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Structured Prediction

B Structured output:
Y=V XX

B |oss function:L: Y x Y — R, decomposable.

* Example: Hamming loss.

l
1
L(y,y') = 7 D Ly
k=1
* Example: edit-distance loss.

1
L(y,y") = Tdedit(yl YL YL Y.

Mohri@ page 2



Examples

B Pronunciation modeling.
B Part-of-speech tagging.

B Named-entity recognition.
B (Context-free parsing.

B Dependency parsing.

® Machine translation.

B [mage segmentation.

Mohri@ page3



Examples: NLP Tasks

® Pronunciation: |  have formulated a
ay hhaev fowrmyaxleytihd ax

® POS tagging: The thief stole a car
D N V DN

B (Context-free parsing/Dependency parsing:

S
~
VP
/ \
NP NP
/" \ /\

D N V DN K\X/g\\‘

The thief stole a car root The thief stole a car
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Examples: Image Segmentation
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Predictors

B Family of scoring functions H mapping from X x ) to R.
B Forany h € ‘H, prediction based on highest score:
Ve € X, h(x) = argmax h(z,y).
yey

B Decomposition as a sum modeled by factor graphs.
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Factor Graph Examples

B Pairwise Markov network decomposition:

h(z,y) = hy (x,91,92) + by, (2,92, Y3).

® Other decomposition:

hy) = by @)+ (@)

hf2 ($ay17y27 y3)-
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Factor Graphs

® G = (V,F, E). factor graph.
B N(f): neighborhood of f.
B Yy = ]lken(s Ve substructure set cross-product at f.

® Decomposition:

Pz, y) = ) hyla,yp).

feF

B More generally, example-dependent factor graph,
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Linear Hypotheses

B Feature decomposition — Hypothesis decomposition.

e Example: bigram decomposition.

y. D N|V|D|N
x. his cat atelthe|fish
K: 4

¢(CE7 47 Ys, y4)

[

(P(Q?,y) — ZQb(CU, Says—lays)-

s=1

h(CE,y) W - (I)Qﬁy ZW ¢xsyslys)°

J

hs(xays—l ays)
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Structured Prediction Problem

B Training data: sample drawn i.i.d. from X x Y according to
some distribution D,

S:((xlayl)v"'a(xmaym)) c X x).

B Problem: find hypothesis h: X x Y — R in ‘H with small
expected loss:

R(b)= E (L))l

® |earning guarantees?
® role of factor graph?

® petter algorithms?

Mohri@ page 10



This Talk

® Theory.
B Voted risk minimization (VRM).
® Algorithms.

B Experiments.
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Theory



Previous Work

B Standard multi-class learning bounds:

number of classes is exponential!

B Structured prediction bounds:

Mohri@

covering number bounds: Hamming loss, linear
hypotheses (Taskar et al., 2003).

PAC-Bayesian bounds (randomized algorithms) (pavid
McAllester, 2007).

- can we derive learning guarantees for general
hypothesis sets and general loss functions?
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Factor Graph Complexity

B Empirical factor graph complexity for hypothesis set H
and sample S = (z1,...,xm,):

sup;‘ > > VIElei yhy(ziy }

1=1 feF; yelVy

VIFhs ()

N J
-~

correlation with random noise

RE(H)=

|

o (=

NN

m &

A

S|
——
M

Kh

@
I

B Factor graph complexity:

RE(H) = E {%g (H)].
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Margin

B Definition: the margin of h at a labeled point(z,y) e X x Y

IS

pn(r,y,y") = min h(z,y) — h(z,y’).
y'#Y

e error when pn(z,y,y") <O0.

* small margin interpreted as low confidence.
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Empirical Margin Losses

® Foranyp>0,

Rgi(h) = E &y (ryq%L(y’,y) — )>]

REM(h)= E |dy (max Ly ) (1 - h(‘”’y)‘ph(‘”’y')»],

y' £y

/.
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Generalization Bounds

B Theorem: for any ¢ > 0, with probability at least 1 — §, each
of the following holds for all h € H:

® tightest margin bounds for structured prediction.
* data-dependent.

®* improve upon bound of (Taskar et al., 2003) by log terms (in
the special case they study).
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Linear Hypotheses

B Hypothesis set used by most convex structured prediction
algorithms (StructSVM, M3N, CRF):

Hy = Lo w W(ay): weRY, |wl, <A},

withp > 1 and ®(z,y) = Y ¥s(z,yy).
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Complexity Bounds

B Bounds on factor graph complexity of linear hypothesis
sets:

A7 \/3 log(2N)
m

Ao \/ZZL ZfEFi Zyeyf |E3]

m

RS (H1) <

RS (Hs) <

with r, = mfaXH\ij(xza Y)llq
Yy

s = max S‘ S‘ S‘ Fillw; ; (@i)-0-

i=1 fEF; yeYVy
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Key Term

B Sparsity parameter:

s<§‘$‘ M yFy<ZyFy2d <mmaX]F]2dz,

i=1 fEF; yeYy

where d; = max |V¢]|.
fEeF;

— o factor graph complexity in O(y/log(N) max; |F;|?d;/m) for
hypothesis set H;.

* keyterm: average factor graph size.
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NLP Applications

B [eatures:

Mohri@

U, s is often a binary function, non-zero for a single
pair (z,y) € X x Vs.

example: presence of n-gram (indexed by 5 ) at position f
of the output with input sentence z;.

complexity term only in O(max |F;|+/log(N)/m).
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Theory Takeaways

B Key generalization terms:
® average size of factor graphs.
®* empirical margin loss.

B But, is learning with very complex hypothesis sets (factor
graph complexity) possible?

® richer families needed for difficult NLP tasks.

® but generalization bound indicates risk of overfitting.

—P \Voted Risk Minimization (VRM) theory.
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Voted Risk
Minimization



Decomposition of H

B Decomposition in terms of sub-families.

ohri@
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Ensemble Family

® Non-negative linear ensembles F = conv(U; _, Hy):

T

f:ZOét

t=1

with Ot Z O,Zle Ot S 1,h ~ Hkt.
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ldeas

(Cortes, MM, and Syed, 2014)

B Use hypotheses drawn from H;s with larger ks but allocate
more weight to hypotheses drawn from smaller &s.

* how can we determine quantitatively the amounts of
mixture weights apportioned to different families?

® can we provide learning guarantees guiding these
choices?
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Learning Guarantee

B Theorem: Fixp>0. Then, for any ¢ >0, with probability at
least 1—¢, the following holds for all f:Zle ath e F:

R(f) - RE4,(f) < 4{2%9@ (Hy,)+ O (M ffﬁ)
t=1

~ 4/ 2M d ~ log p
R(f) — RS,pl,tl(f) < p Zatmg([{kt) + O (M pggm> :
t=1
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Consequences

B Complexity term with explicit dependency on mixture
weights.

® guantitative guide for controlling weights assigned to
more complex sub-families.

®* bound can be used to directly define an ensemble
algorithm.
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Algorithms



Surrogate Loss Framework

B Lemma: assume that ul,<g < @, (v)forany u e Ry
andv € R. Then, for any (z,y) € X x ),

L(h(x)7y) < g}i}y((bL(y’,y) (h(ﬂ?,y) - h(ﬂ?,y/))

B Proof:if h(z) =y, thenL(h(z),y) = 0 and result is trivial.
Otherwise, h(z) # yand

L(h(CE‘), y) — L(h(:l]), y)lh(x,y)—maxy/;éy h(zx,y’)<0
< P (h(a),y) (M(z,y) — max h(z, y"))  (Py(v) upper bound on ul,<g)

y'#y
= O (h(x),y) (A(x,y) — h(z,h(x)))
< max By () (M, y) = h(z,y)). (h(z) # v)
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Application

B Convex surrogate losses:
o &,(v) =max(0,u(l —v)): StructSVM (Tsochantaridis et al., 2005).

max (0, uw — v): M3N (Taskar et al., 2003).

Py (v)
®,(v) =log(l+e“"): CRF (Lafferty et al., 2003).
(v)

D, (v) =ue " StructBoost (Cortes et al., 2016).
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Voted Cond. Random Field

B Hypothesis set:
* linear functions: h: (z,y) — w - ®(x,y).
® complex feature vector ®.

Dq
e decomposition in blocks: ® = [ : ] :
cI)Z?

® Upper bound:

max log(1 + e'-(%y')—w-(‘l’(a:,y)—‘I’(w,y’)))
y' 7Y

< log ( Z eL(y,y’)W-(‘P(ﬂc,y)‘I’(w,y’)))

y' ey
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Voted Cond. Random Field

B Optimization problem (VCRF):

1 m p
min — 3 log ( 3 eL(y,yn—w-(\Pm,yi>—w<xi,y>>) + (s 4 B) w1,
W m
k=1

=1 yey

with r, = ro| F(k)|v/log N.

® solution via stochastic gradient descent (SGD).

o efficient gradient computation for Markovian features.
® relationship with L1-CRF.

e other regularization, e.g., L2-VCRF.
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Experiments



Preliminary Experiments

B Part-of-speech tagging.

B Multiple data sets.

Mohri@

Dataset Full name Sentences Tokens Unique tokens Labels
Basque Basque UD Treebank 8993 121443 26679 16
Chinese Chinese Treebank 6.0 28295 782901 47570 37
Dutch UD Dutch Treebank 13735 200654 29123 16
English UD English Web Treebank 16622 254830 23016 17
Finnish Finnish UD Treebank 13581 181018 53104 12
Finnish-FTB UD_Finnish-FTB 18792 160127 46756 15
Hindi UD Hindi Treebank 16647 351704 19232 16
Tamil UD Tamil Treebank 600 9581 3583 14
Turkish METU-Sabanci Turkish Treebank 5635 67803 19125 32
Twitter Tweebank 929 12318 4479 25
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Features - Example

y: DETNN|VBD  RB 1
x: the cat \was surprisingly| agile |

s: 0 1 2 3 4

hl (37) — 1x2:‘was’,azgz‘surprisingly’,:mz‘agile’(x)
ha(y) = 1y,='vBD?, ys=RrB’ (V)

hS (QE) — 1suff(a:3,2):‘ly’ (Qj)

Mohri@
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Features

B Feature families:

e definition: for each choice of the window sizes (&1, ks, k3),
sum of products of indicators over positions along the
sequence.

® complexity:

T(Hlﬂ,kmks) <

2(k1log |V| 4+ ko log |A] 4 k3 log |X|
- .
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Experiments

B Parameters A and g determined via cross-validation.

B Comparison with L1-CRF.

B Two sets of results:

Mohri@

original data sets.

artificial noise added: tokens corresponding to features
that commonly appear in the dataset (at least five times),
POS labels flipped with some probability (20% noise).
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Experimental Results

VCREF error (%)

CRF error(%)

Dataset Token Sentence Token Sentence

Basque 7.26 + 0.13 57.67 +£0.82 7.68 £ 0.20 59.78 + 1.39
Chinese 7.38 £ 0.15 67.73 £ 0.46 7.67 £ 0.12 68.88 + 0.49
Dutch 5.97 £+ 0.08 49.27 + 0.71 6.01 = 0.92 49.48 £+ 1.02
English 5.51 =+ 0.04 44.40 + 1.30 5.51 £ 0.06 44.32 £+ 1.31
Finnish 7.48 £ 0.05 55.96 + 0.64 7.86 £ 0.13 57.17 £ 1.36
Finnish-FTB 9.79 £+ 0.22 51.23 £+ 1.21 10.55 £ 0.22 52.98 £+ 0.75
Hindi 4.84 + 0.10 51.69 = 1.07 4.93 £ 0.08 53.18 £+ 0.75
Tamil 19.82 + 0.69 89.83 + 2.13 2250 £ 1.57 92.00 £ 1.54
Turkish 11.28 + 0.40 59.63 &= 1.55 11.69 = 0.37 61.15 £+ 1.01
Twitter 17.98 + 1.25 75.57 = 1.25 19.81 £1.09 76.96 + 1.37

Mohri@
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Mohri@

Average No. of Features

Dataset VCRF CRF Ratio

Basque 7028 94712653  0.00007
Chinese 219736 552918817 0.00040
Dutch 2646231 2646231 1.00000
English 4378177 357011992 0.01226
Finnish 32316 89333413  0.00036
Finnish-FTB 53337 5735210 0.00930
Hindi 108800 448714379 0.00024
Tamil 1583 668545 0.00237
Turkish 498796 3314941 0.15047
Twitter 18371 26660216  0.00069

page40



Mohri@

VCREF error (%)

Experimental Results

CRF error(%)

Dataset Token Sentence Token Sentence

Basque 9.13 £ 0.18 67.43 £ 0.93 9.42 + 0.31 68.61 £ 1.08
Chinese 96.43 + 0.33 100.00 £+ 0.01 96.81 £ 0.43 100.00 £ 0.01
Dutch 8.16 + 0.52 62.15 + 1.77 857 £ 0.30 63.55 £ 0.87
English 8.79 £ 0.23 61.27 +£1.21 9.20 =+ 0.11 63.60 £ 1.18
Finnish 9.38 +£ 0.27 64.96 £ 0.89 9.62 = 0.18 65.91 =+ 0.93
Finnish-FTB 11.39 £+ 0.29 72.56 &+ 1.30 11.76 £ 0.25 73.63 £ 1.19
Hindi 6.63 = 0.51 63.84 = 2.86 7.85 +£0.33 71.93 £ 1.20
Tamil 20.77 £ 0.70 93.00 &+ 1.35 21.36 & 0.86 93.50 + 1.78
Turkish 14.28 + 0.46 69.72 &£ 1.51 14.31 &+ 0.53 69.62 £+ 2.04
Twitter 90.92 + 1.67  100.00 £ 0.00 92.27 £+ 0.71 100.00 £ 0.00
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Conclusion

B Structured prediction theory:
* tightest margin guarantees for structured prediction.
* general loss functions, data-dependent.
* key notion of factor graph complexity.
® guarantees for complex hypothesis sets (VRM theory).
 VCRF and StructBoost algorithms.
e favorable preliminary experiments.

* additionally, tightest margin bounds for standard
classification.
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