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Motivation
Time series prediction: 

• stock values. 

• economic variables. 

• weather: e.g., local/global temperature. 

• earthquakes. 

• energy demand. 

• signal processing. 

• sales forecasting. 

• election forecast.
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Time Series

3

NY Unemployment Rate
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Time Series
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US Presidential Election 2016
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Online Learning
Advantages: 

• active research area (Cesa-Bianchi and Lugosi, 2006). 

• no distributional assumption. 

• algorithms with tight regret guarantees. 

• flexibility: e.g., non-static competitor classes (Herbster and 

Warmuth, 1998, 2001; Koolen et al., 2015; Rakhlin and Sridharan 2015).
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Online Learning
Drawbacks: 

• real-world time series data is not adversarial. 

• the stochastic process must be taken into account. 

• the quantity of interest is the conditional expected loss, 
not the regret.
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can we leverage online algorithms 
for time series forecasting?
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On-Line Learning Setup
Adversarial setting with hypothesis/action set    . 

For          to    do 

• player receives            . 

• player selects             . 

• adversary selects            . 

• player incurs loss                      . 

Objective: minimize (external) regret
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On-Line-to-Batch Problem
Problem: use                             to derive a hypothesis            
with small path-dependent expected loss, 

• IID case is standard: (Littlestone, 1989), (Cesa-Bianchi et al., 2004). 

• how do we handle general stochastic processes?
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Previous Work
Theory and algorithms for time series prediction: 

• general non-stationary non-mixing stochastic processes. 

• generalization bounds based on a notion of discrepancy. 

• convex optimization algorithms. 

• algorithms perform well in experiments.
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(Kuznetsov and MM, 2015)

But, how do we tackle some difficult time 
series problems such as ensemble learning 
or model selection?
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Questions
Theoretical: 

• can we derive learning guarantees for a convex 
combination                  ? 

• can we derive guarantees for    selected in                     ? 

Algorithmic:  

• on-line-to-batch conversion. 

• learning ensembles. 

• model selection.
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Learning Guarantee
Problem: given hypotheses                     give bound on  

         where                         .
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Standard Assumptions
Stationarity: 

Mixing:
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Problem
Stationarity and mixing assumptions: 

• widely adopted: (Alquier and Wintenberger, 2010, 2014), (Agarwal and 
Duchi, 2013), (Lozano et al., 1997), (Vidyasagar, 1997), (Yu, 1994), (Meir, 

2000), (MM and Rostamizadeh, 2000), (Kuznetsov and MM, 2014). 

But,  

• they often do not hold (think trend or periodic signals). 

• they are not testable. 

• estimating mixing parameters can be hard, even if 
general functional form known. 

• hypothesis set and loss function ignored.
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we need a new tool for the analysis.
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Relevant Quantity
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On-line Discrepancy
Definition: 

•       : sequences that     can return. 

•                            : arbitrary weight vector. 

• natural measure of non-stationarity or dependency. 

• captures hypothesis set and loss function. 

• can be efficiently estimated under mild assumptions. 

• generalization of definition of (Kuznetsov and MM, 2015) .
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Learning Guarantee
Theorem: let    be a convex loss bounded by     and      a 
hypothesis sequence adapted to     . Fix           . Then, for 
any          , the following holds with probability at least          
for the hypothesis                         :
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Proof
By convexity of the loss:  

By definition of the on-line discrepancy, 

                                                       is a martingale difference, 
thus by Azuma’s inequality, whp,
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Learning Guarantee
Theorem: let    be a convex loss bounded by      and      a set 
of hypothesis sequences adapted to     . Fix           . Then, for 
any          , the following holds with probability at least          
for the hypothesis                         :
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Notes
Learning guarantees with same flavor as those of (Kuznetsov 

and MM, 2015) but simpler proofs, no complexity measure.  

Bounds admit as special case the learning guarantees for 

• the i.i.d. scenario (Littlestone, 1989), (Cesa-Bianchi et al., 2004). 

• the drifting scenario (MM and Muñoz Medina, 2012).
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Extension: Non-Convex Loss
Theorems extend to non-convex losses when    is selected 
as follows (Cesa-Bianchi et al., 2004):
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Extension: General Regret
General regret definition: 

• standard regret:            ,       constant sequences. 

• tracking:                 . 

•     can be a kernel-based regularization (Herbster and 

Warmuth, 2001).
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Extension: Non-Adapted Seqs
Hypotheses no longer adapted, but output by a uniformly 
stable algorithm. 

Stable hypotheses: 

•   

•              : stability coefficient of algorithm returning     . 

Similar learning bounds with additional term                 . 

• admit as special cases results of (Agarwal and Duchi, 2013) for 
asymptotically stationary mixing processes.
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Discrepancy Estimation
Batch estimation method (Kuznetsov and MM, 2015). 

On-line estimation method: 

• assume that the loss is   -Lipschitz. 

• assume that there exists an accurate hypothesis     :
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Batch Estimation
Decomposition:                                   .
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Online Estimation
Lemma: assume that    is   -Lipschitz. Fix sequence       in   . 
Then, for any          , with probability at least         , the 
following holds for all          :
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Proof Sketch
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On-Line-to-Batch (OTB)
Problem: use                             to derive a hypothesis            
with small path-dependent expected loss,
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OTB Algorithm
Idea: choose weights    to minimize bound for                        : 

Optimization problem: 

Solution:                          .
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Model Selection
Problem: given     time series models, how should we use 
sample      to select a single best model? 

• in i.i.d. case, cross-validation can be shown to be close to 
the structural risk minimization solution. 

• but, how do we select a validation set for general 
stochastic processes?  

• models may have been pre-trained on      .
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Model Selection
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Model Selection Algorithm
Idea: use learning bound in terms of online discrepancy 
and regret per round for hypothesis
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Model Selection Algorithm
Algorithm: 

• choose             to minimize discrepancy 

• use on-line algorithm for prediction with expert advice to 
generate a sequence of hypotheses              , with     the 
set of     models. 

• select model according to
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Learning Ensembles
Problem: given a hypothesis set     and a sample      , find 
convex combination                          with              with small 
path-dependent expected loss. 

• in most general case, hypotheses may have been pre-
trained on      .
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Ensemble Learning Algorithm
Algorithm:  

• run regret minimization on       to return                             . 

• minimize learning bound. For             , 

• convex optimization problem by convexity of
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Ensemble Learning Algorithm
If hypothesis set     is finite, then the supremum can be 
computed straightforwardly: 

If hypothesis set     is not finite but is convex and the loss is 
convex, then the maximization can be cast as a DC-
programming problem, and solved using the DC-algorithm 
(Tao and An, 1998): 

for squared loss, global optimum.
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Conclusion
Time series prediction using on-line algorithms: 

• new learning bounds for non-stationary non-mixing 
processes. 

• on-line discrepancy measure that can be estimated. 

• general on-line-to-batch conversion. 

• application to model selection. 

• application to learning ensembles. 

• tools for tackling other time series problems.
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