

Learning with Sample-Dependent Hypothesis Sets

Joint work with

Dylan Foster ([MIT](#))

Spencer Greenberg ([Spark Wave](#))

Satyen Kale ([Google Research](#))

Haipeng Luo ([USC](#))

Karthik Sridharan ([Cornell](#)).

MEHRYAR MOHRI

MOHRI@

GOOGLE RESEARCH & COURANT INSTITUTE

Motivation

- Common scenario in ML practice:
 - hypothesis set selected **after** receiving training sample.
 - original family restricted after observations.
 - ensemble family decided after receiving sample.
 - regularization chosen using labeled sample.
 - feature transformation or data normalization based on sample.

Motivation

- Standard learning bounds:
 - fixed hypothesis set.
 - selected **before** receiving training sample.
 - guarantees depend on the complexity of hypothesis set.
- Questions:
 - can we derive learning guarantees for sample-dependent hypothesis sets?
 - existing techniques cannot be used; what tools and concepts should we use?

Related Work

- Luckiness framework (Shawe-Taylor et al., 1998): analysis of SRM over data-dependent hierarchies based on concept of **luckiness**.
 - can be viewed as a study of data-dependent hypothesis sets using **luckiness functions** and ω -smallness.
 - algorithm-specific guarantees (Herbrich and Williamson, 2002): show some connection with stability, at the price of a strong condition on stability parameter, $\beta = o(\frac{1}{m})$.

Related Work

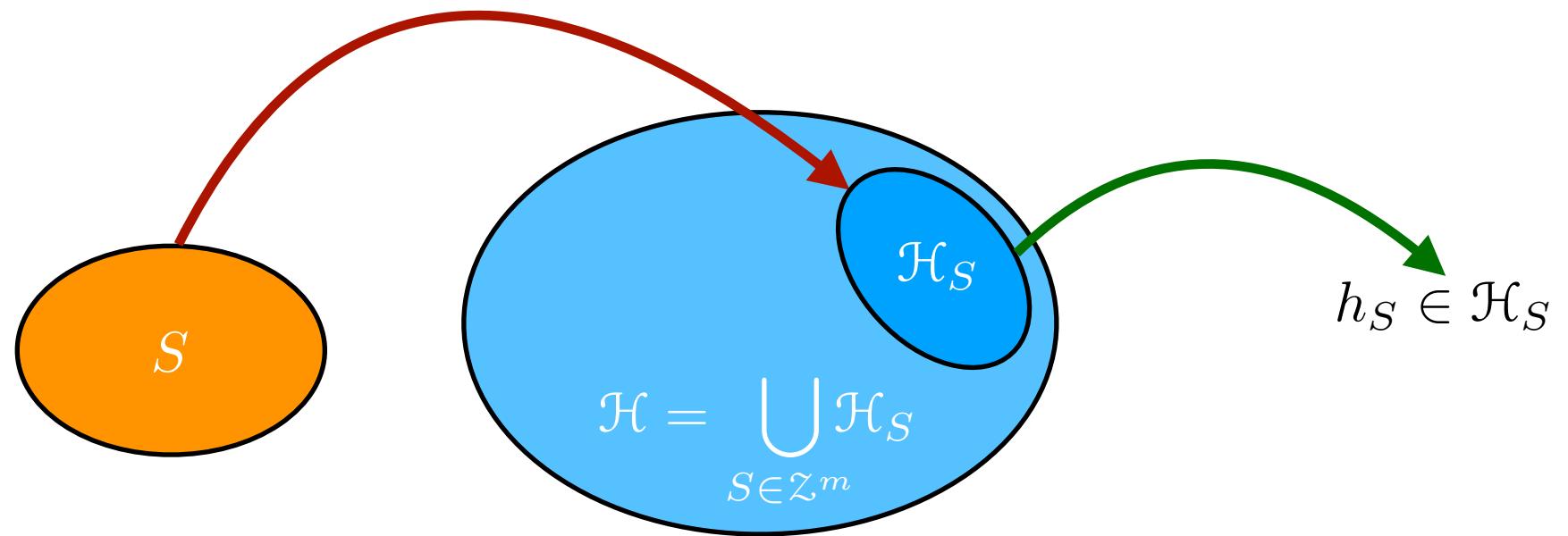
- General bounds for binary classification ([Gat 2001; Cannon et al., 2002](#)): expressed in terms a notion of shattering coefficients adapted to data-dependent setting.
- PAC-Bayes bounds ([Dziugate and Roy, 2018](#)): prior selected using training sample via a differentially private algorithm.

This Talk

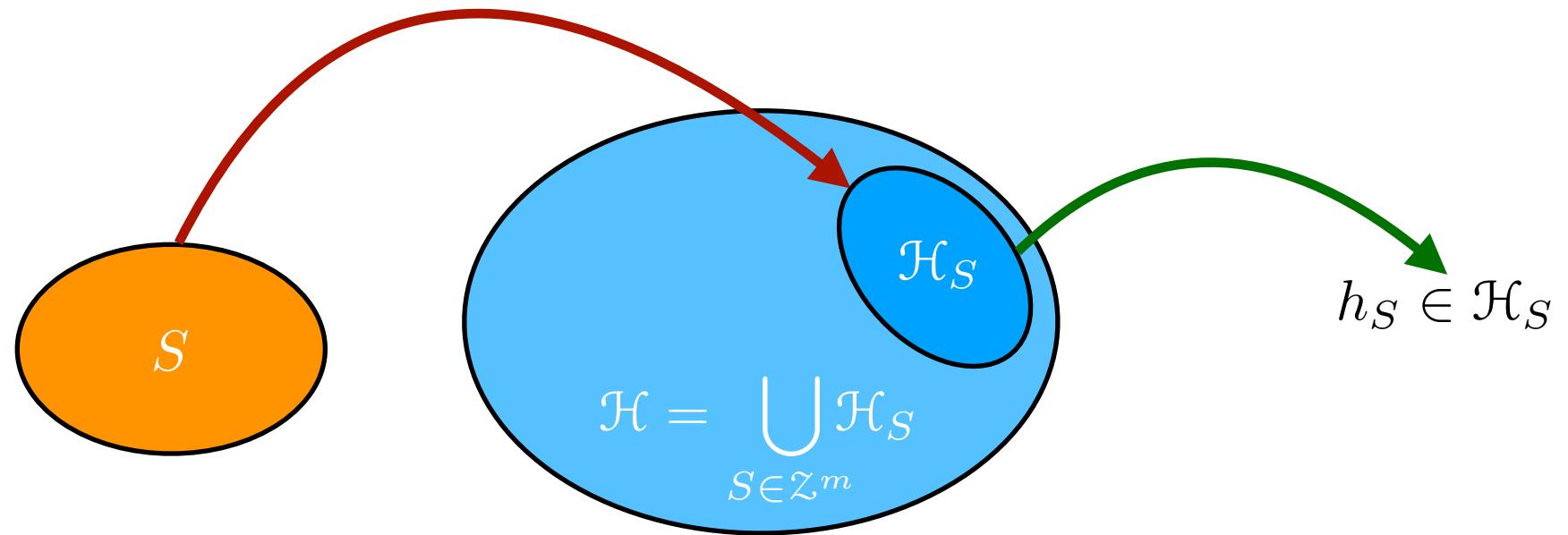
- Setup.
- General sample-dependent guarantees.
- Hypothesis set stability guarantees.
- Applications.

Setup

Learning Stages



Learning Stages



- Special cases:
 - standard generalization: $\mathcal{H}_S = \mathcal{H}$.
 - algorithmic stability: $\mathcal{H}_S = \{h_S\}$.

Definitions

- \mathcal{X} input space, \mathcal{Y} output space, \mathcal{D} distribution over $\mathcal{X} \times \mathcal{Y}$.
- Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$, loss of $h: \mathcal{X} \rightarrow \mathcal{Y}$ on $z = (x, y)$ denoted $L(h, z) = \ell(h(x), y)$.
- Expected and empirical losses:

$$R(h) = \mathbb{E}_{z \sim \mathcal{D}} [L(h, z)]$$

$$\widehat{R}_S(h) = \mathbb{E}_{z \sim S} [L(h, z)] = \frac{1}{m} \sum_{i=1}^m L(h, z_i).$$

- Family of losses of hypotheses $\mathcal{G} = (\mathcal{G}_S)_{S \in \mathcal{Z}^m}$:

$$\mathcal{G}_S = \{z \mapsto L(h, z) : h \in \mathcal{H}_S\}.$$

General Sample- Dep. Guarantee

Setup

- How can we derive learning bounds for data-dependent hypothesis sets?
 - straightforward idea: use $\overline{\mathcal{H}}_m = \bigcup_{S \in \mathcal{Z}^m} \mathcal{H}_S$; but the family can be very rich and the bound uninformative.
 - alternative: for some supersample U of size $m + n$, consider the family $\overline{\mathcal{H}}_{U,m} = \bigcup_{\substack{S \in \mathcal{Z}^m \\ S \subseteq U}} \mathcal{H}_S$;
 - learning guarantees based on the maximum transductive Rademacher complexity.

Transductive Rad. Complexity

- **Definition:** transductive Rademacher complexity,

$$\hat{\mathfrak{R}}_{U,m}^{\diamond}(\mathcal{G}) = \mathbb{E}_{\sigma} \left[\sup_{h \in \bar{\mathcal{H}}_{U,m}} \frac{1}{m+n} \sum_{i=1}^{m+n} \sigma_i L(h, z_i^U) \right],$$

with σ_i s independent random variables taking value $\frac{m+n}{n}$ with probability $\frac{n}{m+n}$;
value $-\frac{m+n}{m}$ with probability $\frac{m}{m+n}$.

General Learning Bound

- **Theorem:** let $\mathcal{H} = (\mathcal{H}_S)_{S \in \mathcal{Z}^m}$ be a family of data-dependent hypothesis sets and let \mathcal{G} be the corresponding family of loss functions. Then, for any $\delta > 0$, with probability $1 - \delta$ over the draw of a sample $S \in \mathcal{Z}^m$, the following holds for all $h \in \mathcal{H}_S$:

$$R(h) \leq \widehat{R}_S(h) + \max_{U \in \mathcal{Z}^{m+n}} 2\widehat{\mathfrak{R}}_{U,m}^\diamond(\mathcal{G}) + 3\sqrt{\left(\frac{1}{m} + \frac{1}{n}\right) \log\left(\frac{2}{\delta}\right)} + 2\sqrt{\left(\frac{1}{m} + \frac{1}{n}\right)^3 mn}.$$

Proof Sketch

- **Symmetrization lemma** (extends to data-dependent case, as observed by [Gat \(2001\)](#)), for $m\epsilon^2 \geq 2$:

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{H}_S} R(h) - \hat{R}_S(h) > \epsilon \right] \leq 2 \mathbb{P}_{\substack{S \sim \mathcal{D}^m \\ T \sim \mathcal{D}^n}} \left[\sup_{h \in \mathcal{H}_S} \hat{R}_T(h) - \hat{R}_S(h) > \frac{\epsilon}{2} \right].$$

- Concentration bound: upper bound RHS in terms of

$$\mathbb{P}_{\substack{(S, T) \sim U \\ |S|=m, |T|=n}} \left[\sup_{h \in \overline{\mathcal{H}}_{U,m}} \hat{R}_T(h) - \hat{R}_S(h) > \frac{\epsilon}{2} \right],$$

- use extension of McDiarmid's inequality to sampling without replacement ([Cortes et al., 2008](#)).
- bound expectation in terms of Rademacher complexity.

Hypothesis Set Stability Guarantee

Algorithmic Stability

- **Definition:** for any two samples S and S' differing by one point,

$$\forall z \in \mathcal{Z}, |L(h, z) - L(h', z)| \leq \beta.$$

- **Generalization bounds:**

- i.i.d. setting:
 - (Bousquet and Elisseeff, 2002): $O(\beta\sqrt{m} + \frac{1}{\sqrt{m}})$;
 - (Feldman and Vondrak, 2018, 2019): $O(\beta \log^2(m) + \frac{1}{\sqrt{m}})$.
 - (Bousquet et al., 2019): $O(\beta \log(m) + \frac{1}{\sqrt{m}})$.
- non-i.i.d. stationary (Rostamizadeh and MM, 2010);
- non-stationary phi- and beta-mixing bounds (Kuznetsov and MM, 2017).

Hypothesis Set Stability

- **Definition:** a family $\mathcal{H} = (\mathcal{H}_S)_{S \in \mathcal{Z}^m}$ of data-dependent hypothesis sets is uniformly β -stable if for any two samples S and S' differing by one point,

$$\forall h \in \mathcal{H}_S, \exists h' \in \mathcal{H}_{S'} : \forall z \in \mathcal{Z}, |L(h, z) - L(h', z)| \leq \beta.$$

Diameter

- **Definition:** the average diameter, diameter, and maximum diameter of a family $\mathcal{H} = (\mathcal{H}_S)_{S \in \mathcal{Z}^m}$ of data-dependent hypothesis sets are defined by

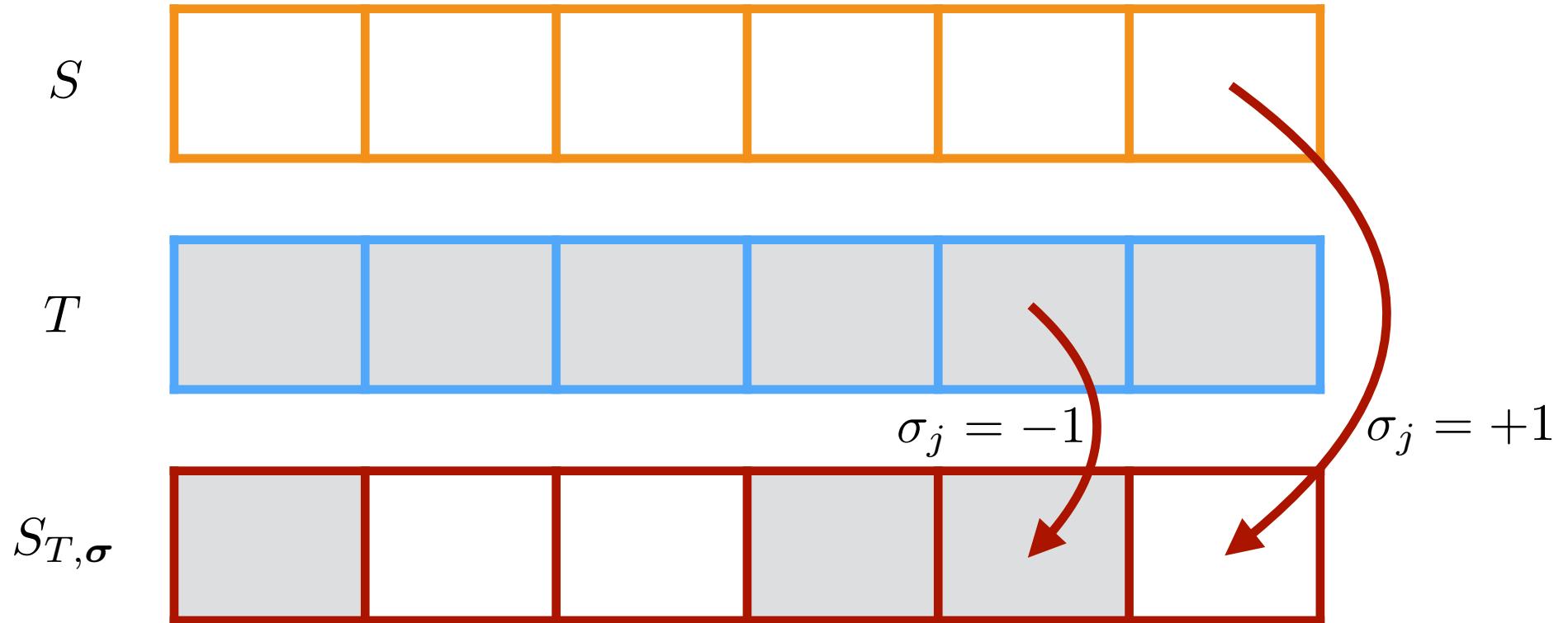
$$\mathbb{E}_{\substack{S \sim \mathcal{Z}^m \\ z \sim S}} \left[\sup_{h, h' \in \mathcal{H}_S} L(h', z) - L(h, z) \right] \leq \bar{\Delta}$$

$$\sup_{S \in \mathcal{Z}^m} \mathbb{E}_{z \sim S} \left[\sup_{h, h' \in \mathcal{H}_S} L(h', z) - L(h, z) \right] \leq \Delta$$

$$\sup_{\substack{S \in \mathcal{Z}^m \\ z \in S}} \left[\sup_{h, h' \in \mathcal{H}_S} L(h', z) - L(h, z) \right] \leq \Delta_{\max}.$$

Rademacher Complexity

- **Notation:** for samples $S, T \sim \mathcal{Z}^m$ and vector of Rademacher variables σ , $S_{T,\sigma}$ is defined as follows, and $\mathcal{H}_{S,T}^\sigma = \mathcal{H}_{S_{T,\sigma}}$.



Rademacher Complexity

- Empirical Rademacher complexity of $\mathcal{H} = (\mathcal{H}_S)_{S \in \mathcal{Z}^m}$:

$$\widehat{\mathfrak{R}}_{S,T}^{\diamond}(\mathcal{H}) = \frac{1}{m} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{h \in \mathcal{H}_{S,T}^{\boldsymbol{\sigma}}} \sum_{i=1}^m \sigma_i h(z_i^T) \right].$$

- Rademacher complexity of $\mathcal{H} = (\mathcal{H}_S)_{S \in \mathcal{Z}^m}$:

$$\mathfrak{R}_m^{\diamond}(\mathcal{H}) = \frac{1}{m} \mathbb{E}_{\substack{S,T \sim \mathcal{D}^m \\ \boldsymbol{\sigma}}} \left[\sup_{h \in \mathcal{H}_{S,T}^{\boldsymbol{\sigma}}} \sum_{i=1}^m \sigma_i h(z_i^T) \right].$$

Properties

- Concentration: for a β -stable family \mathcal{H} with $\beta = O(1/m)$, with high probability,

$$\left| \widehat{\mathfrak{R}}_{S,T}^{\diamond}(\mathcal{H}) - \mathfrak{R}_m^{\diamond}(\mathcal{H}) \right| \leq O(1/\sqrt{2m}).$$

- Upper bound: let $\mathcal{H}_{S,T} = \bigcup_{\substack{U \subseteq S \cup T \\ U \in \mathcal{Z}^m}} \mathcal{H}_U$, then,

$$\mathfrak{R}_m^{\diamond}(\mathcal{H}) \leq \frac{1}{m} \mathbb{E}_{\substack{S,T \sim \mathcal{D}^m \\ \sigma}} \left[\sup_{h \in \mathcal{H}_{S,T}} \sum_{i=1}^m \sigma_i h(z_i^T) \right] = \mathbb{E}_{S,T \sim \mathcal{D}^m} \left[\widehat{\mathfrak{R}}_T(\mathcal{H}_{S,T}) \right].$$

Example

- For \mathcal{H}_S defined by

$$\mathcal{H}_S = \left\{ x \mapsto w^S \cdot x : w^S = \sum_{i=1}^m \alpha_i x_i^S, \|\alpha\|_1 \leq \Lambda_1 \right\},$$

and $r_T = \sqrt{\frac{\sum_{i=1}^m \|x_i^T\|_2^2}{m}}$ $r_{S \cup T} = \max_{x \in S \cup T} \|x\|_2$,

$$\widehat{\mathfrak{R}}_{S,T}^\diamond(\mathcal{H}) \leq r_T r_{S \cup T} \Lambda_1 \sqrt{\frac{2 \log(4m)}{m}} \leq r_{S \cup T}^2 \Lambda_1 \sqrt{\frac{2 \log(4m)}{m}}.$$

Hypothesis Stability Bound

- **Theorem:** let $\mathcal{H} = (\mathcal{H}_S)_{S \in \mathcal{Z}^m}$ be a β -stable family and let \mathcal{G} be the corresponding family of loss functions. Then, for any $\delta > 0$, with probability at least $1 - \delta$ over the draw of a sample $S \in \mathcal{Z}^m$, the following holds for all $h \in \mathcal{H}_S$:

$$R(h) \leq \widehat{R}_S(h) + \min\{2\mathfrak{R}_m^\diamond(\mathcal{G}), \beta + \overline{\Delta}\} + [1 + 2\beta m] \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.$$

Proof Sketch

- McDiarmid's inequality applied to $\Psi(S, S)$ where

$$\Psi(S, S') = \sup_{h \in \mathcal{H}_S} R(h) - \widehat{R}_{S'}(h).$$

- proof of $(\frac{1}{m} + \Delta)$ -sensitivity of $\Psi(S, S)$.
- upper bound on $\mathbb{E}_{S \sim \mathcal{D}^m} [\Psi(S, S)]$ in terms of Rademacher complexity.

Hypothesis Stability Bound

- **Theorem:** let $\mathcal{H} = (\mathcal{H}_S)_{S \in \mathcal{Z}^m}$ be a β -stable family and let \mathcal{G} be the corresponding family of loss functions. Then, for any $\delta > 0$, with probability at least $1 - \delta$ over the draw of a sample $S \in \mathcal{Z}^m$, the following holds for all $h \in \mathcal{H}_S$:

$$R(h) \leq \hat{R}_S(h) + \min \left\{ 2\mathfrak{R}_m^\diamond(\mathcal{G}) + (1 + 2\beta m) \sqrt{\frac{1}{2m} \log(\frac{1}{\delta})}, \right.$$
$$\sqrt{e} (\beta + \Delta) + 4 \sqrt{(\frac{1}{m} + 2\beta) \log(\frac{6}{\delta})},$$
$$\left. 47(3\beta + \Delta_{\max}) \log(m) \log(\frac{5m^3}{\delta}) + \sqrt{\frac{4}{m} \log(\frac{4}{\delta})} \right\}.$$

Proof

- Proof of second statement: uses a differential privacy-based technique, as in (Feldman and Vondrak, 2018). A key part consists of bounding $\mathbb{E}_{\substack{S \sim \mathcal{D}^{pm} \\ k = \mathcal{A}(S)}} [\Psi(S_k, S_k)]$ in terms of χ .
- Proof of third statement: uses the observation that an algorithm choosing a predictor in \mathcal{H}_S is $(\beta + \Delta_{\max})$ -stable, and the stability bound of (Feldman and Vondrak, 2018).

Applications

Bagging

■ Description:

- k batches B_1, \dots, B_k each of size p by sampling with replacement from S .
- algorithm \mathcal{A} trained on each sample $\rightarrow \mathcal{A}(B_j)$.
- $w_i \leq C/k$, for some $C \geq 1$.
- return convex combination $\sum_{i=1}^k w_i \mathcal{A}(B_i)$; thus,

$$\mathcal{H}_S := \left\{ \sum_{i=1}^k w_i \mathcal{A}(B_i) : w \in \Delta_k^{C/k} \right\}.$$

Bagging

■ Analysis:

- loss assumed μ -Lipschitz.
- sampling without replacement.
- learning bound: whp, for all $h \in \mathcal{H}_S$,

$$R(h) \leq \widehat{R}_S(h) + 2\mu\sqrt{\frac{2p\log(4m)}{m}} + \left[1 + 2\left[p + \sqrt{\frac{2pm\log(\frac{1}{\delta})}{k}}\right] \cdot C\mu\beta_{\mathcal{A}}\right] \sqrt{\frac{\log \frac{2}{\delta}}{2m}}.$$

- For $p = o(\sqrt{m})$ and $k = \omega(p)$, bound converging regardless of the stability of algorithm \mathcal{A} .
- Somewhat similar but not comparable bound by [Elisseeff et al., 2005](#).

Stochastic Strongly-Convex Opt.

■ Description:

- uniform convergence bounds do not hold for the stochastic convex optimization problem in general (Shalev-Shwartz et al., 2010).
- 1st stage: K stochastic strongly-convex optimization algorithms each returning \hat{w}_j^S , $j \in [K]$; these algorithms are $\beta = O(\frac{1}{m})$ -sensitive (Shalev-Shwartz et al., 2010).
- 2nd stage: choose ensemble from

$$\mathcal{H}_S = \left\{ \sum_{j=1}^K \alpha_j \hat{w}_j^S : \alpha \in \Delta_K \cap B_1(\alpha_0, r) \right\},$$

$$\text{with } r = \frac{1}{2\mu D\sqrt{m}}.$$

Stochastic Strongly-Convex Opt.

■ Analysis:

- loss assumed μ -Lipschitz.
- \mathcal{H}_S is shown to be $\mu\beta$ -stable.
- average diameter bound: $\overline{\Delta} \leq \frac{1}{\sqrt{m}}$.
- learning bound: whp, for all $h \in \mathcal{H}_S$,

$$\begin{aligned} & \mathbb{E}_{z \sim \mathcal{D}} \left[L \left(\sum_{j=1}^K \alpha_j \hat{w}_j^S, z \right) \right] \\ & \leq \frac{1}{m} \sum_{i=1}^m L \left(\sum_{j=1}^K \alpha_i \hat{w}_j^S, z_i^S \right) + \sqrt{\frac{e}{m}} + \sqrt{e\mu\beta} + 4\sqrt{\left[\frac{1}{m} + 2\mu\beta \right] \log \left[\frac{6}{\delta} \right]}. \end{aligned}$$

Δ -Sensitive Mappings

■ Description:

- 1st stage: learning mapping $\Phi_S: \mathcal{X} \rightarrow \mathbb{R}^N$ that is Δ -sensitive with $\Delta = O(\frac{1}{m})$.
- 2nd stage: select hypothesis from

$$\mathcal{H}_S = \{x \mapsto w \cdot \Phi_S(x): \|w\| \leq \gamma\}.$$

■ Analysis:

- loss assumed μ -Lipschitz.
- then $\mathcal{H} = (\mathcal{H}_S)_{S \in \mathcal{Z}^m}$ is $(\mu\gamma\Delta)$ -stable, with $\mu\gamma\Delta = O(\frac{1}{m})$.
- learning bound: whp, for all $h \in \mathcal{H}_S$,

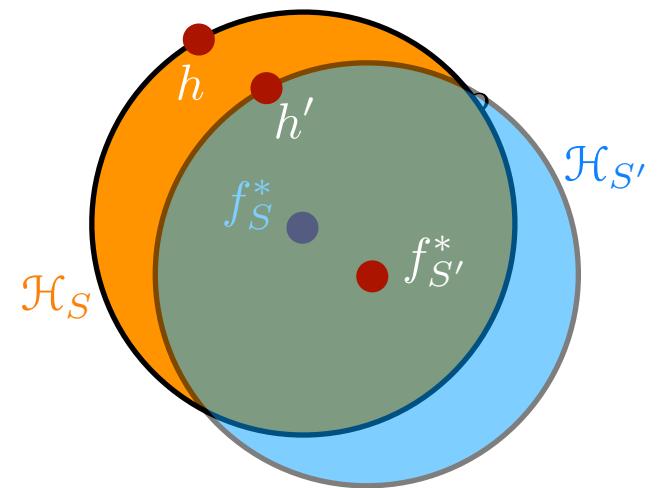
$$R(h) \leq \widehat{R}_S(h) + 2\mathfrak{R}_m^\diamond(\mathcal{G}) + (1 + 2\mu\gamma\Delta m) \sqrt{\frac{1}{2m} \log(\frac{1}{\delta})}.$$

Distillation

■ Description:

- 1st stage: train a very complex model on the training sample S returning $f_S^*: \mathcal{X} \rightarrow \mathbb{R}$; algorithm assumed β -sensitive:

$$\|f_S^* - f_{S'}^*\| \leq \beta = O\left(\frac{1}{m}\right).$$



- 2nd stage: select hypothesis from a less complex family \mathcal{H} with

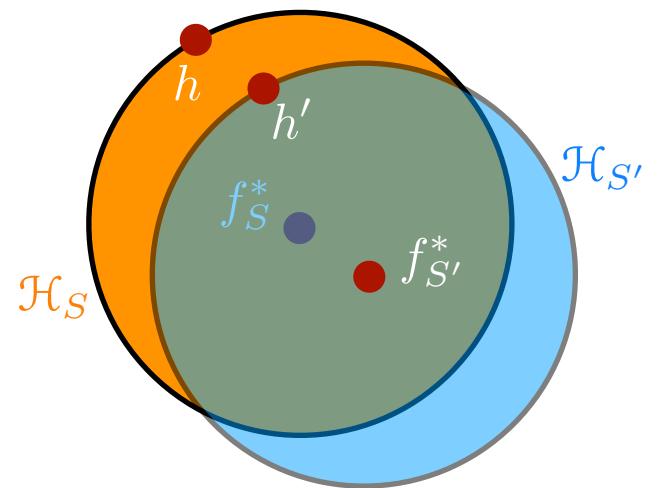
$$\mathcal{H}_S = \{h \in \mathcal{H}: \|(h - f_S^*)\|_\infty \leq \gamma\}.$$

Distillation

Analysis:

- $f_{S'}^* - f_S^*$ assumed in $\mathcal{H} \Rightarrow h' \in \mathcal{H}_{S'}$.
- loss assumed μ -Lipschitz.
- $\rightarrow \mathcal{H}_S$ is $\mu\beta$ -stable.
- learning bound: whp, for all $h \in \mathcal{H}_S$,

$$R(h) \leq \hat{R}_S(h) + 2\mathfrak{R}_m^\diamond(\mathcal{G}) + (1 + 2\mu\beta m) \sqrt{\frac{1}{2m} \log(\frac{1}{\delta})}.$$



Extensions

- Almost everywhere hypothesis set stability.
- Randomized algorithms.
- Data-dependent priors.
- Many other applications.

Conclusion

- Broad analysis of generalization with data-dependent hypothesis sets:
 - hypothesis set stability learning guarantees.
 - applications to many scenarios in practice.
 - other extensions: local Rademacher complexity bounds, model selection bounds.
 - non-i.i.d. learning bounds: stationary beta-mixing processes, discrepancy-based bounds for non-stationary processes.
 - general learning bound for data-dependent hypothesis sets.