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Auctions

B Standard method for buying or selling goods:
e U.S. government: Treasury bills.
o Christie's or Sotheby’s: art.
* eBay: everything, e.g., 'honeymoon wife replacement’.

® search engine companies: advertising rights.
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Auctions

B [nteraction between buyers and sellers:

—» game-theoretical analysis.
® mechanism design.

¢ study of properties.

® This talk:
—» |earning theory analysis.
® repeated auctions.

® |everaging data.
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Some Auction Types

English auctions: interactive format; seller gradually
increases the price until a single bidder is left.

Dutch auctions (flowers in the Netherlands): interactive
format; seller gradually decreases the price until some
bidder accepts to pay.

First-price sealed-bid auctions (e.g. NYC apartments): non-
interactive; simultaneous bids, highest bidder wins and
pays the value of his bid.
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Second-Price Auctions

(William Vickrey, 1961)
B aka Vickrey auctions: e.g., eBay.

® Dbidders submit bids simultaneously.

* highest bidder wins and pays the value of the second-
highest bid.

e truthful bidding is a dominated strategy.
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Truthfulness

B Bidder ¢ with value v;, other bids fixed.

* ifb; > v;:change only if bidder wins and wasn’t before
and second-highest bid is b; € [v;, b;] ; payoff is v; —b; <O0.

* if b; <w;:change only if bidder loses and used to win.
and second-highest bid b, € [b;, v;]; payoff was v; —b; > 0.
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SPA with Reserve

B Second-price auctions with reserve: e.g.., Ad Exchanges.

Mohri@

seller announces a reserve price r and,
bidders submit bids simultaneously.

winning bidder (if any) wins and pays the maximum of
the value of the second-highest bid and .

truthful bidding is a dominated strategy.
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Example

B Suppose the seller's value is 0 and there is a single bidder
whose value is uniformly distributed over [0, 1].

® no reserve price: item sold at value 0.
® reserve price: how should it be chosen?
e probability (1—r)for bid being above r.

o expected revenuer(l—r), thus r=1 is optimal.
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Ad Exchanges

B Significant fraction of the revenue of search engine and
popular online sites:

* Microsoft, Yahoo!, Google, OpenX, AppNexus.
e Multi-billion dollar industry.

® Choice of reserve price:

®* main mechanism trough which the auction revenue can
be influenced.

e |f settoo low, winner may end up paying too little; if set
too high, the ad slot could be lost.

—»how can we select the reserve price to optimize revenue?
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This Talk

B |earning formulation.
B Theoretical guarantees.
® Algorithms.

B Experimental results.
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Previous ML Work

B |ncentive compatible auctions (Balcan et al., 2008; Blum et al., 2004).
B Predicting bid landscapes (cuietal., 2011).

B Revenue optimization for sponsored ads (zhue et al., 2009; He et
al., 2013; Devanur & Kakade, 2009).

B Bandit setting with no feature (Cesa-Bianchi et al,, 2013; see also
Ostrovsky & Schwarz, 2011).

B Strategic regret minimization (Amin et al., 2013; Munoz & MM, 2014).
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Loss Function

B Auction revenue can be defined in terms of the pair of
highest bids b = (b1, b))

Rev(r, b) — 5(2) 1r<b(2) + 7 1b<2)§r§b(1) .

B Equivalently, loss define by
L(r,b) = —Rev(r,b).
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Learning Formulation

m xcXCRY public information about auction (features).
m B CR]:bid space.

B H C RY: hypothesis set.

B Ddistribution overX x B.

® Problem: find h € H with small generalization error,

E £, )]
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Loss Function

. . H(2)
# Properties: T ?

-1

. . 2

e discontinuous. b
e non-differentiable. K
-4

® non-convex. .

0 1 2 3 14 5 6 7

Can we derive guarantees for learning with this loss function?
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Loss Decomposition
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Generalization Bound

B Theorem: let M = supy, .5 b'Y) and let H be a hypothesis set
with pseudo-dimensiond = Pdim(H). Then, for any 6 >0,
with probability 1—dover the choice of a sample S of size m,

2d log <+ Y, log%

m 2m

L(h) < Lg(h) + 2R, (H) + 2M\/

Can we design algorithms minimizing the right-hand side?
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This Talk

B |earning formulation.
B Theoretical guarantees.
B Algorithms.

B Experimental results.
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No Feature Case

B Problem: find optimal reserve price, o T
n 0.5}
min L(r,b;). |
relR 1 \
& Algorithm: ) N\
® optimum one of highest bids. .

® naiveinO(m?).

e sorting solution in O(mlogm).
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Convex Surrogate Loss
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Convex Surrogate Loss

B No useful convex surrogate loss.

® Theorem: Let L.: [0, M] x [0, M] — R be a bounded
function, convex with respect to its first argument. If L. is
consistent with(r,b) — —rl,<;, thenL.(-,b) is constant for

every b € [0, M].

Which loss function should we use?
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Continuous Surrogate Loss
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Consistency Results

B Theorem: let M = supy, .5 b'') and let H be a closed convex
subset of a linear space of functions containing 0. Then,

L(h*) < L(BE) < Ly (hE) + M.
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Learning Guarantees

® Theorem: fixy € (0,1]. Then, for any § >0, with probability
at least1—9 over the choice of a sample S of size m,

log %

~ 2
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Algorithm

B Optimization problem: for fixed v € (0, 1].

e (difficulty: optimizing sum of non-convex functions.

® solution: DC-programming (Difference of Convex).
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Difference of Convex Functions

A
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DC-Programming

(Tao and Hoai, 1997; Yuille and Rangarajan, 2002)
B Convex-concave procedure: replace F(w) = f(w) — g(w) at

iteration (¢t + 1) with upper bound

F(w) = f(w) — g(w) — dg(wy) - (w — wy),

with dg(wy) € Og(wy).
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Algorithm

SECONDPRICERESERVE()

1 w <+ wyg

2 fort+ 1to 71 do

3 v+ DCA(w;_1)

4 U o

D N* 4= MINo<n<A Dy, >0 Loy (M0 X, D)
6 Wi 1V
7 return w

Mohri@ page 28



Line Search

B Observation: L, is positive homogenous, for all n>0,

L (nr,nb) = nL(r,b).

B Consequence: line search equivalent to no-feature
minimization algorithm; for wo ' x; >0

m

ZLW(HWOTXZ',I)Z') = Z (WOTXZ') L, (77, ) .
i=1

: WOTX’L'
=1
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This Talk

B |earning formulation.
B Theoretical guarantees.
® Algorithms.

B Experimental results.
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Experimental Results
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Distribution of Reserve Prices
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eBay Sport-Card Data Set
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Data: nhttp://cims.nyu.edu/~munoz/data.
Random 2000 training pts - 2000 test pts.
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Conclusion

B Theory, algorithms, and experiments for second-price
auctions with reserve.

e scaling up DC algorithm.
e study of dependencies.
e effect of using revenue optimization algorithm.

e Dpetter initialization.

B [earning and auctions:
® many other scenarios and types of auctions.

e Example: Generalized Second-Price auctions (GSPs).
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