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Auctions
Standard method for buying or selling goods: 

• U.S. government: Treasury bills. 

• Christie’s or Sotheby’s: art. 

• eBay: everything, e.g., ‘honeymoon wife replacement’. 

• search engine companies: advertising rights.
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Auctions
Interaction between buyers and sellers: 

    game-theoretical analysis. 

• mechanism design. 

• study of properties. 

This talk: 

    learning theory analysis. 

• repeated auctions. 

• leveraging data.
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Some Auction Types
English auctions: interactive format; seller gradually 
increases the price until a single bidder is left. 

Dutch auctions (flowers in the Netherlands): interactive 
format; seller gradually decreases the price until some 
bidder accepts to pay. 

First-price sealed-bid auctions (e.g. NYC apartments): non-
interactive; simultaneous bids, highest bidder wins and 
pays the value of his bid.
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Second-Price Auctions
aka Vickrey auctions: e.g., eBay. 

• bidders submit bids simultaneously. 

• highest bidder wins and pays the value of the second-
highest bid. 

• truthful bidding is a dominated strategy.
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Truthfulness
Bidder   with value    , other bids fixed. 

• if             : change only if bidder wins and wasn’t before 
and second-highest bid is                  ; payoff is        

• if             : change only if bidder loses and used to win. 
and second-highest bid                  ; payoff was 
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SPA with Reserve
Second-price auctions with reserve: e.g.., Ad Exchanges. 

• seller announces a reserve price    and, 

• bidders submit bids simultaneously. 

• winning bidder (if any) wins and pays the maximum of 
the value of the second-highest bid and   . 

• truthful bidding is a dominated strategy.
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Example
Suppose the seller’s value is    and there is a single bidder 
whose value is uniformly distributed over         . 

• no reserve price: item sold at value   . 

• reserve price: how should it be chosen?  

• probability           for bid being above   . 

• expected revenue             , thus          is optimal.
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Ad Exchanges
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Ad Exchanges
Significant fraction of the revenue of search engine and 
popular online sites: 

• Microsoft, Yahoo!, Google, OpenX, AppNexus. 

• Multi-billion dollar industry. 

Choice of reserve price:  

• main mechanism trough which the auction revenue can 
be influenced. 

• if set too low, winner may end up paying too little; if set 
too high, the ad slot could be lost. 

how can we select the reserve price to optimize revenue?
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This Talk
Learning formulation. 

Theoretical guarantees. 

Algorithms. 

Experimental results.
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Previous ML Work
Incentive compatible auctions (Balcan et al., 2008; Blum et al., 2004). 

Predicting bid landscapes (Cui et al., 2011). 

Revenue optimization for sponsored ads (Zhue et al., 2009; He et 

al., 2013; Devanur & Kakade, 2009). 

Bandit setting with no feature (Cesa-Bianchi et al., 2013; see also 

Ostrovsky & Schwarz, 2011). 

Strategic regret minimization (Amin et al., 2013; Munoz & MM, 2014).
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Loss Function
Auction revenue can be defined in terms of the pair of 
highest bids                         : 

Equivalently, loss define by
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b = (b(1), b(2))

Rev(r,b) = b(2)1r<b(2) + r 1b(2)rb(1) .

L(r,b) = �Rev(r,b).
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Learning Formulation
                     : public information about auction (features). 

              : bid space. 

              : hypothesis set. 

    distribution over           . 

Problem: find            with small generalization error,
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Loss Function
Properties: 

• discontinuous. 

• non-differentiable. 

• non-convex.
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Loss Decomposition
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Generalization Bound
Theorem: let                             and let     be a hypothesis set 
with pseudo-dimension                       . Then, for any         , 
with probability        over the choice of a sample    of size     ,
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Can we design algorithms minimizing the right-hand side?
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This Talk
Learning formulation. 

Theoretical guarantees. 

Algorithms. 

Experimental results.
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No Feature Case
Problem: find optimal reserve price, 

Algorithm: 

• optimum one of highest bids. 

• naive in            . 

• sorting solution in                    .
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Convex Surrogate Loss

20



pageMohri@

Convex Surrogate Loss
No useful convex surrogate loss. 

Theorem: Let                                          be a bounded 
function, convex with respect to its first argument. If      is 
consistent with                           , then             is constant for 
every                  .
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Lc : [0,M ]⇥ [0,M ] ! R
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Which loss function should we use?
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Continuous Surrogate Loss
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Consistency Results
Theorem: let                             and let     be a closed convex 
subset of a linear space of functions containing   . Then,
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Learning Guarantees
Theorem: fix                . Then, for any         , with probability 
at least        over the choice of a sample    of size     ,
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Algorithm
Optimization problem: for fixed                . 

• difficulty: optimizing sum of non-convex functions. 

• solution: DC-programming (Difference of Convex).
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Difference of Convex Functions
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DC-Programming
Convex-concave procedure: replace                                      at 
iteration            with upper bound
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F (w) = f(w)� g(w)
(t+ 1)

(Tao and Hoai, 1997; Yuille and Rangarajan, 2002)

bF (w) = f(w)� g(wt)� �g(wt) · (w �wt),

with �g(wt) 2 @g(wt).
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Algorithm
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SecondPriceReserve()

1 w w0

2 for t 1 to T do

3 v DCA(wt�1)
4 u v

kvk
5 ⌘⇤  min0⌘⇤

P
u·xi>0 L�(⌘u · xi,bi)

6 wt  ⌘⇤v
7 return w
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Line Search
Observation:      is positive homogenous, for all         , 

Consequence: line search equivalent to no-feature 
minimization algorithm; for 
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This Talk
Learning formulation. 

Theoretical guarantees. 

Algorithms. 

Experimental results.
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Experimental Results
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Distribution of Reserve Prices
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eBay Sport-Card Data Set
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Data: http://cims.nyu.edu/~munoz/data. 
Random 2000 training pts - 2000 test pts.

http://cims.nyu.edu/~munoz/data
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Conclusion
Theory, algorithms, and experiments for second-price 
auctions with reserve. 

• scaling up DC algorithm. 

• study of dependencies. 

• effect of using revenue optimization algorithm. 

• better initialization. 

Learning and auctions: 

• many other scenarios and types of auctions. 

• Example: Generalized Second-Price auctions (GSPs).
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