Advances in Privacy-Preserving Machine Learning This talk introduces the problem of privacy-preserving machine learning, and some recent results. The goal of privacy-preserving machine learning is to provide machine learning algorithms that adhere to strong privacy protocols, yet are useful in practice. As increasing amounts of sensitive data are being digitally stored and aggregated, maintaining the privacy of individuals is critical. However, learning cumulative patterns, such as disease risks from medical records, could benefit society. Our work on privacy-preserving machine learning seeks to facilitate a compromise between these two opposing goals, by providing general techniques, for the design of algorithms to learn from private databases, that manage the inherent trade-off between privacy and learnability. I will present a new method for designing privacy-preserving machine learning algorithms. Researchers in the cryptography and information security community [Dwork et al. '06] had shown that if any function learned from a database is randomly perturbed in a certain way, the output respects a very strong privacy definition. The amount of perturbation depends on the function however, and could render the output ineffectual for machine learning purposes. We introduce a new paradigm: perturb the optimization problem, instead of its solution, for functions learned via optimization. It turns out that, for a canonical machine learning algorithm, regularized logistic regression, our new method yields a significantly stronger learning performance guarantee, and demonstrates improved empirical performance over the previous approach, while adhering to the same privacy definition. Our techniques also apply to a broad class of convex loss functions. This talk is based on joint work with Kamalika Chaudhuri (UC San Diego).