Time Series Prediction & Online Learning

Joint work with Vitaly Kuznetsov (Google Research)
Motivation

- Time series prediction:
 - stock values.
 - economic variables.
 - weather: e.g., local/global temperature.
 - earthquakes.
 - energy demand.
 - signal processing.
 - sales forecasting.
 - election forecast.
Time Series

NY Unemployment Rate
Time Series

US Presidential Election 2016
Two Learning Scenarios

- Stochastic scenario:
 - distributional assumption.
 - performance measure: expected loss.
 - guarantees: generalization bounds.

- On-line scenario:
 - no distributional assumption.
 - performance measure: regret.
 - guarantees: regret bounds.
On-Line Learning
On-Line Learning Setup

- Adversarial setting with hypothesis/action set H.
- For $t = 1$ to T do
 - player receives $x_t \in X$.
 - player selects $h_t \in H$.
 - adversary selects $y_t \in \mathcal{Y}$.
 - player incurs loss $L(h_t(x_t), y_t)$.
- Objective: minimize (external) regret

\[
\text{Reg}_T = \sum_{t=1}^{T} L(h_t(x_t), y_t) - \min_{h \in H^*} \sum_{t=1}^{T} L(h(x_t), y_t).
\]
Expert set $H^* = \{ \mathcal{E}_1, \ldots, \mathcal{E}_N \}$, $H = \text{conv}(H^*)$.

EW($\{ \mathcal{E}_1, \ldots, \mathcal{E}_N \}$)

1. for $i \leftarrow 1$ to N do
2. \hspace{1em} $w_{1,i} \leftarrow 1$
3. for $t \leftarrow 1$ to T do
4. \hspace{1em} RECEIVE(x_t)
5. \hspace{2em} $h_t \leftarrow \frac{\sum_{i=1}^{N} w_{t,i} \mathcal{E}_i}{\sum_{i=1}^{N} w_{t,i}}$
6. \hspace{1em} RECEIVE(y_t)
7. INCUR-LOSS($L(h_t(x_t), y_t)$)
8. for $i \leftarrow 1$ to N do
9. \hspace{2em} $w_{t+1,i} \leftarrow w_{t,i} e^{-\eta L(\mathcal{E}_i(x_t), y_t)}$ \hfill \triangleright (parameter $\eta > 0$)
10. return h_T
EW Guarantee

- **Theorem:** assume that L is convex in its first argument and takes values in $[0, 1]$. Then, for any $\eta > 0$ and any sequence $y_1, \ldots, y_T \in \mathcal{Y}$, the regret of EW at time T satisfies

\[
\text{Reg}_T \leq \frac{\log N}{\eta} + \frac{\eta T}{8}.
\]

For $\eta = \sqrt{8 \log N / T}$,

\[
\text{Reg}_T \leq \sqrt{(T/2) \log N}.
\]

\[
\frac{\text{Reg}_T}{T} = O\left(\sqrt{\frac{\log N}{T}}\right).
\]
EW - Proof

- **Potential:** \(\Phi_t = \log \sum_{i=1}^{N} w_{t,i} \).

- **Upper bound:**

\[
\Phi_t - \Phi_{t-1} = \log \left(\frac{\sum_{i=1}^{N} w_{t-1,i} e^{-\eta L(\mathcal{E}_i(x_t), y_t)}}{\sum_{i=1}^{N} w_{t-1,i}} \right) \\
= \log \left(\mathbb{E}_{w_{t-1}} \left[e^{-\eta L(\mathcal{E}_i(x_t), y_t)} \right] \right) \\
= \log \left(\mathbb{E}_{w_{t-1}} \left[\exp \left(-\eta \left(L(\mathcal{E}_i(x_t), y_t) - \mathbb{E}_{w_{t-1}} \left[L(\mathcal{E}_i(x_t), y_t) \right] \right) - \eta \mathbb{E}_{w_{t-1}} \left[L(\mathcal{E}_i(x_t), y_t) \right] \right) \right] \right) \\
\leq -\eta \mathbb{E}_{w_{t-1}} \left[L(\mathcal{E}_i(x_t), y_t) \right] + \frac{\eta^2}{8} \quad \text{(Hoeffding’s ineq.)} \\
\leq -\eta L \left(\mathbb{E}_{w_{t-1}} \left[\mathcal{E}_i(x_t) \right], y_t \right) + \frac{\eta^2}{8} \quad \text{(convexity of first arg. of } L) \\
= -\eta L(h_t(x_t), y_t) + \frac{\eta^2}{8}.
\]
EW - Proof

- **Upper bound:** summing up the inequalities yields

\[
\Phi_T - \Phi_0 \leq -\eta \sum_{t=1}^{T} L(h_t(x_t), y_t) + \frac{\eta^2 T}{8}.
\]

- **Lower bound:**

\[
\Phi_T - \Phi_0 = \log \sum_{i=1}^{N} e^{-\eta \sum_{t=1}^{T} L(E_i(x_t), y_t)} - \log N
\geq \log \max_{i=1}^{N} e^{-\eta \sum_{t=1}^{T} L(E_i(x_t), y_t)} - \log N
= -\eta \min_{i=1}^{N} \sum_{t=1}^{T} L(E_i(x_t), y_t) - \log N.
\]

- **Comparison:**

\[
\sum_{t=1}^{T} L(h_t(x_t), y_t) - \min_{i=1}^{N} \sum_{t=1}^{T} L(E_i(x_t), y_t) \leq \frac{\log N}{\eta} + \frac{\eta T}{8}.
\]
Questions

- Can we exploit both stochastic and on-line results? Can we tackle notoriously difficult time series problems?
 - on-line-to-batch conversion.
 - model selection.
 - learning ensembles.
On-line-to-Batch Conversion
On-Line-to-Batch (OTB)

- **Input**: sequence of hypotheses $\mathbf{h} = (h_1, \ldots, h_T)$ returned after T rounds by an on-line algorithm \mathcal{A} minimizing general regret

$$\text{Reg}_T = \sum_{t=1}^{T} L(h_t, Z_t) - \inf_{\mathbf{h}^* \in \mathcal{H}^*} \sum_{t=1}^{T} L(h^*_t, Z_t).$$

- **Problem**: use $\mathbf{h} = (h_1, \ldots, h_T)$ to derive a hypothesis $h \in H$ with small path-dependent expected loss,

$$\mathcal{L}_{T+1}(h, \mathbf{Z}_1^T) = \mathbb{E}_{\mathbf{Z}_{T+1}} \left[L(h, Z_{T+1}) \mid \mathbf{Z}_1^T \right].$$

- **IID case is standard**: (Littlestone, 1989), (Cesa-Bianchi et al., 2004).

- **general stochastic process?**
Standard Assumptions

- **Stationarity:**

 \[(Z_t, \ldots, Z_{t+m})\] \(\sim\) \[(Z_{t+k}, \ldots, Z_{t+m+k})\]

- **Mixing:**

 Dependence between events decaying with \(k\).
Problem

Stationarity and mixing assumptions:

But,

- they **often do not hold** (think trend or periodic signals).
- they are not testable.
- estimating mixing parameters can be hard, even if general functional form known.
- hypothesis set and loss function ignored.

we need a new tool for the analysis.
Relevant Quantity

key difference

\[\mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) \quad \mathcal{L}_{T+1}(h_t, \mathbf{Z}_1^T) \]

Average difference:

\[
\frac{1}{T} \sum_{t=1}^{T} \left[\mathcal{L}_{T+1}(h_t, \mathbf{Z}_1^T) - \mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) \right].
\]
On-line Discrepancy

Definition:

\[
\text{disc}(q) = \sup_{h \in \mathcal{H}_A} \left| \sum_{t=1}^{T} q_t \left[\mathcal{L}_{T+1}(h_t, Z_{1}^{T}) - \mathcal{L}_t(h_t, Z_{1}^{t-1}) \right] \right|
\]

- \(\mathcal{H}_A \) : sequences that \(A \) can return.
- \(q = (q_1, \ldots, q_T) \) : arbitrary weight vector.
- natural measure of non-stationarity or dependency.
- captures hypothesis set and loss function.
- can be efficiently estimated under mild assumptions.
- generalization of definition of \(\text{(Kuznetsov and MM, 2015)} \).
Discrepancy Estimation

- Batch discrepancy estimation method (Kuznetsov and MM, 2015).

- Alternative method:
 - assume that the loss is μ-Lipschitz.
 - assume that there exists an accurate hypothesis h^*:

$$\eta = \inf_{h^*} \mathbb{E} \left[L(Z_{T+1}, h^*(X_{T+1})) | Z_1^T \right] \ll 1.$$
Discrepancy Estimation

- **Lemma**: fix sequence \mathbf{z}_1^T in \mathcal{Z}. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following holds for all $\alpha > 0$:

$$
\text{disc}(\mathbf{q}) \leq \hat{\text{disc}}_{HT} (\mathbf{q}) + \mu \eta + 2\alpha + M \| \mathbf{q} \|_2 \sqrt{2 \log \frac{\mathbb{E} [\mathcal{N}_1 (\alpha, G, \mathbf{z})]}{\delta}},
$$

where

$$
\hat{\text{disc}}_H (\mathbf{q}) = \sup_{h \in H, \mathbf{h} \in H_A} \left| \sum_{t=1}^{T} q_t \left[L (h_t (X_{T+1}), h(X_{T+1})) - L (h_t, Z_t) \right] \right|.
$$
Proof Sketch

\[\text{disc}(q) = \sup_{h \in H_A} \left| \sum_{t=1}^{T} q_t \left[\mathcal{L}_{T+1}(h_t, Z_1^{T}) - \mathcal{L}_{t}(h_t, Z_1^{t-1}) \right] \right| \]

\[\leq \sup_{h \in H_A} \left| \sum_{t=1}^{T} q_t \left[\mathcal{L}_{T+1}(h_t, Z_1^{T}) - \mathbb{E} \left[L(h_t(X_{T+1}), h^*(X_{T+1})) \mid Z_1^{T} \right] \right] \right| \]

\[+ \sup_{h \in H_A} \left| \sum_{t=1}^{T} q_t \left[\mathbb{E} \left[L(h_t(X_{T+1}), h^*(X_{T+1})) \mid Z_1^{T} \right] \right] - \mathcal{L}_{t}(h_t, Z_1^{t-1}) \right| . \]

\[\leq \mu \sup_{h \in H_A} \sum_{t=1}^{T} q_t \mathbb{E} \left[L(h^*(X_{T+1}), Y_{T+1}) \mid Z_1^{T} \right] \]

\[= \mu \sup_{h \in H_A} \mathbb{E} \left[L(h^*(X_{T+1}), Y_{T+1}) \mid Z_1^{T} \right] . \]
Lemma

Lemma: let L be a convex loss bounded by M and h^T_1 a hypothesis sequence adapted to Z^T_1. Fix $\mathbf{q} \in \Delta$. Then, for any $\delta > 0$, the following holds with probability at least $1 - \delta$ for the hypothesis $h = \sum_{t=1}^{T} q_t h_t$:

$$
\mathcal{L}_{T+1}(h, Z^T_1) \leq \sum_{t=1}^{T} q_t L(h_t, Z_t) + \text{disc}(\mathbf{q}) + M\|\mathbf{q}\|_2 \sqrt{2 \log \frac{1}{\delta}}.
$$
Proof

By convexity of the loss:

$$\mathcal{L}_{T+1}(h, \mathbf{Z}_1^T) \leq \sum_{t=1}^T q_t \mathcal{L}_{T+1}(h_t, \mathbf{Z}_1^T).$$

By definition of the on-line discrepancy,

$$\sum_{t=1}^T q_t \left[\mathcal{L}_{T+1}(h_t, \mathbf{Z}_1^T) - \mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) \right] \leq \text{disc}(q).$$

$$A_t = q_t \left[\mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) - L(h_t, \mathbf{Z}_t) \right]$$ is a martingale difference, thus by Azuma’s inequality, whp,

$$\sum_{t=1}^T q_t \mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) \leq \sum_{t=1}^T q_t L(h_t, Z_t) + \|q\|_2 \sqrt{2 \log \frac{1}{\delta}}.$$
Learning Guarantee

Theorem: let L be a convex loss bounded by M and H^* a set of hypothesis sequences adapted to Z_1^T. Fix $q \in \Delta$. Then, for any $\delta > 0$, the following holds with probability at least $1 - \delta$ for the hypothesis $h = \sum_{t=1}^T q_t h_t$:

$$
L_{T+1}(h, Z_1^T) \\
\leq \inf_{h^* \in H} \sum_{t=1}^T L_{T+1}(h^*, Z_1^T) + 2\text{disc}(q) + \frac{\text{Reg}_T}{T} \\
+ M\|q - u\|_1 + 2M\|q\|_2 \sqrt{2 \log \frac{2}{\delta}}.
$$
Theorem extends to non-convex losses when h is selected as follows:

$$h = \arg\min_{h_t} \left\{ \sum_{s=t}^{T} q_s L(h_t, Z_s) + \text{disc}(q_t^T) + M \|q_t^T\|_2 \sqrt{2 \log \frac{2(T+1)}{\delta}} \right\}.$$

Learning guarantees with same flavor as those of (Kuznetsov and MM, 2015) but simpler proofs, no complexity measure.

They admit as special case the learning guarantees for

- the i.i.d. scenario (Littlestone, 1989), (Cesa-Bianchi et al., 2004).
- the drifting scenario (MM and Muñoz Medina, 2012).
Extension

General regret definition:

\[
\text{Reg}_T = \sum_{t=1}^{T} L(h_t, Z_t) - \inf_{h^* \in H^*} \left\{ \sum_{t=1}^{T} L_t(h^*, Z_t) + \mathcal{R}(h^*) \right\}.
\]

- standard regret: \(\mathcal{R} = 0 \), \(H^* \) constant sequences.
- tracking: \(H^* \subseteq H^T \).
- \(\mathcal{R} \) can be a kernel-based regularization \(\text{(Herbster and Warmuth, 2001)} \).
Stable Hypothesis Sequences

- Hypotheses no longer adapted, but output by a uniformly stable algorithm.

- Stable hypotheses:
 - $\mathcal{H} = \{h \in H : \text{there exists } A \in \mathcal{A} \text{ such that } h = A(Z^T_1)\}$.
 - $\beta_t = \beta_{h_t}$: stability coefficient of algorithm returning h_t.

- Similar learning bounds with additional term $\sum_{t=1}^{T} q_t \beta_t$.
 - admit as special cases results of (Agarwal and Duchi, 2013) for asymptotically stationary mixing processes.
Applications
Model Selection

Problem: given N time series models, how should we use sample \mathbf{Z}_1^T to select a single best model?

- in i.i.d. case, cross-validation can be shown to be close to the structural risk minimization solution.
- but, how do we select a validation set for general stochastic processes?
 - use most recent data?
 - use the most distant data?
 - use various splits?
- models may have been pre-trained on \mathbf{Z}_1^T.
Model Selection

Algorithm:

- choose $q \in \Delta$ to minimize discrepancy

$$\min_{q \in \Delta} \widehat{\text{disc}}_H(q).$$

- use on-line algorithm for prediction with expert advice to generate a sequence of hypotheses $h \in \mathcal{H}^T$, with \mathcal{H} the set of N models.

- select model according to

$$h = \arg\min_{h_t} \left\{ \sum_{s=t}^{T} q_s L(h_t, Z_s) + \text{disc}(q_t^T) + M \|q_t^T\|_2 \sqrt{2 \log \frac{2(T+1)}{\delta}} \right\}.$$
Learning Ensembles

Problem: given a hypothesis set H and a sample Z_1^T, find accurate convex combination $h = \sum_{t=1}^{T} q_t h_t$ with $h \in H_A$ and $q \in \Delta$.

- in most general case, hypotheses may have been pre-trained on Z_1^T.

Learning Ensembles

Algorithm:

• run regret minimization on Z_1^T to return h.

• minimize learning bound. For $\Lambda_2 \geq 0$,

$$
\min_q \ \hat{\text{disc}}_H(q) + \sum_{t=1}^{T} q_t L(h_t, Z_t)
$$

subject to $\|q - u\|_2 \leq \Lambda_2$.

• for convex loss and convex H, can be cast as a DC-programming problem, and solved using the DC-algorithm (Tao and An, 1998).

• for squared loss, global optimum.
Conclusion

- **Time series prediction using on-line algorithms:**
 - new learning bounds for non-stationary non-mixing processes.
 - on-line discrepancy measure that can be estimated.
 - general on-line-to-batch conversion.
 - application to model selection.
 - application to learning ensembles.
 - tools for tackling other time series problems.