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Motivation
• Online advertisement: 

✦ revenue of modern search engine and popular 
online sites. 

✦ billions of transactions every day. 

✦ key role of revenue optimization algorithms.



Motivation
• Second-price auctions with reserve: 

✦ widely adopted mechanism in Ad Exchanges. 

✦ many transactions admit a single bidder 
posted-price auctions. 

✦ study of posted-price auctions with strategic 
buyers.



Related Work
• Revenue optimization in second-price auctions [Cui et al. 2011; He et al., 2013; 

Cesa-Bianchi et al., 2013; MM and Muñoz 2014]. 

• Revenue optimization in generalized second-price auctions (GSP) 
[MM and Muñoz, 2015; Varian, 2007; Lucier et al., 2014; Sun et al, 2014; Rudolph et al. 2016; Charles et al., 2016; 

Roughgarden and Wang, 2016]. 

• Dynamic pricing [Kanoria and Nazerzadeh 2014, Bikhchandani and McCardle  2012; den Boer, 2015; 

Chen et al. 2015]. 

• Pricing with strategic and patient buyers [Feldman et al., 2016]. 

• Preference reconstruction [Blum et al. 2014]. 

• Learning optimal auctions [Huang et al., 2015; Morgenstern and Roughgarden, 2015].



This Talk
• Scenarios: 

✦ Fixed valuation. 

✦ Random valuation.



Setup
• Repeated posted-price auctions: 

✦ good repeatedly offered for sale by a seller to 
a single buyer over    rounds. 

✦ buyer holds private valuation             . 

✦ seller offers price     and buyer accepts,          ,  
or rejects,          , at each round           .
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Setup
• Seller: pricing algorithm    . 

✦ total revenue: 

✦ regret: 

• Buyer: discounting factor              . 

✦ surplus: 

PT
t=1 atpt.

A
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RegT (A) = vT �
PT

t=1 atpt.

SurT (A) =
PT

t=1 �
t�1at(v � pt).



Strategic Setting
• Seller announces his algorithm    . 

• Buyer acts strategically: he seeks to maximize 
his surplus              . 

• Seller seeks to minimize his strategic regret, that 
is regret              against strategic buyer. 

• Question: can we design algorithms for 
minimizing strategic regret?

A

SurT (A)

RegT (A)

[Amin et al., 2013]



Truthful Setting
• Fast Search (FS) algorithm: 

✦ keeps track of feasible interval       , starting 
with        and parameter         . 

✦ in each phase, offers prices                         
until a price is rejected. 

✦ if price           is rejected, new phase with 
interval                                and parameter   . 

✦ until size of the interval less than   .

[Kleinberg and Leighton, 2003]
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Truthful Setting
• Fast Search (FS) algorithm: 

✦ at most                           phases. 

✦ regret in                  . 

✦ lower bound:                  .

[Kleinberg and Leighton, 2003]
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Example

v = 16
$8?
$4?

$2?!!!
$1?

No
No
No
YES!



Monotone algorithms
• Algorithm: 

✦ offer price             (        ) until it is accepted. 

✦ offer accepted price thereafter. 

✦ idea: slow enough decrease inconvenient for 
the buyer. 

• Strategic regret in                .

[Amin et al., 2013]

pt = �t � < 1

O

⇣q
T

1��

⌘



Monotone algorithms
• Theorem: the strategic regret of any monotone 

decreasing convex algorithm is in            .⌦(
p
T )

[MM and Muñoz, 2014]



Proof idea
• Fix monotone function. 

• Choose              at random. 

•  Let                            , then 

• Tradeoff optimized for                         .pt � pt+1 ⇠ 1p
T

E[]E[v � p] � c.

 = inf{t : pt < v}

v 2 [ 12 , 1]



Lower Bound
• Theorem: for any pricing algorithm    , the 

following lower bound holds: 

for some universal constant    .

[Amin et al. 2013; Kleinberg and Leighton, 2003; MM and Muñoz, 2014]
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Idea
• Lie     buyer when rejecting           or accepting 

when          . 

• Can we dissuade the buyer from lying? 

✦ buyer’s weakness: time (discounted surplus). 

✦ penalization: if buyer rejects price, reoffer the 
price for another            rounds. 

✦ choice of   subject to a trade-off.

v < pt

v > pt⌘
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Pricing Strategies
• Any deterministic strategy can be represented 

by a tree.
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PFS Guarantees
• Theorem: let                ; the following strategic 

regret guarantees hold for Penalized Fast 
Search (PFS): 

✦                                         for               ; 

✦                                                 for                 .

RegT (PFS) = O(log log T ) � 2 (0, 1
2 ]

RegT (PFS) = O(log T log log T ) � 2 ( 12 , �0)

�0 2 ( 12 , 1)

[MM and Muñoz, 2014]



Proof Idea

�t�1(v � pt)

Surplus of accepted  
path at least

Surplus of rejected 
path at most
�t+r�1

1� �
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Horizon-Indep. Regret
• Extension of PFS via ‘exponentiating trick’ to 

horizon-independent algorithm       : 

✦ length of  th epoch verifies                            . 

✦                                         for               ; 

✦                                                 for                 .

gPFS

log2 log2 Ti = 2i�1i

� 2 (0, 1
2 ]

� 2 ( 12 , �0)

RegT (gPFS) = O(log log T )

RegT (gPFS) = O(log T log log T )

[Drutsa, 2017]



Further Improvement
• PRRFES algorithm: 

✦ truthful FES algorithm: modified FS; after 
rejection, reoffer last accepted price g times. 

✦ same lie penalization as in PFS. 

✦ continue to offer until rejection. 

✦ strategic regret:                                                
for                .

[Drutsa, 2017]

RegT (PRRFES) = O(log log T )
� 2 (0, �0]



Random valuations



Setup
• Repeated posted-price auctions: 

✦ good repeatedly offered for sale by a seller to 
a single buyer over    rounds. 

✦ buyer receives valuation               ,           . 

✦ seller offers price     and buyer accepts,          ,  
or rejects,          , at each round           .

pt

T

at = 1
at = 0

[Amin et al., 2013]
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Setup
• Seller: pricing algorithm    . 

✦ total revenue:                     . 

✦ regret: 

• Buyer: discounting factor              . 

✦ surplus: 

A

� 2 (0, 1]
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Strategic buyers
• Simple tree structure for fixed valuation. 

• Seller offers price from distribution    . 

• Surplus of state                                : 

• Solution found in time            .
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-strategic buyers
• Stop optimizing if all future surplus is at most   . 

• Behave truthfully otherwise, 

• Optimize for                 rounds. 

• Tractable MDP.
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Bandit Formulation
• Only observe reward of price offered. 

• Minimize pseudo-regret 

• Problem: rewards not i.i.d. (strategic buyer).

RegT (A) = max
p2P

pP(v > p)T � E
 TX
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Theorem: Let    be a finite set of prices. Let      
be the number of time the buyer lies.                
Let                                     and  

                                                    . For any        , 

where         is the number of times price    has 
been offered up to time   .

Regret bound
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X

p : �p>�

E[Tp(t)]�p + T �

LP

Tp(t) p
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[MM and Muñoz, 2015]



R-UCB
• Make UCB robust to lies. 

• Use different upper confidence bounds
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Regret analysis
• Proposition: The regret of the R-UCB algorithm is 

bounded by 

where

RegT  E[L] +
X
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Bound on Lies
• An   -strategic buyer lies at most                         . 

• Regret of R-UCB in                          . 

• Extension to continuous set of prices by 
discretization. 

• Regret in                       .
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Conclusion
• Analysis of strategic regret. 

✦ Fixed and random valuation scenarios. 

✦ Simple algorithms extending truthful scenario. 

• Many questions: 

✦ Can we extend results to other types of buyers? 

✦ What about if the buyer learns too? 

✦ Extension to general auctions?



Other Related Questions
• Can the buyer trust the algorithm announced? 

✦ testing incentive-compatibility [Lahaie, Muñoz, Sivan, and 

Vassilvitskii, 2017] (Andres’s talk). 

• Extend analysis to the case where algorithmic 
details are not known.


