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Motivation

B Time series prediction:
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stock values.

economic variables.

weather: e.g., local/global temperature.
earthquakes.

energy demand.

signal processing.

sales forecasting.

election forecast.
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Time Series

US Presidential Election 2016
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Online Learning

® Advantages:
® active research area (Cesa-Bianchi and Lugosi, 2006).
® no distributional assumption.
e algorithms with tight regret guarantees.

o flexibility: e.g., non-static competitor classes (Herbster and
Warmuth, 1998, 2001; Koolen et al., 2015; Rakhlin and Sridharan 2015).
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Online Learning

@ Drawbacks:
* real-world time series data is not adversarial.
® the stochastic process must be taken into account.

* the quantity of interest is the conditional expected loss,
not the regret.

—J can we leverage online algorithms
for time series forecasting?
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On-Line Learning Setup

B Adversarial setting with hypothesis/action set H.

® Fort=1toTdo
e player receives x; € X.
* player selects h; € H.
® adversary selectsy; € V.

o playerincurs loss L(hi(xt),yt).

B Objective: minimize (external) regret

T

T
Regr =) L(hZy)— inf > L(h" Z).
t=1 t=1
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On-Line-to-Batch Problem

® Problem:use h = (hy,...,hr)to derive a hypothesis h € H
with small path-dependent expected loss,

Lrii(h,Z7) = E [L(h, Zrs1)|Z7 ].

ZT41

e |ID case is standard: (Littlestone, 1989), (Cesa-Bianchi et al., 2004).

* how do we handle general stochastic processes?
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Previous Work

(Kuznetsov and MM, 2015)

B Theory and algorithms for time series prediction:

general non-stationary non-mixing stochastic processes.
generalization bounds based on a notion of discrepancy.
convex optimization algorithms.

algorithms perform well in experiments.

=3 But, how do we tackle some difficult time
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series problems such as ensemble learning
or model selection?
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Questions

B Theoretical:

® can we derive learning guarantees for a convex
. . T
combination > ;_; q:h:?

* can we derive guarantees for h selected in (hy,...,h1)?

B Algorithmic:
® on-line-to-batch conversion.
® |earning ensembles.

¢ model selection.
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Theory

Deep Boosting - Mohri@ page



Learning Guarantee

® Problem: given hypotheses (h1, ..., hr)give bound on

Lrii(h,Z1) = E [L(h, Zr11)|Z]],

ZT41

where h = 30 qihy.
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Standard Assumptions

B Stationarity:
4 same distribution

~
N N

(Zt7 I Zt—l—m) (Zt—l—ka ) Zt—l—m—l—k)

| Mixing:

dependence between events decaying with k.
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n n+k
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Problem

B Stationarity and mixing assumptions:

® Wid6|y adopted: (Alquier and Wintenberger, 2010, 2014), (Agarwal and
Duchi, 2013), (Lozano et al., 1997), (Vidyasagar, 1997), (Yu, 1994), (Meir,

2000), (MM and Rostamizadeh, 2000), (Kuznetsov and MM, 2014).
| But,
e they often do not hold (think trend or periodic signals).
® they are not testable.

® estimating mixing parameters can be hard, even if
general functional form known.

® hypothesis set and loss function ignored.

—Pp We need a new tool for the analysis.
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Relevant Quantity

key difference

Y >\

Li(he, ZE1) Lri1(he, Z7)
s e, S e
1 t+1 T T+ 1

T

—Pp Average difference: 1 > [£T+1(ht, Z1) — Li(hy, Z'j‘l)}.

T
t=1
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On-line Discrepancy

B Definition:

T
disc(q) = sup th [ETH(ht, Z1) — Li(hy, Zﬁ_l)} .
heH 4 —1

* H,:sequences that.A can return.

* q=(q1,.-.,qr) : arbitrary weight vector.
® natural measure of non-stationarity or dependency.
® captures hypothesis set and loss function.
® can be efficiently estimated under mild assumptions.

® generalization of definition of (Kuznetsov and MM, 2015).
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Learning Guarantee

Theorem: let L be a convex loss bounded by M and hi a
hypothesis sequence adapted to Z7. Fixq € A. Then, for
any é > 0, the following holds with probability at least 1 — §
for the hypothesis b = X7 qihy:

T
. 1
Lrsa(hZ7) < ) arL(he, Z2) + dise(q) + M| |21/ 21og ~.

t=1
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Proof

B By convexity of the loss:

Lri1(h,ZT) < t£T+1 (ht, Z7).

||Mﬂ

B By definition of the on-line discrepancy,

T
Z qt [ET—I—l(hta Z?) — L (hy, Zi_l)} < disc(q).

t=1

m A =q [Et(ht, Zy) — L(hy, Zt)} is a martingale difference,
thus by Azuma'’s inequality, whp,

T T
ZQtﬁt(ht, Zi ") < thl}(ht, Zy) + |lal|24/21og 3.

t=1 t=1
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Learning Guarantee

B Theorem: let L be a convex loss bounded by M and H*a set
of hypothesis sequences adapted toZ?. Fixq € A. Then, for

any é > 0, the following holds with probability at least 1 — §
for the hypothesis h = 3, qihs:

Lri1(h,Z7)

Regr
T

T
. * T .
< nf 5—1 Lri1(h*, 27 ) + 2disc(q) +

2
+ Mllg - ully +2M|qll21/2log .
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Notes

B |earning guarantees with same flavor as those of (kuznetsov
and MM, 2015) but simpler proofs, no complexity measure.

B Bounds admit as special case the learning guarantees for
® thei.i.d. scenario (Littlestone, 1989), (Cesa-Bianchi et al., 2004).

® the drifting scenario (MM and Mufioz Medina, 2012).
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Extension: Non-Convex Loss

B Theorems extend to non-convex losses when h is selected
as follows (Cesa-Bianchi et al., 2004);

T
h = argmin { " GoL(he, Z,) + dise(ql) + M|l ||1/21og @}
h

s=t
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Extension: General Regret

B General regret definition:

Regp = L(hy, Z;) — inf {ZLt(h*, Z) + R(h*)}.

h*ec H*
t=1 <

e standard regret: R = 0, H" constant sequences.
e tracking: H* C H'.

® R can be akernel-based regularization (Herbster and
Warmuth, 2001).
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Extension: Non-Adapted SeqQs

® Hypotheses no longer adapted, but output by a uniformly
stable algorithm.

B Stable hypotheses:
o H=1{h¢c H: there exists A € A such that h = A(Z])}.

* (B; = By, stability coefficient of algorithm returning 5. .

B Similar learning bounds with additional term Zthl q: Bt

® admit as special cases results of (Agarwal and Duchi, 2013) for
asymptotically stationary mixing processes.
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Discrepancy Estimation

B Batch estimation method (Kuznetsov and MM, 2015).

B On-line estimation method:
® assume that the loss is p-Lipschitz.

® assume that there exists an accurate hypothesis h*:

inf E | L(Zr41,h*(X741) 2] | < 1.
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Batch Estimation

® Decomposition: A( ) < Ag(q) + As.

T
A(q) < sup ( Z L(h,Z™) th L(h, Z§_1)>
t=1

he H

t=T—s+1
| T
+ sup (ﬁ(h, 7)) — - Z L(h, Z’il))
heH S T —s41
1 T—s T T+1

"
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Online Estimation

B |emma: assume that Lis p-Lipschitz. Fix sequence Z7 in Z.
Then, for any ¢ > 0, with probability at least1 — ¢, the
following holds for all a > 0:

disc(q) < discn , (q) + ,ui}IL{ka {L(ZT—I—la h*(XTJrl))’Zﬂ

EMNM(a, G,z
+2a—|—MHqH2\/210g | 1(59 )],
where
(ES\CHA(Q Sup ZQt[ ht XT+1 h(XT+1))L(htaZt)}'-
he HheH 4 —1
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Proof Sketch

disc(q) = sup Z s _£T+1(ht, ZlT) — L (hy, Zi_l)} |
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Algorithms

Deep Boosting - Mohri@



On-Line-to-Batch (OTB)

® Problem:use h = (hy,...,hr)to derive a hypothesis h ¢ H
with small path-dependent expected loss,

Lrii(h,Z7) = E [L(h, Zrs1)|Z7 ].

ZT41
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OTB Algorithm

m |dea: choose weights qto minimize bound forh = 3. q.hy

T
: 1
Lri1(hZ]) <Y qiL(hy, Zy) + disc(q) + Mllqlj24/21og -
t=1

B QOptimization problem:

T
gggZ gt L(he, Z¢) + discr  (q) + A al 2.
t=1

m Solution: h =3, qihy .
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Model Selection

B Problem: given N time series models, how should we use
sample Z{ to select a single best model?

® ini.i.d. case, cross-validation can be shown to be close to
the structural risk minimization solution.

* but, how do we select a validation set for general
stochastic processes?

* models may have been pre-trained on Z.
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Model Selection
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Model Selection Algorithm

B |dea: use learning bound in terms of online discrepancy
and regret per round for hypothesis

h = argmin < qu (he, Zg) + disc(q; ) + M||af || \/2 log Z(TH) }

ht \St
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Model Selection Algorithm

B Algorithm:

* choose q € A to minimize discrepancy

—_—

in disc .
min di u(q)

® use on-line algorithm for prediction with expert advice to
generate a sequence of hypotheses h € H*, with H the
set of N models.

* select model according to

T
h = argmin { > qsL(hy, Z,) + disc(qf ) + MHQ?H2\/2 log @}
h

s=t
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Learning Ensembles

®m Problem: given a hypothesis set H#and a sample Z7, find
convex combination h = 3_,_, ¢;h; withh € H 4 with small
path-dependent expected loss.

®* in most general case, hypotheses may have been pre-
trained on Z7.
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Ensemble Learning Algorithm

B Algorithm:
® run regret minimization on Z7 to returnh = (hy,...,hy).

® minimize learning bound. For A > 0,

—_—

T
min discy ,(q) + Z q:L(h¢, Zy)

4 t=1
subject to  |lq — ufl2 < As.

® convex optimization problem by convexity of

—_—

discg,(q) =  sup
he H heH 5

th[ (he(Xr41), h(XTH))L(ht,zt)}..

t=1
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Ensemble Learning Algorithm

B |f hypothesis set H is finite, then the supremum can be
computed straightforwardly:

B If hypothesis set is not finite but is convex and the loss is
convex, then the maximization can be cast as a DC-
programming problem, and solved using the DC-algorithm
(Tao and An, 1998).

sup th{ ht XT+1 h(XT+1)) — L(ht, Zt>} .
heH heH 4

B for squared loss, global optimum.
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Conclusion

B Time series prediction using on-line algorithms:

Mohri@

new learning bounds for non-stationary non-mixing
processes.

on-line discrepancy measure that can be estimated.
general on-line-to-batch conversion.

application to model selection.

application to learning ensembles.

tools for tackling other time series problems.
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