

Time Series Prediction & Online Learning

Joint work with [Vitaly Kuznetsov](#) ([Google Research](#))

MEHRYAR MOHRI

MOHRI@

COURANT INSTITUTE & GOOGLE RESEARCH

Motivation

- Time series prediction:
 - stock values.
 - economic variables.
 - weather: e.g., local/global temperature.
 - earthquakes.
 - energy demand.
 - signal processing.
 - sales forecasting.
 - election forecast.

Time Series

NY Unemployment Rate

Time Series

US Presidential Election 2016

Two Learning Scenarios

- Stochastic scenario:
 - distributional assumption.
 - performance measure: expected loss.
 - guarantees: generalization bounds.
- On-line scenario:
 - no distributional assumption.
 - performance measure: regret.
 - guarantees: regret bounds.
 - active research area: (Cesa-Bianchi and Lugosi, 2006; Anava et al. 2013, 2015, 2016; Bousquet and Warmuth, 2002; Herbster and Warmuth, 1998, 2001; Koolen et al., 2015).

On-Line Learning

On-Line Learning Setup

- Adversarial setting with hypothesis/action set H .
- For $t = 1$ to T do
 - player receives $x_t \in \mathcal{X}$.
 - player selects $h_t \in H$.
 - adversary selects $y_t \in \mathcal{Y}$.
 - player incurs loss $L(h_t(x_t), y_t)$.
- **Objective:** minimize (external) regret

$$\text{Reg}_T = \sum_{t=1}^T L(h_t(x_t), y_t) - \min_{h \in H^*} \sum_{t=1}^T L(h(x_t), y_t).$$

Example: Exp. Weights (EW)

- Expert set $H^* = \{\mathcal{E}_1, \dots, \mathcal{E}_N\}$, $H = \text{conv}(H^*)$.

$\text{EW}(\{\mathcal{E}_1, \dots, \mathcal{E}_N\})$

```
1  for  $i \leftarrow 1$  to  $N$  do
2       $w_{1,i} \leftarrow 1$ 
3  for  $t \leftarrow 1$  to  $T$  do
4      RECEIVE( $x_t$ )
5       $h_t \leftarrow \frac{\sum_{i=1}^N w_{t,i} \mathcal{E}_i}{\sum_{i=1}^N w_{t,i}}$ 
6      RECEIVE( $y_t$ )
7      INCUR-LOSS( $L(h_t(x_t), y_t)$ )
8      for  $i \leftarrow 1$  to  $N$  do
9           $w_{t+1,i} \leftarrow w_{t,i} e^{-\eta L(\mathcal{E}_i(x_t), y_t)}$      $\triangleright$  (parameter  $\eta > 0$ )
10 return  $h_T$ 
```

EW Guarantee

- **Theorem:** assume that L is convex in its first argument and takes values in $[0, 1]$. Then, for any $\eta > 0$ and any sequence $y_1, \dots, y_T \in \mathcal{Y}$, the regret of EW at time T satisfies

$$\text{Reg}_T \leq \frac{\log N}{\eta} + \frac{\eta T}{8}.$$

For $\eta = \sqrt{8 \log N / T}$,

$$\text{Reg}_T \leq \sqrt{(T/2) \log N}.$$

$$\frac{\text{Reg}_T}{T} = O\left(\sqrt{\frac{\log N}{T}}\right).$$

EW - Proof

■ **Potential:** $\Phi_t = \log \sum_{i=1}^N w_{t,i}$.

■ **Upper bound:**

$$\begin{aligned}\Phi_t - \Phi_{t-1} &= \log \frac{\sum_{i=1}^N w_{t-1,i} e^{-\eta L(\mathcal{E}_i(x_t), y_t)}}{\sum_{i=1}^N w_{t-1,i}} \\ &= \log \left(\mathbb{E}_{w_{t-1}} [e^{-\eta L(\mathcal{E}_i(x_t), y_t)}] \right) \\ &= \log \left(\mathbb{E}_{w_{t-1}} \left[\exp \left(-\eta \left(L(\mathcal{E}_i(x_t), y_t) - \mathbb{E}_{w_{t-1}} [L(\mathcal{E}_i(x_t), y_t)] \right) - \eta \mathbb{E}_{w_{t-1}} [L(\mathcal{E}_i(x_t), y_t)] \right) \right] \right) \\ &\leq -\eta \mathbb{E}_{w_{t-1}} [L(\mathcal{E}_i(x_t), y_t)] + \frac{\eta^2}{8} \quad (\text{Hoeffding's ineq.}) \\ &\leq -\eta L(\mathbb{E}_{w_{t-1}} [\mathcal{E}_i(x_t)], y_t) + \frac{\eta^2}{8} \quad (\text{convexity of first arg. of } L) \\ &= -\eta L(h_t(x_t), y_t) + \frac{\eta^2}{8}.\end{aligned}$$

EW - Proof

- Upper bound: summing up the inequalities yields

$$\Phi_T - \Phi_0 \leq -\eta \sum_{t=1}^T L(h_t(x_t), y_t) + \frac{\eta^2 T}{8}.$$

- Lower bound:

$$\begin{aligned}\Phi_T - \Phi_0 &= \log \sum_{i=1}^N e^{-\eta \sum_{t=1}^T L(\mathcal{E}_i(x_t), y_t)} - \log N \\ &\geq \log \max_{i=1}^N e^{-\eta \sum_{t=1}^T L(\mathcal{E}_i(x_t), y_t)} - \log N \\ &= -\eta \min_{i=1}^N \sum_{t=1}^T L(\mathcal{E}_i(x_t), y_t) - \log N.\end{aligned}$$

- Comparison:

$$\sum_{t=1}^T L(h_t(x_t), y_t) - \min_{i=1}^N \sum_{t=1}^T L(\mathcal{E}_i(x_t), y_t) \leq \frac{\log N}{\eta} + \frac{\eta T}{8}.$$

Questions

- Can we exploit both stochastic and on-line results? Can we tackle notoriously difficult time series problems?
 - on-line-to-batch conversion.
 - model selection.
 - learning ensembles.

On-line-to-Batch Conversion

On-Line-to-Batch (OTB)

- **Input:** sequence of hypotheses $\mathbf{h} = (h_1, \dots, h_T)$ returned after T rounds by an on-line algorithm \mathcal{A} minimizing general regret

$$\text{Reg}_T = \sum_{t=1}^T L(h_t, Z_t) - \inf_{\mathbf{h}^* \in \mathbf{H}^*} \sum_{t=1}^T L(\mathbf{h}^*, Z_t).$$

- **Problem:** use $\mathbf{h} = (h_1, \dots, h_T)$ to derive a hypothesis $h \in H$ with small path-dependent expected loss,

$$\mathcal{L}_{T+1}(h, \mathbf{Z}_1^T) = \mathbb{E}_{Z_{T+1}} [L(h, Z_{T+1}) | \mathbf{Z}_1^T].$$

- IID case is standard: (Littlestone, 1989), (Cesa-Bianchi et al., 2004).
- general stochastic process?

Standard Assumptions

- Stationarity:

- Mixing:

dependence between events decaying with k .

Problem

- Stationarity and mixing assumptions:
 - widely adopted: (Alquier and Wintenberger, 2010, 2014), (Agarwal and Duchi, 2013), (Lozano et al., 1997), (Vidyasagar, 1997), (Yu, 1994), (Meir, 2000), (MM and Rostamizadeh, 2000), (Kuznetsov and MM, 2014).
- But,
 - they **often do not hold** (think trend or periodic signals).
 - they are not testable.
 - estimating mixing parameters can be hard, even if general functional form known.
 - hypothesis set and loss function ignored.

→ we need a new tool for the analysis.

Relevant Quantity

→ Average difference: $\frac{1}{T} \sum_{t=1}^T \left[\mathcal{L}_{T+1}(h_t, \mathbf{z}_1^T) - \mathcal{L}_t(h_t, \mathbf{z}_1^{t-1}) \right]$.

On-line Discrepancy

■ Definition:

$$\text{disc}(\mathbf{q}) = \sup_{\mathbf{h} \in \mathbf{H}_{\mathcal{A}}} \left| \sum_{t=1}^T q_t \left[\mathcal{L}_{T+1}(h_t, \mathbf{Z}_1^T) - \mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) \right] \right|.$$

- $\mathbf{H}_{\mathcal{A}}$: sequences that \mathcal{A} can return.
- $\mathbf{q} = (q_1, \dots, q_T)$: arbitrary weight vector.
- natural measure of non-stationarity or dependency.
- captures hypothesis set and loss function.
- can be efficiently estimated under mild assumptions.
- generalization of definition of [\(Kuznetsov and MM, 2015\)](#) .

Discrepancy Estimation

- Batch discrepancy estimation method (Kuznetsov and MM, 2015).
- Alternative method:
 - assume that the loss is μ -Lipschitz.
 - assume that there exists an accurate hypothesis h^* :

$$\eta = \inf_{h^*} \mathbb{E} \left[L(Z_{T+1}, h^*(X_{T+1})) | \mathbf{Z}_1^T \right] \ll 1.$$

Discrepancy Estimation

- **Lemma:** fix sequence \mathbf{Z}_1^T in \mathcal{Z} . Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following holds for all $\alpha > 0$:

$$\text{disc}(\mathbf{q}) \leq \widehat{\text{disc}}_{H^T}(\mathbf{q}) + \mu\eta + 2\alpha + M\|\mathbf{q}\|_2 \sqrt{2 \log \frac{\mathbb{E}[\mathcal{N}_1(\alpha, \mathcal{G}, \mathbf{z})]}{\delta}},$$

where

$$\widehat{\text{disc}}_H(\mathbf{q}) = \sup_{h \in H, \mathbf{h} \in H_{\mathcal{A}}} \left| \sum_{t=1}^T q_t \left[L(h_t(X_{T+1}), h(X_{T+1})) - L(h_t, Z_t) \right] \right|.$$

Proof Sketch

$$\begin{aligned}
\text{disc}(\mathbf{q}) &= \sup_{\mathbf{h} \in \mathbf{H}_{\mathcal{A}}} \left| \sum_{t=1}^T q_t \left[\mathcal{L}_{T+1}(h_t, \mathbf{Z}_1^T) - \mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) \right] \right| \\
&\leq \sup_{\mathbf{h} \in \mathbf{H}_{\mathcal{A}}} \left| \sum_{t=1}^T q_t \left[\mathcal{L}_{T+1}(h_t, \mathbf{Z}_1^T) - \mathbb{E} \left[L(h_t(X_{T+1}), h^*(X_{T+1})) \mid \mathbf{Z}_1^T \right] \right] \right| \\
&\quad + \sup_{\mathbf{h} \in \mathbf{H}_{\mathcal{A}}} \left| \sum_{t=1}^T q_t \left[\mathbb{E} \left[L(h_t(X_{T+1}), h^*(X_{T+1})) \mid \mathbf{Z}_1^T \right] - \mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) \right] \right| \\
&\leq \mu \sup_{\mathbf{h} \in \mathbf{H}_{\mathcal{A}}} \sum_{t=1}^T q_t \mathbb{E} \left[L(h^*(X_{T+1}), Y_{T+1}) \mid \mathbf{Z}_1^T \right] \\
&= \mu \sup_{\mathbf{h} \in \mathbf{H}_{\mathcal{A}}} \mathbb{E} \left[L(h^*(X_{T+1}), Y_{T+1}) \mid \mathbf{Z}_1^T \right].
\end{aligned}$$

$\widehat{\text{disc}}_H(\mathbf{q})$

Lemma

- **Lemma:** let L be a convex loss bounded by M and \mathbf{h}_1^T a hypothesis sequence adapted to \mathbf{Z}_1^T . Fix $\mathbf{q} \in \Delta$. Then, for any $\delta > 0$, the following holds with probability at least $1 - \delta$ for the hypothesis $h = \sum_{t=1}^T q_t h_t$:

$$\mathcal{L}_{T+1}(h, \mathbf{Z}_1^T) \leq \sum_{t=1}^T q_t L(h_t, Z_t) + \text{disc}(\mathbf{q}) + M \|\mathbf{q}\|_2 \sqrt{2 \log \frac{1}{\delta}}.$$

Proof

- By convexity of the loss:

$$\mathcal{L}_{T+1}(h, \mathbf{Z}_1^T) \leq \sum_{t=1}^T q_t \mathcal{L}_t(h_t, \mathbf{Z}_1^T).$$

- By definition of the on-line discrepancy,

$$\sum_{t=1}^T q_t \left[\mathcal{L}_{T+1}(h_t, \mathbf{Z}_1^T) - \mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) \right] \leq \text{disc}(\mathbf{q}).$$

- $A_t = q_t \left[\mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) - L(h_t, Z_t) \right]$ is a martingale difference, thus by Azuma's inequality, whp,

$$\sum_{t=1}^T q_t \mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) \leq \sum_{t=1}^T q_t L(h_t, Z_t) + \|\mathbf{q}\|_2 \sqrt{2 \log \frac{1}{\delta}}.$$

Learning Guarantee

- **Theorem:** let L be a convex loss bounded by M and \mathbf{H}^* a set of hypothesis sequences adapted to \mathbf{Z}_1^T . Fix $\mathbf{q} \in \Delta$. Then, for any $\delta > 0$, the following holds with probability at least $1 - \delta$ for the hypothesis $h = \sum_{t=1}^T q_t h_t$:

$$\begin{aligned} & \mathcal{L}_{T+1}(h, \mathbf{Z}_1^T) \\ & \leq \inf_{\mathbf{h}^* \in \mathbf{H}} \sum_{t=1}^T \mathcal{L}_{T+1}(h^*, \mathbf{Z}_1^T) + 2\text{disc}(\mathbf{q}) + \frac{\text{Reg}_T}{T} \\ & \quad + M\|\mathbf{q} - \mathbf{u}\|_1 + 2M\|\mathbf{q}\|_2 \sqrt{2 \log \frac{2}{\delta}}. \end{aligned}$$

Notes

- Theorem extends to non-convex losses when h is selected as follows:

$$h = \operatorname{argmin}_{h_t} \left\{ \sum_{s=t}^T q_s L(h_t, Z_s) + \operatorname{disc}(\mathbf{q}_t^T) + M \|\mathbf{q}_t^T\|_2 \sqrt{2 \log \frac{2(T+1)}{\delta}} \right\}.$$

- Learning guarantees with same flavor as those of [\(Kuznetsov and MM, 2015\)](#) but simpler proofs, no complexity measure.
- They admit as special case the learning guarantees for
 - the i.i.d. scenario [\(Littlestone, 1989\)](#), [\(Cesa-Bianchi et al., 2004\)](#).
 - the drifting scenario [\(MM and Muñoz Medina, 2012\)](#).

Extension

■ General regret definition:

$$\text{Reg}_T = \sum_{t=1}^T L(h_t, Z_t) - \inf_{\mathbf{h}^* \in \mathbf{H}^*} \left\{ \sum_{t=1}^T L_t(\mathbf{h}^*, Z_t) + \mathcal{R}(\mathbf{h}^*) \right\}.$$

- standard regret: $\mathcal{R} = 0$, \mathbf{H}^* constant sequences.
- tracking: $\mathbf{H}^* \subseteq H^T$.
- \mathcal{R} can be a kernel-based regularization (Herbster and Warmuth, 2001).

Stable Hypothesis Sequences

- Hypotheses no longer adapted, but output by a uniformly stable algorithm.
- Stable hypotheses:
 - $\mathcal{H} = \{h \in H : \text{ there exists } \mathcal{A} \in \mathfrak{A} \text{ such that } h = \mathcal{A}(\mathbf{Z}_1^T)\}$.
 - $\beta_t = \beta_{h_t}$: stability coefficient of algorithm returning h_t .
- Similar learning bounds with additional term $\sum_{t=1}^T q_t \beta_t$.
 - admit as special cases results of [\(Agarwal and Duchi, 2013\)](#) for asymptotically stationary mixing processes.

Applications

Model Selection

- **Problem:** given N time series models, how should we use sample \mathbf{Z}_1^T to select a single best model?
 - in i.i.d. case, cross-validation can be shown to be close to the structural risk minimization solution.
 - but, how do we select a validation set for general stochastic processes?
 - use most recent data?
 - use the most distant data?
 - use various splits?
 - models may have been pre-trained on \mathbf{Z}_1^T .

Model Selection

Algorithm:

- choose $\mathbf{q} \in \Delta$ to minimize discrepancy

$$\min_{\mathbf{q} \in \Delta} \widehat{\text{disc}}_H(\mathbf{q}).$$

- use on-line algorithm for prediction with expert advice to generate a sequence of hypotheses $\mathbf{h} \in \mathcal{H}^T$, with \mathcal{H} the set of N models.
- select model according to

$$h = \operatorname{argmin}_{h_t} \left\{ \sum_{s=t}^T q_s L(h_t, Z_s) + \text{disc}(\mathbf{q}_t^T) + M \|\mathbf{q}_t^T\|_2 \sqrt{2 \log \frac{2(T+1)}{\delta}} \right\}.$$

Learning Ensembles

- **Problem:** given a hypothesis set H and a sample \mathbf{Z}_1^T , find accurate convex combination $h = \sum_{t=1}^T q_t h_t$ with $\mathbf{h} \in H_{\mathcal{A}}$ and $\mathbf{q} \in \Delta$.
 - in most general case, hypotheses may have been pre-trained on \mathbf{Z}_1^T .

Learning Ensembles

Algorithm:

- run regret minimization on \mathbf{Z}_1^T to return \mathbf{h} .
- minimize learning bound. For $\Lambda_2 \geq 0$,

$$\min_{\mathbf{q}} \widehat{\text{disc}}_H(\mathbf{q}) + \sum_{t=1}^T q_t L(h_t, Z_t)$$

subject to $\|\mathbf{q} - \mathbf{u}\|_2 \leq \Lambda_2$.

- for convex loss and convex H , can be cast as a DC-programming problem, and solved using the DC-algorithm (Tao and An, 1998).
- for squared loss, global optimum.

Conclusion

- Time series prediction using on-line algorithms:
 - new learning bounds for non-stationary non-mixing processes.
 - on-line discrepancy measure that can be estimated.
 - general on-line-to-batch conversion.
 - application to model selection.
 - application to learning ensembles.
 - tools for tackling other time series problems.