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on Large Datasets
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* some slides reused from the NIPS 07 presentation
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Motivation for a New Framework

® |n the typical framework, the boosting algorithm must have
access to the entire data set.

® This limits the application to scenarios with very large data sets.

® Computationally infeasible because in each round, the
distribution information on each point is updated.

® New ideas:
® uyse a data stream instead of the entire (fixed) data set.

® train on new subsets of data in each round.
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® Boost for 1000 rounds: only store ~1/1000 of data at a time.




Paper’s Results

A new boosting-by-filtering algorithm.
Provable guarantees.

Applicable to both classification and conditional probability
estimation.

Good empirical performance.




AdaBoost (batch boosting)

® Given: Fixed data set S.

® |n each round t,

Higher weight to
misclassified examples.

® choose distribution D; over S.

® choose hypothesis h..

® estimate error ¢; of hy with D.. Dy forces the algorithm to
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® give iy a weight of oy = — log €t correctly (f|aSSIf)' harder
2 €t examples in later rounds.

® Output: hypothesis:
T
h(x) = Z azhy ()
i=1
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® give iy a weight of oy = — log €t correctly Cf|aSSIf)' harder
2 €t examples in later rounds.

® Output: hypothesis:
T
h(x) = Z azhy ()
i=1

® |n filtering, no “fixed” data set S.What about D;?




Filtering Idea
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® Key idea: Simulate D; using the filter (accept only “hard
examples”).




FilterBoost: Main Algorithm

® Given: Oracle to distribution D.

® |n each round t,
® use Filter;to obtain D, (sample S; really)
® choose hypothesis h; that does well on \5;

® estimate error ¢; of h; by using the oracle again.

. . 1 1 — €
® give fi; a weight of oy = 5 log -
t

® Output: hypothesis:
T
h(x) = Z azhy ()
i=1




Filtering: Details
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reject
Simulate D; using rejection sampling.

Higher weight to misclassified examples.

If yH(x) = 1, then the label and hypothesis agree, low probability
of being accepted.

Otherwise, if yH(x) = —1, then misclassified example, high
probability of being accepted.

So,try D(x,y) = exp(—yH(x)).

Difficulty: too much weight on too few examples.
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Filtering: Details

-

reject
® Truncated exponential weights work for filtering.
[M-AdaBoost, Domingo & Watanabe, 00
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Filtering: Details

reject
® FilterBoost: based on AdaBoost for Logistic Regression. Minimize

-

\_

Use in the
Boosting
algorithm.
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logistic loss leads to logistic weights.
1
Pr [accept(z,y)] = —————
- Y1 &L
& Ty N
P RN
. 1’/ 7 e

Pr [accept(z, y)] = min{1,e ¥ (@)},
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FilterBoost: Main Algorithm

® Given: Oracle to distribution D.

® |n each round t,
® use Filter;to obtain D, (sample S; really)
® choose hypothesis h; that does well on \5;

® estimate error ¢; of h; by using the oracle again.
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T
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FilterBoost: Main Algorithm

® Given: Oracle to distribution D.

® |n each round t,

QIl.How much time does
Filter; take?

® choose hypothesis h; that does well on S; Al.If filter takes too long, then
hypothesis is accurate enough.

® estimate error ¢; of h; by using the oracle again.
. . 1 1 — e Q2. How many boosting
® give /it a weight of oy = 2 log €, rounds are needed?

A2. If weak hypothesis’ error
bounded away from |/2, we

T
h(z) = Z azhy () make good progress.
1=1

® use Filter;to obtain D, (sample S; really)

® Output: hypothesis:

Q3. How can we estimate
hypothesis errors!?

A3.Adaptive Sampling
[Watanabe, 00]
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FilterBoost: Analysis

Interpreted as an additive logistic regression model. Suppose

Prly = 1|z]
1
o8 Prly = —1|x] Z filx

1
1+ e F@)°
In the case of FilterBoost, f;(x) = a:h:(x).

Which implies Pr|y = 1|z| =

Expected Negative log-likelihood of an example is:
I 1

I 1 4+ e—yF(fﬁ)
FilterBoost minimizes this function. Like AdaBoost, gradient

descent is used to determine weak learner and step size.

7T<F -+ thht).
l ™S weak learner

step-size

m(F)=E |—In
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FilterBoost: Details

® Second order expansion of 7(F +ah)|, _:
a’h?
m(F+ah) = 7(F)+aht'(F) + ——"(F) both +1
yoah 1 y2a2h2@yF(3?)

1+ evF@) 2 (14 evF@)2

= E [ln(l + e vF@)y

® For positive o, this expression is minimized when we maximize:

B | e | = Ealvh(a)

® This is maximized for f(x) = sign([E,|y|z]).

® Once h(x) is fixed, «is determined by to minimize the upper-
bound 7(F + ah) < E[e~v(F'(@)+ah@)

1 1/2 4~
a = —log .
2 1/2 —~
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FilterBoost: Details (1)

Define Fy(x) = Zt, L aphy ()
Algorithm F'ilter Boost accepts Oracle(), £, 0, T:
Fort=1.,2.3....

Ot 4 .
t* 3t(t+1)
Call Filter(t, d¢, <) to get
m; examples to train WL; get /i,

o0

vy —— getEdge(t, 7,04, ¢)

. 1 /249,

Define Hy(x) = sign (Ft-i—l(;lr))

(Algorithm exits from F'ilter() function.)
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FilterBoost: Details (2)

Function F'ilter(t, d;, £) returns (x, y)
Define » = # calls to Filter so far on round ¢
Oy 4 O

For (z =0;1 < %ln(%); i =14 1):

(x,y) «—— Oracle()

(2, 9) — Trar®

Return (z, y) with probability ¢, (x, y)

End algorithm; return H;_1
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FilterBoost: Details (3)

Function get Edge(t, 7, ¢, £) returns 4,

letm—0.n——0,u+—0,a —— x
While (Ju| < a(1 4 1/7)):
(2, y) «—— Flilter(t, o, =)

T <

T

1

m —— m+ I(hs(x) = y)

w— mjn—1/2

a — +/(1/2n) In(n(n + 1) /0¢)
Return u /(1 + 7)
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FilterBoost: Theory

® Theorem:

Assume that the weak hypotheses have edge at least 7.
Let ¢ be the target error rate. FilterBoost produces a final
hypothesis with error less than € in T rounds, where

-/ 1
T=0—
O(w)

® The real bound is given by: T > 2In(2)

e(1—24/1/4 —~2)
® Proof elements:

hypothesis error in round t

o Step | ETT S Zpt. —> probability of accepting an example in round t

® Step 2:7Tt—7Tt_|_1 Zpt (1—2\/1/4—7152) .

® Assume thatforallt € {1,...,T},err; > ¢. Contradiction.
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® Step I:

® recall that Pr|accept(z,y)] = Call it ¢:(z,y).

ernrg

FilterBoost: Theory

1

N
8 .
0o
-

Prp[H(z) # y| = PrplyFi—1(x) < 0]
Prplg(e.v) = 1/2] < 2 Epla:(x. v)]
2p; (using Markov’s inequality above)
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® Step ll:
® recall that n(F)=E [—1

® expanding the expectation, m; = Z D(z,y)In(1 — q:(z,y))

gt(x,y) =

ge+1(x.y) =

FilterBoost: Theory

1
" + e~ yf(z)

(z,y)
1 — qt (SU, y)
Ty — Mpp1 = D(x,y)In (
Z 1 — Qt—i-l(xa y)
(z,y)
1+eyFt(x) Ft( ) Zil_zll (l“tlht/ (;'I_,')’
P — 1 1 and
(Jt(él-’- '.l/)
e ; — 1
qt"‘l(‘l- U) T 1 _I_ ngFt(.Lt)-]—atyht_(_lf)
1 (lt(l l/)
1+ (qt(I ) — 1)eve(@y) (lt(il-’-f.(/) + (1 — g (2. y))evel=v)
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FilterBoost: Theory

T — Tt41

AV

® |let D(x.y)= D(z.y)ae(z.y)

Pt

Tt — T+1 = Pt — Pt Z Dy(x, y)e_atyh*’(l’)
(z,y)

)e

® Recall that o, =  In({572) & € = Prp,[sign(hy(x)) # o]

Z Dyi(z,y)e —a*yh (=) — =e (1 —€e) + e“tep = 2
(Isy)

1

— — ]
f

2 ey D@, y) In(ae(a, y)e Y 41 — go(, y))
= (e D@ 9)(=ae(2,y) + qe (2, y)e™ve¥))
>tz D@ v)a(z,y) =32, ) D@ y)ae(z, 2

—ve(x,y)

2
t
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FilterBoost vs. Rest

® Comparison (as reported in the paper):

Need edges | Need bound Inf. weak
. . # rounds
decreasing! | on min edge! | learner space
M-AdaBoost
[Domingo & Y N Y 1 /E
Watanabe,00]
AdaFlat 2
[Gavinsky,02] N N Y 1 /E
GiniBoost
[Hatano,06] N N N 1 / €
FilterBoost N N Y 1/€
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FilterBoost: Details

® |n the previous analysis, overlooked the probability of failure
introduced by the three steps:

® training the weak learner
® deciding when to stop boosting

® estimating the edges
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Experiments

® Tested FilterBoost against M-AdaBoost, AdaBoost, Logistic
AdaBoost.

® Synthetic and real data sets.

® Tested: classification and conditional probability estimation.
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Experiments: Classification

® Noisy Majority Vote (synthetic).
® Decision stumps are the weak learners.

® 500,000 examples.
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Experiments: CPE

® Conditional Probability Estimation

-=-Ada(resamp)
-e-Ada

-+ Ada(resamp,C-R)
—Filter
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Conclusion

® FilterBoost good for boosting over large data sets.
® Fewer assumptions, better guarantees.

® Validated empirically, in classification and conditional probability
estimation.
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