On the Nystrom Method for Approximating a Gram

Matrix for Improved Kernel-Based Learning
(Petros Drineas & Michael Mahoney, JMLR, 2005)

Presented by Ameet Talwalkar



Motivation

« Kernel-based algorithms

- rely on inner-product between data points
- e.g., SVMs, Kernel PCA, Gaussian Processes

* Introduce non-linearity via PDS kernels
n
_ Zi,jzl c,-cjk(x,., xj) >0
B k<Xi'Xj): k<Xj'Xi)
« Resulting Gram (Kernel) matrix is positive semidefinite

e Non-negative eigenvalues



Motivation

« Kernel-based algorithms are sometimes costly

- Kernel PCA: eigendecomposition
- GP: matrix inversion
- SVM: O(n?) instance of Quadratic Programming

 Low-rank approximation of G (dense)

- approximate eigenvectors/values
- approximate inverse (matrix inversion lemma)

* Goal: Find low-rank approximation of Gram matrx to
Improve efficiency of Kernel-based algorithms
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Terminology - SVD

Full SVD: A=UX V', AcR™*"

Singular Values: XeR™*"; Y=diag (o, ...,0,)

p=min(m,n); o, 20,>..20,20

Singular Vectors: UeR™ ™, UTU=I_

VeR™", V'V=I_
“Best” rank-k Approx: Akzukzkv[ = Zf:j{ piUi(Vi)T

Pseudoinverse: At=V > 1T



Terminology — Gram Matrix

Dataset of n points: XelR™", X=UX V'

Gram matrix: GER™", G=X"X =V >V’

Partition of G: G=

0
9
m
7y
i



Basic Idea of Algorithm

w G,

G, G22

From last slide: G =

Nystrom Approximation: G~ G = CW T = (_]ZW(fT

Multiplying:
-~ w + w G
G= wow Gyl =
G, 12] | O G21 W+ Glz_

Estimate matrix by:

- exact decomposition of small piece ( W)
- Interpolate by relating sampled points to full dataset

Runtime: O (¢’ +nc”+s), where s based on sampling method



Main Algorithm

Data  :nxnGrammatrix G, {p;}L, suchthat 37, pyj=1.c<nand k< c

Result : 1 x 1 matrix G.

e Pick c columns of G in i.i.d. trials, with replacement and with respect to the probabilities
1 pitl,: let I be the set of indices of the sampled columns.

 Scale each sampled column (whose index is /€ I) by dividing its elements by ,/cpy: let
(' be the n » ¢ matrix containing the sampled columns rescaled in this manner.

» Let IV be the ¢ x ¢ submatrix of & whose entries are G;/(c, /Fip; i 1. je 1.

e Compute Wy, the best rank-k approximation to W,

o Return Gy = CWFCT.

: G* | xXP
* Samplingscheme: ,_-_——¢ _I% |
>, G Xl

J=

- proofs rely on decomposing G into X'X and sampling from X
- minimizes expected error of approx matrix mult (Frobenius)

« Scaling: makes approx matrix multiplication unbiased



Main Algorithm

Data  :nxnGrammatrix G, {p;}L, suchthat 37, pyj=1.c<nand k< c

Result : 1 x 1 matrix G.

e Pick c columns of G in i.i.d. trials, with replacement and with respect to the probabilities
1 pitl,: let I be the set of indices of the sampled columns.

 Scale each sampled column (whose index is /€ I) by dividing its elements by ,/cpy: let
(' be the n » ¢ matrix containing the sampled columns rescaled in this manner.

» Let IV be the ¢ x ¢ submatrix of & whose entries are G;/(c, /Fip; i 1. je 1.

e Compute Wy, the best rank-k approximation to W,

o Return Gy = CWFCT.

 Bounds (in expectation and with high probability):

||G_Gk||§<||G_GkH§+EZizl G, E=2,F




Frobenius Norm Bounds

Let r = rankl W) and let Gy be the best rank-k approximation to . In addition, let € > 0 and
n=1+./8log(1/3). Ifc=64k/e!, then

i
E[||G- G| ] < 1C— Gl p+e Y & (17)
i=1
and if c > 64kn?* /e then with probability at least 1 — 8

|GGy, < |G- €k||F+tz (18)

« Example-if 6=0.1, G, =1:

938k

(impliese>17?)

66, <[G-Gy + er



Spectral Bounds

In addition, if ¢ = il_,.-"EE then

~ .rj-
E[HG_G:!(HE] L ||G_GH||E+EZGE'
i=l1

and if c > 4n* /e’ then with probability at least 1 — &

n
|G- G|, = |G- Gk||2+szlc:§.,
i=

« Example-if 6=0.1, G, =1:

- ==
- |GG, <||G-G/|, + €n




Proof Sketch of Spectral Bound

e Column selection matrix: S elR™¢

- 5,;=1if i column of G chosen at trial j; 5S;,=0 otherwise
e Scaling matrix: DeR%<, D;=1/vcp;

e Define W and C:
_ C=GSD
- W = (SD)TGSD = DS"GSD
1

- intersection of chosen columns/rows scaled by 7,
1 1= ]



Proof Sketch of Spectral Bound

 Define column-sampled and rescaled version of X
-C,=XSD, C,eR™"
- SVD: C, =U3VT7

+ Lemma: If G,=CW/C" then: HG—Gk = HX—UKUZX‘E




Proof Sketch of Spectral Bound

 Define column-sampled and rescaled version of X
-C,=XSD, C,eR™"
- SVD: C, =U3VT7

. Lemma: If G,=CW}C then: ||G-G,|,=|x-0,U
- Proof. (1) w=cTc,=v3Vv; w, =V 32V,
(2) G, =GSD(W,)*(GSD)"
= X"C,SD(W ,)*(X"C, SD)
= XTOSVT(V 22V v E0T X
= X"0 Ul X
(3) XTX-X"0, Ul X=(X-0,0IX)7 (X-0.U0lX)
(4) ||QIE=]1Q"Q|, forany matrix Q



Proof Sketch of Spectral Bound

Lemma: If G,=CW}{C" then: HG_GkHZ = HX—UKUZX‘E

Theorem 2 Suppose A € R™" and let H; be the m x k matrix whose columns consist of the top
k singular vectors of the m < ¢ matrix C, as constructed from the LINEARTIMESVD algorithm of
Drineas, Kannan, and Mahoney (2004b). Then, for every k : 0 < k < rank(C),

|A— HHTA||L <

1A~ Agl]5 + 2 ||44T — ccT

Combining Lemma with Theorem 2:

IG-G,||, <|x—X,

<||G-G,]

E+2

2+A

X XT-C,C}
XXT-C,C}|

2

N



Proof Sketch of Spectral Bound

Last slide: HG H ‘G GkH +2HXXT C CTH
Theorem 1 Suppose A€ R™", c € 7" such that 1 < ¢ < n, and { p;};_, are such that
0
Pk = 5 (8)
1Allz

Construct C with the BASICMATRIXMULTIPLICATION algorithm of Drineas, Kannan, and Ma-
honey (2004a), and let CCT be an approximation to AAT. Then,

1
F < —=

E[|4A"—cc? THAHF (9)
Furthermore, let § € (0,1) andn = 1+ \/8log(1/d). Then, with probability at least 1 —§,

V

|4AT —cc!

=~ n 2
< —=|AllE- (10)
y €

Apply Theorem 1 to 2" term on right to get final bound

Gl _ x'p
. . . — — " X 2 — ’?_ G2
note: P, 7:1 G?j 1 X2 H ||F =1 =




Eigenfunction Problem

* Eigenfunction of a linear operator returns from operator
as a scaled factor of itself

« Eigenfunction Problem:

fDK(x,S)CP(S)dS =AP(x), x€D

- relationship to discrete eigenvector problem:

rOWX4> oo o oo o oo o ¢(X)

= AP (x)




Nystrom Method

« Quadrature-based method for numerical integration

b n
« Quadrature rule: fa y(s)ds = Zj:l w,y(s))
- {s,} = quadrature points

« Apply to eigenfunction problem, assuming D=|a, b|:

["K(x,s)0(s)ds~ 3" wik(x,s,)b(s,)= A

J_

~A, <7> = approximate eigenvalue, eigenfunction
- Nystrém Method provides solution for A, ¢



Nystrom Method (cont)

~/

ast slide: [" K (x,5)®(s)ds~ > _ wk(x,s)b(s)=Ad

j=1 "7
Define set of Nystrom points, {x,}, and substitute:

Zn.:l ij<xi)Sj)(~b<Sj> — ng(xz)

J

~/ ~/

- eigendecomposition to get pairs ( $,.,A,,)
- {x;} often set equal to{s;} to maintain symmetry

~/

Extend (c7>m, A ) over entire domain:
_ 1 n ~
(l)m<x>:X_Z-:lek('x’sj>(l)m(sj)

b, (x) is Nystréom extension of @, and approximates @,,(x)



Nystrom Method applied to G

« Nystrom extension: @m(x)—ézrf:lwjk(x,sj)cﬁm(sj)

e Recal G G=CW'C'
—cPrs'vic (w=P3sV]
— syt
oxu'

. U=cvx" Nystrom extension of solution on W to full
set of data points

- same form as Nystrom extension we just derived, with
{x;} ={s,} and quadrature weights {w} equal 1



Experiment 1: Full G vs Nystrom Approx

« Classification using GP classifiers [williams & Seeger, NIPS, 2001]

- requires inverse of Gram matrix
- USPS handwritten digits (7291 train, 2007 test)
- Discriminate class “4” from rest




Experiment 2

« Compare: [wiliams & Seeger, NIPS, 2001]

- Exact GP classifier on m points
- Nystrom classifier on m points, extended to all points

« Nystrom classifier does better!

m 1024 512 256 128 64
Ny mean 35.9 | 347 | 345 | 46.8 T 101.3
Ny std dev | 1.97 | 2.54 | 2.99 | 6.89 | 22.92
GP mean 24.1 | 64.6 | 77.2 | 1029 | 1274
GP std dev | 4.48 6.28 | 13.16 | 25.01 | 28.47
Diff mean 18.2 29.9 42.7 56.1 26.1

t-statistic 11.02 | 12.20 | 9.00 6.37 3.41




