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Motivation

B Time series prediction:
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stock values.

economic variables.

weather: e.g., local/global temperature.
earthquakes.

energy demand.

signal processing.

sales forecasting.

election forecast.
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Time Series

US Presidential Election 2016
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Two Learning Scenarios

B Stochastic scenario:
e distributional assumption.
® performance measure: expected loss.

® guarantees: generalization bounds.

® On-line scenario:
® no distributional assumption.
e performance measure: regret.
® guarantees: regret bounds.

® active research area: (Cesa-Bianchi and Lugosi, 2006; Anava et al.
2013, 2015, 2016; Bousquet and Warmuth, 2002; Herbster and Warmuth,
1998, 2001; Koolen et al., 2015).
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On-Line Learning




On-Line Learning Setup

B Adversarial setting with hypothesis/action set H.

® Fort=1toTdo
e player receives x; € X.
* player selects h; € H.
® adversary selectsy; € V.

o playerincurs loss L(hi(xt),yt).

B Objective: minimize (external) regret

Regy = Y L(hi(z¢),y:) — min > L(h(xe), v1).
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Example: Exp. Weights (EW)

B ExpertsetH" ={&1,...,En}, H=conv(H").

EWH{E1,...,EN})
1 fori:<+1to N do

wl,i%l
fort+1to 71 do

RECEIVE(x¢)
ht < ZI'J"V:z\rl e

\

RECEIVEz(ylt) |
INCUR-LOSS(L(h¢ (), yt))
for:<+1to N do
Wig1.i < Wy e~ nL(Ei(ze),y:) |y (parameter 1 > 0)
return hr

SO © 0 O Ot = Wi

e
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EW Guarantee

B Theorem: assume that Lis convex in its first argument and
takes values in [0, 1]. Then, for any >0 and any

sequence yi,...,yr € YV, the regret of EW attime T

satisfies

log N T
SRR

Reg . <
Er > . 3

Forn = /8log N/T,

Regy < V/(T/2)log N.

Reg log N
=0 :
7 =0T
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EW - Proof

m Potential: ®, = log >0 | wy.;.

® Upper bound:

Zij\il Wt—1,i e~ nL(Ei(xt),yt)

S Wi,

_ log( E [e_nL(Si(xt)ayt)])

We—1

¢, — Py = log

:10g< > [exp (_”(L(Ei(fct)ayt)— E [L(gi(xt)’yt)]) =08 [L(gi(xt)’yt)OD

We—1 We—1 We—1

< —n E [L(Ei(xy),yt)] +

2
% (Hoeffding’s ineq.)
"

8

< —nL( E [&(zy)],ue) + (convexity of first arg. of L)

We—1

2
= —nL(h(xt), ye) + g
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EW - Proof

B Upper bound: summing up the inequalities yields

n*T
Op — Py < _nZL(ht(xt)ayt) + T
t=1

& [ower bound: N

(I)T _ (I)O — logz e " 2321 L(Ei(ze),ye) _ ]OgN
1=1

N T
= —nmin » L(&;(x),y:) —logN.

1=1
t=1

0 Comparison
T
log N T
ZL (he(ze), yt) mm L(Ei(xe),ye) < 5 + iy
t=1 d 8
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Questions

B Can we exploit both stochastic and on-line results? Can we
tackle notoriously difficult time series problems?

® on-line-to-batch conversion.
¢ model selection.

* |earning ensembles.
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On-line-to-Batch
Conversion



On-Line-to-Batch (OTB)

® [nput: sequence of hypotheses h = (hy,..., hr) returned
after T'rounds by an on-line algorithm A minimizing

general regret
T

T
Regr = »  L(hy, Zy) — ,inf L(h*, Z,).
t=1 t=1

® Problem:use h = (hy,...,hr)to derive a hypothesis h € H
with small path-dependent expected loss,

Lria(hZi) = E [L(h, Zr41)|Z1].

ZT41
e |ID case is standard: (Littlestone, 1989), (Cesa-Bianchi et al., 2004).

® general stochastic process?
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Standard Assumptions

B Stationarity:
4 same distribution

~
N N

(Zt7 I Zt—l—m) (Zt—l—ka ) Zt—l—m—l—k)

| Mixing:

dependence between events decaying with k.

— @

B A

_—

n n+k
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Problem

B Stationarity and mixing assumptions:

® Wid6|y adopted: (Alquier and Wintenberger, 2010, 2014), (Agarwal and
Duchi, 2013), (Lozano et al., 1997), (Vidyasagar, 1997), (Yu, 1994), (Meir,

2000), (MM and Rostamizadeh, 2000), (Kuznetsov and MM, 2014).
| But,
e they often do not hold (think trend or periodic signals).
® they are not testable.

® estimating mixing parameters can be hard, even if
general functional form known.

® hypothesis set and loss function ignored.

—Pp We need a new tool for the analysis.
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Relevant Quantity

key difference

Y >\

Li(he, ZE1) Lri1(he, Z7)
s e, S e
1 t+1 T T+ 1

T

—Pp Average difference: 1 > [£T+1(ht, Z1) — Li(hy, Z'j‘l)}.

T
t=1

Mohri@
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On-line Discrepancy

B Definition:

T
disc(q) = sup th [ETH(ht, Z1) — Li(hy, Zﬁ_l)} .
heH 4 —1

* H,:sequences that.A can return.

* q=(q1,.-.,qr) : arbitrary weight vector.
® natural measure of non-stationarity or dependency.
® captures hypothesis set and loss function.
® can be efficiently estimated under mild assumptions.

® generalization of definition of (Kuznetsov and MM, 2015).
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Discrepancy Estimation

B Batch discrepancy estimation method (kuznetsov and MM, 2015).

B Alternative method:
® assume that the loss is p-Lipschitz.

® assume that there exists an accurate hypothesis h*:

N = i}ILI*fE {L(ZTH, h*(XT+1))|Zﬂ < 1.
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Discrepancy Estimation

® Lemma: fix sequence Z1in Z Then, for any ¢ > 0, with
probability at least1 — §, the following holds for alla > 0:

Tiac EN Y I
disc(q) < discyr(q) + pun + 2a + MHQHQ\/Q log | 1(054 g z)]’

where

L ——

discgr(q) =  sup
he HheH 4

ZQt[ (ht(X741), M(X711)) — L(ht,Zt)} |

t=1
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Proof Sketch

disc(q) = sup Z q _£T+1(ht, Z1) — Li(he, Zi_l)} |
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Lemma

Lemma: let L be a convex loss bounded by M and hi 3
hypothesis sequence adapted to Z7. Fixq € A. Then, for
any é > 0, the following holds with probability at least 1 — §

for the hypothesis b = X7 qihy:

T
. 1
Lrsa(hZ7) < ) arL(he, Z2) + dise(q) + M| |21/ 21og ~.

t=1
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Proof

B By convexity of the loss:

Lri1(h,ZT) < t£T+1 (ht, Z7).

||Mﬂ

B By definition of the on-line discrepancy,

T
Z qt [ET—I—l(hta Z?) — L (hy, Zi_l)} < disc(q).

t=1

m A =q [Et(ht, Zy) — L(hy, Zt)} is a martingale difference,
thus by Azuma'’s inequality, whp,

T T
ZQtﬁt(ht, Zi ") < thl}(ht, Zy) + |lal|24/21og 3.

t=1 t=1
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Learning Guarantee

B Theorem: let L be a convex loss bounded by M and H*a set
of hypothesis sequences adapted toZ?. Fixq € A. Then, for

any é > 0, the following holds with probability at least 1 — §
for the hypothesish = 32, q;hy:

Lri1(h,Z7)

Regr
T

T
. * T .
< nf 5—1 Lri1(h*, 27 ) + 2disc(q) +

2
+ Mllg - ully +2M|qll21/2log .
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Notes

B Theorem extends to non-convex losses when h is selected
as follows:

T
h = argmin { > qsL(hy, Z,) + disc(qf ) + MH%TH2\/2 log @}
h

s=t
B |earning guarantees with same flavor as those of (kuznetsov
and MM, 2015) but simpler proofs, no complexity measure.

B They admit as special case the learning guarantees for
® thei.i.d. scenario (Littlestone, 1989), (Cesa-Bianchi et al., 2004).

® the drifting scenario (MM and Mufioz Medina, 2012).
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Extension

B General regret definition:

Regp = L(hy, Z;) — inf {ZLt(h*,Zt)+R(h*)}.

h*ec H*
t=1 <

® standard regret: R =0, H" constant sequences.
e tracking: H* C H',

® 7R can be akernel-based regularization (Herbster and
Warmuth, 2001).
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Stable Hypothesis Sequences

® Hypotheses no longer adapted, but output by a uniformly
stable algorithm.

B Stable hypotheses:
o H=1{h¢c H: there exists A € A such that h = A(Z])}.

* B; = [y, stability coefficient of algorithm returning 5. .

B Similar learning bounds with additional term Zthl q: Bt

® admit as special cases results of (Agarwal and Duchi, 2013) for
asymptotically stationary mixing processes.
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Applications



Model Selection

B Problem: given N time series models, how should we use
sample Z{ to select a single best model?

® ini.i.d. case, cross-validation can be shown to be close to
the structural risk minimization solution.

* but, how do we select a validation set for general
stochastic processes?

® Use mostrecent data?
® use the most distant data?
® use various splits?

* models may have been pre-trained on Z7.
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Model Selection

B Algorithm:

* choose q € A to minimize discrepancy

—_—

in disc .
min di u(q)

® use on-line algorithm for prediction with expert advice to
generate a sequence of hypotheses h € H*, with H the
set of N models.

* select model according to

T
h = argmin { > qsL(hy, Z,) + disc(qf ) + MHQ?H2\/2 log @}
h

s=t
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Learning Ensembles

®m Problem: given a hypothesis set H#and a sample Z7, find
accurate convex combination h = Zle g:h: with h € H 4
and q € A.

® in most general case, hypotheses may have been pre-
trained on Z7.
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Learning Ensembles

B Algorithm:

Mohri@

run regret minimization on Z7 to return h.

minimize learning bound. For A > 0,

A

T
min discy(q) + Z qi:L(h¢, Z4)

4 t=1
subject to  |lq — ufl2 < Aa.

for convex loss and convex H, can be cast as a DC-
programming problem, and solved using the DC-
algorithm (Tao and An, 1998).

for squared loss, global optimum.
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Conclusion

B Time series prediction using on-line algorithms:

Mohri@

new learning bounds for non-stationary non-mixing
processes.

on-line discrepancy measure that can be estimated.
general on-line-to-batch conversion.

application to model selection.

application to learning ensembles.

tools for tackling other time series problems.
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