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Motivation

® Generalization bounds:

® capacity measures [covering numbers, Rademacher
complexity,VC theory]

® stability-based bounds
® Applications:

® chromatic number




McDiarmid’s Inequality

® Theorem:Let X1,...,X,, beindependent random variables
all taking values in the set X. Furtherlet f : X" +— R be a
function of X1, ..., X,, that satisfies Vi,Vzq,...,2,,,2; € X,
f(z1y. sy ) — f(21, .2, )| < g

Then for all € > 0,

Pr(f —E[f] > o < exp (Zﬁj?) |

e Corollary:For X; € [a;,b], f==>"  X;, ¢ = biza;

m

2, 2

Pr(f ~Elf] > € < exp (5 ) -
Hoeffding’s Inequality




Proof Elements

® Markov’s Inequality: For a non-negative random variable X,

® Proof:

Pr{X > 1] < 21

E[X] = » aPr[X =a]
> ZmPr[X = x|
> t_ZPr[X = 1]

= tPr|X >t




Law of Iterated Expectation

For random variables XY, Z:

E[E[X]Y, Z)|2] = E[X]Z]
Proof: follows from definitions.

|dea: taking expectation conditioning over Y and then taking
expectation over values of Y is the same as taking the
expectation all at once.




Proof Elements

® Hoeffding’s Lemma: Let X be a random variable with [E| X | = 0
anda < X < b.Thenfor t > 0,

Ele**] < exp (tQ(bga)Q) -

® Proof: Convexity and Taylor’s Theorem (do on the board).

exp (x)




Hoeffding’s Lemma

Convexity implies: €7 < 2=Lel@ 4 220 oth
Expectation on both sides: E[¢!*] < bLeta _ ﬁetb
Set () :— bb pta _ bLetb

Observe #(0) = 0,¢'(0) = 0, ¢" (t) < L= a) .

exp (&x)




McDiarmid’s Inequality

® Theorem:Let X1,...,X,, beindependent random variables
all taking values in the set X. Furtherlet f : X" +— R be a
function of X1, ..., X,, that satisfies Vi,Vzq,...,2,,,2; € X,
f(z1y. sy ) — f(21, .2, )| < g

Then for all € > 0,
Pr[f —E[f] > €] <exp ( —2¢ ) .
- D im G
® Proof:Let X be the sequence of random variables X7, ..., X;
Define random variables Z; = [E| f(X) | X"]. Observe that
Zy = E[f]a L = f(X)




Proof continued

e Consider the random variable Z; — Z; 1 | X\™!

® Observation |: E|Z; — Z; 1 | X’i_l] = 0.

® Observation 2;

Let U; = sup, {E[f | X', u] = E[f | X77]}.
Let L; = infy{E[f | X" '] - E[f | X ']}
Note that L; < (Z; — Z;_1) | X\71 < U;.
Finally, U; — L; < ¢;.

t202

Thus, E[et(Z=Zi-1) | X! <e75 .




Proof continued

Pr(f —E[f] >

Pr {et(f—E[f]) > ete}
Markov’s Inequality < e R -et(f_E[f])}
Telescoping — T lfR _et Z?&:l(Zi_Zi—l)}

[terative Expectation = e_te]E E[etzi:1(zi_Zi_l)‘XT_1]}

— e—te]E _Gt Zz’;—ll(Z@-—Zi_l)]E[et(Zm—Zm_l)‘Xffln—l]

t2c2

< et ng[etZ?:_ll(Zi—Zi—l)}

Thus, Pr(f — E[f] > ] exp (~te+ 5 X7, &)




Proof continued

Choose ¢ that minimizes —te + & ZZ 1 G

This leads to ¢ = ——2¢— .

i=1 €

., P
And therefore, —te + % S 2 = s

1= 1Ci

Thus, Pr|f — E[f] > €] < exp (ilcf) .




Stability of an Algorithm

® |dea:small change in training set (=) small change in hypothesis.

® “Sufficient” stability leads to generalization (McDiarmid’s ineq.)

Training set S, produces hs

B3-stability

Definition:When S and S’ differ in exactly one
point, then for all Vo € X,

lc(hg,x) — c(hg,x)| < 0.

1

Training set S’ produces hs’

® Advantage: algorithm specific, analysis independent of any
capacity term.




Ingredients of a Generalization Bound

® Errors:
® testerror: R(h,S)=E,.plc(hg,x)]
N 1
® training error: R(h,S) = - Z c(hg,x;)

® Shape of the generalization bound:

R(h,S) < R(h, S) + stability-dependent terms.
® Key step:for a hypothesis h , deriving a bound on

Pr [\R(h, S) — R(h,S)| > e} .




From Stability to Generalization

® Apply McDiarmid’s inequality to the random variable:

AN

f(S) = R(h,S) — R(h,5)
® Need to bound:
e for Sand S’ differing in one point, | f(S) — f(5")].
® the expectation, Es.pm[f(S5)].

® |et A bea J-stable learning algorithm with respect to a cost-
function ¢ and the cost-function ¢ is bounded,i.e. Vo € X,
Vh € H,c(h,z) < M for some M > 0.Then,

o 17(5)~f(3) <26+
o E[f(S) <0




Generalization Bound

Applying McDiarmid’s Inequality leads to, for all ¢ > 0,

AN

Pr|R(h,S) — R(h,S) — (8 > €] <exp (m( —2¢° )

20 + )2
Or', 2 Qm
~ —z€
Pr[R(h, S) = R(h,8) > § + €] < exp <(25m - M)2>

Note that for effective bound, need 5 = o(1/y/m).
With confidence 1 — ¢,

R(h,S) < R(h,S) + 8+ (28m + M)\/ln(1/5) .

2m




Determining 3

® Consider regularization-based objective function:
C m
F@ﬁ%ﬂ@@+;ﬁzd%%)
i=1

® Need two technical definitions / observations:
® o-admissibility: Vi, h' € H,Vz € X,
lc(h, ) — c(h,z)| < o|(h" — h)(z)].

® Bounded kernel: Vr € X, K(z,z) < k.




Determining 3

Consider regularlzatlon based objectlve function:

F(g,5) = lglix + — Z c(g, i)

Consider two sets, S and 5’ such that S =8\ {x;} U{z’}
where z; € 5.

Let h = argmin F(g,5), h' = argmin F' (g, S").
g g
F(g.5) is convex in g.Let Ah=h" —h.

Thus, F'(h,S) — F'(h+tAh,S) <0, and
F(h, S’) — F(h’ — tAh, S’) < 0.
This leads to:

otokC|Ah|x
|2 — |7+ tAR|% 4 |W % — B — tAR]% < -

m




Determining 3

® Finally, observe that in an RHKS:
|Al% — [k + tAR|& + [R5 — | — tAR[F = 2t(1 — t)|AR[k

® Put the pieces together to derive a bound.




Application - Chromatic Number

® Random Graph: Given number of vertices 7 and an edge
probability p, define G(n,p) as a random graph with:

® vertices {17 e 7n}'
® edges F (random) as Vi, 7, (i, 7) € E with probability p.

Chromatic number: min. number of colors to color the
vertices of a graph s.t. adjacent vertices colored differently.

Notation: Let w(G)be the chromatic number of G.

Vertex exposure martingale: sequence of random variables
Z1, 1 <k < n, given the edges between the first k vertices.

Zr =Ew(G) | E'CE, (i,j) € B' & (i,j) € E A i,j <K




Chromatic Number

Observation |: Zy = Elw(G)], Z, = w(G).
Observation 2: | Z — Zx 1| < 1,1 < k < n.

n

Using Z,, — Zo = Z(Zk — Z._1),and setting € = A/n,
easy to show: k=1

1 2
Pr [\/ﬁ(w(G) — Elw(G)]) > )\] < e V.
Notes:

® determining the chromatic number is NP-hard.

e finding a k-coloring given thatw((G) = k is also NP-hard.

® there’s more sophisticated analyses of w(() for random G

20



Conclusion

® The condition to apply McDiarmid’s inequality is relatively
simple to verify.

® Provides an easy way of deriving generalization bounds.
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