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Motivation
Time series prediction: 

• stock values. 

• economic variables. 

• weather: e.g., local/global temperature. 

• earthquakes. 

• energy demand. 

• signal processing. 

• sales forecasting. 

• election forecast.
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Time Series
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NY Unemployment Rate
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Time Series
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US Presidential Election 2016
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Two Learning Scenarios
Stochastic scenario: 

• distributional assumption. 

• performance measure: expected loss. 

• guarantees: generalization bounds. 

On-line scenario: 

• no distributional assumption. 

• performance measure: regret. 

• guarantees: regret bounds. 

• active research area: (Cesa-Bianchi and Lugosi, 2006; Anava et al. 
2013, 2015, 2016; Bousquet and Warmuth, 2002; Herbster and Warmuth, 
1998, 2001; Koolen et al., 2015).
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On-Line Learning Setup
Adversarial setting with hypothesis/action set    . 

For          to    do 

• player receives            . 

• player selects             . 

• adversary selects            . 

• player incurs loss                      . 

Objective: minimize (external) regret
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Example: Exp. Weights (EW)
Expert set                                 ,                          .
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EW({E1, . . . ,EN

})
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EW Guarantee
Theorem: assume that    is convex in its first argument and 
takes values in        . Then, for any          and any       
sequence                          , the regret of EW at time     
satisfies
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EW - Proof
Potential:  

Upper bound:
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EW - Proof
Upper bound: summing up the inequalities yields 

Lower bound: 

Comparison:
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Questions
Can we exploit both stochastic and on-line results? Can we 
tackle notoriously difficult time series problems? 

• on-line-to-batch conversion. 

• model selection. 

• learning ensembles.
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On-Line-to-Batch (OTB)
Input: sequence of hypotheses                              returned 
after    rounds by an on-line algorithm     minimizing 
general regret 

Problem: use                             to derive a hypothesis            
with small path-dependent expected loss, 

• IID case is standard: (Littlestone, 1989), (Cesa-Bianchi et al., 2004). 

• general stochastic process?
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Standard Assumptions
Stationarity: 

Mixing:

15

(Zt, . . . , Zt+m) (Zt+k, . . . , Zt+m+k)

same distribution

B A

n n+ k

dependence between events decaying with k.
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Problem
Stationarity and mixing assumptions: 

• widely adopted: (Alquier and Wintenberger, 2010, 2014), (Agarwal and 
Duchi, 2013), (Lozano et al., 1997), (Vidyasagar, 1997), (Yu, 1994), (Meir, 

2000), (MM and Rostamizadeh, 2000), (Kuznetsov and MM, 2014). 

But,  

• they often do not hold (think trend or periodic signals). 

• they are not testable. 

• estimating mixing parameters can be hard, even if 
general functional form known. 

• hypothesis set and loss function ignored.
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we need a new tool for the analysis.
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Relevant Quantity
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On-line Discrepancy
Definition: 

•       : sequences that     can return. 

•                            : arbitrary weight vector. 

• natural measure of non-stationarity or dependency. 

• captures hypothesis set and loss function. 

• can be efficiently estimated under mild assumptions. 

• generalization of definition of (Kuznetsov and MM, 2015) .
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Discrepancy Estimation
Batch discrepancy estimation method (Kuznetsov and MM, 2015). 

Alternative method: 

• assume that the loss is   -Lipschitz. 

• assume that there exists an accurate hypothesis     :
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Discrepancy Estimation
Lemma: fix sequence      in   . Then, for any          , with 
probability at least         , the following holds for all          :
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Proof Sketch
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Lemma
Lemma: let    be a convex loss bounded by     and      a 
hypothesis sequence adapted to     . Fix           . Then, for 
any          , the following holds with probability at least          
for the hypothesis                         :
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Proof
By convexity of the loss:  

By definition of the on-line discrepancy, 

                                                       is a martingale difference, 
thus by Azuma’s inequality, whp,
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Learning Guarantee
Theorem: let    be a convex loss bounded by      and      a set 
of hypothesis sequences adapted to     . Fix           . Then, for 
any          , the following holds with probability at least          
for the hypothesis                         :
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Notes
Theorem extends to non-convex losses when    is selected 
as follows: 

Learning guarantees with same flavor as those of (Kuznetsov 

and MM, 2015) but simpler proofs, no complexity measure.  

They admit as special case the learning guarantees for 

• the i.i.d. scenario (Littlestone, 1989), (Cesa-Bianchi et al., 2004). 

• the drifting scenario (MM and Muñoz Medina, 2012).
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Extension
General regret definition: 

• standard regret:            ,       constant sequences. 

• tracking:                 . 

•     can be a kernel-based regularization (Herbster and 

Warmuth, 2001).
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Stable Hypothesis Sequences
Hypotheses no longer adapted, but output by a uniformly 
stable algorithm. 

Stable hypotheses: 

•   

•              : stability coefficient of algorithm returning     . 

Similar learning bounds with additional term                 . 

• admit as special cases results of (Agarwal and Duchi, 2013) for 
asymptotically stationary mixing processes.
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Model Selection
Problem: given     time series models, how should we use 
sample      to select a single best model? 

• in i.i.d. case, cross-validation can be shown to be close to 
the structural risk minimization solution. 

• but, how do we select a validation set for general 
stochastic processes?  

• use most recent data?  

• use the most distant data?  

• use various splits? 

• models may have been pre-trained on      .
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Model Selection
Algorithm: 

• choose             to minimize discrepancy 

• use on-line algorithm for prediction with expert advice to 
generate a sequence of hypotheses              , with     the 
set of     models. 

• select model according to
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Learning Ensembles
Problem: given a hypothesis set     and a sample      , find 
accurate convex combination                          with              
and            . 

• in most general case, hypotheses may have been pre-
trained on      .
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Learning Ensembles
Algorithm:  

• run regret minimization on       to return   . 

• minimize learning bound. For             , 

• for convex loss and convex    , can be cast as a DC-
programming problem, and solved using the DC-
algorithm (Tao and An, 1998). 

• for squared loss, global optimum.
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Conclusion
Time series prediction using on-line algorithms: 

• new learning bounds for non-stationary non-mixing 
processes. 

• on-line discrepancy measure that can be estimated. 

• general on-line-to-batch conversion. 

• application to model selection. 

• application to learning ensembles. 

• tools for tackling other time series problems.
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