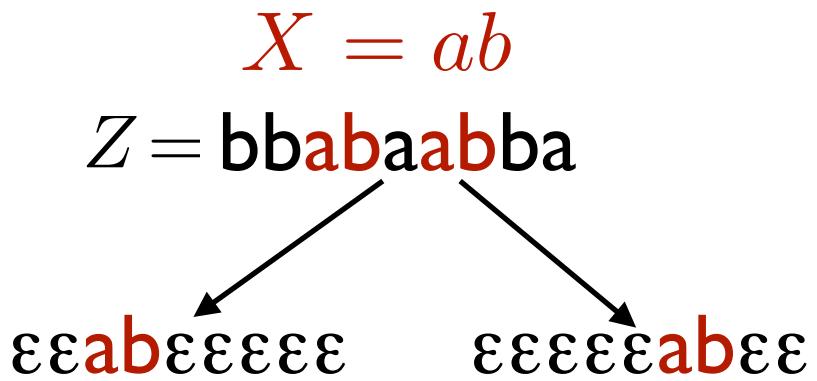
- The sum $S(T)$ of the weights of all accepted paths of a transducer T is

$$S(T) = \sum_{\pi \in P(I, F)} \underbrace{w[\pi]}_{\text{path weight}} \underbrace{\rho(n[\pi])}_{\text{final weight}}.$$

■ Properties:

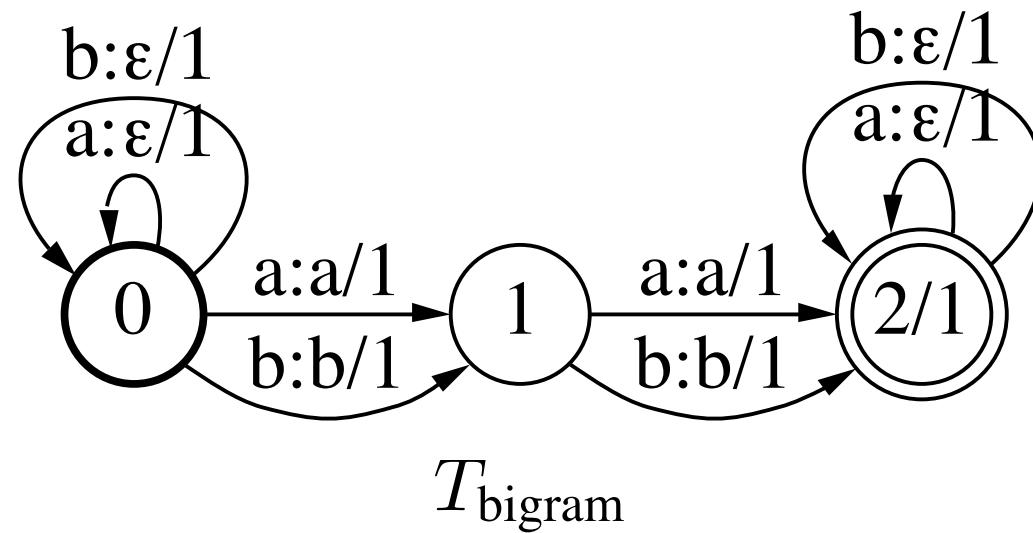
- linearity: $S(T_1 + T_2) = S(T_1) + S(T_2).$
 $S(\lambda T) = \lambda S(T).$
 $S((\lambda T_1) \circ T_2) = \lambda S(T_1 \circ T_2).$
- computation: general shortest-distance algorithm (extension to $(+, \times)$ of standard $(\min, +)$) (MM, 1998).

Counting Transducers



- X may be a string or an automaton representing a regular expression.
- **Counts:** $\text{count}(Z, X) = S(Z \circ T_X)$.

Transducer Counting Bigrams



$$\text{count}(Z, ab) = S(Z \circ T_{\text{bigram}} \circ ab).$$

This Talk

- Weighted transducers
- Rational kernels
- Linear separability with rational kernels

Rational Kernels over Strings

(Cortes, Haffner, and MM 2004)

- **Definition:** a kernel K is **rational** if there exists a **weighted transducer U** such that for all strings x and y :

$$K(x, y) = U(x, y).$$

- **Computation:** composition and shortest-distance algorithm using $K(x, y) = S(Aut(x) \circ U \circ Aut(y))$.
 - **complexity:** $O(|x||y|)$ in general.
 - better complexity in specific cases, using more efficient composition.

Rational Kernels over Strings

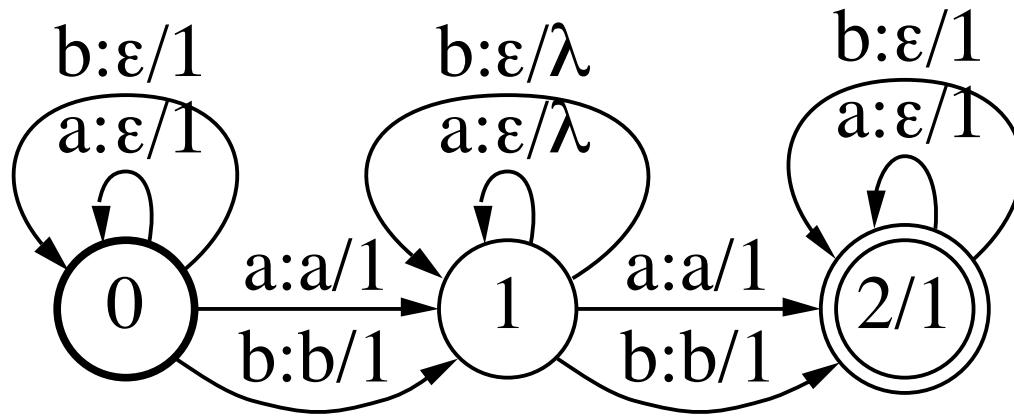
(Cortes, Haffner, and MM 2004)

- **Definition:** a kernel K is **rational** if there exists a **weighted transducer U** such that for all strings x and y :

$$K(x, y) = U(x, y).$$

- **Theorem:** let T^{-1} denote T with input and output labels swapped. Then, $U = T \circ T^{-1}$ defines a **positive definite symmetric rational kernel**.

Gappy Bigram Kernel



$Z \circ T_{\text{gappy-bigram}}$ computes the expected count of all gappy bigram with gap penalty factor λ .

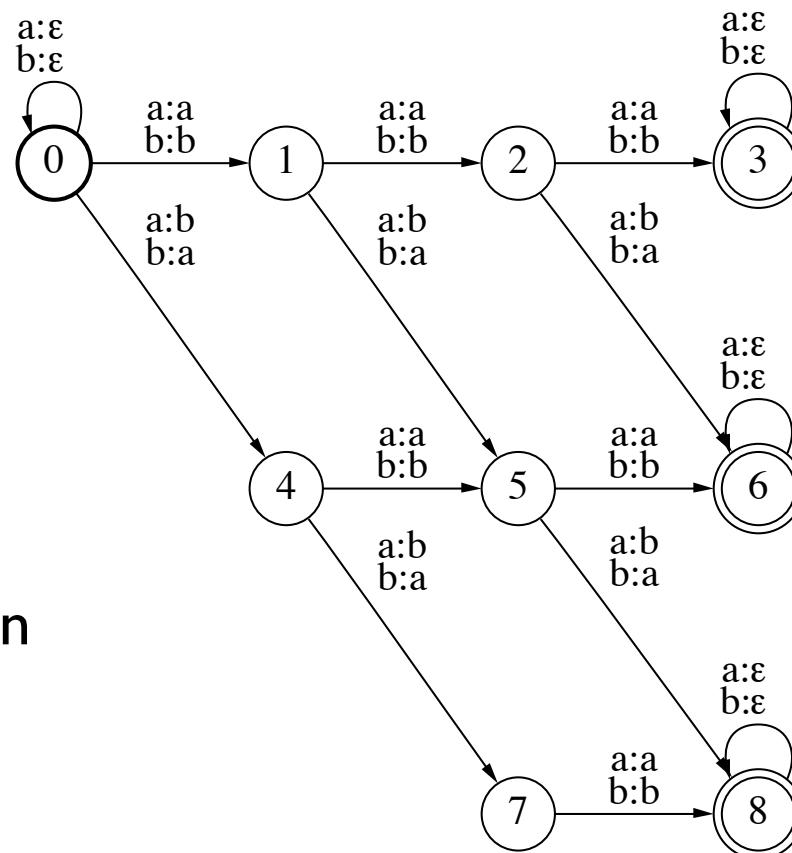
Mismatch Kernel

■ **Definition:** for sequences x and y ,

$$K_{(k,m)}(x, y) = \sum_{z_1 \in F_k(x), z_2 \in F_k(y), z \in \Sigma^k} d_m(z_1, z) d_m(z, z_2)$$

■ **Representation:**

$$K_{(3,2)}$$



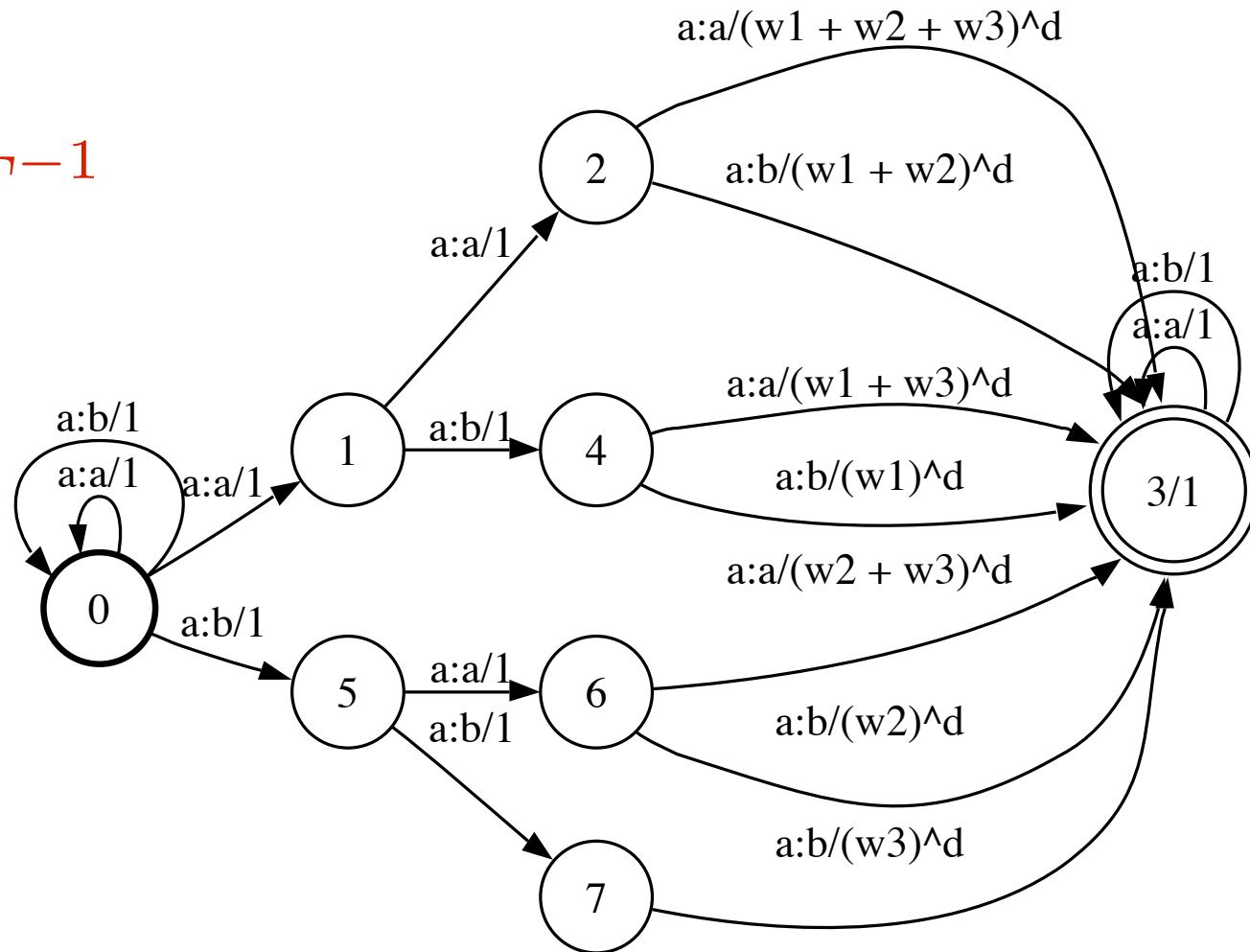
Remote homology detection
(Leslie et al., 2002)

Locality-Improved Kernel

■ Representation ($l = 1$):

Recognition of translation initiation sites (Zien et al., 2000)

$T \circ T^{-1}$



Questions

■ Linear separation with RKs

- what is the set of languages separable with RKs?
- what languages are separable with a given RK?
- when does linear sep. guarantee positive margin?
- how do we create transducers with finite range?

This Talk

- Weighted transducers
- Rational kernels
- Linear separability with rational kernels

Probabilistic Automata

(Paz, 1971; Rabin, 1963)

- **Definition:** a weighted automaton over \mathbb{R} is **probabilistic** if
 - it has no negative weight.
 - the weights of outgoing transitions with the same label sum to one at every state.
- **Definition:** a language L is **\mathbb{R} -stochastic** iff there exists a probabilistic automaton A and $\lambda > 0$ such that

$$L = \{x: A(x) > \lambda\}.$$

Turakainen's Theorem

- **Theorem** (Turakainen, 1969): Let S be a weighted automaton over \mathbb{R} with n states. A probabilistic automaton B over \mathbb{R} with $n + 3$ states can be constructed from S such that:

$$\forall x \in \Sigma^+, \quad S(x) = c^{|x|} \left(B(x) - \frac{1}{n+3} \right),$$

where c is a large number.

→ $L = \{x: S(x) > 0\}$ for some weighted automaton S is necessarily stochastic.

Languages Linearly Separable by RKs

- **Theorem** (characterization): L is linearly separable by a RK $K = T \circ T^{-1}$ iff it is **stochastic**.
- **Proof:** assume that L is stochastic.
 - We can assume that there exists a S such that $L = \{x : S(x) > 0\}$.
 - Let $x_0 \in L$. Then, $L = \{x : K(x, x_0) > 0\}$, where $K = T \circ T^{-1}$, and T is the transducer derived from S by adding output ϵ s, since

$$(T \circ T^{-1})(x, x_0) = T(x, \epsilon)T^{-1}(\epsilon, x_0) = S(x)S(x_0).$$

Languages Linearly Separable by RKs

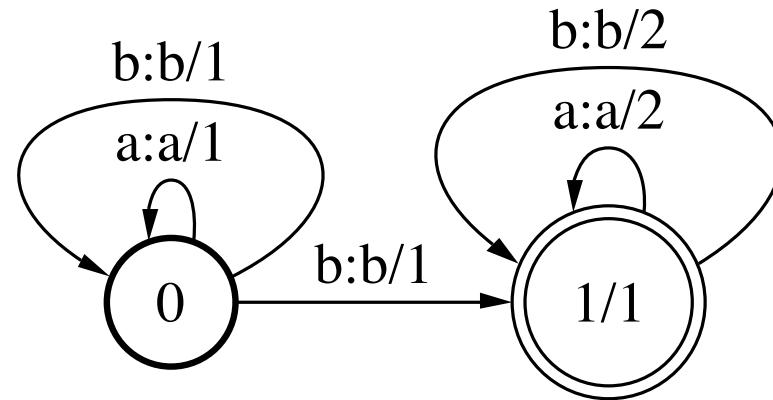
- **Proof:** conversely, assume that L is linearly separable by $K = T \circ T^{-1}$.

$$\begin{aligned} \sum_{i=1}^m \alpha_i K(x_i, x) &= \sum_{i=1}^m \alpha_i S(Aut(x_i) \circ T \circ T^{-1} \circ Aut(x)) \\ &= S\left(\sum_{i=1}^m \alpha_i Aut(x_i) \circ T \circ T^{-1} \circ Aut(x)\right) \\ &= S(A \circ T \circ T^{-1} \circ Aut(x)) \\ &= S(R \circ Aut(x)) = R(x). \end{aligned}$$

- Let $U = R + b$, then $L = \{x: S(x) > 0\}$, and, by Turakainen's theorem, L is stochastic.

Examples

- $L = \{a^m b^n c^p : m > n > p\}$ is stochastic.
- $L = \{a^m b^{mn}\}$ is not stochastic.
- The language of palindromes is stochastic.



Computes the integer value of binary numbers ($a = 0, b = 1$),
(Cortes and Mohri, 2000).

Linearly separable L for a Fixed RK

- **Definition:** a rational kernel $K = T \circ T^{-1}$ has **finite range** if $\{T(x, y) : x, y \in \Sigma^*\}$ is finite.
- **Theorem:** let $K = T \circ T^{-1}$ be a RK with finite range. If L is linearly separable by K , then L is a finite Boolean combination of preimage languages

$$\{x : T(x, y) = v\}.$$

Examples

- For **subsequence kernels**, each preimage language is a set of sequences admitting a string y as a subsequence (the shuffle ideal of y):

$$\Sigma^* y_1 \Sigma^* \cdots \Sigma^* y_n \Sigma^*.$$

- For **factor (or mismatch) kernels**, each preimage language is a set of sequences admitting y as a substring:

$$\Sigma^* y \Sigma^*.$$

Margin Property

- In general, linear separation does not guarantee a positive margin.
- **Theorem:** let K be a finite range RK and let L be a language linearly separable with K . Then, the separation margin is positive.
- **Proof (sketch):** hyperplane $\langle w, \Phi(x) \rangle + b = 0$.
 - w has finite support, thus can use Φ' instead.
 - since K has finite range,

$$\rho = \inf_{x \in X} \frac{|\langle w, \Phi(x) \rangle + b|}{\|w\|} = \min_{x \in X} \frac{|\langle w, \Phi'(x) \rangle + b|}{\|w\|} > 0.$$

Margin Bound

- **Theorem:** let C be a finitely linearly separable concept class for the rational kernel $K = T \circ T^{-1}$, then for any concept class $c \in C$ there exists $\rho_0 > 0$ such that with probability at least $1 - \delta$, there exists a linear separator h with generalization error at most

$$O\left(\frac{(\log^2 m)R^2/\rho_0^2 + \log(1/\delta)}{m}\right).$$

Piecewise Testable Languages

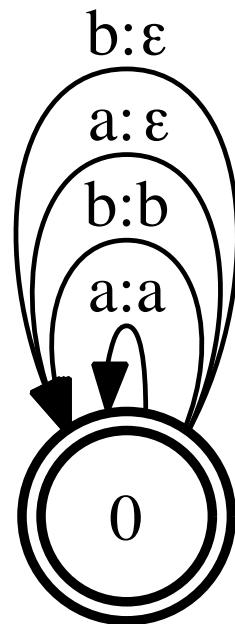
(Kontorovich, Cortes, MM, 2006)

- Piecewise testable languages are linearly separable using **subsequence kernels**.
- Subsequence kernels are rational kernels (Kontorovich, Cortes, MM, 2007) and are efficient to compute.
- Linear separation with a positive margin.

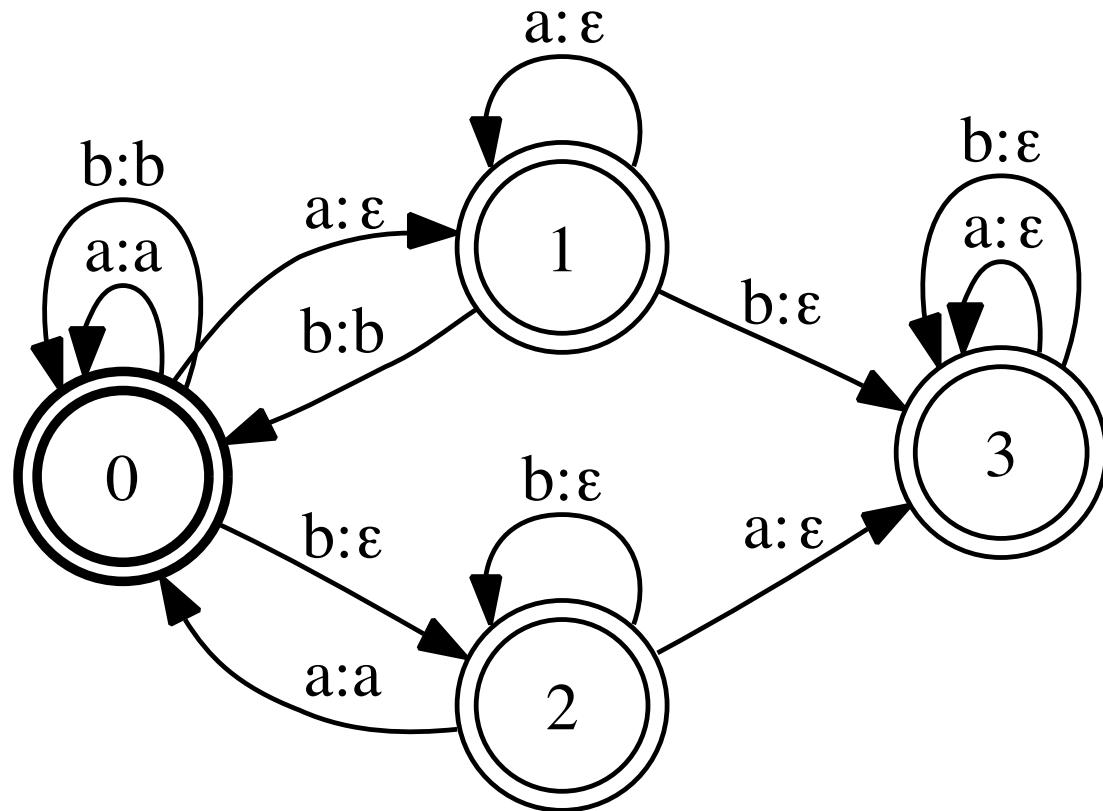
Double-Tape Disambiguation

- **Objective:** given transducer T , create **unambiguous transducer** T' , that is for any (x, y) labeling a path in T , unique path labeled with (x, y) in T' .

Double-Tape Disambig. - Example

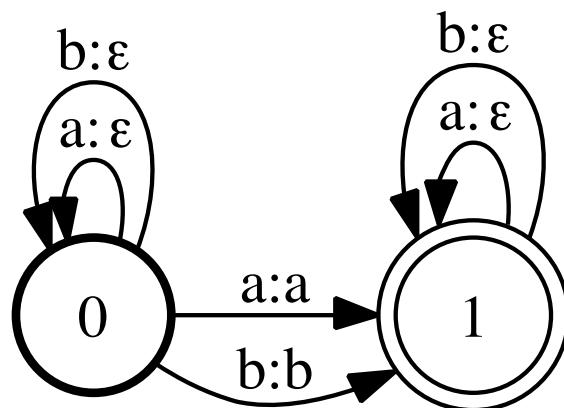


Subsequence
transducer

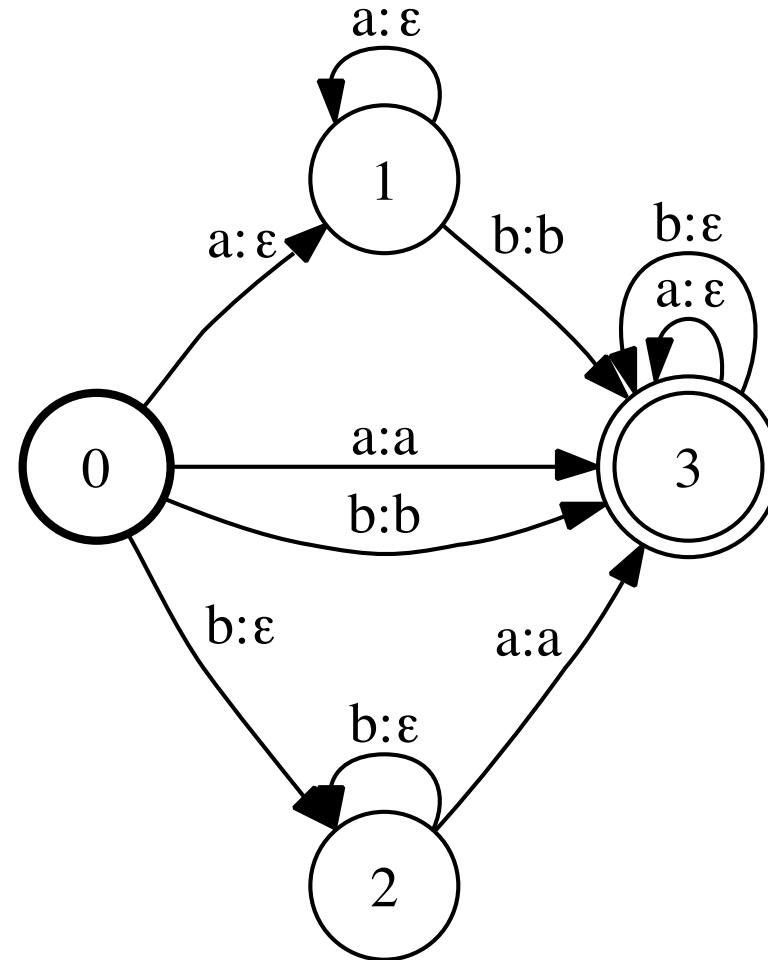


Double-tape disambiguated
subsequence transducer

Double-Tape Disambig. - Example



Unigram
transducer



Double-tape disambiguated
unigram transducer

Conclusion

- **Characterization** of languages linearly separable by RKS: stochastic languages.
- **RKS with finite range** have remarkable properties:
 - separable languages are finite Boolean combinations of preimages by T .
 - guarantee positive margin.
 - double-tape disambiguation possible in some cases to design finite range RKS.