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Motivation for a New Framework

• In the typical framework, the boosting algorithm must have 
access to the entire data set.

• This limits the application to scenarios with very large data sets.

• Computationally infeasible because in each round, the 
distribution information on each point is updated.

• New ideas:

• use a data stream instead of the entire (fixed) data set.

• train on new subsets of data in each round.
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Filtering Framework

• Boost for 1000 rounds: only store ~1/1000 of data at a time.
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Paper’s Results

• A new boosting-by-filtering algorithm.

• Provable guarantees.

• Applicable to both classification and conditional probability 
estimation.

• Good empirical performance.

5

5



AdaBoost (batch boosting)

• Given: Fixed data set S.

• In each round t,

• choose distribution Dt over S.

• choose hypothesis ht.

• estimate error    of ht with Dt.

• give     a weight of  

• Output: hypothesis:
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Higher weight to 
misclassified examples.

Dt     forces the algorithm to 
correctly classify “harder” 
examples in later rounds.
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AdaBoost (batch boosting)

• Given: Fixed data set S.

• In each round t,

• choose distribution Dt over S.

• choose hypothesis ht.

• estimate error    of ht with Dt.

• give     a weight of  

• Output: hypothesis:

• In filtering, no “fixed” data set S. What about     ? 
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• Key idea: Simulate     using the filter (accept only “hard 
examples”). 

accept

Filtering Idea

8

Data 
Oracle

D
Filter

reject

Use in the 
Boosting 
algorithm.

Dt

8



FilterBoost: Main Algorithm
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• Given: Oracle to distribution D.

• In each round t,

• use Filtert to obtain     (sample    really)  

• choose hypothesis ht that does well on 

• estimate error    of ht by using the oracle again.

• give     a weight of  

• Output: hypothesis:
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Dt St

St
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• Simulate     using rejection sampling.

• Higher weight to misclassified examples.

• If                 , then the label and hypothesis agree, low probability 
of being accepted.

• Otherwise, if                    , then misclassified example, high 
probability of being accepted.

• So, try 

• Difficulty: too much weight on too few examples.

Filtering: Details
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D(x, y) = exp(−yH(x)).
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Filtering: Details

• Truncated exponential weights work for filtering.
[M-AdaBoost, Domingo & Watanabe, 00]
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Filtering: Details

• FilterBoost: based on AdaBoost for Logistic Regression. Minimize 
logistic loss leads to logistic weights.
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FilterBoost: Main Algorithm
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Q1. How much time does 
Filtert take?

Q2. How many boosting 
rounds are needed?

Q3. How can we estimate 
hypothesis errors?

A1. If filter takes too long, then 
hypothesis is accurate enough.

A2. If weak hypothesis’ error 
bounded away from 1/2, we 

make good progress.

A3. Adaptive Sampling 
[Watanabe, 00]
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FilterBoost: Analysis

• Interpreted as an additive logistic regression model. Suppose

• Which implies                                      .

• In the case of FilterBoost,                        .

• Expected Negative log-likelihood of an example is: 

• FilterBoost minimizes this function. Like AdaBoost, gradient 
descent is used to determine weak learner and step size.

15

log
Pr[y = 1|x]

Pr[y = −1|x]
=

∑

t

ft(x) = F (x)

Pr[y = 1|x] =
1

1 + e−F (x)
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FilterBoost: Details

• Second order expansion of                       :

• For positive   , this expression is minimized when we maximize: 

• This is maximized for

• Once         is fixed,    is determined by to minimize the upper-
bound
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∣∣
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α
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h(x) α
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.
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FilterBoost: Details (1)
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FilterBoost: Details (2)
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FilterBoost: Details (3)
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FilterBoost: Theory

• Theorem:
Assume that the weak hypotheses have edge at least   . 
Let    be the target error rate. FilterBoost produces a final 
hypothesis with error less than   in T rounds, where

• The real bound is given by: 

• Proof elements:

• Step 1: 

• Step 2: 

• Assume that for all                                     Contradiction.

20

γ
ε

ε

T = Õ
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2 ln(2)

ε(1− 2
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errt ≤ 2pt.
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(
1− 2

√
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t

)
.

t ∈ {1, . . . , T}, errt ≥ ε.

hypothesis error in round t

probability of accepting an example in round t
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FilterBoost: Theory

• Step 1:

• recall that                                         Call it            . 
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FilterBoost: Theory

• Step II:

• recall that                                            .

• expanding the expectation, 
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[
− ln

1
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FilterBoost: Theory

• Let

• Recall that 
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FilterBoost vs. Rest

• Comparison (as reported in the paper):
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Need edges 
decreasing?

Need bound 
on min edge?

Inf. weak 
learner space

# rounds

M-AdaBoost
[Domingo & 

Watanabe,00]
Y N Y 1/ε

AdaFlat
[Gavinsky,02]

N N Y 1/ε2

GiniBoost
[Hatano,06]

N N N 1/ε

FilterBoost N N Y 1/ε
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FilterBoost: Details

• In the previous analysis, overlooked the probability of failure 
introduced by the three steps:

• training the weak learner

• deciding when to stop boosting

• estimating the edges
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Experiments

• Tested FilterBoost against M-AdaBoost, AdaBoost, Logistic 
AdaBoost.

• Synthetic and real data sets.

• Tested: classification and conditional probability estimation.
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Experiments: Classification

• Noisy Majority Vote (synthetic).

• Decision stumps are the weak learners.

• 500,000 examples.
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FilterBoost achieves high 
accuracy fast.
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Experiments: CPE

• Conditional Probability Estimation
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Conclusion

• FilterBoost good for boosting over large data sets.

• Fewer assumptions, better guarantees.

• Validated empirically, in classification and conditional probability 
estimation.
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