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Abstract

We present a disambiguation algorithm for weighted automata. The algorithm admits two
main stages: a pre-disambiguation stage followed by a transition removal stage. We give a
detailed description of the algorithm and the proof of its correctness. The algorithm is not
applicable to all weighted automata but we prove sufficient conditions for its applicability
in the case of the tropical semiring by introducing the weak twins property. In particu-
lar, the algorithm can be used with any weighted automaton over the tropical semiring for
which the weighted determinization algorithm terminates and with any acyclic weighted
automaton over an arbitrary weakly left divisible cancellative and commutative semiring.
While disambiguation can sometimes be achieved using weighted determinization, our dis-
ambiguation algorithm in some cases can return a result that is exponentially smaller than
any equivalent deterministic automaton. We also present some empirical evidence of the
space benefits of disambiguation over determinization in speech recognition and machine
translation applications.

Key words: weighted automata, weighted automata algorithms, automata theory, rational
power series.

1 Introduction

Weighted finite automata and transducers are widely used in applications. Most
modern speech recognition systems used for hand-held devices or spoken-dialog
applications use weighted automata and their corresponding algorithms for the rep-
resentation of their models and their efficient combination and search [19, 2]. Sim-
ilarly, weighted automata are commonly used for a variety of tasks in machine
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Fig. 1. Example of (a) an ambiguous weighted automaton and (b) an equivalent, unam-
biguous automaton. In figures here, initial states are depicted by a bold circle (always with
initial weight 1) and final states by double circles containing their final weight. Transitions
are labeled with their symbol and weight. In this example, weights are over the tropical
semiring. The string cbcc labels two accepting paths, colored as cbcc and cbcc, in
(a) but only one path, cbcc, in (b).

translation [10] and other natural language processing applications [11], compu-
tational biology [7], image processing [1], optical character recognition [5], and
many other areas.

A problem that arises in several applications is that of disambiguation of weighted
automata: given an input weighted automaton, the problem consists of computing
an equivalent weighted automaton that is unambiguous, that is one with no two ac-
cepting paths labeled with the same string. Figure 1 shows two equivalent weighted
automata, one ambiguous and one not.

The need for disambiguation is often motivated by the common problem of deter-
mining the most probable string, or more generally the n most likely strings of a
lattice, that is an acyclic weighted automaton generated by a complex model, such
as those used in machine translation, speech recognition, information extraction,
and many other natural language processing and computational biology systems.
A lattice compactly represents the model’s most likely hypotheses. It defines a
probability distribution over the strings and is used as follows: the weight of an
accepting path is obtained by multiplying the weights of its component transitions
and the weight of a string obtained by summing up the weights of accepting paths
labeled with that string. In general, there may be many accepting paths labeled with
a given string. Clearly, if the lattice were unambiguous, a standard shortest-paths
or n-shortest-paths algorithm [9] could be used to efficiently determine the n most
likely strings. When the lattice is not unambiguous, the problem is more complex
and can be solved using weighted determinization [20]. An alternative solution,
which we will show has benefits, consists of first finding an unambiguous weighted
automaton equivalent to the lattice and then running an n-shortest-paths algorithm
on the resulting weighted automaton. A similar need for disambiguation appears
when computing the marginals of a given weighted transducer.

Another common problem where disambiguation is needed is that of sampling
strings from a weighted automaton according to the probability distribution it in-



duces. This weighted automaton may be defined over a semiring different from
the probability semiring but with the same weight set and the same multiplica-
tive operation. This problem arises, for example, in the context of on-line learning
with path experts [6]. Sampling from that weighted automaton directly is a diffi-
cult problem. But, if instead an equivalent unambiguous weighted automaton can
be computed, then the additive operation of the semiring would be inconsequen-
tial for that weighted automaton. One can then equivalently work in the probability
semiring and use a straightforward sampling method.

In general, one way to determine an equivalent unambiguous weighted automaton
is to use the weighted determinization algorithm [17]. This, however, admits sev-
eral drawbacks. First, weighted determinization cannot be applied to all weighted
automata. This is both because not all weighted automata admit an equivalent deter-
ministic weighted automaton but also because even for some that do, the weighted
determinization algorithm may not halt. Sufficient conditions for the application of
the algorithm have been given [17, 3]. In particular the algorithm can be applied
to all acyclic weighted automata over an arbitrary semiring and to all weighted
automata over the tropical semiring admitting the twins property. Nevertheless, a
second issue is that in some cases where weighted determinization can be used, the
size of the resulting deterministic automaton is prohibitively large.

This paper presents a new disambiguation algorithm for weighted automata extend-
ing to the weighted case the algorithm of [18] — the weighted case is significantly
more complex and this extension non-trivial. As we shall see, our disambiguation
algorithm applies to a broader family of weighted automata than determinization in
the tropical semiring: we show that if a weighted automaton can be determinized
using the algorithm of [17], then it can also be disambiguated using the algorithm
presented in this paper (see Section 6). Furthermore, for some weighted automata,
the size of the unambiguous weighted automaton returned by our algorithm is ex-
ponentially smaller than that of any equivalent deterministic weighted automata. In
particular, our algorithm leaves the input unchanged if it is unambiguous, while the
size of the automaton returned by determinization for some unambiguous weighted
automata is exponentially larger. An example is given in Section 7. We also present
empirical evidence showing the benefits of weighted disambiguation over deter-
minization in applications. Our algorithm applies in particular to unweighted finite
automata. Note that it is known that for some non-deterministic finite automata
of size n the size of an equivalent unambiguous automaton is at least (2v") [22],
which gives a lower bound on the time and space complexity of any disambiguation
algorithm for finite automata.

Our disambiguation algorithm for weighted automata is presented in a general way
and for a broad class of semirings. Nevertheless, the algorithm is limited in several
ways. First, not all weighted automata admit an equivalent unambiguous weighted
automaton. But, even for some that do, our algorithm may not succeed. The situa-
tion is thus similar to that of weighted determinization. However, we present suf-



ficient conditions based on a new notion of weak twins property under which our
algorithm can be used. In particular, our algorithm applies to all acyclic weighted
automata and more generally to all weighted automata for which the weighted de-
terminization algorithm of [17] terminates. Our algorithm admits two stages. The
first stage called pre-disambiguation constructs a weighted automaton with several
key properties, including the property that paths leaving the initial state and labeled
with the same string have the same weight. The second stage consists of removing
some transitions to make the result unambiguous. Our disambiguation algorithm
can be applied whenever pre-disambiguation terminates.

The paper is organized as follows. In Section 2, we review previous work on this
and related problems. In Section 3, we introduce some preliminary definitions and
notation relevant to the description of our algorithm. Section 4 describes our pre-
disambiguation algorithm and proves some key properties of its result. We describe
in fact a family of pre-disambiguation algorithms parameterized by a relation R
over the set of pairs of states. A simple instance of that relation is for two states
to be equivalent when they admit a path labeled by the same string leading to a
final state. In Section 5, we describe the second stage, which consists of transition
removal, and prove the correctness of our disambiguation algorithm. In Section 6,
we introduce the notion of weak twins property which we use to prove the sufficient
conditions for the application of pre-disambiguation and thus the full disambigua-
tion algorithm. The proofs under this condition are given in the case of weighted
automata for the tropical semiring. For more general weakly left divisible, cancella-
tive and commutative semirings, proofs are given for the application of disambigua-
tion when the semiring is finite or the automaton is acyclic. Finally, in Section 7,
we present experiments that compare weighted disambiguation to determinization
in speech recognition and machine translation applications. Our implementation of
these algorithms used in these experiments is available through a freely available
OpenFst library [4]. Detailed proofs for several of our results are reserved for the
appendix.

2 Previous work

We refer to [18] for an extensive discussion of disambiguation algorithms for un-
weighted automata and finite-state transducers, in particular the algorithm of Schiitz-
enberger. As already mentioned, our weighted disambiguation algorithm is an ex-
tension of the unweighted disambiguation of [18]. In fact, it coincides with that
algorithm in the special case of the Boolean semiring.

In the weighted case, we already mentioned and discussed weighted determiniza-
tion [17] as a possible disambiguation algorithm in some cases. There are two other
disambiguation procedures described in the literature: one for the special case of
finitely ambiguous min-plus automata [15], another one for the special case of poly-



nomially ambiguous min-plus weighted automata [14].

The procedure described by [15] for the disambiguation of a finitely ambiguous
min-plus automaton A (when it exists) consists of first decomposing A into a
semiring-sum of unambiguous weighted automata. This is done by determinizing
an unweighted version of A, which results in D, and using the intersection of D
with A. This step is similar to the algorithm of Schiitzenberger for the disambigua-
tion of finite-state transducers. Two states of A paired with the same state of D in
the intersection are by definition reachable by the same string. Thus, ambiguities
appear when such two states admit a transition with the same label to the same
state or if they are both final. To avoid such ambiguities, two distinct weighted au-
tomata are created, each with a copy of one of such transitions and the states and
transitions that can be read from its destination. The computational details, includ-
ing data structures or the details of some computational steps are not presented by
the authors. The computational complexity of the algorithm is also not discussed
or mentioned by the authors. In general, it seems that the number of unambiguous
weighted automata thereby created can be exponential in the number of ambiguities
of A. Furthermore, the size of each of these unambiguous automata can be in the
order of the size of D N A, which can be exponential in the size of A. The second
step of the algorithm consists of using the weighted automaton P that is the cross-
product of all these unambiguous automata to construct an unambiguous weighted
automaton equivalent to A using the victorious coordinates of strongly connected
components or simple circuits. It seems that the computational cost of the construc-
tion of the resulting unambiguous automaton can be exponential in the size of P,
in which case the overall complexity of the algorithm is super-exponential. This
is not completely clear and the authors do not provide a detailed description. But,
one advantage of the procedure of [15] is that, as part of the same procedure, it can
first test the existence of an equivalent unambiguous weighted automaton for A.
This procedure is quite different from our algorithm. It does not benefit from the
relation we define over pairs of A to determine if two states admit the same future.
It does not extend to weighted automata with an infinite number of ambiguities
since A must then be decomposed into infinitely many unambiguous automata.
It does not apply to different semirings and seems to admit a super-exponential
complexity. Our algorithm seems simpler and benefits from a more favorable com-
putational complexity. For unambiguous inputs, the complexity of our algorithm is
only quadratic (time to compute for all pairs if they admit a common future) and
the output weighted automata coincide with the input ones. In contrast, because
of the determinization step, the worst case complexity of the algorithm of [15] is
exponential for unambiguous inputs.

An alternative procedure was also described by [14][pp. 598-599] for constructing
an unambiguous weighted automaton (when it exists) in the specific case of polyno-
mially ambiguous min-plus weighted automata. The construction is rather intricate
and further relies on the prior determination of a threshold value Y. The authors do
not give an explicit algorithm for computing Y but state that it can be inferred from



[14][Proposition 5.1]. However, the corresponding procedure seems intractable. In
fact, as indicated by the authors, the cost of determining Y using that property is
super-exponential. The authors of [14] do not give the running-time complexity
of their procedure and do not detail various aspects, which makes a comparison
difficult. But, our algorithm is much simpler and seems to be significantly more ef-
ficient. Our algorithm is also more general since it applies in particular to weighted
automata over the tropical semirings that verify the weak twins property and that
may be exponentially ambiguous. It is also given for a broader family of semirings.
While we are not presenting guarantees for its applicability for semirings different
from the tropical semiring, its applicability for at least acyclic weighted automata
for those semirings is clear. One advantage of the procedures described by [14] is
that the existence of an unambiguous weighted automaton is first tested, though
that test procedure appears also to be very costly.

Finally, let us mention that an algorithm of Eilenberg [8] bears the same name,
disambiguation, but it is in fact designed for an entirely different problem.

3 Preliminaries

Given an alphabet Y, we will denote by || the length of a string © € ¥* and by ¢
the empty string for which |e| = 0.

The weighted automata we consider are defined over a broad class of semirings. A
semiring is a system (S, &, ®,0, 1) where (S, @, 0) is a commutative monoid with
0 as the identity element for &, (S, ®, 1) is a monoid with 1 as the identity element
for ®, ® distributes over @, and 0 is an annihilator for ®.

A semiring is said to be commutative when & is commutative. Some familiar ex-
amples of (commutative) semirings are the tropical semiring (R U {400}, min, +,
+00, 0), the semiring of non-negative integers (N, +, x,0,1) and of non-negative
reals (R, , +, x,0,1). The multiplicative operation of a semiring (S, ®, ®,0,1) is
said to be cancellative if for any x, 2’ and z in S with 2z # 0, x ® z = 2/ ® z implies
x = 2. When that property holds, the semiring (S, ®, ®,0, 1) is also said to be
cancellative.

A semiring (S, ®,®,0,1) is said to be left divisible if any element 2 € S — {0}
admits a left inverse 2/ € S, thatis 2’ @ x = 1. (S, ®, ®,0, 1) is said to be weakly
left divisible if for any x and 2’ in S such that x & 2’ # 0, there exists at least one 2
such that z = (z @ 2’) ® z. When the ® operation is cancellative, z is unique and
we can then write: z = (z @ 2/) 7! @ .

Weighted finite automata (WFAs) are automata in which the transitions are labeled
with weights, which are elements of a semiring, in addition to the usual alphabet



symbols [16]. A WFA A over Sis a 7-tuple (X, Qa, I, Fua, Ea, Au, pa) where: X is
the finite alphabet of the automaton, () 4 is a finite set of states, [ C ()4 the set of
initial states, F; C ()4 the set of final states, I/ a finite set of transitions which are
elements of Qg XX XSXQ 4, Aa: 4 — S aninitial weight function, and p4: Fy —
S the final weight function mapping F4 to S. We may omit the A subscript in the
above when there is no confusion in the automaton being referenced.

A path 7 of a WFA is an element of £* with consecutive transitions. The label of
a path is an element of >.* formed by concatenating its transition labels. We denote
by orig[n] the origin state and by dest[r] the destination state of the path. A path is
said to be accepting or successful when orig[r| € I and dest|r| € F.

We denote by wy[e] the weight of a transition e in A and similarly by w4 [n] the
weight of path m = e; ---¢e, obtained by ®-multiplying the weights of its con-
stituent transitions: wx[r] = wgylel] ® -+ ® wyle,]. When orig[n] is in I, we
denote by wh[r] = \4(orig[r]) ® wa[n] the weight of the path including the initial
weight of the origin state. For any two subsets U,V C ()4 and any string x € %,
we denote by P, (U, x, V) the set of paths in A labeled with x from a state in U to
a state in V and by W, (U, z, V') the @-sum of their weights:

Wu(U,z,V) = @ wgr].
w€P4(Ux,V)
When U is reduced to a singleton, U = {p}, we will simply write Wy (p, z,V)
instead of W4 ({p}, =, V') and similarly for V. To include initial weights, we denote:

Wilz,V)= @ wglr).
r€PL(1,3,V)
We also denote by 4 (U, x) the set of states reached by paths starting in U and
labeled with € >*. The weight associated by A to a string x € ¥* is defined by

Aw)= @  whlr]® paldestln]). ()

KEPA(]7;U7F)
when Py (Iy, x, Fy) # 0. A(x) is defined to be 0 when Py (14, x, Fy) = 0.

A state ¢ of a WFA A is said to be accessible if q can be reached by a path orig-
inating in [4. It is coaccessible if a final state can be reached by a path from q.
Two states g and ¢’ are co-reachable if they each can be reached by a path from 7,4
labeled with a common string x € >*. A WFA A is trim if all states of A are both
accessible and coaccessible. A is unambiguous if any string x € X* labels at most
one accepting path. The intersection of two WFAs A; and A, over a commutative
semiring is a WFA denoted by A NA, that satisfies (A;NA3)(z) = A1 (x) @A (2).

We will say that a semiring is admissible if it is weakly left divisible cancellative
and commutative. ' In all that follows, we will consider WFAs over an admissible

1 Our algorithms can be straightforwardly extended to the case of weakly left divisible left



semiring.

4 R-Pre-disambiguation of WFAs

We first define a relation R over pairs of states of a WFA A. Next, we use R to
define the R-pre-disambiguation of A, and then analyze the properties of the result
of R-pre-disambiguation.

4.1 Relation R over Q4 X Q4

Two states q,q¢ € Q4 are said to share a common future if there exists a string
x € ¥* such that P4(q,z, F') and Py4(¢',z, F') are not empty. Let M\ = AN A
denote the trim WFA obtained by intersecting A with itself. The states of M can be
identified with pairs (¢, ¢") € Q4 X Q4. By definition of intersection, state (g, ¢’)
of M is coaccessible if and only if ¢ and ¢’ share a common future in A. The set
of all coaccessible states of M can computed in time linear in |[M| < |A|2. Thus,
the future sharing information can be computed for all pairs of states of A in time
O(|A|?) and then checked in constant time.

Let Ry be the relation defined over Q4 X Q4 by ¢R; ¢  if and only if ¢ = ¢
or ¢ and ¢’ share a common future in A. Clearly, Ry is reflexive and symmetric,
but in general it is not transitive. Observe that Ry is compatible with the inverse
transition function, that is, if ¢R; ¢/, ¢ € da(p,x) and ¢’ € 04(p', z) for some
zr € ¥ with (p,p') € Q%, then pR; p’. We will also denote by R, the complete
relation defined by ¢ Ry ¢ for all (¢, q') € Q%. Clearly, Ry is also compatible with
the inverse transition function.

The construction we will define holds for any relation R out of the set of admissible
relations R defined as the reflexive and symmetric relations over ()4 X ()4 that are
compatible with the inverse transition function and coarser than R¢. R includes Ry
and Ry, as well as any symmetric relation R compatible with the inverse transition
function that is coarser than Ry, that is, for all (¢,¢') € Q%, ¢R; ¢ = ¢R¢. Thus,
for a relation R in R, two states ¢ and ¢’ that share the same future are necessarily
in relation, but they may also be in relation without sharing the same future. Note
in particular that R is always reflexive.

When the full WFA M is available, we can use that to define and compute R;. But,
in some cases only some partial information is available, for example when M (or
its reverse) is constructed on-the-fly, starting from its final states. In such cases, an
alternative relation R € R may be available.

semirings [3].



4.2 Construction

Fix arelation R € R.Forany 2 € ¥*,and ¢ € d4(U, ), we also denote by 6% (U, z)
the set of states in 4 (U, x) that are in relation with ¢:

0%(U,z) = da(U,z) N {p: pRq}.

Note that, since R is reflexive, by definition, ¢% (7, x) contains ¢q. We will assume
that WZ(x,{p1,...,p:}) # 0 forany x € ¥* otherwise the subset corresponding to
x needs not be constructed; alternatively, we can simply exclude such states from
the state set. For any # € ¥* and ¢ € J4(/,x), we define the weighted subset

s(z,q) by
s(z,q) :{(pl,wl), oo (peywy) ({pl, D = 5;1[(],1:))
N (W € [1,t],w; = Wiz, {p1,....p}) "' @ WfIl(x’pi))}'

For a weighted subset s(z, ¢), define set(s(z,q)) = {p1,...,p:}. For any WFA A
define the WFA B as follows:

Qs ={(q,s(x,q)): x € X", q € 0a(In, )}
Iy ={(q,s(e,q)): q € Ia}
Fy={(q,s(z,q)): v € X%, q € 0a(La, x) N Fu}

B = {(6:5) 0,005 (0.9, () € Qara €%
Jo € ¥ [s = s(z,q) = {(p1,01), ..., (P, we) },
s' = s(za,¢) = {(p, ), ..., (phr, i)},
¢ €0a(g,a),w=Ep (wi ® Wal(p;, a, set(s’))),

i=1 t
Vi€ Lt v =w"® (EBw,- ® Wﬂ(pi,a,p}>}

i=1

and V(q,s) € Ig,s = {(p1,w1),...,(pr, w)}, As((q,s)) = @])\A(pi).

i€[1,t

Y(q,5) € Fz,s = {(p1,w1),..., (0, we)}, pa((q,5)) = B (wi @ pa(pi))-

pi€ly

1€[1,]
Note that the property set(s’) = 53{ (set(s), a) always holds in the definition of the
transition set Ex above. In particular, if p’ is in 6% (set(s), a), then there is a path
from I, to some p € set(s) labeled = and a transition from p to p’ labeled with
a and p' Rq' so p/ is in set(s’). Conversely, if p’ is in set(s’) then there exists p
reachable by x with a transition labeled with a from p to p'. Since p’ is in set(s’),
pis in (55{([ 4, xa), thus p’ R¢'. Since there exists a transition labeled with a from
q to ¢’ and from p to p/, this implies that p R q. Since p R q and p is reachable via z,
pisin 6% (L, x).



Fig. 2. Illustration of the Ry-pre-disambiguation construction in the semiring
(R4, 4+, x,0,1). For each state (g, s) of the result, the subset s is explicitly shown. ¢ is the
state of the first pair in s shown. The weights are rational numbers, for example ﬁ ~ .091.

When the set of states ()4 is finite, B is a WFA with a finite set of states and tran-
sitions and is defined as the result of the R-pre-disambiguation of A. In general,
R-pre-disambiguation is thus defined only for a subset of WFAs, which we will
refer to as the set of R-pre-disambiguable WFAs. We will show later sufficient con-
ditions for WFA A to be R-pre-disambiguable in the case of the tropical semiring.
Figure 2 illustrates the R-pre-disambiguation construction.

4.3  Properties of the resulting WFA

In this section, we assume that the input WFA A is R-pre-disambiguable that is that
the number of states of the WFA B generated by R-pre-disambiguation is finite.
Let us emphasize that the results presented in this section for R-pre-disambiguation
hold for an arbitrary WFA over an admissible semiring for which the application of
R-pre-disambiguation results in a finite number of states.

In general, the WFA B constructed by R-pre-disambiguation is not equivalent to
A, but the weight of each path in B starting at an initial state to some state (g, s)
equals the @-sum of the weights of every path in A with the same label starting at
an initial state to a state in relation with q.

Proposition 1 Let B be the WFA returned by the R-pre-disambiguation of the WFA
A. Then, the following equalities hold for any path m € Pg(I3,x,(q, s)) in B, with
x € X ands = {(p1,w1),...,(pt,wr)}:

wg (1] = Wh(x,set(s)) and Vi€ [1,t], w[r] @ w; = Wi(z,p;).

The proof of is given in Appendix A.

Proposition 2 Let B be the WFA returned by the R-pre-disambiguation of the WFA

10



A. Then, for any accepting path m € Pg(Iz,x,(q,s)) in B, with x € ¥* and
(q,8) € Fg, the following equality holds:

wg[m] ® ps((q, 5)) = A(2).

Proof. Let s = {(p1,w1), ..., (p;, w;)}. By the definition of pg, we can write

wi[r] ® pu((g,8) = whlr] @ @ (w; ® paps)) = ) (WhA] ® w; ® pal(ps)).
gt gt

Plugging in the expression of (w’[r] ® w;) given by Proposition 1 yields

w7 @ ps((q,5)) = B Wiz, pi) ® pa(pi))- 2)
T

By the definition of R-pre-disambiguation, ¢ is a final state. Any state p € d4 (1, x)N
F' shares a common future with ¢ since both p and ¢ are final states, thus we must
have p R ¢, which implies p € set(s). Thus, the &-sum in (2) is exactly over the set
of states d4 (7, z) N F', which proves that wk[7] @ ps((q, s)) = A(z). O

Proposition 3 Let B be the WFA returned by the R-pre-disambiguation of the WFA
A. Then, any string x € ¥* accepted by A is accepted by B.

Proof. Let (qo, a1, w1,q1) - -+ (¢n—1, @n, Wy, g, ) be an accepting path in A such that
ay:--anp = T. BY COHStI'UCtiOH, ((q07 SO)J ai, w/17 <q17 Sl)) e ((%1717 Snfl)a Qp,, w;u

(qn, Sn)) is a path in B for some w, € S and with s; = s(ay - -a;,¢;) for all
i € [1,n] and sy = € and by the definition of finality in R-pre-disambiguation,
(Gn, Sn) s final. Thus, z is accepted by B. O

5 Disambiguation algorithm

This section describes our disambiguation algorithm which applies to any WFA
over an admissible semiring that is R-pre-disambiguable. Our algorithm consists
of two steps: the R-pre-disambiguation algorithm presented and analyzed in the
previous section, and a transition removal step and that requires a non-trivial proof
of correctness.

We first present and analyze the transition removal step, next describe the full dis-
ambiguation algorithm, and illustrate it using several examples over different semi-
rings.

11
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Fig. 3. Illustration of the proof of Lemma 1. The lemma proves the existence of the dashed
transitions and the dashed state when (¢, s) # (¢/, s’) and = # 2.

5.1 Transition removal

Propositions 1, 2 and 3 show that the strings accepted by B are exactly those ac-
cepted by A and that the weight of any path in B accepting = € ¥* is A(x). Thus,
if for any x, we could eliminate from B all but one of the paths labeled with x, the
resulting WFA would be unambiguous and equivalent to A. Removing transitions
to achieve this objective without changing the function represented by the WFA
turns out not to be straightforward. The following two lemmas (Lemmas 1 and 2)
and their proofs are the critical technical ingredients helping us define the transition
removal and prove its correctness. This first lemma provides a useful tool for the
proof of the second.

Lemma 1 Let B be the WFA returned by the R-pre-disambiguation of the WFA A.
Let (q,s) and (¢, s') be two distinct states of B both admitting a transition labeled
with a € X to the same state (qo, So) (or both final states), and such that (q,s) €
dp(Ip,x) and (¢',s") € o513, x) for some x € ¥*. Then, if (¢,s) € op(Iz,2") for
some x' # x, x' € X¥, there exists a state (¢, s") € dg(Ig,z") with (¢',s") # (q, s)
and such that (¢', s") admits a transition labeled with a to (qo, So) (resp. is a final
state).

Proof. Figure 3 illustrates the proof of the lemma. First, note that since s = s(z, q)
and s’ = s(x,q'), ¢ = ¢ implies (¢, s) = (¢, s'). By contraposition, since (g, s) #
(¢',s"), we must have ¢ # ¢'. Since both gy € d4(q,a) and gy € 04(¢',a) in A
(or both ¢ and ¢’ are final states), ¢ and ¢’ share a common future, which implies
qR¢. Since (¢, s') is reachable by = in B from /5, ¢’ must be reachable by = from
I in A. This, combined with ¢ R ¢, implies that ¢’ must be in set(s). Since (¢, s) €
dg(Ig,2’), all states in set(s) must be reachable by =’ from [ in A, in particular
¢'. Thus, by definition of the R-pre-disambiguation construction, B admits a state
(¢',s(¢',2")), which is distinct from (g, s) since g # ¢. If (¢, s) admits a transition
labeled with a to (qo, So), then we have so = s(qo,2'a). If (¢, s') also admits a
transition labeled with a to (qo, So), then ¢’ admits a transition labeled with a to go
and by the definition of the R-pre-disambiguation construction, (¢, s(¢’, ’)) must
admit a transition by a to (qo, s(qo, 2'a)) = (qo, o). Finally, in the case where both
(q,s) and (¢, ) are final states, then ¢’ is final in A and thus (¢’, s(¢’, 2’)) is a final
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u a

(a) (b)

Fig. 4. List Processing. The states in (a) depicted in blue represent the list £(qo, so, a). The
red-colored transition in (b) from state (g;, sj) will be removed since state (g;, s;) is also
reachable by a path labeled with z, its index ¢ is less than j and it has not already been
removed.

state in B. O

Let B be the WFA returned by the R-pre-disambiguation of the WFA A. For any
state (qo, So) of B and label a € X, let L(qo, s0,a) = ((q1,81); -, (Gn, Sn)), n > 1,
be the list of all distinct states of B admitting a transition labeled with ¢ € ¥ to
(qo, S0), with ¢; < - -+ < @,,. This configuration is depicted in Figure 4a. We define
the processing of the list L(qq, o, a) as follows: the states of the list are processed
in order; for each state (g;, s;), j > 2, this consists of removing its a-transition to
(qo, so) if and only if there exists a co-reachable state (¢;, s;) with 1 < i < j whose
a-transition to (¢, So) has not been removed. ? This step is illustrated in Figure 4b.
Note that, by definition, the a-transition to (go, So) of the first state (g, s1) is kept.

We define in a similar way the processing of the list F = ((q1, $1), - -, (Gn, Sn)),
n > 1, of all distinct final states of B, with an arbitrary order ¢; < --- < ¢, as
follows: the states of the list are processed in order; for each state (g;, s;), j > 1,
this consists of making it non-final if and only if there exists a co-reachable state
(gi, s;) with i < j whose finality has been maintained. By definition, the finality of
state (qq, 1) is maintained.

Lemma 2 Let B be the WFA returned by the R-pre-disambiguation of the WFA A.
Let (qo, So) be a state of B and a € %, then, the WFA C resulting from processing
the list L(qo, So, a) accepts the same strings as B. Similarly, the processing of the
list of final states F of B does not affect the set of strings accepted by B.

2 This condition can in fact be relaxed: it suffices that there exists a co-reachable state
(g, s;) with ¢ < j since it can be shown that in that case, there exists necessarily such a
state with a a-transition to (qo, so).
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Proof. Fix a € ¥ and let L(qo, So,a) = ((q1,1),---,(qn, Sn)), n > 1, be the list
of all distinct states of B admitting a transition labeled with a € X to (qo, o), with
¢1 < -+ < q,. By definition, the a-transition of the first state (qq, 1) is kept, thus
the set of strings accepted is unchanged after processing the first state. Assume now
that the set of strings accepted is the same as that of B after processing all states
(¢1,81),---,(q,8:), 1 € [1,n — 1]. Assume that after processing (g; 1, S;i11) its
a-transition to (qo, So) is removed, otherwise the set of strings accepted is clearly
unchanged and is thus the same as B by the induction hypothesis. The removal
occurs because (¢;+1, s;+1) and some state (g;, s;) are both in d3(/5, ) for some
xr € X*, with j < ¢ + 1. The removal of the transition could potentially cause
the elimination of a string accepted by the automaton because (¢;;1, s;+1) may be
reachable by some other string 2/ # x that does not reach (g;, s;). Assume that
(Gix1, si+1) is reachable by such a string 2’ # x. We will show that at least one
previously processed state is reachable by 2’ whose a-transition to (g, o) has not
been removed. This will prove that the set of strings accepted is not affected by the

processing of (g;+1, Si+1)-

Assume that no such previously processed state exists. By Lemma 1, there exists
a state (qg,, Sk, ) in L£(qo, So, a) reachable by 2/, distinct from (g;11, s;+1) and with
qk, = ¢;- State (qx,, Sk, ) must have been processed before (g;11, s;+1), otherwise,
Jj <i+1 <k and g, = ¢; would imply ¢; = ¢;41, which cannot be since, by
construction, two distinct states of B of the form (g;, s;) and (g;, S;+1) cannot be
co-reachable. Thus, since by assumption no previously processed state admitting a
a-transition to (go, o) is reachable by 2/, the a-transition from (g, , Sk, ) to (qo, So)
must have been removed. By the same assumption, the removal of the a-transition
from (g, , Sk, ) must be because (gx,, sk,) € ds(Is,2”) and (q;, ;) € 05(Iz,2")
for some string z” # 2’ and some [ < kj, and because the a-transition of (g, s;)
to (qo, So) has not been removed. By Lemma 1, this implies the existence of a
state (qk,, Sk,) in L(qo, So, @) reachable by 2, with ¢, = ¢, and and with (gx,, Sk, )
distinct from (gx, , sk, ). As argued before, this implies that (gy,, s, ) has been pro-
cessed before (qy,, sk, ), therefore we have ky < ky. Since (gx,, Sk,) i reachable
by ', by assumption, its a-transition to (go, so) must have been removed. Proceed-
ing in this way, we can construct an infinite sequence of strictly decreasing indices
ki > ko > ... > ky > --- of states (qx,, , Sk,,) in L£(qo, So, a) reachable by 2/,
which would contradict the finiteness of L£(qo, So, a). Thus, there exists a previ-
ously processed state in £(qo, So, @) whose a-transition has not been removed and
that is reachable by z’, which concludes the proof of the first claim. The proof for
processing F follows the same steps. a

3 We can also introduce a super-final state f to which all final states of B are connected
by a transition labeled with an auxiliary symbol ¢ ¢ 3. with the semantics of finality. The
proof is then syntactically the same as for regular symbols.
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(c) (d)

Fig. 5. Example illustrating the full disambiguation algorithm applied to a non-acyclic
WFA. (a) WFA A over the tropical semiring. (b) WFA B obtained from A by applica-
tion of pre-disambiguation. (¢) WFA C result of our disambiguation algorithm applied to
A. C is obtained from B by removal of the red-colored transition from state 2 labeled with
¢/2 and trimming. (d) WFA obtained from A by application of determinization.

5.2 Disambiguation

Assume that A is R-pre-disambiguable. Then, this defines a disambiguation algo-
rithm DISAMBIGUATION for A as follows:

(1) construct B, the result of the R-pre-disambiguation of A;
(2) for any state (qo, So) of B and label a € 3, process L(qo, So, a); process the
list of final states JF.

Theorem 1 Let A be a R-pre-disambiguable WFA over an admissible semiring.
Then, algorithm DISAMBIGUATION run on input A generates an unambiguous
WFA B equivalent to A.

Proof. Let B be the WFA returned by R-pre-disambiguation run with input A. By
lemma 2, the set of strings accepted after processing the lists £(qo, So,a) and F
remains the same * . Furthermore, in view of the Propositions 1-3, the weight of the

4 The lemma is stated as processing one list, but from the proof it is clear it applies to
multiple lists.
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Fig. 6. Example illustrating the full disambiguation algorithm applied to a WFA defined
on the semiring (R4, +, x,0,1). (a) input WFA A on this semiring. (b) WFA B obtained
from A by application of R-pre-disambiguation. (¢) WFA € result of our disambiguation
algorithm applied to A obtained from B by transition removal.

unique path labeled with an accepted string « in B ®-multiplied by its final weight
is exactly A(x). Finally, by the definition of the processing operations, the resulting
WFA is unambiguous, thus B is an unambiguous WFA equivalent to A. a

Differing numberings of the states can lead to different orderings in each list and
thus to different transition or finality removals, thereby resulting in different WFAs,
with potentially different sizes after trimming. Nevertheless, all such resulting WFAs
are equivalent.

Note that our disambiguation applies to any WFA A that is R-pre-disambiguable.
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Fig. 7. Example illustrating the full disambiguation algorithm applied to a WFA defined
over the tropical semiring. (a) WFA A over the tropical semiring. (b) WFA B obtained
from A by application of R ;-pre-disambiguation. (c) WFA C result of our disambiguation
algorithm applied to A obtained from B by transition removal.

5.3 Disambiguation examples

Figure 5 gives an example illustrating the pre-disambiguation and transition-removal
stages of our disambiguation algorithm and also shows the result of determiniza-
tion.

Figure 6 gives another example illustrating the application of our disambiguation
algorithm to a WFA on the semiring (R, +, x,0,1).

Figure 7 gives another example illustrating the application of our disambiguation
algorithm to a tropical semiring WFA.

5.4  Example of a non-disambiguable WFA

Some WFAs do not admit an equivalent unambiguous WFA. Figure 8 shows an
example of such a WFA defined over the tropical semiring, as shown by the follow-
ing proposition. This example was also presented by [15] with a slightly different
proof.

Proposition 4 Let Ay be the WFA defined over the tropical semiring of Figure 8.
Then, there exists no deterministic WFA or unambiguous WFA over the tropical
semiring equivalent to A,.

Proof. It is not hard to see that A, defines the following function,
Vo € ¥ Ap(x) = min{|z|4, |z|p}. 3)
Assume that there exists a deterministic WFA D over the tropical semiring equiv-

alent to Ay. Consider the set of states in D reached when reading a”, n € N from
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Fig. 8. Example of a non-disambiguable WFA A over the tropical semiring.

the initial state. Since there are finitely many states, there exist ny, ny € N, ny < ny
such that o™ and a™? reach the same state ¢ € ().

Let w; (w9) denote the weight of the path from the initial state to ¢ labeled with
a™ (resp. a"?), including the initial weight, and p the final weight at q. Similarly
let w’ denote the weight of the path from ¢ to F' labeled with 6™ and let p’ be the
final weight at the destination state of that path. By definition of A, Ag(a™b™) =
wy + W + p = ny and Ag(a"b™) = wy + W' + p) = ny, thus wy = ws. But,
Ao(a™) = wy + p = ny and Ap(a™) = wy + p = ng, which contradicts w; = ws.
Thus, there exists no deterministic WFA D equivalent to A.

Assume now that there exists a trim unambiguous WFA U over the tropical semi-
ring equivalent to Ag. Then, the weight of a cycle in U labeled with a string = must
be min{|z|,, |z|s}. Thus, two cycles labeled with the same string have the same
weight and U has the twins property. By [17][Theorems 11 and 12], U is deter-
minizable. This contradicts the non-existence of a deterministic WFA D equivalent
to Ag. Thus, A( admits no equivalent unambiguous WFA U. O

6 Sufficient conditions

6.1 Tropical semiring

The definition of siblings and that of twins property for WFAs were previously
given by [17] (see also [3]). We will use a weaker (sufficient) condition for R-pre-
disambiguability.

Definition 1 Two states p and q of a WFA A are said to be siblings if there exist
two strings x,y € X* such that both p and q can be reached from an initial state by
paths labeled with x and there are cycles at both p and q labeled with y.

Two sibling states p and q are said to be twins if for any such x and y, W4 (p,y,p) =
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YWa(p.y.p)

A
@\  YWa(a.y.q)

©

Fig. 9. States p and q are siblings since they both can be reached by paths labeled with x
from the initial state and have cycles labeled by y. When W, (p, y,p) = Wa(q, vy, q), they
are twins and when p R q is additionally required, they are weak twins.

Wa(q,y,q). A is said to have the twins property when any two siblings are twins.
It is said to have the R-weak twins property when any two siblings that are in R
relation are twins. When A admits the Ry-weak twins property, we will also say in
short that it admits the weak twins property.

These definitions are illustrated in Figure 9.

The results given in the remainder of this section are presented in the specific case
of the tropical semiring. To show the following theorem we partly use a proof tech-
nique from [17] for showing that the twins property is a sufficient condition for
weighted determinizability.

Theorem 2 Let A be a WFA over the tropical semiring that admits the R-weak
twins property. Then, A is R-pre-disambiguable.

The proof is given in Appendix B. The theorem implies in particular that if A has
the twins property then A is R-pre-disambiguable. In particular, any acyclic WFA
is R-pre-disambiguable.

A WFA A is said to be determinizable when the weighted determinization algo-
rithm of [17] terminates with input A (see also [3]). In that case, the output of the
algorithm is a deterministic WFA equivalent to A.

Theorem 3 Let A be a determinizable WFA over the tropical semiring, then A is
R-pre-disambiguable.

The proof is given in Appendix C. By the results of [12], this also implies that any
polynomially ambiguous WFA that has the clones property is R-pre-disambiguable
and can be disambiguated using DISAMBIGUATION. There are however WFAs that
are R-pre-disambiguable and thus can be disambiguated using DISAMBIGUATION
but that cannot be determinized using the algorithm of [17]. Figure 10 gives an ex-
ample of such a WFA. To see that the WFA A of Figure 10 cannot be determinized,
consider instead B obtained from A by removing the transition from state 3 to 5. B
is unambiguous and does not admit the twins property (cycles at states 1 and 2 have
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(a) (b)

Fig. 10. (a) WFA A that cannot be determinized by the weighted determinization algorithm
of [17]. (b) A has the weak twins property and can be disambiguated by DISAMBIGUATION
as shown by the figure. One of the two states in dashed style is not made final by the
algorithm. The head state for each of these states, is the state appearing in the first pair
listed.

distinct weights), thus it is not determinizable by Theorem 12 of [17]. Weighted de-
terminization creates infinitely many subsets of the form {(1,0), (2,n)}, n € N, for
paths from the initial state labeled with ab™. Precisely the same subets are created
when applying determinization to A.

On the tropical semiring, define — A as the WFA in which each non-infinite weight
in A is replaced by its negation. The following result can be proven in a way that is
similar to the proof of the analogous result for the twins property given by [3].°

Theorem 4 Let A be a trim polynomially ambiguous WFA over the tropical semi-
ring. Then, A has the weak twins property iff the weight of any cycle in B =
TRIM(A N (—A)) is 0.

This leads to an algorithm for testing the weak twins property for polynomially
ambiguous WFAs in time O(|Q|? + |E4|?), as in [3]. It was shown by [13] that
the twins property is a decidable property that is PSPACE-complete for general
WEFAs over the tropical semiring. We conjecture that the same property holds for
the weak twins property and in fact that a variant of the proof of [13] could be used,
but we leave that to future work.

6.2 Finite semirings

The following is a straightforward result showing that our disambiguation can al-
ways be used when the admissible semiring is finite.

Theorem 5 Let A be an arbitrary WFA over a finite admissible semiring. Then,

DISAMBIGUATION can be applied to A and results in an equivalent unambiguous
WFA.

® 1In [3], the authors use instead the terminology of cycle-unambiguous WFAs, which co-
incides with that of polynomially ambiguous WFAs.
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Fig. 11. Example of a WFA over the tropical semiring that is polynomially ambiguous and
that does not admit the cycle weight property of Theorem 4. Since it does not admit weak
twins property, it is not pre-disambiguable.

Proof. Since the semiring is finite, at most finitely many subsets can be created
by R-pre-disambiguation. Thus, A is R-pre-disambiguable and DISAMBIGUATION
can be used. a

This result can be extended to the case of locally finite semirings.
6.3 Other admissible semirings

We can define as with the twins property [3] an analogous notion of weak twins
property for other admissible semirings than the tropical semiring. However, a re-
sult analogous to Theorem 2 does not hold in general.

Theorem 6 Let A be an arbitrary acyclic WFA over an admissible semiring. Then,
DISAMBIGUATION can be applied to A and results in an equivalent unambiguous
WFA.

Proof. Since the WFA is acyclic, at most finitely many subsets are created by R-
pre-disambiguation. Thus, A is R-pre-disambiguable and DISAMBIGUATION can
be used. O

7 Experiments

In order to experiment with weighted disambiguation, we implemented the algo-
rithm (using the Ry relation) in the OpenF'st C++ library [4]. For comparison, an
implementation of weighted determinization is also available in that library [17].

For a first test corpus, we generated 500 speech lattices drawn from a random-
ized, anonymized utterance sampling of voice searches on the Google Android
platform [21]. Each lattice is an acyclic WFA over spoken words that contains
many weighted paths. Each path represents a hypothesis of what was uttered along
with the automatic speech recognizer’s (ASR) estimate of the probability of that
path. Such lattices are useful for passing compact hypothesis sets to subsequent
processing without commitment to, say, just one solution at the current stage.
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The size of a lattice is determined by a probability threshold with respect to the most
likely estimated path in the lattice; hypotheses within the threshold are retained in
the lattice. Using |A| = |Qa| + |E4| to measure automata size, the mean size for
these lattices was 2384 and the standard deviation was 3241.

The ASR lattices are typically non-deterministic and ambiguous due to both the
models and the decoding strategies used. Determinization can be applied to reduce
redundant computation in subsequent stages; disambiguation can be applied to de-
termine the combined probability estimate of a string that may be distributed among
several otherwise identically-labels paths.

Disambiguation has a mean expansion of 1.23 and a standard deviation of 0.59.
Determinization has a mean expansion of 1.31 and a standard deviation of 1.35.
For this data, disambiguation has a slightly lower mean expansion compared to
determinization but a very substantially lower standard deviation.

As a second test corpus, we used 100 automata that are the compact representation
of hypothesized Chinese-to-English translations from the DARPA Gale task [10].
These automata may contain cycles due to details of the particular translation sys-
tem, which provides an interesting contrast to the acyclic speech case. Some fail to
determinize within the allotted memory (1GB) and about two-thirds of those also
fail to disambiguate, possible when cycles are present.

Considering only those which are both determinizable and disambiguable, disam-
biguation has a mean expansion of 4.53 and a standard deviation of 6.0. Deter-
minization has a mean expansion of 54.5 and a standard deviation of 90.5. For this
data, disambiguation has a much smaller mean and standard deviation of expansion
compared to determinization.

As a final example, Figure 12 shows an acyclic unambiguous (unweighted) automa-
ton whose size is in O(n?). No equivalent deterministic automaton can have fewer
than 2" states since such an automaton must have a distinct state for each of the
prefixes of the strings {(a + b)*'b(a + b)"*: 1 < k < n}, which are prefixes
of L. Thus, while our disambiguation algorithm leaves the automaton of Figure 12
unchanged, determinization would result in this case in an automaton with more
than 2" states.

8 Conclusion

We presented an algorithm for the disambiguation of WFAs. The algorithm ap-
plies to a family of WFAs defined over the tropical semiring verifying a sufficient
condition that we described, which includes all acyclic and, more generally, all de-
terminizable WFAs. Our algorithm applies to WFAs defined over other admissible
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Fig. 12. Unambiguous automaton over the alphabet {a,b,c} accepting the language
L = {(a+b)*(a+ b)"*ca*: 1 < k < n}. Forany k > 0, U serves as a short-
hand for (a + b)*.

semirings that are R-pre-disambiguable. In particular, it applies to all acyclic WFAs
defined over an arbitrary admissible semiring.

Our experiments showed the favorable properties of this algorithm in applications
related to speech recognition and machine translation. The algorithm is likely to
admit a large number of applications in areas such as natural language processing,
speech processing, computational biology, and many other areas where WFAs are
commonly used such as machine learning. The study of the theoretical properties
we initiated raises a number of novel questions which include the following: the
decidability of the weak twins property for arbitrary WFAs, the characterization of
WFAs that admit an equivalent unambiguous WFA, the characterization of WFAs
to which our algorithm can apply and perhaps an extension of our algorithm to a
wider domain, and finally the proof and study of these questions for other semirings
than the tropical semiring.
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Appendix

A Proof of Proposition 1

Proof. The proof is by induction on the length of 7. If 7 has length zero, it is a
zero-length path from the state (¢, s(¢,q)) € Iy to the same state and wk[7] =
)\B(((L S)) We have Wi(E, SGt(S)) = @ﬂ'ePA(IA,e,set(s)) U)f[ [ﬂ-] = @peset(s) )‘A<p) =
A5 ((g, 8)). Also, foralli € [1, ], wk[r]@w; = Az((q,5))@[As((q,5)) ™' @ Aa(pi)] =
Ma(p;) and W (e, p;) = Aa(p;), thus the equalities trivially hold.

Assume that the equalities hold for all paths of length at most n € N starting in
I and let 7 be a path of length n + 1. We can therefore decompose as a path 7 in
Py(Ig,z,(q,s")) for some x € ¥*, ¢ € Qq, and 5" = {(p},w)),..., Py, wy)},
followed by a transition e = ((¢/, s), a, wle], (¢, s)) from (¢, s') to (g, s). By defi-
nition of wle] in R-pre-disambiguation we can write

wg[r] = wir'] ® wle] = wi[r'] @ P (w; ® Wa(p), a, set(s))>

J=1

t/
= P wilr'] @ w) @ Wa(p, a,set(s))
=1

tl

= P Wi(z,p)) ® Walp), a,set(s)), (A1)

Jj=1

where we used the identities wg[n'] ® wj = Wi(z,p}), j € [1,t], which hold by
the induction hypothesis.

We will show that any path £ in A labeled with za, starting in I4 and ending in
set(s) must go through set(s’), that is, £ can be decomposed into a path labeled
with x and reaching a state of set(s’) followed by a transition labeled with a from
that state to a state of set(s). (A.1) then implies that

w[7] = Wi(za, set(s)). (A.2)

Indeed, let £ = £’¢’ be a decomposition of £ into a path £’ labeled with x from 1,4 to
some state p’ € ()4 followed by a transition ¢’ labeled with a from p’ to some state
p € set(s). By the definition of R-pre-disambiguation since p is in set(s), we have
p R ¢q. By the compatibility of R with the inverse transition function, p € d4(p’, a),
and q € 04(¢, a), this implies p' R¢’. Since we also have p’ € 4 (4, x), this shows
that p’ is in set(s’) and therefore that path ' ends in set(s’).

In view of wi[r] = wk[7'] ® ws[e] and using the definition of w; in R-pre-disambi-
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guation we can write, for any i € [1,¢],

wg (7] @ w; = wir'] ® wsle] @ wple]” <@w ® W(p},a, pl)) (A.3)

:w% (@w ® W(p},a, pl)) /

:®w3 ] @ w) @ Wap), a,p;) = P Wilz,p) @ W(p,,a,p),

j=1

using the identities w3 [7'] ® w) = Wi (x,p}), j € [1,t'], which hold by the induc-
tion hypothesis.

By the same argument as the one already presented, a path £ starting in /4 labeled
with za and ending in p; must reach a state of set(s’) after reading x. In view of
that, (A.3) implies that

wi 7] @ w; = Wi(za,p;), (A.4)

which concludes the proof. O

B Proof of Theorem 2

Proof. Assume that A admits the R-weak twins property and that the R-pre-disambi-
guation construction creates infinitely many distinct states (g, s). Since the states
defining the weighted subsets s are of a finite number, there must be infinitely
many states (¢, s,), n € N, with the same set(s,, ). Among these states, we must
have ¢, = q for at least one state ¢ for infinitely many n € N, since the number
of distinct states ¢, is finite. Thus, the assumption made implies that the R-pre-
disambiguation construction creates an infinite sequence (g, s,), n € N, with the
same set(s,) = {p1,...,pr}, K < 400, and say p; = ¢. Thus, we can write

Sn = {(plawn(pl))v ) (pka wn(pk))}

By Proposition 1, for any n € N, there exists a string x,, € >2*, with

Vp € {p1,-- ok}, walp) = Wi (2, p) — Wi(@n, {p1,-..,pr}).  (B.1)

There exists at least one p € {pi,...,pr} such that WZ(z,,{p1,...,px}) =
W% (x,,p) for infinitely many indices J C N, since k is finite. By (B.1), w,(p) = 0
forall n € J. {w,(q) — wn(p;): n € J} cannot be finite for all i € [1, k], oth-
erwise in particular {w,,(¢) — w,(p): n € J} = {w,(q): n € J} would be fi-
nite, which in turn, by the finiteness of {w,(q) — w,(p;): n € J} for all 7, would
imply the finiteness {w,(p;): n € J} for all ¢, contradicting the infiniteness of
{sn: n € J}. Thus, there must exist at least one state r € {p,...,px} such that
{w,(q) —w,(r): n € J} is infinite.
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We will show that {w,,(¢) — w,(r): n € J} is included in the finite set

A = {wh[m] — whmo]: 71 € Pa(la, x,q), T € Pa(lg,x,7), |z| < |Qal* — 1},
(B.2)
thereby contradicting the original assumption about R-pre-disambiguation creating
infinitely many states.

Refer to a shortest path with an origin at an initial state and that includes the initial
state’s weight as an Z-shortest-path. Consider x = x,, for some n € N. Let 7; be an
Z-shortest-path among Py (14, x,q) and 7y an Z-shortest-path among Py (4, z, 7).
Thus, by (B.1), we can write

wy = (walm] = Wa(z,p)) — (walmo] — Wa(z,p)) = wilm] — wilm]. (B.3)

Since both ¢ and r are reachable from I by a path labeled with x, there is a path in
AN A from a pair of initial states to (¢, ). Assume that || > |Q4|? — 1, then this
path must go through at least one non-empty cycle at some state (q;, 7). Thus, by
the definition of intersection, paths 7y and 7; can be decomposed as

T = ﬂiﬂfﬁi’ with 7Ti € PA(IA,ml,ql),Wf € PA(ql,xQ,ql),Wf S PA(ql,x?’,q)

o = mymamy with wy € Pa(L, ', 1), 75 € Pa(ry, 2%, 1), 75 € Pa(ry,2°,7).
Since 7y and m; are shortest paths, the cycles at ¢; and r; are also shortest paths.
Now, by definition of the states created by R-pre-disambiguation all states in {py, . . .
in particular r, are in R-relation with ¢. By compatibility with the inverse transition
function, this implies that r; and ¢; are also in R-relation. Thus, by the R-weak
twins property, the weight of the cycle at ¢; and that of the cycle at state r; in the
decompositions above must be equal. Therefore, we can write

wp = wilri] — wh[mo). (B.4)
with 7; = min? and 7 = wiws. We have |m}| < |m| and || < |mo|. Thus, by
induction on |z|, we can find two paths 7} € Py (14, 2", q) and 7§ € Py(I4, 2", 1)
with w,, = w}[77] — w%[x}] and |2”| < |Q4|* — 1. Proceeding in the same way for
all x,, this shows that {w,,: n € J} is included in the finite set A, which contradicts
the fact the number of states created by the R-pre-disambiguation construction is

infinite. 0

C Proof of Theorem 3

Proof. Let A be a determinizable WFA. Assume that the application of R-pre-
disambiguation to A generates an infinite set of distinct states. Then, as in the proof
of Theorem 2, this implies the existence of two states ¢ and r reachable from the
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initial states by strings (x,,)nen, and such that the set {w,(q) — w,(r): n € N} =
{Wk(zn,q) — Wk(z,,r): n € N} is infinite.

For any n € N, consider the weighted subset .S,, constructed by weighted deter-
minization which is the set of pairs (p,v), where p is a state of A reachable by
x,, from the initial state and v its residual weight defined by v = WZ(x,,p) —
MiNy e5gerA(Ln) WZ(x,,p'). Since A is determinizable, there can only be finitely
many distinct S,,, n € N. S, includes the pairs (¢,v,) and (r,v)) with v, =
Wi(xn,q) —vo and v/, = WX (z,, q) — vo, where vy is the weight of an Z-shortest-
path labeled with x,, and starting at the initial states. Since the number of distinct
weighted subsets .5, is finite, so must be the number of distinct pairs ((q, v,,), (,v7,))
they each include. This implies that there are only finitely many distinct differences
of weight in {v/, — v,: n € I}. But, since v/, — v, = Wi(z,,q) — Wi(z,,7),
this contradicts the infiniteness of {W#(z,,q) — Wk (z,,r): n € N}. Thus, R-
pre-disambiguation cannot generate an infinite number of states and A is R-pre-
disambiguable. a
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