

Online Learning for Time Series Prediction

Joint work with [Vitaly Kuznetsov](#) ([Google Research](#))

MEHRYAR MOHRI

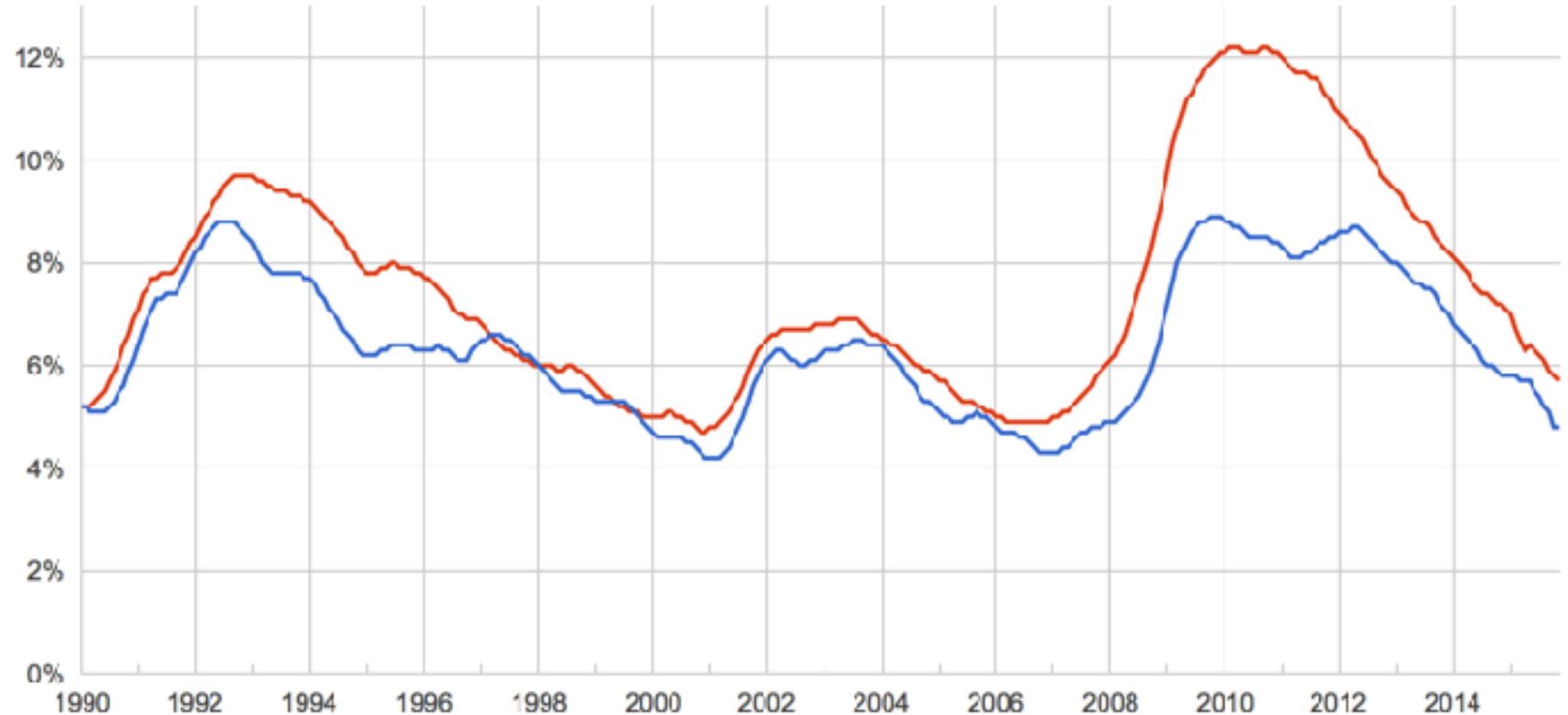
MOHRI@

COURANT INSTITUTE & GOOGLE RESEARCH

Motivation

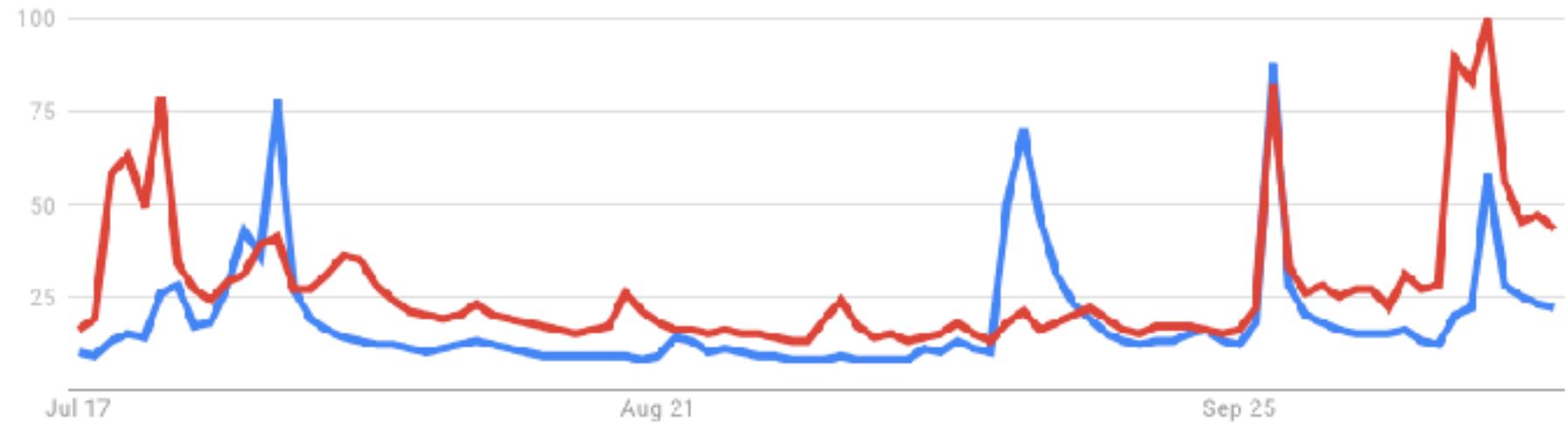
- Time series prediction:
 - stock values.
 - economic variables.
 - weather: e.g., local/global temperature.
 - earthquakes.
 - energy demand.
 - signal processing.
 - sales forecasting.
 - election forecast.

Time Series



NY Unemployment Rate

Time Series



US Presidential Election 2016

Online Learning

■ Advantages:

- active research area (Cesa-Bianchi and Lugosi, 2006).
- no distributional assumption.
- algorithms with tight regret guarantees.
- flexibility: e.g., non-static competitor classes (Herbster and Warmuth, 1998, 2001; Koolen et al., 2015; Rakhlin and Sridharan 2015).

Online Learning

■ Drawbacks:

- real-world time series data is not adversarial.
- the stochastic process must be taken into account.
- the quantity of interest is the conditional expected loss, not the regret.

→ can we leverage online algorithms for time series forecasting?

On-Line Learning Setup

- Adversarial setting with hypothesis/action set H .
- For $t = 1$ to T do
 - player receives $x_t \in \mathcal{X}$.
 - player selects $h_t \in H$.
 - adversary selects $y_t \in \mathcal{Y}$.
 - player incurs loss $L(h_t(x_t), y_t)$.
- **Objective:** minimize (external) regret

$$\text{Reg}_T = \sum_{t=1}^T L(h_t, Z_t) - \inf_{\mathbf{h}^* \in \mathbf{H}^*} \sum_{t=1}^T L(\mathbf{h}^*, Z_t).$$

On-Line-to-Batch Problem

- **Problem:** use $\mathbf{h} = (h_1, \dots, h_T)$ to derive a hypothesis $h \in H$ with small path-dependent expected loss,

$$\mathcal{L}_{T+1}(h, \mathbf{Z}_1^T) = \mathbb{E}_{Z_{T+1}} [L(h, Z_{T+1}) | \mathbf{Z}_1^T].$$

- IID case is standard: (Littlestone, 1989), (Cesa-Bianchi et al., 2004).
- how do we handle general stochastic processes?

Previous Work

(Kuznetsov and MM, 2015)

- Theory and algorithms for time series prediction:
 - general non-stationary non-mixing stochastic processes.
 - generalization bounds based on a notion of discrepancy.
 - convex optimization algorithms.
 - algorithms perform well in experiments.

→ But, how do we tackle some difficult time series problems such as ensemble learning or model selection?

Questions

■ Theoretical:

- can we derive learning guarantees for a convex combination $\sum_{t=1}^T q_t h_t$?
- can we derive guarantees for h selected in (h_1, \dots, h_T) ?

■ Algorithmic:

- on-line-to-batch conversion.
- learning ensembles.
- model selection.

Theory

Learning Guarantee

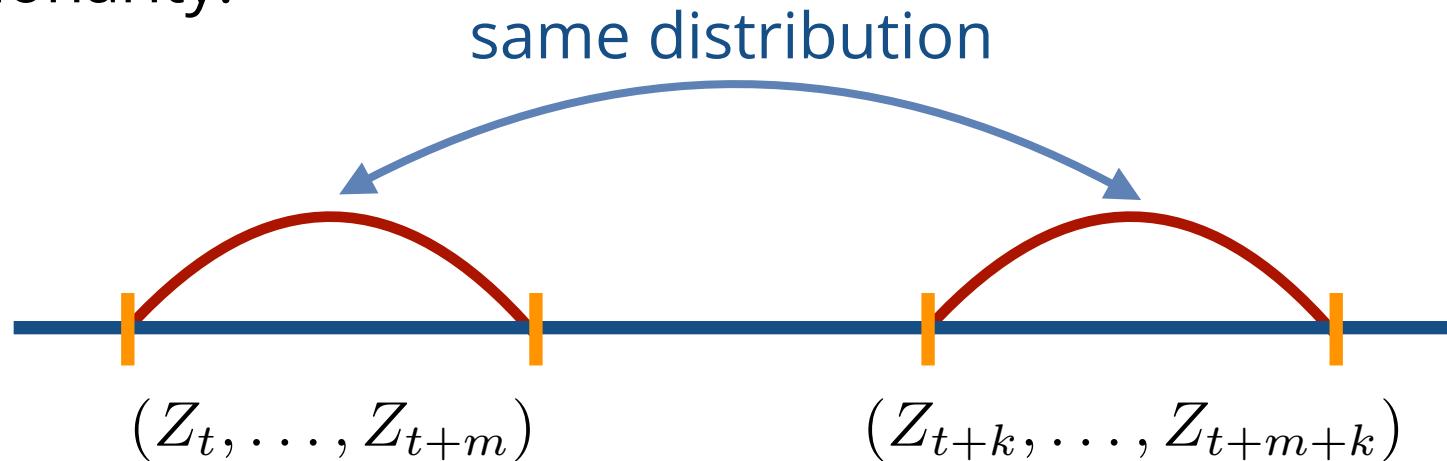
- **Problem:** given hypotheses (h_1, \dots, h_T) give bound on

$$\mathcal{L}_{T+1}(h, \mathbf{Z}_1^T) = \mathbb{E}_{Z_{T+1}} [L(h, Z_{T+1}) | \mathbf{Z}_1^T],$$

where $h = \sum_{t=1}^T q_t h_t$.

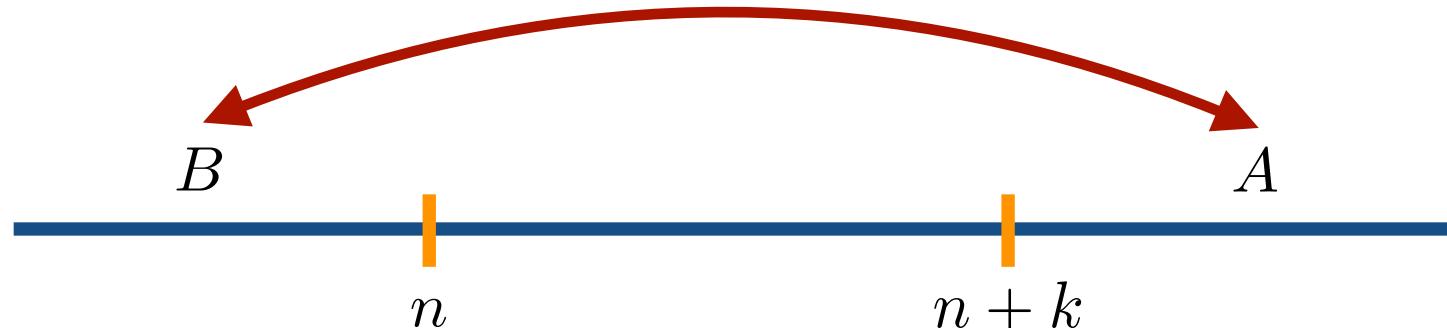
Standard Assumptions

- Stationarity:



- Mixing:

dependence between events decaying with k .

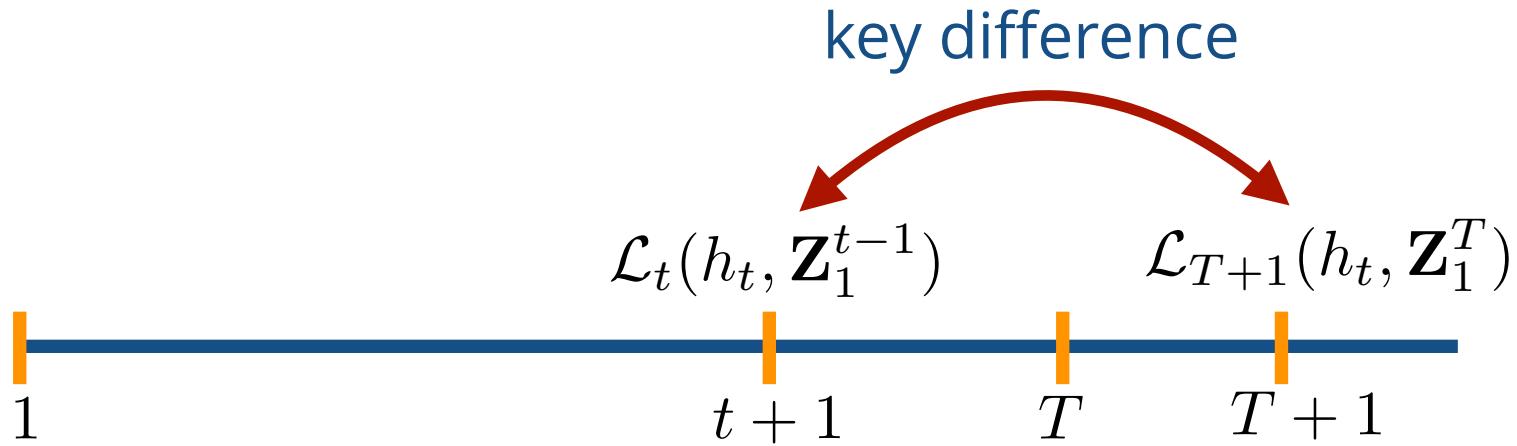


Problem

- Stationarity and mixing assumptions:
 - widely adopted: (Alquier and Wintenberger, 2010, 2014), (Agarwal and Duchi, 2013), (Lozano et al., 1997), (Vidyasagar, 1997), (Yu, 1994), (Meir, 2000), (MM and Rostamizadeh, 2000), (Kuznetsov and MM, 2014).
- But,
 - they **often do not hold** (think trend or periodic signals).
 - they are not testable.
 - estimating mixing parameters can be hard, even if general functional form known.
 - hypothesis set and loss function ignored.

→ we need a new tool for the analysis.

Relevant Quantity



→ Average difference: $\frac{1}{T} \sum_{t=1}^T \left[\mathcal{L}_{T+1}(h_t, \mathbf{z}_1^T) - \mathcal{L}_t(h_t, \mathbf{z}_1^{t-1}) \right]$.

On-line Discrepancy

■ Definition:

$$\text{disc}(\mathbf{q}) = \sup_{\mathbf{h} \in \mathbf{H}_{\mathcal{A}}} \left| \sum_{t=1}^T q_t \left[\mathcal{L}_{T+1}(h_t, \mathbf{Z}_1^T) - \mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) \right] \right|.$$

- $\mathbf{H}_{\mathcal{A}}$: sequences that \mathcal{A} can return.
- $\mathbf{q} = (q_1, \dots, q_T)$: arbitrary weight vector.
- natural measure of non-stationarity or dependency.
- captures hypothesis set and loss function.
- can be efficiently estimated under mild assumptions.
- generalization of definition of [\(Kuznetsov and MM, 2015\)](#) .

Learning Guarantee

- **Theorem:** let L be a convex loss bounded by M and $\mathbf{h}_1^T \mathbf{a}$ hypothesis sequence adapted to \mathbf{Z}_1^T . Fix $\mathbf{q} \in \Delta$. Then, for any $\delta > 0$, the following holds with probability at least $1 - \delta$ for the hypothesis $h = \sum_{t=1}^T q_t h_t$:

$$\mathcal{L}_{T+1}(h, \mathbf{Z}_1^T) \leq \sum_{t=1}^T q_t L(h_t, Z_t) + \text{disc}(\mathbf{q}) + M \|\mathbf{q}\|_2 \sqrt{2 \log \frac{1}{\delta}}.$$

Proof

- By convexity of the loss:

$$\mathcal{L}_{T+1}(h, \mathbf{Z}_1^T) \leq \sum_{t=1}^T q_t \mathcal{L}_t(h_t, \mathbf{Z}_1^T).$$

- By definition of the on-line discrepancy,

$$\sum_{t=1}^T q_t \left[\mathcal{L}_{T+1}(h_t, \mathbf{Z}_1^T) - \mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) \right] \leq \text{disc}(\mathbf{q}).$$

- $A_t = q_t \left[\mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) - L(h_t, Z_t) \right]$ is a martingale difference, thus by Azuma's inequality, whp,

$$\sum_{t=1}^T q_t \mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) \leq \sum_{t=1}^T q_t L(h_t, Z_t) + \|\mathbf{q}\|_2 \sqrt{2 \log \frac{1}{\delta}}.$$

Learning Guarantee

- **Theorem:** let L be a convex loss bounded by M and H^* a set of hypothesis sequences adapted to Z_1^T . Fix $q \in \Delta$. Then, for any $\delta > 0$, the following holds with probability at least $1 - \delta$ for the hypothesis $h = \sum_{t=1}^T q_t h_t$:

$$\begin{aligned} & \mathcal{L}_{T+1}(h, Z_1^T) \\ & \leq \inf_{h^* \in H} \sum_{t=1}^T \mathcal{L}_{T+1}(h^*, Z_1^T) + 2\text{disc}(q) + \frac{\text{Reg}_T}{T} \\ & \quad + M\|\mathbf{q} - \mathbf{u}\|_1 + 2M\|\mathbf{q}\|_2 \sqrt{2 \log \frac{2}{\delta}}. \end{aligned}$$

Notes

- Learning guarantees with same flavor as those of (Kuznetsov and MM, 2015) but simpler proofs, no complexity measure.
- Bounds admit as special case the learning guarantees for
 - the i.i.d. scenario (Littlestone, 1989), (Cesa-Bianchi et al., 2004).
 - the drifting scenario (MM and Muñoz Medina, 2012).

Extension: Non-Convex Loss

- Theorems extend to non-convex losses when h is selected as follows (Cesa-Bianchi et al., 2004):

$$h = \operatorname{argmin}_{h_t} \left\{ \sum_{s=t}^T q_s L(h_t, Z_s) + \operatorname{disc}(\mathbf{q}_t^T) + M \|\mathbf{q}_t^T\|_2 \sqrt{2 \log \frac{2(T+1)}{\delta}} \right\}.$$

Extension: General Regret

■ General regret definition:

$$\text{Reg}_T = \sum_{t=1}^T L(h_t, Z_t) - \inf_{\mathbf{h}^* \in \mathbf{H}^*} \left\{ \sum_{t=1}^T L_t(\mathbf{h}^*, Z_t) + \mathcal{R}(\mathbf{h}^*) \right\}.$$

- standard regret: $\mathcal{R} = 0$, \mathbf{H}^* constant sequences.
- tracking: $\mathbf{H}^* \subseteq H^T$.
- \mathcal{R} can be a kernel-based regularization (Herbster and Warmuth, 2001).

Extension: Non-Adapted Seqs

- Hypotheses no longer adapted, but output by a uniformly stable algorithm.
- Stable hypotheses:
 - $\mathcal{H} = \{h \in H : \text{ there exists } \mathcal{A} \in \mathfrak{A} \text{ such that } h = \mathcal{A}(\mathbf{Z}_1^T)\}$.
 - $\beta_t = \beta_{h_t}$: stability coefficient of algorithm returning h_t .
- Similar learning bounds with additional term $\sum_{t=1}^T q_t \beta_t$.
 - admit as special cases results of [\(Agarwal and Duchi, 2013\)](#) for asymptotically stationary mixing processes.

Discrepancy Estimation

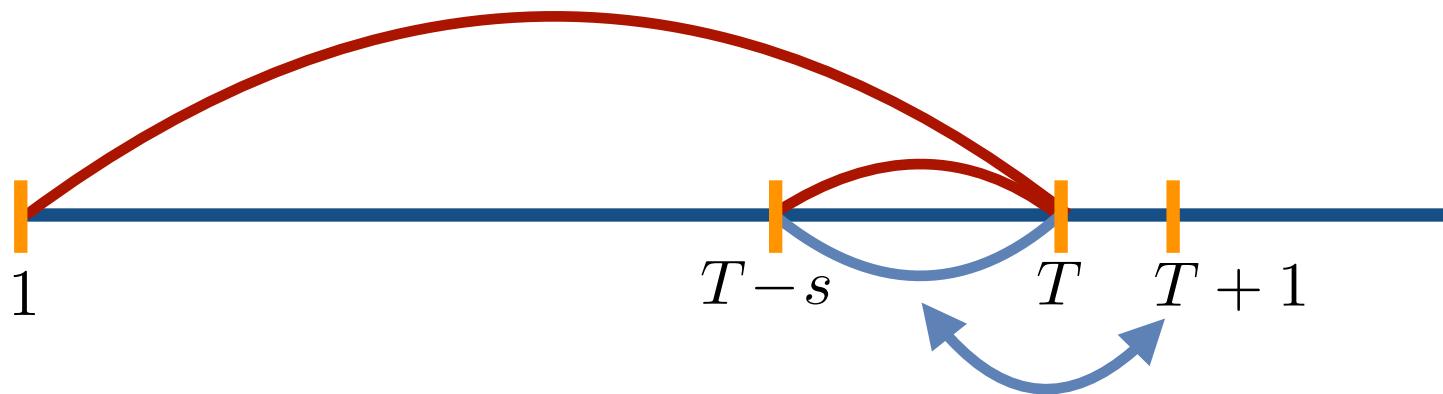
- Batch estimation method (Kuznetsov and MM, 2015).
- On-line estimation method:
 - assume that the loss is μ -Lipschitz.
 - assume that there exists an accurate hypothesis h^* :

$$\inf_{h^*} \mathbb{E} \left[L(Z_{T+1}, h^*(X_{T+1})) | \mathbf{Z}_1^T \right] \ll 1.$$

Batch Estimation

- Decomposition: $\Delta(\mathbf{q}) \leq \Delta_0(\mathbf{q}) + \Delta_s$.

$$\begin{aligned}\Delta(\mathbf{q}) &\leq \sup_{h \in H} \left(\frac{1}{s} \sum_{t=T-s+1}^T \mathcal{L}(h, \mathbf{Z}_1^{t-1}) - \sum_{t=1}^T q_t \mathcal{L}(h, \mathbf{Z}_1^{t-1}) \right) \\ &\quad + \sup_{h \in H} \left(\mathcal{L}(h, \mathbf{Z}_1^T) - \frac{1}{s} \sum_{t=T-s+1}^T \mathcal{L}(h, \mathbf{Z}_1^{t-1}) \right).\end{aligned}$$



Online Estimation

- **Lemma:** assume that L is μ -Lipschitz. Fix sequence \mathbf{Z}_1^T in \mathcal{Z} . Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following holds for all $\alpha > 0$:

$$\begin{aligned} \text{disc}(\mathbf{q}) &\leq \widehat{\text{disc}}_{\mathbf{H}_{\mathcal{A}}}(\mathbf{q}) + \mu \inf_{h^*} \mathbb{E} \left[L(Z_{T+1}, h^*(X_{T+1})) | \mathbf{Z}_1^T \right] \\ &\quad + 2\alpha + M \|\mathbf{q}\|_2 \sqrt{2 \log \frac{\mathbb{E}[\mathcal{N}_1(\alpha, \mathcal{G}, \mathbf{z})]}{\delta}}, \end{aligned}$$

where

$$\widehat{\text{disc}}_{\mathbf{H}_{\mathcal{A}}}(\mathbf{q}) = \sup_{h \in H, \mathbf{h} \in \mathbf{H}_{\mathcal{A}}} \left| \sum_{t=1}^T q_t \left[L(h_t(X_{T+1}), h(X_{T+1})) - L(h_t, Z_t) \right] \right|.$$

Proof Sketch

$$\begin{aligned}
\text{disc}(\mathbf{q}) &= \sup_{\mathbf{h} \in \mathbf{H}_{\mathcal{A}}} \left| \sum_{t=1}^T q_t \left[\mathcal{L}_{T+1}(h_t, \mathbf{Z}_1^T) - \mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) \right] \right| \\
&\leq \sup_{\mathbf{h} \in \mathbf{H}_{\mathcal{A}}} \left| \sum_{t=1}^T q_t \left[\mathcal{L}_{T+1}(h_t, \mathbf{Z}_1^T) - \mathbb{E} \left[L(h_t(X_{T+1}), h^*(X_{T+1})) \mid \mathbf{Z}_1^T \right] \right] \right| \\
&\quad + \sup_{\mathbf{h} \in \mathbf{H}_{\mathcal{A}}} \left| \sum_{t=1}^T q_t \left[\mathbb{E} \left[L(h_t(X_{T+1}), h^*(X_{T+1})) \mid \mathbf{Z}_1^T \right] - \mathcal{L}_t(h_t, \mathbf{Z}_1^{t-1}) \right] \right| \\
&\leq \mu \sup_{\mathbf{h} \in \mathbf{H}_{\mathcal{A}}} \sum_{t=1}^T q_t \mathbb{E} \left[L(h^*(X_{T+1}), Y_{T+1}) \mid \mathbf{Z}_1^T \right] \\
&= \mu \sup_{\mathbf{h} \in \mathbf{H}_{\mathcal{A}}} \mathbb{E} \left[L(h^*(X_{T+1}), Y_{T+1}) \mid \mathbf{Z}_1^T \right].
\end{aligned}$$

Algorithms

On-Line-to-Batch (OTB)

- **Problem:** use $\mathbf{h} = (h_1, \dots, h_T)$ to derive a hypothesis $h \in H$ with small path-dependent expected loss,

$$\mathcal{L}_{T+1}(h, \mathbf{Z}_1^T) = \mathbb{E}_{Z_{T+1}} [L(h, Z_{T+1}) | \mathbf{Z}_1^T].$$

OTB Algorithm

- Idea: choose weights \mathbf{q} to minimize bound for $h = \sum_{t=1}^T q_t h_t$:

$$\mathcal{L}_{T+1}(h, \mathbf{Z}_1^T) \leq \sum_{t=1}^T q_t L(h_t, Z_t) + \text{disc}(\mathbf{q}) + M \|\mathbf{q}\|_2 \sqrt{2 \log \frac{1}{\delta}}.$$

- Optimization problem:

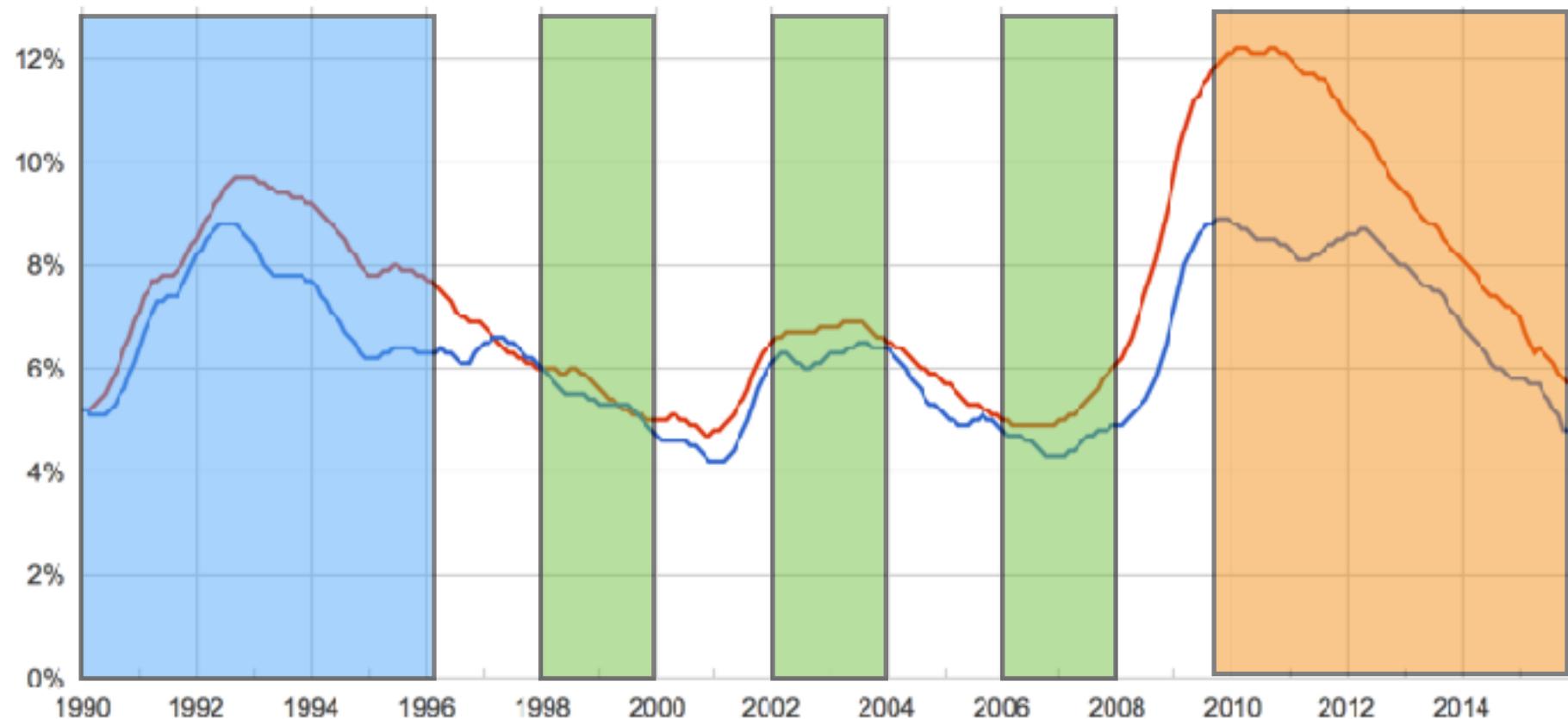
$$\min_{\mathbf{q} \in \Delta} \sum_{t=1}^T q_t L(h_t, Z_t) + \widehat{\text{disc}}_{H_{\mathcal{A}}}(\mathbf{q}) + \lambda \|\mathbf{q}\|_2.$$

- Solution: $h = \sum_{t=1}^T q_t h_t$.

Model Selection

- **Problem:** given N time series models, how should we use sample \mathbf{Z}_1^T to select a single best model?
 - in i.i.d. case, cross-validation can be shown to be close to the structural risk minimization solution.
 - but, how do we select a validation set for general stochastic processes?
 - models may have been pre-trained on \mathbf{Z}_1^T .

Model Selection



Model Selection Algorithm

- Idea: use learning bound in terms of online discrepancy and regret per round for hypothesis

$$h = \operatorname{argmin}_{h_t} \left\{ \sum_{s=t}^T q_s L(h_t, Z_s) + \operatorname{disc}(\mathbf{q}_t^T) + M \|\mathbf{q}_t^T\|_2 \sqrt{2 \log \frac{2(T+1)}{\delta}} \right\}.$$

Model Selection Algorithm

Algorithm:

- choose $\mathbf{q} \in \Delta$ to minimize discrepancy

$$\min_{\mathbf{q} \in \Delta} \widehat{\text{disc}}_H(\mathbf{q}).$$

- use on-line algorithm for prediction with expert advice to generate a sequence of hypotheses $\mathbf{h} \in \mathcal{H}^T$, with \mathcal{H} the set of N models.
- select model according to

$$h = \operatorname{argmin}_{h_t} \left\{ \sum_{s=t}^T q_s L(h_t, Z_s) + \text{disc}(\mathbf{q}_t^T) + M \|\mathbf{q}_t^T\|_2 \sqrt{2 \log \frac{2(T+1)}{\delta}} \right\}.$$

Learning Ensembles

- **Problem:** given a hypothesis set H and a sample \mathbf{Z}_1^T , find convex combination $h = \sum_{t=1}^T q_t h_t$ with $h \in H_{\mathcal{A}}$ with small path-dependent expected loss.
 - in most general case, hypotheses may have been pre-trained on \mathbf{Z}_1^T .

Ensemble Learning Algorithm

Algorithm:

- run regret minimization on \mathbf{Z}_1^T to return $\mathbf{h} = (h_1, \dots, h_T)$.
- minimize learning bound. For $\Lambda_2 \geq 0$,

$$\min_{\mathbf{q}} \widehat{\text{disc}}_{H_A}(\mathbf{q}) + \sum_{t=1}^T q_t L(h_t, Z_t)$$

subject to $\|\mathbf{q} - \mathbf{u}\|_2 \leq \Lambda_2$.

- convex optimization problem by convexity of

$$\widehat{\text{disc}}_{H_A}(\mathbf{q}) = \sup_{h \in H, \mathbf{h} \in H_A} \left| \sum_{t=1}^T q_t \left[L(h_t(X_{T+1}), h(X_{T+1})) - L(h_t, Z_t) \right] \right|.$$

Ensemble Learning Algorithm

- If hypothesis set H is finite, then the supremum can be computed straightforwardly:
- If hypothesis set H is not finite but is convex and the loss is convex, then the maximization can be cast as a DC-programming problem, and solved using the DC-algorithm (Tao and An, 1998):

$$\sup_{h \in H, \mathbf{h} \in H_{\mathcal{A}}} \left| \sum_{t=1}^T q_t \left[L(h_t(X_{T+1}), h(X_{T+1})) - L(h_t, Z_t) \right] \right|.$$

- for squared loss, global optimum.

Conclusion

- Time series prediction using on-line algorithms:
 - new learning bounds for non-stationary non-mixing processes.
 - on-line discrepancy measure that can be estimated.
 - general on-line-to-batch conversion.
 - application to model selection.
 - application to learning ensembles.
 - tools for tackling other time series problems.