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e Online advertisement:

+ revenue of modern search engine and popular
online sites.

+ billions of transactions every day.

+ key role of revenue optimization algorithms.



® Second-price auctions with reserve:

+ widely adopted mechanism in Ad Exchanges.

+ many transactions admit a single bidder
nosted-price auctions.

+ study of posted-price auctions with strategic
buyers.



® Revenue optimization in second-price auctions [cuietal. 2011; He et al., 2013;
Cesa-Bianchi et al., 2013; MM and Mufioz 2014].

® Revenue optimization in generalized second-price auctions (GSP)
[MM and Mufioz, 2015; Varian, 2007; Lucier et al., 2014; Sun et al, 2014; Rudolph et al. 2016; Charles et al., 2016;

Roughgarden and Wang, 2016].

® DynamiC priCing [Kanoria and Nazerzadeh 2014, Bikhchandani and McCardle 2012; den Boer, 2015;
Chen et al. 2015].

® Pricing with strategic and patient buyers [reidman et al., 2016].
® Preference reconstruction gium et al. 2014].

® Learniﬂg Optlmal auctions [Huang et al., 2015; Morgenstern and Roughgarden, 2015].



This lalk

® Scenarios:
+ Fixed valuation.

+ Random valuation.



® Repeated posted-price auctions:

+ good repeatedly offered for sale by a seller to
a buyer over T rounds.

+ buyer holds private valuationv € [0, 1].

+ seller offers price p; and buyer accepts, a; = 1,
or rejects,a; = 0, at each round ¢ € [T].




e Seller: pricing algorithm A.
+ total revenue: S, aip;.

+ regret: Reg(A) = vT — 3, apy.

® Buyer: discounting factor v € (0, 1].

+ surplus: Surp(A) = Zle Vi tay (v — py).



[Amin et al., 2013]

® Seller announces his algorithm A .

® Buyer acts strategically: he seeks to maximize
his surplus Surr(A).

® Seller seeks to minimize his . that
'S regret Reg(A)against strategic buyer.

o . can we design algorithms for
minimizing strategic regret?



[Kleinberg and Leighton, 2003]

® Fast Search (FS) algorithm:

+ keeps track of feasible interval |a, b}, starting

with [0, 1]and parametere = .

+ In each phase, offers prices a + €, a + 2e, . . .
until a price Is rejected.

+ If price a + ke Is rejected, new phase with
interval [a + (k — 1)¢, a + ke] and parameter e

+ until size of the interval less than 7.



[Kleinberg and Leighton, 2003]

® Fast Search (FS) algorithm:

+ at most|log, log, T')| + 1 phases.

+ regret inO(loglog T).

+ lower bound: Q(loglogT).
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[Amin et al., 2013]

e Algorithm:
+ offer price p; = B* (B8 < 1) until it is accepted.
+ offer accepted price thereatter.

+ Idea: slow enough decrease inconvenient for
the buyer.

e Strategic regret in O( L)

1—7



Vonotone algorithms

IMM and Mufioz, 2014]

® [heorem: the strategic regret of any monotone
decreasing convex algorithm is in Q(v/T) .



® Fix monotone function.
e Choosew € [z, 1]at random.

® |etk =inf{t: p;, <wv}, then

k| Elv — pe| > c.

1
e [radeotf optimized for py — pry1 ~ —.

VT



[Amin et al. 2013; Kleinberg and Leighton, 2003; MM and Mufioz, 2014]

o - for any pricing algorithm A, the
following lower bound holds:

1
Reg;(A) > max (12(1 )

for some universal constant C.

, C'log log T>



® | ile = buyer when rejecting v > p; or accepting
when v < p;.

e Can we dissuade the buyer from lying?
+ buyer’s weakness: time (discounted surplus).

+ penalization: If buyer rejects price, reofter the
orice for another (r — 1) rounds.

+ choice of rsubject to a trade-off.



Pricing Strategies

® Any deterministic strategy can be represented
by a tree.
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nalized Fast

+ Regp(PFS) = O(loglog T) for v € (0, 1];

+ Reg(PFS) = O(log T'loglog T) fory € (5,70) -
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[Drutsa, 2017]

—xtension of PFS via ‘exponentiating trick’ to
norizon-independent algorithm PF'S:

+ length of ith epoch verifies log, log, T; = 2"~ *.
+ Regp(PFS) = O(loglog T) for v € (0, 1]

+ Reg, (PFS) = O(log T loglog T) for v € (%,70) .



[Drutsa, 2017]

e PRRFES algorithm:

+ truthful FES algorithm: modified FS; after
rejection, reoffer last accepted price g times.

+ same lie penalization as in PFS.
+ continue to offer until rejection.

+ strategic regret: Reg,(PRRFES) = O(loglog T)
for v € (0,70].



Random valuations



[Amin et al., 2013]

® Repeated posted-price auctions:

+ good repeatedly o

a buyer ove

fered

or sale by a seller to

~’['rou

ndads.

+ buyer receives valuationv; € [0,1] ,v; ~ D

+ seller offers price p; and buyer accepts, a; = 1,
or rejects,a; = 0, at each round ¢ € [T].




e Seller: pricing algorithm A.

4+ total revenue:

+ regret: Reg(A) =

J [25:1 atpt] '

P(v > p)T — E .
max pP(v > p) Zatpt_

- t1=1

e Buyer: discounting faC’[OI’*y e (0,1].

+ surplus: Surr(A) =

Z’Yt 1at (v — pt) _-




® Simple tree structure for fixed valuation.
® Seller offers price from distribution P..

® Surplus of state sy = (P, Hy_1, V¢, pt):

1

Si(s¢) = ‘- =
t(St) atfél{aéﬁ}V at(vt pt)

+ B [Sea(fu(Py Hioa), Hiy v, pra )|

(’Ut+1,pt+1)
NDXft(PtaHt—l)

e Solution found in time Q(7'"1).




® Stop optimizing if all future surplus is at most e .

® Behave truthfully otherwise,

e Optimize for lolg[“(li’)”] rounds.
og ;

® [ractable MDP.



® Only observe reward of price offered.

® Minimize pseudo-regret
- T

Reg(A) = max p P(v >p)T — E Z atpt | -
- t:1 -

e - rewards not i.i.d. (strategic buyer).



IMM and Mufioz, 2015]

- Let Pbe a finite set of prices. Let £
be the number of time the buyer lies.
Let p™ = ArgIAX p P(v > p) and
p

A, =p"P(v>p*)—pPv>p). Foranyéd > 0,

Regy <E[L]+ > E[T,(1)]A, + 19
p: Ap>9
whereT,(t) is the number of times price p has
been offered up to time ¢ .




e Make UCB robust to lies.

® Use different upper confidence bounds

t

N 1
Hp(t) = Z a;pillp,—p




o - The regret of the R-UCB algorithm is
bounded by

32 log T 2
Regy <E[L]+ Y 4Lp- Aog 20, +T6+ > Pip, L),
P:AL>0 p =3
where
L(p) Li(p*) p p*
Py(p, L) :=P< | F || 2 ( - — ))
15(1) T™(t) T,(t)  T=(t)




log(1/e(1 — 7))}

® An e-strategic buyer lies at most { log(1/)

® Regret of R-UCB in O(logT | 17_2).

® Extension to continuous set of prices by
discretization.

T1/4 )

e Regret in O(\/T T



® Analysis of strategic regret.
+ Fixed and random valuation scenarios.

+ Simple algorithms extending truthful scenario.

® Many questions:
+ Can we extend results to other types of buyers?
+ What about it the buyer learns too”

+ Extension to general auctions?



® Can the buyer trust the algorithm announced?

+ testing incentive-compatibility [Lanaie, Mufoz, Sivan, and
vassiivitskii, 2017] (ANdres’s talk).

® Extend analysis to the case where algorithmic
detalls are not known.



