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Motivation

• Generalization bounds:

• capacity measures [covering numbers, Rademacher 
complexity, VC theory]

• stability-based bounds

• Applications:

• chromatic number
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McDiarmid’s Inequality

• Theorem: Let                     be independent random variables 
all taking values in the set    . Further, let                     be a 
function of                     that satisfies 

Then for all         , 

• Corollary: For                   ,                           ,                 .
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X1, . . . , Xm

X f : X
m
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X1, . . . , Xm ∀i,∀x1, . . . , xm, x′

i ∈ X ,

|f(x1, . . . , xi, . . . , xm) − f(x1, . . . , x
′

i, . . . , xm)| ≤ ci.

Pr [f − E[f ] ≥ ε] ≤ exp
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c2
i
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.
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1

m

∑m

i=1
Xi ci =
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Pr [f − E[f ] ≥ ε] ≤ exp
(

−2ε
2
m

2

P

m

i=1
(bi−ai)2

)

.

Hoeffding’s Inequality



Proof Elements

• Markov’s Inequality: For a non-negative random variable    ,

• Proof:
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X

Pr[X ≥ t] ≤ E[X]
t

E[X] =
∑

x

xPr[X = x]

≥
∑

x≥t

xPr[X = x]

≥ t

∑

x≥t

Pr[X = x]

= t Pr[X ≥ t].



Law of Iterated Expectation

• For random variables            :

• Proof: follows from definitions.

• Idea: taking expectation conditioning over     and then taking 
expectation over values of     is the same as taking the 
expectation all at once.  
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E[E[X|Y, Z]|Z] = E[X|Z]

X, Y, Z

Y

Y



Proof Elements

• Hoeffding’s Lemma: Let     be a random variable with            
and                  . Then for         ,

• Proof: Convexity and Taylor’s Theorem (do on the board).
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X

a ≤ X ≤ b t > 0

E[X] = 0

E[etX ] ≤ exp
(

t
2(b−a)2
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Hoeffding’s Lemma

• Convexity implies:

• Expectation on both sides:

• Set 

• Observe 
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McDiarmid’s Inequality

• Theorem: Let                     be independent random variables 
all taking values in the set    . Further, let                     be a 
function of                     that satisfies 

Then for all         ,

• Proof: Let       be the sequence of random variables                    
Define random variables                              . Observe that            
                                   .
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X1, . . . , Xm

X f : X
m

!→ R

X1, . . . , Xm ∀i,∀x1, . . . , xm, x′

i ∈ X ,

|f(x1, . . . , xi, . . . , xm) − f(x1, . . . , x
′

i, . . . , xm)| ≤ ci.

Pr [f − E[f ] ≥ ε] ≤ exp

(

−2ε2
∑m

i=1
c2
i

)

.

ε > 0

Xi
1

X1, . . . , Xi

Zi = E[f(X) | Xi
1]

Z0 = E[f ], Zm = f(X)



Proof continued

• Consider the random variable 

• Observation 1: 

• Observation 2: 

• Let                                                                .

• Let                                                              .

• Note that                                                .

• Finally,                     .

• Thus, 
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Zi − Zi−1 | X
i−1
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E[Zi − Zi−1 | X
i−1

1
] = 0.

Ui = supu{E[f | X
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, u] − E[f | X
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1
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1
≤ Ui

Ui − Li ≤ ci
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i−1
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t
2

c
2
i

8 .



Proof continued
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Markov’s Inequality

Telescoping

Iterative Expectation



Proof continued

• Choose     that minimizes                            .

• This leads to                    .

• And therefore,                                            .

• Thus, 
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Stability of an Algorithm
• Idea: small change in training set        small change in hypothesis.

• “Sufficient” stability leads to generalization (McDiarmid’s ineq.)

• Advantage: algorithm specific, analysis independent of any 
capacity term.

12

Training set S, produces hS

Training set S’ produces hS’

Definition: When    and     differ in exactly one 
point, then for all 

-stabilityβ

S S
′

∀x ∈ X ,

|c(hS , x) − c(hS′ , x)| ≤ β.

(⇒)



Ingredients of a Generalization Bound

• Errors:

• test error:

• training error:

• Shape of the generalization bound:

• Key step: for a hypothesis    , deriving a bound on 
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R(h, S) ≤ R̂(h, S) + stability-dependent terms.

h

Pr
S∼X

[
|R(h, S) − R̂(h, S)| ≥ ε

]
.

R(h, S) = Ex∼D[c(hS , x)]

R̂(h, S) =
1

m

m∑

i=1

c(hS , xi)



From Stability to Generalization

• Apply McDiarmid’s inequality to the random variable:

• Need to bound:

• for    and     differing in one point, 

• the expectation, 

• Let     be a   -stable learning algorithm with respect to a cost-
function    and the cost-function    is bounded, i.e.   
                                 for some            . Then, 

•  

•   

14

f(S) = R(h, S) − R̂(h, S)

S S
′ |f(S) − f(S′)|.

ES∼Dm [f(S)].

A β
c c ∀x ∈ X ,

∀h ∈ H, c(h, x) ≤ M M > 0

E[f(S)] ≤ β

|f(S) − f(S′)| ≤ 2β +
M

m



Generalization Bound

• Applying McDiarmid’s Inequality leads to, for all

• Or,

• Note that for effective bound, need 

• With confidence 
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ε > 0,

Pr[R(h, S) − R̂(h, S) − β ≥ ε] ≤ exp

(
−2ε2

m(2β + M

m
)2

)

Pr[R(h, S) − R̂(h, S) ≥ β + ε] ≤ exp

(
−2ε2m

(2βm + M)2

)

β = o(1/
√

m).

1 − δ,

R(h, S) ≤ R̂(h, S) + β + (2βm + M)

√
ln(1/δ)

2m
.



Determining 

• Consider regularization-based objective function:

• Need two technical definitions / observations:

•   -admissibility:

• Bounded kernel: 
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β

F (g, S) = ||g||2K +
C

m

m∑

i=1

c(g, xi).

σ

|c(h′, x) − c(h, x)| ≤ σ|(h′ − h)(x)|.

∀h, h′
∈ H,∀x ∈ X ,

∀x ∈ X , K(x, x) ≤ κ.



Determining 

• Consider regularization-based objective function:

• Consider two sets,     and      such that
where

• Let

•              is convex in     Let 

• Thus,                                                 and
                                                  

• This leads to: 
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β

F (g, S) = ||g||2K +
C

m

m∑

i=1

c(g, xi).

S S
′

S
′
= S \ {xi} ∪ {x′

i}
xi ∈ S.

h = arg min
g

F (g, S), h′ = arg min
g

F (g, S′).

F (g, S) g.

F (h, S) − F (h + t∆h, S) ≤ 0,

F (h, S′) − F (h′ − t∆h, S′) ≤ 0.

||h||2K − ||h + t∆h||2K + ||h′||2K − ||h′ − t∆h||2K ≤
2tσκC||∆h||K

m
.

∆h = h
′
− h.



Determining 

• Finally, observe that in an RHKS: 

• Put the pieces together to derive a bound.
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β

||h||2K − ||h + t∆h||2K + ||h′||2K − ||h′ − t∆h||2K = 2t(1 − t)||∆h||2K



Application - Chromatic Number

• Random Graph: Given number of vertices    and an edge 
probability   ,  define              as a random graph with:

• vertices

• edges     (random) as                         with probability  

• Chromatic number: min. number of colors to color the 
vertices of a graph s.t. adjacent vertices colored differently.

• Notation: Let          be the chromatic number of

• Vertex exposure martingale:  sequence of random variables   
                        given the edges between the first    vertices.  
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n

p G(n, p)

{1, . . . , n}.

∀i, j, (i, j) ∈ EE p.

ω(G) G.

Zk = E[w(G) | E′ ⊆ E, (i, j) ∈ E′ ⇔ (i, j) ∈ E ∧ i, j ≤ k]

Zk, 1 ≤ k ≤ n, k



Chromatic Number

• Observation 1:

• Observation 2: 

• Using                                            , and setting
easy to show: 

• Notes:

• determining the chromatic number is NP-hard.

• finding a    -coloring given that                 is also NP-hard.

• there’s more sophisticated analyses of          for random 
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Z0 = E[w(G)], Zn = w(G).

|Zk − Zk−1| ≤ 1, 1 ≤ k ≤ n.

Zn − Z0 =
n∑

k=1

(Zk − Zk−1) ε = λ
√

n,

Pr

[

1
√

n
(ω(G) − E[ω(G)]) ≥ λ

]

≤ e
−2λ

2

.

ω(G) = kk

ω(G) G.



Conclusion

• The condition to apply McDiarmid’s inequality is relatively 
simple to verify.

• Provides an easy way of deriving generalization bounds.
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