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Motivation

● Kernel-based algorithms

– rely on inner-product between data points

– e.g., SVMs, Kernel PCA, Gaussian Processes

● Introduce non-linearity via PDS kernels

–

–

● Resulting Gram (Kernel) matrix is positive semidefinite

● non-negative eigenvalues

∑i , j=1

n
c ic jk x i , x j ≥ 0

k x i , x j = k x j , x i



  

Motivation

● Kernel-based algorithms are sometimes costly

– Kernel PCA: eigendecomposition

– GP: matrix inversion

– SVM: O(n3) instance of Quadratic Programming

● Low-rank approximation of G (dense)

– approximate eigenvectors/values

– approximate inverse (matrix inversion lemma)

● Goal: Find low-rank approximation of Gram matrix to 
improve efficiency of Kernel-based algorithms
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Terminology – SVD

● Full SVD:

● Singular Values: 

● Singular Vectors:

● “Best” rank-k Approx: 

● Pseudoinverse:
                                                         

A=UVT , A∈ℝmxn

∈ℝmxn ; =diag1 , ... ,

=minm,n ; 1 2  ...  0

U∈ℝmxm , UTU=Im

V∈ℝnxn , V TV=In

Ak=UkkV k
T =∑i=1

i=k iU
iV iT

A+=V −1UT



  

Terminology – Gram Matrix

● Dataset of n points:

● Gram matrix:

● Partition of G:

● W:

● C: 

G∈ℝnxn , G=XT X = V 2V T

X∈ℝmxn , X=UVT

G=[G11 G12

G21 G22]

C∈ℝn x c ; C=[ WG21] = [W G12 ]
T

W∈ℝc x c , W=G11



  

Basic Idea of Algorithm

● From last slide:

● Nyström Approximation:

● Multiplying:

● Estimate matrix by:

– exact decomposition of small piece (     )

– interpolate by relating sampled points to full dataset 

● Runtime:                        , where    based on sampling method 

G=[ WG21] W
+ [W G12 ] = [ W G12

G21 G21W
+G12 ]

G ≈ G = CW +CT = U W U T

G=[ W G12

G21 G22]

O c3nc2s s

W



  

Main Algorithm

● Sampling scheme:

– proofs rely on decomposing G into XTX and sampling from X

– minimizes expected error of approx matrix mult (Frobenius)

● Scaling: makes approx matrix multiplication unbiased

pi=
G ii
2

∑ j=1

n
G jj
2
=
∣X i ∣2

∥X∥F
2



  

Main Algorithm

● Bounds (in expectation and with high probability):

∥G− Gk∥∥G−G k∥∑i=1

n
G ii
2 , =2,F



  

Frobenius Norm Bounds

● Example – if                            :

–                 ( implies          ? )

–                                               

 = 0.1, Gii = 1

c ≥ 938k
4

∥G− Gk∥F ∥G−Gk∥F  n

 ≥ 1



  

Spectral Bounds

● Example – if                            :

–

–                                              

 = 0.1, Gii = 1

∥G− Gk∥2 ∥G−Gk∥2 n

c ≥ 59
2



  

Proof Sketch of Spectral Bound

C=GSD

● Column selection matrix:                                                

–          if ith column of G chosen at trial j;           otherwise

● Scaling matrix:              ,

● Define W and C:

–

–

● intersection of chosen columns/rows scaled by

Dii=1 / cpit

S ij=1 S ij=0

S∈ℝnxc

D∈ℝcxc

W = SDTGSD= DSTGSD
1

cpit
p jt



  

Proof Sketch of Spectral Bound

● Define column-sampled and rescaled version of X

–

– SVD:

● Lemma: If                        then:

    

Gk=CW k
+CT ∥G− Gk∥2=∥X− Uk

Uk
T X∥2

2

C x = XSD, C x∈ℝ
mxc

C x =
U  V T



  

Proof Sketch of Spectral Bound

● Define column-sampled and rescaled version of X

–

– SVD:

● Lemma: If                        then:

– Proof:

    

Gk=CW k
+CT ∥G− Gk∥2=∥X− Uk

Uk
T X∥2

2

C x = XSD, C x∈ℝ
mxc

C x =
U  V T

1 W = C x
TCx =

V 2 V ; Wk =
V k
k

2 V k

2 Gk =GSD W k 
+GSDT

= XT U  VT  V k
2 V T + V  UT X

= XT Uk
Uk
T X

3 XT X−XT Uk
Uk
T X=X− Uk

Uk
T X T X− Uk

Uk
T X 

4 ∥∥2
2=∥T∥2 for any matrix 

 = XTCx SDW k 
+ XTCxSD

T



  

Proof Sketch of Spectral Bound

● Lemma: If                        then:

●

● Combining Lemma with Theorem 2:

    

Gk=CWk
+CT ∥G− Gk∥2=∥X− Uk

Uk
T X∥2

2

∥G− Gk∥2 ∥X−Xk∥2
22∥X XT−CXCX

T∥2

∥G−Gk∥22∥X XT−CXCX
T∥2



  

Proof Sketch of Spectral Bound
● Last slide:

●

● Apply Theorem 1 to 2nd term on right to get final bound 

– note:  

∥G− Gk∥2∥G−Gk∥22∥X XT−CXCX
T∥2

pi =
Gii

2

∑ j=1
n G jj

2 =
∣X i∣2

∥X∥F
2 ; ∥X∥F

2=∑ j=1
n G jj

2



  

Eigenfunction Problem

● Eigenfunction of a linear operator returns from operator 
as a scaled factor of itself

● Eigenfunction Problem:

– relationship to discrete eigenvector problem:

∫D K  x , ssds =  x , x∈D

[
⋯ ⋯ ⋯
⋯ ⋯ ⋯
⋯ ⋯ ⋯
⋯ ⋯ ⋯

] [
⋮
 x 

⋮
⋮
]=  x row x



  

Nyström Method

● Quadrature-based method for numerical integration 

● Quadrature rule:

–         = quadrature points

–         = weights

● Apply to eigenfunction problem, assuming               :

–         = approximate eigenvalue, eigenfunction

– Nyström Method provides solution for 

∫a
b
y sds =∑ j=1

n
w j y s j

{w j}

{ s j }

D=[a ,b]

∫a
b
K  x , s sds≈∑ j=1

n
w j k  x , s j s j  =  

 , 

 , 



  

Nyström Method (cont)
● last slide:

● Define set of Nyström points,       , and substitute:

– eigendecomposition to get pairs (           )  

–        often set equal to        to maintain symmetry

● Extend (          ) over entire domain:

●          is Nyström extension of       and approximates   

∫a
b
K  x , s sds≈∑ j=1

n
w j k  x , s j s j  =  

{ x i}

∑ j=1

n
w j k  x i , s j s j  =   xi

{ x i} { s j }

mx =
1
m
∑ j=1

n
w j k x , s j  ms j 

mx  m m x

m , m

m , m



  

Nyström Method applied to G

● Nyström extension: 

● Recall: 

●                    :  Nyström extension of solution on W to full 
set of data points

– same form as Nyström extension we just derived, with
       =        and quadrature weights         equal 1

mx =
1
m
∑ j=1

n
w j k x , s j ms j 

{ x i} { s j }

G ≈ G = CW +CT

= C V −1 V TCT [W= V  V T ]

= C V −1−1 V TCT

= U  U T

U = C V −1

{w j}



  

Experiment 1: Full G vs Nyström Approx
● Classification using GP classifiers [Williams & Seeger, NIPS, 2001]

– requires inverse of Gram matrix

– USPS handwritten digits (7291 train, 2007 test)

– Discriminate class “4” from rest



  

Experiment 2

● Compare:  [Williams & Seeger, NIPS, 2001]

– Exact GP classifier on m points

– Nyström classifier on m points, extended to all points

● Nyström classifier does better! 


