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Motivation

B Common scenario in ML practice:
* hypothesis set selected after receiving training sample.
® original family restricted after observations.
e ensemble family decided after receiving sample.
® regularization chosen using labeled sample.

e feature transformation or data normalization based on
sample.
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Motivation

B Standard learning bounds:
o fixed hypothesis set.
* selected before receiving training sample.

® guarantees depend on the complexity of hypothesis set.

B Questions:

®* can we derive learning guarantees for sample-
dependent hypothesis sets?

® existing techniques cannot be used; what tools and
concepts should we use?
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Related Work

B Luckiness framework (shawe-Taylor et al., 1998): analysis of SRM
over data-dependent hierarchies based on concept of
luckiness.

® can beviewed as a study of data-dependent hypothesis
sets using luckiness functions and w-smallness.

® algorithm-specific guarantees (Herbrich and Williamson, 2002):
show some connection with stability, at the price of a
strong condition on stability parameter, 5 = o(<).

™m
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Related Work

B General bounds for binary classification (Gat 2001; Cannon et al,,
2002): expressed in terms a notion of shattering coefficients
adapted to data-dependent setting.

B PAC-Bayes bounds (bziugate and Roy, 2018): prior selected using
training sample via a differentially private algorithm.
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This Talk

| Setup.
B General sample-dependent guarantees.
B Hypothesis set stability guarantees.

® Applications.
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Setup
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Learning Stages

hg € Hg
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Learning Stages

hg € Hg

B Special cases:
e standard generalization: Hg = K.

® algorithmic stability: Hg = {hs}.
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Definitions

Xinput space, Y output space, D distribution over X x Y.

Loss function /: Y xY - R,lossof h: X - Yonz=(z,y)
denoted L(h, z) = ¢(h(x),y).

Expected and empirical losses:

R(h) = E [L(h,2)]

Rs(h) = E [L(h.)] = % > Lk z),

Family of losses of hypotheses G = (Gg)gczm :

s ={z— L(h,z): h € Hg}.
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General Sample-
Dep. Guarantee
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Setup

B How can we derive learning bounds for data-dependent
hypothesis sets?

o straightforward idea: use 3, = Jgoom Hs; but the
family can be very rich and the bound uninformative.

® alternative: for some supersample Uof size m + n,

consider the family Hy ., = Ugez™ Hs;
SCU

® |earning guarantees based on the maximimum
transductive Rademacher complexity.
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Transductive Rad. Complexity

B Definition: transductive Rademacher complexity,

with o5 independent random variables taking
value m£2 with probability -

m—+mn!

value — X2 with probability

m
m-+n '
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General Learning Bound

B Theorem: letH = (Hgs)sezm be a family of data-dependent
hypothesis sets and let G be the corresponding family of
loss functions. Then, for any ¢ > 0, with probability 1 — ¢

over the draw of a sample S € Z™, the following holds for
all h € Hgq:

l\D

D o
R(h) < RS(h)+Uénz%z}in Q%Um —|—3\/ L) log(2) —I—Q\/
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Proof Sketch

B Symmetrization lemma (extends to data-dependent case,
as observed by Gat (2001)), for me* > 2:

P [ sup R(h) — Rg(h) > e] <2 P [ sup Rr(h) — Rs(h) >§ :

SoD™
Topn LhEHs

B Concentration bound: upper bound RHS in terms of

~ ~ €
P Rr(h) — Rg(h) > —
i Fr >3]

® use extension of McDiarmid's inequality to sampling
without replacement (Cortes et al., 2008).

* pbound expectation in terms of Rademacher complexity.
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Hypothesis Set
Stability Guarantee
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Algorithmic Stability

m Definition: for any two samples S and S’ differing by one
point,
Vze Z,|L(h,z) — L(h, 2)| < B.

B Generalization bounds:
* ji.d.setting:

* (Bousquet and Elisseeff, 2002): O(8+/m —|—\/_)

® (Feldman and Vondrak, 2018, 2019). (5 log ( ) + \/Lm)

* (Bousquetetal,2019): O(8 log(m )—I—L)

Jm
® non-i.i.d. stationay (Rostamizadeh and MM, 2010);

® non-stationary phi- and beta-mixing bounds (Kuznetsov and

MM, 2017).
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Hypothesis Set Stability

B Definition: a family H = (Hg)seczm of data-dependent
hypothesis sets is uniformly g-stable if for any two
samples Sand S’ differing by one point,

Vh € Hg,3h' € Hg: Vz € Z, |L(h,z) — L(h’,z)| < B.
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Diameter

B Definition: the average diameter, diameter, and maximum

diameter of a family H = (Hs)sez= of data-dependent
hypothesis sets are defined by

E sup L(h,z)—L(h,2)| <A
S~Z™ LhhedHs l

sup E sup L(h',z)—L(h,2)| <A
Sezm 2~S | hh/eHg ]

sup sup L(h',z)— L(h,2)| < Anax
sezm Lhwests i
zE
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Rademacher Complexity

B Notation: for samples S,T ~ Z™and vector of Rademacher
variables o, St is defined as follows, and Hg r = Hg,. .
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Rademacher Complexity

B Empirical Rademacher complexity of H = (Hg)seczm:

- 1
< H :_E
sr(H) = —E

R, — E ih(z]
mH)=— B h:;nga (2 )}
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Properties

® Concentration: for a g-stable family H with 5 = O(1/m),
with high probability,

R (H) - 9%, (H)| < O(1/vV2m).

B Upper bound: let Hgr = Jvcsur Hu, then,
Uez™

1 ~
N < — ; = E R (H :
R (1) < m STND [hesélch ;U ] S, T~D™ [ r S’T)}
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Example

B For Hgdefined by

Hg = {waS-$: w® =3 ax? |l <A1}

and rp = \/Zilln\llef”% rsur = MaXpecsuT H$||2,

N

2 log (4 2 log (4
er(H) <rr TSUTAl\/ Oiﬁ m) < T%UT/M\/ Ogﬂg m)
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Hypothesis Stability Bound

B Theorem:letH = (Hs)sezm be a 3-stable family and let G
be the corresponding family of loss functions. Then, for
any ¢ > 0, with probability at least 1 — 6 over the draw of a
sample S € Z™, the following holds for all h € Hg::

R(h) < Rs(h) + min{2R},(G), 8 + A} + [1 + 26m]
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Proof Sketch

B Mc-Diarmid's inequality applied to ¥ (.S, S) where

U(S,5") = sup R(h) — Rg/(h).
heXHg

* proof of (% + A) -sensitivity of U(s,s).

® upper bound on < I%m[@(s, S)]in terms of Rademacher
complexity. -
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Hypothesis Stability Bound

B Theorem:letH = (Hs)sezm be a 3-stable family and let G
be the corresponding family of loss functions. Then, for
any ¢ > 0, with probability at least 1 — 6 over the draw of a
sample S € Z™, the following holds for all h € Hg::

R(h) < Rg(h) 4+ min {zmgl(g) + (14 zﬁm)\/ﬁ log(3),

Ve (B+A)+ 4\/(% +26) log(3),

4

47(38 + Apax) log(m log(

Oolrlk
H/_/
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Proof

B Proof of second statement: uses a differential privacy-
based technique, as in (Feldman and Vondrak, 2018). A key part
consists of boundingS E [W(Sk,Sk)]interms of x.

~DPm™m

k=A(S)

B Proof of third statement; uses the observation that an
algorithm choosing a predictor in Hg is (5 + Anax)-Stable,
and the stability bound of (Feldman and Vondrak, 2018).
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Applications
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Bagging

B Description:

®* kbatches By, ..., Bxeach of size p by sampling with
replacement from S.

e algorithm A trained on each sample — A(B;).
* w; <C/k,forsomeC > 1.

® return convex combination Z,’f:l w; A(B;); thus,

k
Hg := {ZwiA(B,,;): w € Ag/k}.
i=1
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Bagging

B Analysis:
® |oss assumed pu-Lipschitz.
* sampling without replacement.

* |earning bound: whp, for all h € Hg,

R(h) < ﬁs(h)—|—2ﬂ\/2ploif4m) n p_|_\/2pm log(3)

log %

142
+ 2m

-Cuba

k

e For p=o(v/m)and k = w(p), bound converging
regardless of the stability of algorithm A.

* Somewhat similar but not comparable bound by (Elisseeff
et al., 2005),
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Stochastic Strongly-Convex Opt.

B Description:

® uniform convergence bounds do not hold for the
stochastic convex optimization problem in general (shalev-
Shwartz et al., 2010).

® 1Jststage: Kstochastic strongly-convex optimization
algorithms each returning zﬁf] € |K]; these algorithms
are 8 = O(=-)-sensitive (shalev-Shwartz et al., 2010).

® 2nd stage: choose ensemble from

( K )

Z&j@fi o€ AN Bl(ao’r) >
 J=1 J

: . 1
with r = TN
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Stochastic Strongly-Convex Opt.

B Analysis:

Mohri@

loss assumed p-Lipschitz.

Hg is shown to be uS-stable.

average diameter bound: A < —-.

learning bound: whp, for all h € Hg,

2y [1(Sme )

m

i;L<Zaz

/\E? ‘9
j o~

ozl

> \/»+\fuﬁ+4\/ +2p3] log [8].
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A-Sensitive Mappings

B Description:

* st stage: learning mapping &5: X — RY thatis A
-sensitive with A = O(1).

® 2nd stage: select hypothesis from
Hs ={x— w-Pg(x): |w| <~}
B Analysis:
® |oss assumed p-Lipschitz.
o thenH = (Hg)seanis (uyA)-stable, with uyA = O(2).
® |earning bound: whp, for all h € Hg,
R(h) < Rs(h) +2%%5,(0) + (1 + 2u7Am) /5 log().
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Distillation

B Description:

® 1ststage: train a very complex
model on the training sample S
returning f&: X — R; algorithm
assumed j-sensitive:

115 = f3:l < B=0(;)-

® 2nd stage: select hypothesis from
a less complex family H with

Hs = {h € H: [|(h— f&)lleo <7}
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Distillation

B Analysis:
o f& — f&assumedinH=h' € Hg.
® J|oss assumed p-Lipschitz.

o =P J{sis up-stable.
® |earning bound: whp, for all h € Hg,

R(h) < Rs(h) +29%,(G) + (1 + 2uBm) /o log(}).
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Extensions

B Almost everywhere hypothesis set stability.
® Randomized algorithms.
B Data-dependent priors.

B Many other applications.
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Conclusion

B Broad analysis of generalization with data-dependent
hypothesis sets:

Mohri@

hypothesis set stability learning guarantees.
applications to many scenarios in practice.

other extensions: local Rademacher complexity bouds,
model selection bounds.

non-i.i.d. learning bounds: stationary beta-mixing
processes, discrepancy-based bounds for non-stationary
processes.

general learning bound for data-dependent hypothesis
sets.
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