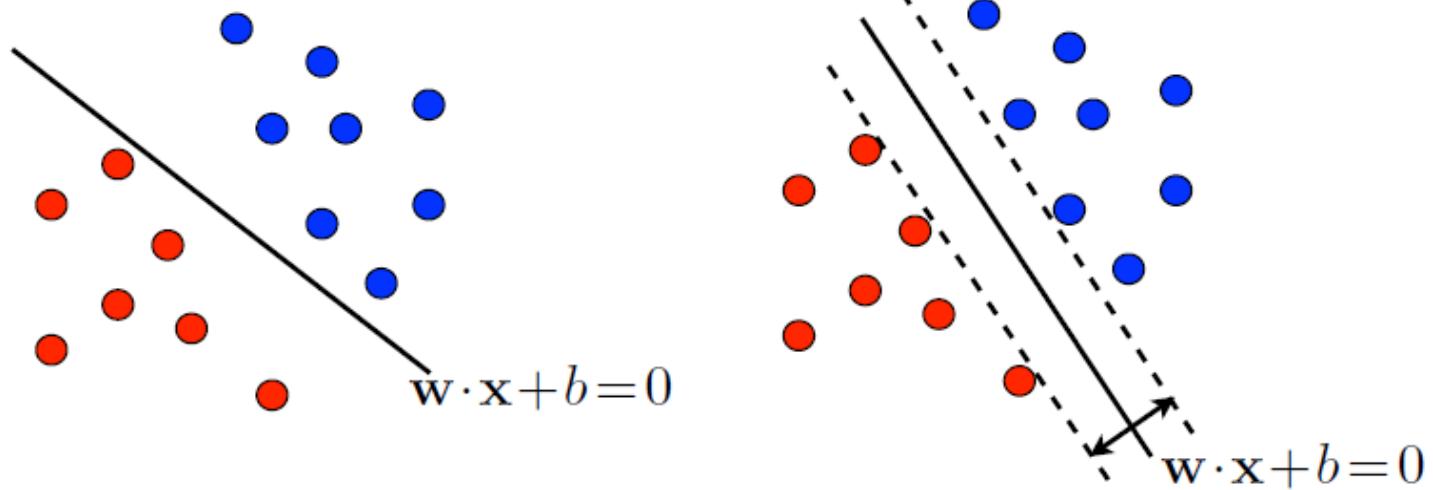


Maximum Margin Clustering

NIPS 2004

SVM Classification



- Maximum Margin Classification

SVM Classification

$$\begin{aligned}\gamma^{*-2} &= \min_{\mathbf{w}, b, \epsilon} \|\mathbf{w}\|^2 + C\epsilon^\top \mathbf{e} \quad \text{subject to} \quad y^i(\mathbf{w}^\top \phi(\mathbf{x}^i) + b) \geq 1 - \epsilon_i, \forall_{i=1}^N, \epsilon \geq 0 \\ &= \max_{\boldsymbol{\lambda}} 2\boldsymbol{\lambda}^\top \mathbf{e} - \langle K \circ \boldsymbol{\lambda} \boldsymbol{\lambda}^\top, \mathbf{y} \mathbf{y}^\top \rangle \quad \text{subject to} \quad 0 \leq \boldsymbol{\lambda} \leq C, \boldsymbol{\lambda}^\top \mathbf{y} = 0 \quad (3)\end{aligned}$$

$$\langle a, b \rangle = \sum_{ij} a_{ij} b_{ij}$$

$$\boldsymbol{\lambda}^\top (K \circ \mathbf{y} \mathbf{y}^\top) \boldsymbol{\lambda} = \langle K \circ \mathbf{y} \mathbf{y}^\top, \boldsymbol{\lambda} \boldsymbol{\lambda}^\top \rangle = \langle K \circ \boldsymbol{\lambda} \boldsymbol{\lambda}^\top, \mathbf{y} \mathbf{y}^\top \rangle$$

- Supervised maximum margin training
- This is an standard QP problem:
 - active sets methods
 - interior point method

Problem Definition

- Given data x_1, x_2, \dots, x_n , we wish to assign the data points to two classes $\{-1, +1\}$ such that separation between the two classes is as wide as possible

$$\min_{y \in \{-1, +1\}^N} \quad \max_{\lambda} 2\lambda^T e - \langle K \circ \lambda\lambda^T, yy^T \rangle \quad \text{subject to} \quad 0 \leq \lambda \leq C \quad \lambda^T y = 0$$

- Integer programming
- May lead to trivial solution, highly unbalanced clusters
- Not a convex function of y !

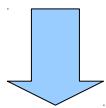
Problems & solutions

$$\min_{\mathbf{y} \in \{-1, +1\}^N} \quad \max_{\boldsymbol{\lambda}} 2\boldsymbol{\lambda}^T \mathbf{e} - \langle K \circ \boldsymbol{\lambda} \boldsymbol{\lambda}^T, \mathbf{y} \mathbf{y}^T \rangle \quad \text{subject to} \quad 0 \leq \boldsymbol{\lambda} \leq \mathcal{C} \quad \boldsymbol{\lambda}^T \mathbf{y} = 0$$

- Unbalanced cluster problem
 - Impose a constraint on $-\ell \leq \mathbf{e}^T \mathbf{y} \leq \ell$
- Integer programming
 - Soft clustering
- Non-convexity
 - Set $b=0$ to drop the constraint $\boldsymbol{\lambda}^T \mathbf{y} = 0$
 - Centering the data at the origin and more...

Re-express optimization problem

$$\gamma^{*-2}(y) = \max_{\lambda} 2\lambda^T e - \langle K \circ \lambda \lambda^T, yy^T \rangle \quad \text{subject to} \quad 0 \leq \lambda \leq C$$

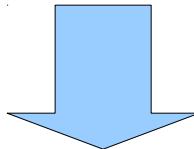


$$\gamma^{*-2}(M) = \max_{\lambda} 2\lambda^T e - \langle K \circ \lambda \lambda^T, M \rangle \quad \text{subject to} \quad 0 \leq \lambda \leq C \quad M = yy^T$$

- Objective function is linear
- $M=yy'$ and M is $[-1, +1]^n$ is not convex

Indirectly enforce $M = yy^\top$

- M encodes equivalence relation
 - transitive, reflexive and symmetric
- M has two equivalence classes

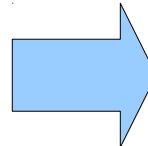


$$\mathcal{L}_1: m_{ii} = 1; m_{ij} = m_{ji}; m_{ik} \geq m_{ij} + m_{jk} - 1; \forall_{ijk}$$

$$\mathcal{L}_2: m_{jk} \geq -m_{ij} - m_{ik} - 1; \forall_{ijk}$$

$$\mathcal{L}_3: \sum_i m_{ij} \leq N - 2; \forall_j$$

$$\mathcal{L}_4: -\ell \leq \sum_i m_{ij} \leq \ell; \forall_j$$



$$\min_{M \in [-1, +1]^{N \times N}} \max_{\lambda} 2\lambda^\top e - \langle K \circ \lambda \lambda^\top, M \rangle$$

subject to $0 \leq \lambda \leq C, \mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_4, M \succeq 0$

$$\mathbf{y} = \sqrt{\lambda_1} \mathbf{v}_1$$

Semi-supervised learning

- Combine both unlabeled data and labeled data to produce a more accurate classification result

$\mathcal{S}_1: m_{ij} = y_i y_j$ for *labeled* examples $i, j \in \{1, \dots, n\}$

$\mathcal{S}_2: \sum_{i=1}^n m_{ij} \geq 2 - n$ for *unlabeled* examples $j \in \{n + 1, \dots, N\}$

Experiment Results

	Gaussians	Circles	A I	Joined Circles	Digits	Faces
Maximum Margin	1.25	0	0	1	3	0
Spectral Clustering	1.25	0	0	24	6	16.7
K-means	5	50	38.5	50	7	24.4

Table 1: Percentage misclassification errors of the various clustering algorithms on the various data sets.

	HWD 1-7	HWD 2-3	UCI Austra.	UCI Flare	UCI Vote	UCI Diabet.
Max Marg	3.3	4.7	32	34	14	35.55
Spec Clust	4.2	6.4	48.7	40.7	13.8	44.67
TSVM	4.6	5.4	38.7	33.3	17.5	35.89
SVM	4.5	10.9	37.5	37	20.4	39.44

Table 2: Percentage misclassification errors of the various semisupervised learning algorithms on the various data sets. SVM uses no unlabeled data. TSVM is due to [8].

My Comments

- Class balance problem
- For pure clustering problem, soft margin is not necessary. It leads to C value can be arbitrary, which is consistent with experiment report by the author.