

McDiarmid's Inequality

Ashish Rastogi

Motivation

- Generalization bounds:
 - capacity measures [covering numbers, Rademacher complexity, VC theory]
 - stability-based bounds
- Applications:
 - chromatic number

McDiarmid's Inequality

- **Theorem:** Let X_1, \dots, X_m be independent random variables all taking values in the set \mathcal{X} . Further, let $f : \mathcal{X}^m \mapsto \mathbb{R}$ be a function of X_1, \dots, X_m that satisfies $\forall i, \forall x_1, \dots, x_m, x'_i \in \mathcal{X}$,

$$|f(x_1, \dots, x_i, \dots, x_m) - f(x_1, \dots, x'_i, \dots, x_m)| \leq c_i.$$

Then for all $\epsilon > 0$,

$$\Pr [f - \mathbb{E}[f] \geq \epsilon] \leq \exp \left(\frac{-2\epsilon^2}{\sum_{i=1}^m c_i^2} \right).$$

- **Corollary:** For $X_i \in [a_i, b_i]$, $f = \frac{1}{m} \sum_{i=1}^m X_i$, $c_i = \frac{b_i - a_i}{m}$.

$$\Pr [f - \mathbb{E}[f] \geq \epsilon] \leq \exp \left(\frac{-2\epsilon^2 m^2}{\sum_{i=1}^m (b_i - a_i)^2} \right).$$

Hoeffding's Inequality

Proof Elements

- **Markov's Inequality:** For a non-negative random variable X ,

$$\Pr[X \geq t] \leq \frac{\mathbb{E}[X]}{t}$$

- **Proof:**

$$\begin{aligned}\mathbb{E}[X] &= \sum_x x \Pr[X = x] \\ &\geq \sum_{x \geq t} x \Pr[X = x] \\ &\geq t \sum_{x \geq t} \Pr[X = x] \\ &= t \Pr[X \geq t].\end{aligned}$$

Law of Iterated Expectation

- For random variables X, Y, Z :

$$\mathbb{E}[\mathbb{E}[X|Y, Z]|Z] = \mathbb{E}[X|Z]$$

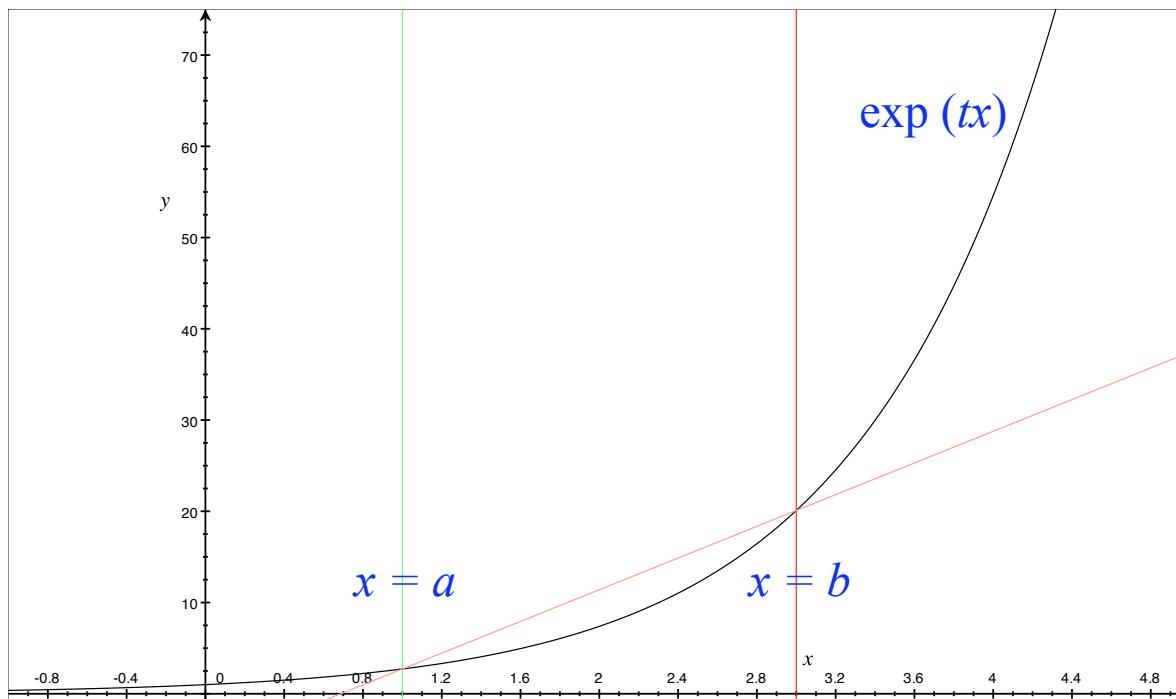
- **Proof:** follows from definitions.
- **Idea:** taking expectation conditioning over Y and then taking expectation over values of Y is the same as taking the expectation all at once.

Proof Elements

- **Hoeffding's Lemma:** Let X be a random variable with $\mathbb{E}[X] = 0$ and $a \leq X \leq b$. Then for $t > 0$,

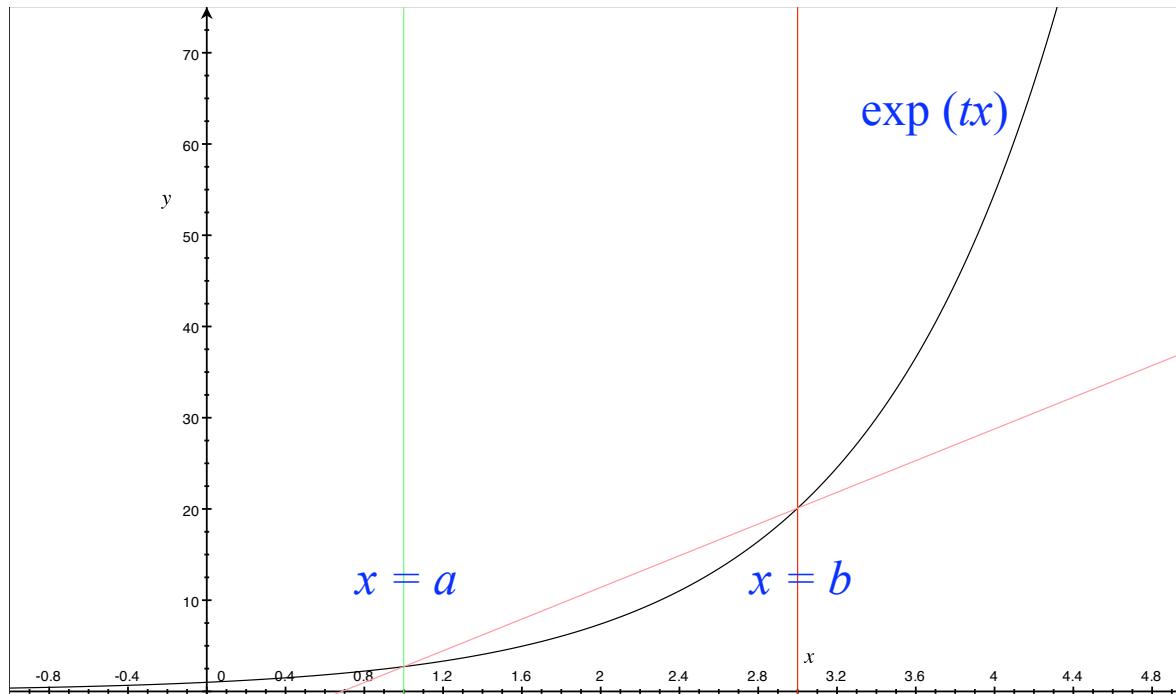
$$\mathbb{E}[e^{tX}] \leq \exp\left(\frac{t^2(b-a)^2}{8}\right).$$

- **Proof:** Convexity and Taylor's Theorem (do on the board).



Hoeffding's Lemma

- **Convexity implies:** $e^{tx} \leq \frac{b-x}{b-a}e^{ta} + \frac{x-a}{b-a}e^{tb}$
- **Expectation on both sides:** $\mathbb{E}[e^{tx}] \leq \frac{b}{b-a}e^{ta} - \frac{a}{b-a}e^{tb}$
- **Set** $e^{\phi(t)} := \frac{b}{b-a}e^{ta} - \frac{a}{b-a}e^{tb}$
- **Observe** $\phi(0) = 0, \phi'(0) = 0, \phi''(t) \leq \frac{(b-a)^2}{4}$.



McDiarmid's Inequality

- **Theorem:** Let X_1, \dots, X_m be independent random variables all taking values in the set \mathcal{X} . Further, let $f : \mathcal{X}^m \mapsto \mathbb{R}$ be a function of X_1, \dots, X_m that satisfies $\forall i, \forall x_1, \dots, x_m, x'_i \in \mathcal{X}$,

$$|f(x_1, \dots, x_i, \dots, x_m) - f(x_1, \dots, x'_i, \dots, x_m)| \leq c_i.$$

Then for all $\epsilon > 0$,

$$\Pr [f - \mathbb{E}[f] \geq \epsilon] \leq \exp \left(\frac{-2\epsilon^2}{\sum_{i=1}^m c_i^2} \right).$$

- **Proof:** Let \mathbf{X}_1^i be the sequence of random variables X_1, \dots, X_i . Define random variables $Z_i = \mathbb{E}[f(\mathbf{X}) \mid \mathbf{X}_1^i]$. Observe that $Z_0 = \mathbb{E}[f], Z_m = f(\mathbf{X})$.

Proof continued

- Consider the random variable $Z_i - Z_{i-1} \mid \mathbf{X}_1^{i-1}$
- **Observation 1:** $\mathbb{E}[Z_i - Z_{i-1} \mid \mathbf{X}_1^{i-1}] = 0$.
- **Observation 2:**
 - Let $U_i = \sup_u \{\mathbb{E}[f \mid \mathbf{X}_1^{i-1}, u] - \mathbb{E}[f \mid \mathbf{X}_1^{i-1}]\}$.
 - Let $L_i = \inf_l \{\mathbb{E}[f \mid \mathbf{X}_1^{i-1}, l] - \mathbb{E}[f \mid \mathbf{X}_1^{i-1}]\}$.
 - Note that $L_i \leq (Z_i - Z_{i-1}) \mid \mathbf{X}_1^{i-1} \leq U_i$.
 - Finally, $U_i - L_i \leq c_i$.
 - Thus, $\mathbb{E}[e^{t(Z_i - Z_{i-1})} \mid \mathbf{X}_1^{i-1}] \leq e^{\frac{t^2 c_i^2}{8}}$.

Proof continued

$$\begin{aligned} \Pr[f - \mathbb{E}[f] \geq \epsilon] &= \Pr\left[e^{t(f - \mathbb{E}[f])} \geq e^{t\epsilon}\right] \\ \text{Markov's Inequality} &\leq e^{-t\epsilon} \mathbb{E}\left[e^{t(f - \mathbb{E}[f])}\right] \\ \text{Telescoping} &= e^{-t\epsilon} \mathbb{E}\left[e^{t \sum_{i=1}^m (Z_i - Z_{i-1})}\right] \\ \text{Iterative Expectation} &= e^{-t\epsilon} \mathbb{E}\left[\mathbb{E}\left[e^{t \sum_{i=1}^m (Z_i - Z_{i-1})} \mid \mathbf{X}_1^{m-1}\right]\right] \\ &= e^{-t\epsilon} \mathbb{E}\left[e^{t \sum_{i=1}^{m-1} (Z_i - Z_{i-1})} \mathbb{E}\left[e^{t(Z_m - Z_{m-1})} \mid \mathbf{X}_1^{m-1}\right]\right] \\ &\leq e^{-t\epsilon} e^{\frac{t^2 c_m^2}{8}} \mathbb{E}\left[e^{t \sum_{i=1}^{m-1} (Z_i - Z_{i-1})}\right] \end{aligned}$$

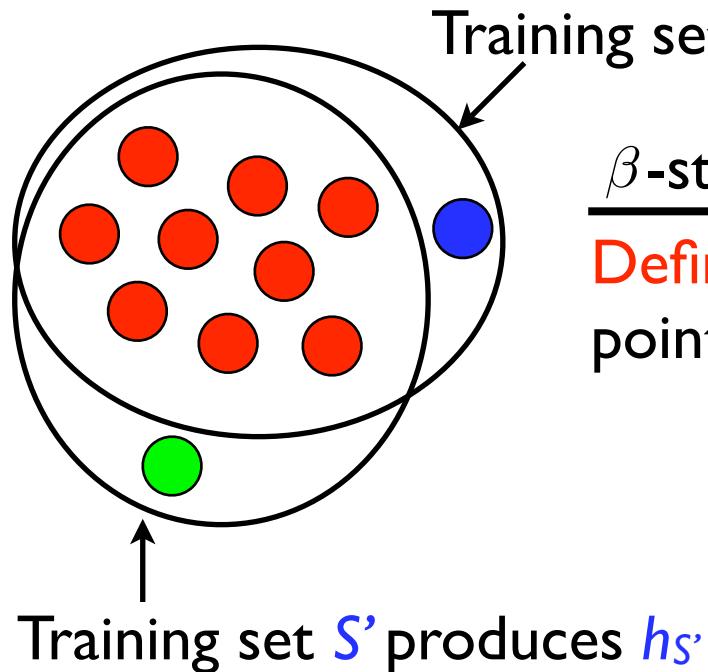
Thus, $\Pr[f - \mathbb{E}[f] \geq \epsilon] \leq \exp\left(-t\epsilon + \frac{t^2}{8} \sum_{i=1}^m c_i^2\right)$

Proof continued

- Choose t that minimizes $-t\epsilon + \frac{t^2}{8} \sum_{i=1}^m c_i^2$.
- This leads to $t = \frac{4\epsilon}{\sum_{i=1}^m c_i^2}$.
- And therefore, $-t\epsilon + \frac{t^2}{8} \sum_{i=1}^m c_i^2 = \frac{-2\epsilon^2}{\sum_{i=1}^m c_i^2}$.
- Thus, $\Pr[f - \mathbb{E}[f] \geq \epsilon] \leq \exp\left(\frac{-2\epsilon^2}{\sum_{i=1}^m c_i^2}\right)$.

Stability of an Algorithm

- **Idea:** small change in training set (\Rightarrow) small change in hypothesis.
- “Sufficient” stability leads to generalization (McDiarmid’s ineq.)



β -stability

Definition: When S and S' differ in exactly one point, then for all $\forall x \in \mathcal{X}$,

$$|c(h_S, x) - c(h_{S'}, x)| \leq \beta.$$

- **Advantage:** algorithm specific, analysis independent of any capacity term.

Ingredients of a Generalization Bound

- **Errors:**

- test error: $R(h, S) = \mathbb{E}_{x \sim D} [c(h_S, x)]$
- training error: $\hat{R}(h, S) = \frac{1}{m} \sum_{i=1}^m c(h_S, x_i)$

- Shape of the generalization bound:

$$R(h, S) \leq \hat{R}(h, S) + \text{stability-dependent terms.}$$

- **Key step:** for a hypothesis h , deriving a bound on

$$\Pr_{S \sim X} \left[|R(h, S) - \hat{R}(h, S)| \geq \epsilon \right].$$

From Stability to Generalization

- Apply **McDiarmid's inequality** to the random variable:

$$f(S) = R(h, S) - \hat{R}(h, S)$$

- Need to bound:
 - for S and S' differing in one point, $|f(S) - f(S')|$.
 - the expectation, $\mathbb{E}_{S \sim D^m}[f(S)]$.
- Let A be a β -stable learning algorithm with respect to a cost-function c and the cost-function c is bounded, i.e. $\forall x \in \mathcal{X}$, $\forall h \in \mathcal{H}, c(h, x) \leq M$ for some $M > 0$. Then,
 - $|f(S) - f(S')| \leq 2\beta + \frac{M}{m}$
 - $\mathbb{E}[f(S)] \leq \beta$

Generalization Bound

- Applying **McDiarmid's Inequality** leads to, for all $\epsilon > 0$,

$$\Pr[R(h, S) - \hat{R}(h, S) - \beta \geq \epsilon] \leq \exp\left(\frac{-2\epsilon^2}{m(2\beta + \frac{M}{m})^2}\right)$$

- Or,

$$\Pr[R(h, S) - \hat{R}(h, S) \geq \beta + \epsilon] \leq \exp\left(\frac{-2\epsilon^2 m}{(2\beta m + M)^2}\right)$$

- Note that for effective bound, need $\beta = o(1/\sqrt{m})$.

- With confidence $1 - \delta$,

$$R(h, S) \leq \hat{R}(h, S) + \beta + (2\beta m + M) \sqrt{\frac{\ln(1/\delta)}{2m}}.$$

Determining β

- Consider regularization-based objective function:

$$F(g, S) = \|g\|_K^2 + \frac{C}{m} \sum_{i=1}^m c(g, x_i).$$

- Need two technical definitions / observations:

- σ -admissibility: $\forall h, h' \in \mathcal{H}, \forall x \in \mathcal{X}$,

$$|c(h', x) - c(h, x)| \leq \sigma |(h' - h)(x)|.$$

- Bounded kernel: $\forall x \in \mathcal{X}, K(x, x) \leq \kappa$.

Determining β

- Consider regularization-based objective function:

$$F(g, S) = \|g\|_K^2 + \frac{C}{m} \sum_{i=1}^m c(g, x_i).$$

- Consider two sets, S and S' such that $S' = S \setminus \{x_i\} \cup \{x'_i\}$ where $x_i \in S$.
- Let $h = \arg \min_g F(g, S)$, $h' = \arg \min_g F(g, S')$.
- $F(g, S)$ is convex in g . Let $\Delta h = h' - h$.
- Thus, $F(h, S) - F(h + t\Delta h, S) \leq 0$, and
 $F(h, S') - F(h' - t\Delta h, S') \leq 0$.
- This leads to:

$$\|h\|_K^2 - \|h + t\Delta h\|_K^2 + \|h'\|_K^2 - \|h' - t\Delta h\|_K^2 \leq \frac{2t\sigma\kappa C \|\Delta h\|_K}{m}.$$

Determining β

- Finally, observe that in an RKHS:

$$\|h\|_K^2 - \|h + t\Delta h\|_K^2 + \|h'\|_K^2 - \|h' - t\Delta h\|_K^2 = 2t(1-t)\|\Delta h\|_K^2$$

- Put the pieces together to derive a bound.

Application - Chromatic Number

- **Random Graph**: Given number of vertices n and an edge probability p , define $G(n, p)$ as a random graph with:
 - vertices $\{1, \dots, n\}$.
 - edges E (random) as $\forall i, j, (i, j) \in E$ with probability p .
- **Chromatic number**: min. number of colors to color the vertices of a graph s.t. adjacent vertices colored differently.
- **Notation**: Let $\omega(G)$ be the chromatic number of G .
- **Vertex exposure martingale**: sequence of random variables $Z_k, 1 \leq k \leq n$, given the edges between the first k vertices.

$$Z_k = \mathbb{E}[w(G) \mid E' \subseteq E, (i, j) \in E' \Leftrightarrow (i, j) \in E \wedge i, j \leq k]$$

Chromatic Number

- **Observation 1:** $Z_0 = \mathbb{E}[w(G)]$, $Z_n = w(G)$.
- **Observation 2:** $|Z_k - Z_{k-1}| \leq 1$, $1 \leq k \leq n$.
- Using $Z_n - Z_0 = \sum_{k=1}^n (Z_k - Z_{k-1})$, and setting $\epsilon = \lambda\sqrt{n}$,
easy to show:

$$\Pr \left[\frac{1}{\sqrt{n}} (\omega(G) - \mathbb{E}[\omega(G)]) \geq \lambda \right] \leq e^{-2\lambda^2}.$$

- **Notes:**
 - determining the chromatic number is **NP-hard**.
 - finding a k -coloring given that $\omega(G) = k$ is also **NP-hard**.
 - there's more sophisticated analyses of $\omega(G)$ for random G .

Conclusion

- The condition to apply McDiarmid's inequality is relatively simple to verify.
- Provides an easy way of deriving generalization bounds.

References

- Kazuoki Azuma. *Weighted sums of certain dependent random variables*. In *Tohoku Mathematical Journal*, volume 19, pages 357–367, 1967.
- Olivier Bousquet and Andre Elisseeff. *Stability and generalization*. *Journal of Machine Learning Research*, 2:499–526, 2002.
- Colin McDiarmid. *On the method of bounded differences*. In *Surveys in Combinatorics*, pages 148–188. Cambridge University Press, Cambridge, 1989.
- N. Alon and J. H. Spencer, *The Probabilistic Method*, Wiley, New York, 1992.