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Abstract

We propose and analyze algorithms to solve a range of learning tasks under user-
level differential privacy constraints. Rather than guaranteeing only the privacy
of individual samples, user-level DP protects a user’s entire contribution (m ≥ 1
samples), providing more stringent but more realistic protection against informa-
tion leaks. We show that for high-dimensional mean estimation, empirical risk
minimization with smooth losses, stochastic convex optimization, and learning hy-
pothesis classes with finite metric entropy, the privacy cost decreases as O(1/

√
m)

as users provide more samples. In contrast, when increasing the number of users n,
the privacy cost decreases at a faster O(1/n) rate. We complement these results
with lower bounds showing the minimax optimality of our algorithms for mean
estimation and stochastic convex optimization. Our algorithms rely on novel tech-
niques for private mean estimation in arbitrary dimension with error scaling as the
concentration radius τ of the distribution rather than the entire range.

1 Introduction

Releasing seemingly innocuous functions of a data set can easily compromise the privacy of in-
dividuals, whether the functions are simple counts [35] or complex machine learning models like
deep neural networks [52, 30]. To protect against such leaks, Dwork et al. proposed the notion of
differential privacy (DP). Given some data from n participants in a study, we say that a statistic of the
data is differentially private if an attacker who already knows the data of n− 1 participants cannot
reliably determine from the statistic whether the n-th remaining participant is Alice or Bob. With
the recent explosion of publicly available data, progress in machine learning, and widespread public
release of machine learning models and other statistical inferences, differential privacy has become
an important standard and is widely adopted by both industry and government [32, 5, 21, 55].

The standard setting of DP described in [22] assumes that each participant contributes a single data
point to the dataset, and preserves privacy by “noising” the output in a way that is commensurate with
the maximum contribution of a single example. This is not the situation faced in many applications of
machine learning models, where users often contribute multiple samples to the model—for example,
when language and image recognition models are trained on the users’ own data, or in federated
learning settings [37]. As a result, current techniques either provide privacy guarantees that degrade
with a user’s increased participation or naively add a substantial amount of noise, relying on the group
property of differential privacy, which significantly harms the performance of the deployed model.

To remedy this issue, we consider user-level DP, which instead of guaranteeing privacy for individual
samples, protects a user’s entire contribution (m ≥ 1 samples). This is a more stringent but more
realistic privacy desideratum. To hold, it requires that the output of our algorithm does not significantly
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change when changing user’s entire contribution—i.e. possibly swapping up to m samples in total.
We make this formal in Definition 1. Very recently, for the reasons outlined above, there has been
increasing interest in user-level DP for applications such as estimating discrete distributions under
user-level privacy constraints [46], PAC learning with user-level privacy [31], and bounding user
contributions in ML models [4, 26]. Differentially private SQL with bounded user contributions
was proposed in [59]. User-level privacy has been also studied in the context of learning models via
federated learning [49, 48, 58, 6].

In this paper, we tackle the problem of learning with user-level privacy in the central model of DP.
In particular, we provide algorithms and analyses for the tasks of mean estimation, empirical risk
minimization (ERM), stochastic convex optimization (SCO), and learning hypothesis classes with
finite metric entropy. Our utility analyses assume that all users draw their samples i.i.d. from related
distributions, a setting we refer to as limited heterogeneity. On these tasks, naively applying standard
mechanisms, such as Laplace or Gaussian, or using the group property with item-level DP estimators,
both yield a privacy error independent of m. We first develop novel private mean estimators in high
dimension with statistical and privacy error scaling with the (arbitrary) concentration radius rather
than the range, and apply these to the statistical query setting [SQ; 41]. Our algorithms then rely on
(privately) answering a sequence of adaptively chosen queries using users’ samples, e.g., gradient
queries in stochastic gradient descent algorithms. We show that for these tasks, the additional error
due to privacy constraints decreases as O(1/

√
m), contrasting with the naive rate—independent of

m. Interestingly, increasing n, the number of users, decreases the privacy cost at a faster O(1/n) rate.

Importantly, our results imply concrete practical recommendations on sample collection, regardless
of the level of heterogeneity. Indeed, increasing m will yield the most value in the i.i.d. setting and
will yield no improvement when the users’ distributions are arbitrary. As the real-world will lie
somewhere in between, our results exhibit a regime where, for any heterogeneity, it is strictly better
to collect more users (increasing n) than more samples per user (increasing m).

1.1 Our Contributions and Related Work
We provide a theoretical tool to construct estimators for tasks with user-level privacy constraints and
apply it to a range of learning problems.

Optimal private mean estimation and uniformly concentrated queries (Section 3) We show
that for a random variable in [−B,B] concentrated in an unknown interval of radius τ (made precise
in Definition 2), we can privately estimate its mean with error proportional to τ rather than B, as
we would obtain using standard private mean estimation techniques such as Laplace mechanism
[24]. When data is concentrated in `∞-norm, several papers show that one can achieve an error
scaling with τ rather than B, either asymptotically [53], for Gaussian mean-estimation [40, 38], for
sub-Gaussian symmetric distributions [18, 17] or for distributions with bounded p-th moment [39].
We propose a private mean estimator (Algorithm 2) with error scaling with τ that works in arbitrary
dimension when data is concentrated in `2-norm (Theorem 2). In Corollary 1, we show it (optimally)
solves mean estimation under user-level privacy constraints for random vectors bounded in `2-norm.
In Appendix D.6, we show that for uniformly concentrated queries (see Definition 3), sequentially
applying Algorithm 2 privately answers K adaptively chosen queries with privacy cost Õ(τ

√
K/nε).

Our conclusions relate to the growing literature in adaptive data analysis. While a sequence of
work [25, 9, 27, 28] use techniques from differential privacy and their answers are (ε, δ)-DP with
ε = Θ(1), our work guarantees privacy for arbitrary ε with the additional assumption of uniform
concentration.

Empirical risk minimization (Section 4) An influential line of papers studies ERM under item-
level privacy constraints [19, 42, 8]. Importantly, these papers assume arbitrary data, i.e., not
necessarily samples from users’ distributions. The exact analog of ERM in the user-level setting is
consequently less interesting as, for n data points {z1, . . . , zn}, in the worst case, each user u ∈ [n]
contributes m copies of zu and the problem reduces to the item-level setting. Instead, we consider the
(related) problem of ERM when users contribute points sampled i.i.d. Assuming some regularity (A3
and A4), we develop and analyze algorithms for ERM under user-level DP constraints for convex,
strongly-convex, and non-convex losses (Theorem 3).

Optimal stochastic convex optimization (Section 5) Under item-level DP (or equivalently, user-
level DP with m = 1), a sequence of work [19, 8, 10, 11, 29] establishes the constrained minimax
risk as Θ̃(1/

√
n +
√
d/(nε)). In this paper, with the additional assumptions that the losses are
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individually smooth2 and the gradients are sub-Gaussian random vectors, we prove matching upper
(Theorem 4) and lower bounds (Theorem 5) of order Θ̃(1/

√
nm +

√
d/(n

√
mε)) in a regime we

make precise. We leave closing the gap outside of this regime to future work.

Limit of learning with a fixed number of users (Appendix B) Finally, we resolve a conjecture
of [4] and prove that with a fixed number of users, even in the limit m → ∞ (i.e., each user has
an infinite number of samples), we cannot reach zero error. In particular, we prove that for all the
learning tasks we consider, the risk under user-level privacy constraints is at least Ω(e−εn) regardless
of m. Note that this does not contradict the results above since they require n = Ω((logm)/ε).

Finally, we provide results in Appendix A for learning under pure user-level DP for function classes
with finite metric entropy. We apply these to SCO with `∞ constraints (Remark 1) and achieve
(near)-optimal rates.

2 Preliminaries

Notation. Throughout this work, d denotes the dimension, n the number of users, and m the number
of samples per user. Generically, σ will denote the sub-Gaussian parameter, τ the concentration
radius, ν the variance of a random vector and P a data distribution. We denote the optimization
variable with θ ∈ Θ ⊂ Rd, use z (or Z when random) to denote the data sample supported on a
space Z , and ` : Θ × Z → R for the loss function. Gradients (denoted ∇) are always taken with
respect to the optimization variable θ. For a convex set C, ΠC denotes the euclidean projection on
C, i.e. ΠC(y) := argminz∈C ‖y − z‖2. We use A to refer to (possibly random) private mechanisms
and Xn as a shorthand for the dataset (X1, . . . , Xn). For two distributions P and Q, we denote by
‖P −Q‖TV their total variation distance and Dkl (P ||Q) their Kullback-Leibler divergence. For a
random vector X ∼ P supported on Rd, we use Var(P ) or Var(X) to denote E

[
‖X − E[X]‖22

]
,

which is equal to the trace of the covariance matrix of X .

Next, we consider differential privacy in the most general way, which only requires specifying a
dataset space S and a distance d on S.
Definition 1 (Differential Privacy). Let ε, δ ≥ 0. Let A : S → Θ be a (potentially randomized)
mechanism. We say that A is (ε, δ)-DP with respect to d if for any measurable subset O ⊂ Θ and all
S, S′ ∈ S satisfying d(S, S′) ≤ 1,

P(A(S) ∈ O) ≤ eεP(A(S′) ∈ O) + δ. (1)

If δ = 0, we refer to this guarantee as pure differential privacy.

For a data space Z , choosing S = Zn and d(S, S′) = dHam(S, S′) =
∑n
i=1 1{zi 6= z′i} recovers

the canonical setting considered in most of the literature—we refer to this as item-level differential
privacy. When we wish to guarantee privacy for users rather than individual samples, we instead
assume a structured dataset into which each of n users contributes m > 1 samples. This corresponds
to S = (Zm)n such that for S ∈ S, we have

S = (S1, . . . , Sn), where Su =
{
z

(u)
1 , . . . , z(u)

m

}
and duser(S,S ′) :=

n∑
u=1

1{Su 6= S′u} ,

which means that, in this setting, two datasets are neighboring if at most one of the user’s contributions
differ. We henceforth refer to this setting as user-level differential privacy.

Distributional assumptions. In the case of user-level privacy with n users each providing m
samples, we assume existence of a collection of distributions {Pu}u∈[n] over Z . One then observes
the following user-level dataset3

S = (S1, . . . , Sn) where Su
iid∼ Pu. (2)

2We note that the results only require Õ(n3/2)-smooth losses. For large n—keeping all other problem
parameters fixed—this is a very weak assumption. More precisely, when n > poly(d,m, 1/ε), our algorithm on
a smoothed version ˜̀of ` (e.g., using the Moreau envelope [33]) yields optimal rates for non-smooth losses.
Whether the smoothness assumption can be removed altogether is an open question.

3For simplicity, we assume that |Su| = m but our guarantees directly extend to the setting where users have
different number of samples with m replaced by median(m1, . . . ,mn) using techniques from [46]. We leave
eliciting the optimal rates in settings when mu is an arbitrary random variable to future work.
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In this paper, we consider the limited heterogeneity setting, i.e. when the users have related distri-
butions. This setting is more reflective of practice, especially in light of growing interest towards
federated learning applications [37, 60].
Assumption A1 (Limited heterogeneity setting). There exists a distribution P0 over Z such that all
the user distributions are close to P0 in total variation distance, i.e.

max
u∈[n]
‖Pu − P0‖TV ≤ ∆,

where ∆ ≥ 0 quantifies the level of heterogeneity. Note that ∆ = 0 corresponds to assumption A2.

Note that our TV-based definition is natural in this setting as it is closely related to the notion of
discrepancy (or dA distance) which plays a key role in domain adaption scenarios [47, 12]. Lower
bound results have been given in terms of the discrepancy measure (see [13]), which further justify
the adoption of this definition in the presence of multiple distributions.

In the case that ∆ = 0, A1 reduces to the standard homogeneous setting. Many fundamental papers
choose this setting when explicating minimax rates under constraints (e.g. in distributed optimization
and federated learning [61] or under communication constraints [63, 15]).
Assumption A2 (Homogeneous setting). The distributions of individual users are equal, meaning
there exists P0 such that for all u ∈ [n], Pu = P0.

In this paper, we develop techniques and provide matching upper and lower bounds for solving
learning tasks in the homogeneous setting. In Appendix C, we prove that our techniques naturally
apply to the heterogeneous setting in a black-box fashion, and for all considered problems provide
meaningful guarantees under Assumption A1. Moreover, the algorithm achieves almost optimal rate
whenever ∆ is (polynomially) small. See the detailed statement in Theorem 9.

2.1 ERM and stochastic convex optimization
Assumptions on the loss. Throughout this work, we assume that the parameter space Θ is closed,
convex, and satisfies ‖θ − ϑ‖2 ≤ R for all θ, ϑ ∈ Θ. We also assume that the loss ` : Θ×Z → R is
G-Lipschitz w.r.t. the `2-norm4, meaning that for all z ∈ Z , for all θ ∈ Θ, ‖∇`(θ; z)‖2 ≤ G. We
further consider the following assumptions.
Assumption A3. The function `(·; z) is H-smooth. In other words, the gradient ∇`(θ; z) is H-
Lipschitz in the variable θ for all z ∈ Z .
Assumption A4. The random vector ∇`(θ;Z) is σ2-sub-Gaussian for all θ ∈ Θ and Z ∼ P0.
Equivalently, for all v ∈ Rd, 〈v,∇`(θ;Z)〉 is a σ2-sub-Gaussian random variable, i.e.,

E [exp(〈v,∇`(θ;Z)− E[∇`(θ;Z)]〉)] ≤ exp
(
‖v‖22σ2/2

)
.

In this work, our rates often depend on the sub-Gaussianity and Lipschitz parameters σ and G, and
thus we define the shorthands G̃ := σ

√
d and G := min{G, G̃}. Intuitively, the G-Lipschitzness

assumption bounds the gradient in a ball around 0 (independently of θ), while sub-Gaussianity
implies that, for each θ, ∇`(θ;Z) likely lies in Bd2(∇L(θ;P0), G̃). Generically, there is no ordering
between G and G̃: for linear loss `(θ; z) = 〈θ, z〉, depending on P0, it can hold that G � G̃ (e.g.,
P0 = Unif{−v, v} for v ∈ Rd), G̃ � G (e.g., P0 is N(µ, σ2Id) truncated in a ball around µ, with
‖µ‖2 � σ

√
d) or G ≈ G̃ (e.g., P0 = Unif{−1,+1}d).

We introduce the tasks we consider in this work, namely empirical risk minimization (ERM) and
stochastic convex optimization (SCO). For a collection of samples from n users S = (S1, . . . , Sn),
where each Su = {z(u)

1 , . . . , z
(u)
m } ∈ Zm, we define the empirical risk objectives

L(θ;Su) :=
1

m

m∑
i=1

`(θ; z
(u)
i ) and L(θ;S) :=

1

n

n∑
u=1

L(θ;Su) =
1

mn

n∑
u=1

m∑
i=1

`(θ; z
(u)
i ). (3)

In the user-level setting we wish to minimize L(θ;S) under user-level privacy constraints. Going
beyond the empirical risk, we also solve SCO [51], i.e. minimizing a convex population objective

4It is straightforward to develop analogs of the results of Sections 3 and 4 for arbitrary norms, but we restrict
our attention to the `2 norm in this work for clarity.
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when provided with samples from each users’ distributions. In the user-level setting, for a convex
loss ` and a convex constraint set Θ, we observe S = (S1, . . . , Sn) ∼ ⊗u∈[n](Pu)m and wish to

minimize
θ∈Θ

1

n

∑
u∈[n]

L(θ;Pu) :=
1

n

∑
u∈[n]

EPu [`(θ;Z)]. (4)

In the homogeneous case (Assumption A2), this reduces to the classic SCO setting:

minimize
θ∈Θ

L(θ;P0) := EP0
[`(θ;Z)]. (5)

2.2 Uniform concentration of queries

Let φ : Z → Rd be a d-dimensional query function. We define concentration of random variables
and uniform concentration of multiple queries as follows.
Definition 2. A (random) sample Xn supported on [−B,B]d is (τ, γ)-concentrated (and we call τ
the “concentration radius”) if there exists x0 ∈ [−B,B]d such that with probability at least 1− γ,

max
i∈[n]
‖Xi − x0‖2 ≤ τ.

Definition 3 (Uniform concentration of vector queries). Let QdB = {φ : Z → [−B,B]d} be a

family of queries with bounded range. For Zn = (Z1, . . . , Zn)
iid∼ P , we say that (Zn,QdB) is

(τ, γ)-uniformly-concentrated if with probability at least 1− γ, we have

max
i∈[n]

sup
φ∈QdB

∥∥∥φ(Zi)− EZ∼P [φ(Z)]
∥∥∥

2
≤ τ.

In this work, we will often consider σ2-sub-Gaussian random variables (or vectors), which are
concentrated according to Definition 2. For example, if Xn is drawn i.i.d. from a σ2-sub-Gaussian
random vector supported on [−B,B]d, then it is (σ

√
d log(2n/γ), γ)-concentrated around its mean

(see, e.g., [56]). Finally, we define a distance between random variables (and estimators).
Definition 4 (β-close Random Variables). For any two random variables X1 ∼ P1 and X2 ∼ P2,
we say X1 and X2 are β-close, if ‖P1 − P2‖TV ≤ β. We use the notation X1 ∼β X2 if X1 and X2

are β-close.

β-closeness is useful as, in many of our results, the private estimator we propose returns a simple
unbiased estimate with high probability and is bounded otherwise. Thus, it suffices to do the analysis
in the “nice” case and crudely bound the error otherwise.

3 High Dimensional Mean Estimation and Uniformly Concentrated Queries

In this section, we present a private mean estimator with privacy cost proportional to the concentration
radius. Using these techniques, we show that, under uniform concentration, we answer adaptively-
chosen queries with privacy cost proportional to the concentration radius instead of the whole range.
Our theorems guarantee that the estimator is β-close (with β exponentially small in n) to a simple
unbiased estimator with small noise. We further show how to directly translate these results into
bounds on the estimator error, which we demonstrate by providing tight bounds on estimating the
mean of `2-bounded random vectors under user-level DP constraints (Corollary 1).

Given i.i.d samples Xn from a distribution P supported on Rd with mean µ, the goal of mean
estimation is to design a private estimator that minimizes the E

[
‖A(Xn)− µ‖22

]
. We focus on

distributions with bounded supprot [−B,B]d. However, our algorithm also generalize to the case
when the mean is guaranteed to be in [−B,B]d. In the user-level setting (in the homogeneous
case), one observes a dataset S sampled as in (2) and wishes to minimize E[‖A(S)− EP0‖22] under
user-level privacy constraints. We first focus on the scalar case.

Mean estimation in one dimension. The algorithm uses a two-stage procedure, similar in spirit to
those of [53], [40], and [39]. In the first stage of this procedure, we use the approximate median
estimation in [27], detailed in Algorithm 6 in Appendix D.1, to privately estimate a crude interval
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Algorithm 1 WinsorizedMean1D(Xn, ε, τ, B): Winsorized Mean Estimator (WME)
Require: Xn := (X1, X2, ..., Xn) ∈ [−B,B]n, τ : concentration radius, privacy parameter ε > 0.

1: [a, b] = PrivateRange(Xn, ε/2, τ, B) with |b− a| = 4τ . {Algorithm 6 in Appendix D.1. }
2: Sample ξ ∼ Lap

(
0, 8τ

εn

)
and return

µ̄ =
1

n

n∑
i=1

Π[a,b](Xi) + ξ,

where Π[a,b](x) = max{a,min{x, b}}.

in which the means lie, with accuracy Θ(τ). The second stage clips the mean around this interval,
reducing the sensitivity from O(B) to O(τ), and adds the appropriate Laplace noise. With high
probability, we can recover the guarantee of the Laplace mechanism with smaller sensitivity since
the samples are concentrated in a radius τ . We present the formal guarantees of Algorithm 1 in
Theorem 1 and defer its proof to Appendix D.2.
Theorem 1. Let Xn be a dataset supported on [−B,B]. The output of Algorithm 1, denoted by
A(Xn), is ε-DP. Furthermore, if Xn is (τ, γ)-concentrated, it holds that

A(Xn) ∼β
1

n

n∑
i=1

Xi + Lap
(

8τ

nε

)
,

where β = min
{

1, γ + B
τ exp

(
−nε8

)}
. Moreover, Algorithm 1 runs in time Õ(n+ log(B/τ)).

Compared to [40, 38, 39], our algorithm runs in time Õ(n + log(B/τ)) instead of Õ(n + B/τ)
owing to the approximate median estimation algorithm in [27], which is faster when τ � B.

Mean estimation in arbitrary dimension. In the general d-dimensional case, ifXn is concentrated
in `∞-norm, one simply applies Algorithm 1 to each dimension. However, when Xn is concentrated
in `2-norm, naively upper bounding `∞-norm by the `2-norm will incur a superfluous

√
d factor: if

‖v‖2 ≤ ρ, each |vj | is possibly as large as ρ. To remedy this issue, we use the random rotation trick
in [3, 54]. This guarantees that all coordinates have roughly the same range: for v ∈ Rd, with high
probability, ‖Rv‖∞ ≤ Õ(‖v‖2/

√
d), where R is the random rotation. We present this procedure in

Algorithm 2 and its performance in Theorem 2.

Algorithm 2 WinsorizedMeanHighD(Xn, ε, δ, τ, B, γ): WME - High Dimension
Require: Xn := (X1, X2, ..., Xn), Xi ∈ [−B,B]d, τ, γ: concentration radius and probability,

privacy parameter ε, δ > 0.
1: Let D = Diag(ω) where ω is sampled uniformly from {±1}d.
2: Set U = d−1/2HD, where H is a d-dimensional Hadamard matrix. For all i ∈ [n], compute

Yi = UXi.

3: Let ε′ = ε√
8d log(1/δ)

, τ ′ = 10τ
√

log(dn/γ)
d . For j ∈ [d], compute

Ȳ (j) = WinsorizedMean1D
(
{Yi(j)}i∈[n], ε

′, τ ′,
√
dB
)
.

4: return X̄ = U−1Ȳ .

Theorem 2. Let A(Xn) = WinsorizedMeanHighD(Xn, ε, δ, τ, B, γ) be the output of Algorithm 2.
A(Xn) is (ε, δ)-DP. Furthermore, if Xn is (τ, γ)-concentrated in `2-norm, there exists an estimator
A′(Xn) such that A(Xn) ∼β A′(Xn) and

E[A′(Xn)|Xn] =
1

n

n∑
i=1

Xi and Var(A′(Xn)|Xn) ≤ c0
dτ2 log(dn/α) log(1/δ)

n2ε2
, (6)

where c0 = 102, 400 and β = min

{
1, 2γ +

d2B
√

log(dn/γ)

τ exp

(
− nε

24
√
d log(1/δ)

)}
.

We present the proof of Theorem 2 in Appendix D.3. We are able to transfer both Theorem 1 and
Theorem 2 into finite-sample estimation error bounds for various types of concentrated distributions
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and obtain near optimal guarantees (see Appendix D.5 for an example in mean estimation of sub-
Gaussian distributions). The next corollary characterizes the risk of mean estimation for distributions
supported on an `2-bounded domain with user-level DP guarantees (see Appendix D.4 for the proof).
Corollary 1. Assume A2 holds with P0 supported on Bd2(0, B) with mean µ. Given S =
(S1, S2, ..., Sn), |Su| = m, consisting of m i.i.d. samples from Pu. There exists an (ε, δ)-user-
level DP algorithm A(S) such that, if n ≥ (c1

√
d log(1/δ)/ε) log(m(dn+ n2ε2)) for a numerical

constant c1, we have5

E
[
‖A(S)− µ‖22

]
=

Var(P0)

mn
+ Õ

(
dB2

mn2ε2

)
.

Note that Var(P0) ≤ B2 for any P0 supported on Bd2(0, B). Replacing Var(P0) by B2, the bound
is minimax optimal up to logarithmic factors. When only A1 holds with ∆ ≤ poly(d, 1

n ,
1
m ,

1
ε ), the

same error bounds holds (up to constant) for estimating EZ∼Pu [Z] for any u ∈ [n].

Note that algorithms in [38, 39], which focus on estimating the mean of d-dimensional subGaussian
distributions, can also be used to estimate the mean of `2-bounded distributions since bounded random
variables are also subGaussian. However, applying these algorithms directly will incur a superfluous
d factor in the mean square error. We void this using the random rotation trick in Algorithm 2.

Answering multiple queries. We end this section by noting that, when a family of queriesQ is uni-
formly concentrated (as made precise in Definition 3), we answer sequences ofK d-dimensional, adap-
tively chosen queries with error scaling as Õ(

√
dKτ/(nε)) by applying Algorithm 2 to {φk(Zi)}i∈[n]

with the right (ε0, δ0). We make this formal in Theorem 10 in Appendix D.6.

4 Empirical Risk Minimization with User-Level Differential Privacy
In this section, we present an algorithm to solve the ERM objective of (3) under user-level DP
constraints. We apply the results of Section 3 by noting that the SQ framework encompasses
stochastic gradient methods. Informally, one can sequentially choose queries φk(z) = ∇`(θk; z) and,
for a stepsize η, update θk+1 = ΠΘ(θk − ηvk), where vk is the answer to the k-th query. For the
results to hold, we require a uniform concentration result over the appropriate class of queries.

Uniform concentration of stochastic gradients The class of queries for stochastic gradient meth-
ods is Qerm := {∇`(θ; ·) : θ ∈ Θ}. We prove that when assumptions A3 and A4 hold,
({∇`(·;Su)}u∈[n],Qerm) is (Õ(σ

√
d/m), α)-uniformly concentrated. The next proposition is a

simplification of the result of [50] under the (stronger) assumption A3 that ` is uniformly H-smooth.
The proof, which we defer to Appendix E.1, hinges on a covering number argument.

Proposition 1 (Concentration of random gradients). Let Su
iid∼ Pu, |Su| = m for u ∈ [n] and α ≥ 0.

Under Assumptions A3 and A4, with probability greater than 1− α it holds that

max
u∈[n]

sup
θ∈Θ
‖∇L(θ;Su)−∇L(θ;Pu)‖2 = O

σ
√
d log

(
RHm
dσ

)
m

+
log
(
n
α

)
m

.
Stochastic gradient methods We state classical convergence results for stochastic gradient methods
for both convex and non-convex losses under smoothness. For a function F : Θ→ R, we assume
access to a first-order stochastic oracle OF,ν2 , i.e., a random mapping such that for all θ ∈ Θ,

OF,ν2(θ) = ∇F̂ (θ) with E
[
∇F̂ (θ)

]
= ∇F (θ) and Var

(
∇F̂ (θ)

)
≤ ν2.

We abstract optimization algorithms in the following way: an algorithm consists of an output set O,
a sub-routine Query : O → Θ that takes the last output and indicates the next point to query and
a sub-routine Update : O × Rd → O that takes the previous output and a stochastic gradient and
returns the next output. After T steps, we call Aggregate : O∗ → Θ, which takes all the previous
outputs and returns the final point. (See Algorithm 7 in Appendix E.2 for how to instantiate generic
first-order optimization in this framework.) We detail in Proposition 4 in Appendix E.2 standard
convergence results for variations of (projected) stochastic gradient descent (SGD). We introduce this
abstraction to forego the details of each specific algorithm and instead focus on the privacy and utility
guarantees.

5For precise log factors, see Appendix D.4.
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Algorithm We recall the ERM setting with user-level DP. We observe S = (S1, . . . , Sn) with
Su ∈ Zm for u ∈ [n] and wish to solve the constrained optimization problem with objective in (3).
We present our method in Algorithm 3 and provide utility and privacy guarantees in Theorem 3.

Algorithm 3 Winsorized First-Order Optimization
1: Input: Number of iterations T , optimization algorithm {O,Query,Update,Aggregate}, privacy

parameters (ε, δ), data S = (S1, . . . , Sn), initial output o0, parameter set Θ, concentration radius
τ , probability γ.

2: Set ε′ = ε

2
√

2T log(2/δ)
and δ′ = δ

2T

3: for t = 0, . . . , T − 1 do
4: θt ← Query(ot).
5: For each user u ∈ [n], compute

g
(u)
t = ∇L(θt;Su) =

1

m

∑
j∈[m]

∇`(θt; z(u)
j ).

6: Compute ḡt = WinsorizedMeanHighD({g(u)
t }u∈[n], ε

′, δ′, τ, G, γ).
7: ot+1 ← Update(ot, ḡt).
8: end for
9: return θ̄ ← Aggregate(o0, . . . , oT ).

Theorem 3 (Privacy and utility guarantees for ERM). Assume A2 holds and recall that G̃ = σ
√
d,

assume6 n = Ω̃(
√
dT/ε) and let θ̂ be the output of Algorithm 3. There exists variants of projected

SGD (e.g. the ones we present in Proposition 4) such that, with probability greater than 1− γ:

(i) If for all z ∈ Z, `(·; z) is convex, then

E
[
L(θ̂;S)− inf

θ′∈Θ
L(θ′;S)

∣∣∣∣ S] = Õ

(
R2H

T
+RG̃

√
d

n
√
mε

)
.

(ii) If for all z ∈ Z, `(·; z) is µ-strongly-convex, then

E
[
L(θ̂;S)− inf

θ′∈Θ
L(θ′;S)

∣∣∣∣ S] = Õ

(
GR exp

(
− µ
HT
)

+ G̃2 d

µn2mε2

)
.

(iii) Otherwise, defining the gradient mapping7 GF,γ(θ) := 1
γ [θ −ΠΘ(θ − γ∇F (θ))], we have

E
[
‖GL(·;S),1/H(θ̂)‖22|S

]
= Õ

(
H2R

T
+HRG̃

√
d

n
√
mε

)
.

For ε ≤ 1, δ > 0, Algorithm 3 instantiated with any first-order gradient algorithm is (ε, δ)-user-level
DP. In the case that only A1 holds, the same guarantees hold whenever ∆ ≤ poly(d, 1

n ,
1
m ,

1
ε ).

We present the proof in Appendix E.3. For the utility guarantees, the crux of the proof resides in
Theorem 10: as well as ensuring small excess loss in expectation, the SQ algorithm produces with
high probability a sample from the stochastic gradient oracle OL(·;S),ν2 where ν2 = Õ(TG̃2 d

n2mε2 ).
When this happens for all T steps, the analysis of stochastic gradient methods provide the desired
regret. The privacy guarantees follow from the strong composition theorem of [23].

Importantly, when the function exhibits (some) strong-convexity (which will be the case for any
regularized objective), we are able to localize the optimal parameter—up to the privacy cost—in
Õ(H/µ) steps. This will be particularly important in Section 5.

Corollary 2 (Localization). Let θ̂ be the output of Algorithm 3 on the ERM problem of (3).
Assume that `(·; z) is µ-strongly-convex for all z ∈ Z , that n = Ω̃(

√
dH/µ) and set T =

H
µ log

(
n2m(G/G̃2)µRε

2

d

)
and γ = σ2d2

µ2n2mε2R2 . For θ∗S ∈ argminθ′∈Θ L(θ′;S), it holds8

6For precise log factors, see Appendix E.3.
7In the unconstrained case—Θ = Rd—this corresponds to an ε-stationary point as GF,γ(x) = ∇F (x).
8A logarithmic dependence on T is hiding in the result. Since T = Õ(H/µ), we implicitly assume H/µ is

polynomial in the stated parameters, which is satisfied when we later apply these results to regularized objectives.
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E[‖θ̂ − θ∗S‖22] = Õ

(
σ2d2

µ2n2mε2

)
.

5 Stochastic Convex Optimization with User-level Privacy

In this section we address the SCO task of (5) under user-level DP constraints. Our approach (which
we show in Algorithm 4) solves a sequence of carefully regularized ERM problems, drawing on
the guarantees of the previous section. Recall that G̃ = σ

√
d and G = min{G, G̃}, and that ` is

H-smooth under assumption A3. In this section, we assume that ` is convex. We first present our
results and state an upper and lower bound for SCO with user-level privacy constraints.
Theorem 4 (Phased ERM for SCO). Algorithm 4 is user-level (ε, δ)-DP. When A2 holds and n =

Ω̃(min{ 3
√
d2mH2R2/(GGε4), HR

√
m/(σε)}), or, equivalently,H = Õ(

√
n2ε2σ2

R2m + GGn3ε4

d2R2m ) for
all P and ` satisfying Assumptions A3 and A4, we have

E [L(APhasedERM(S);P0)]− min
θ′∈Θ
L(θ′;P0) = Õ

(
R
√
GG√
mn

+RG̃

√
d

n
√
mε

)
.

Furthermore, our results still hold in the heterogeneous setting (Assumption A1) whenever ∆ ≤
poly(d, 1

n ,
1
m ,

1
ε ); the risk guarantee being with respect to any user distribution Pu.

Theorem 5 (Lower bound for SCO). There exists a distribution P and a loss ` satisfying Assump-
tions A3 and A4 such that for any algorithm A satisfying (ε, δ)-DP at user-level, we have

E [L(A(S);P )]− min
θ′∈Θ
L(θ′;P ) = Ω

(
RG√
mn

+RG

√
d

n
√
mε

)
.

When G = Θ(σ
√
d), the upper bound matches the lower bound up to logarithmic factors. We present

the algorithm and proof for Theorem 4 in Section 5.1. Theorem 5 is proved in Section 5.2.

5.1 Upper bound: minimizing a sequence of regularized ERM problems

We now present Algorithm 4, which achieves the upper bound of Theorem 4. It is similar in spirit
to Phased ERM [29] and EpochGD [34], in that at each round we minimize a regularized ERM
problem with fresh samples and increased regularization, initializing each round from the final iterate
of the previous round. This allows us to localize the optimum with exponentially increasing accuracy
without blowing up our privacy budget. We solve each round using Algorithm 3 to guarantee privacy
and obtain an approximate minimizer. We show the guarantee in Corollary 2 is enough to achieve
optimal rates. We provide the proof of Theorem 4 in Appendix F and present a sketch here.

Algorithm 4 APhasedERM: Phased ERM
Require: Private dataset: S = (S1, . . . , Sn) ∈ (Zm)n : n ×m i.i.d samples from P , H-smooth,

convex loss function `, convex set Θ ⊂ Rd, privacy parameters ε ≤ 1, δ ≤ 1/n2, sub-Gaussian
parameter σ.

1: Set T = dlog2(Gn
√
mε

σd )e, λ =
√

GG
nm + σ2d2

n2mε2 /R

2: for t = 1 to T do
3: Set nt = n

2t , λt = 4tλ.
4: Sample St, nt users that have not participated in previous rounds. Using Algorithm 3, compute

an approximate minimizer θ̂t, to the accuracy of Corollary 2, for the objective

Lλt,θ̂t−1
(θ;St) =

1

mnt

∑
u∈St

m∑
j=1

`(θ, z
(u)
j ) +

λt
2
‖θ − θ̂t−1‖22. (7)

5: end for
6: return θ̂T .

Proof sketch of Theorem 4. The privacy guarantee comes directly from the privacy guarantee of
Algorithm 3 and the fact that St are non-overlapping. The proof for utility is similar to the proof
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of Theorem 4.8 in [29]. In round t of Algorithm 4, we consider the true minimizer θ∗t and the
approximate minimizer θ̂t. By stability [14], we can bound the generalization error of θ∗t (see
Proposition 5 in Appendix F) and, by Corollary 2, we can bound E‖θ̂t − θ∗t ‖22. We finally choose
{(λt, nt)}t≤T such that the assumptions of Corollary 2 hold and to minimize the final error.

5.2 Lower bound: SCO is harder than Gaussian mean estimation
First of all, note that it suffices to prove the lower bounds in the homogeneous setting as any level of
heterogeneity only makes the problem harder. Theorem 5 holds for (ε, δ)-user-level DP—importantly,
this is a setting for which lower bounds are generally more challenging (we provide a related lower
bound for ε-user-level DP in Appendix A.2). We present the proof in Appendix F.2 and a sketch here.

Proof sketch of Theorem 5. The (constrained) minimax lower bound decomposes into a statistical
rate and a privacy rate. The statistical rate is optimal (see, e.g., [44, 2]), thus we focus on the
privacy rate. We consider linear losses of the form `(θ; z) = −〈θ, z〉. We show that optimizing
L(θ;P ) = EP [`(θ;Z)] over θ ∈ Θ is harder than the mean estimation task for P . Intuitively,
L(θ;P ) = −〈θ,EZ〉 attains its minimum at θ∗ = RE[Z]/‖E[Z]‖2 and finding θ∗ provides a good
estimate of (the direction of) E[Z]. We make this formal in Proposition 6. Next, for Gaussian mean
estimation, we reduce, in Proposition 3, user-level DP to item-level DP with lower variance by having
each user contribute their sample average (which is a sufficient statistic). We conclude with the results
of [38] (see Proposition 7) by proving in Corollary 6 that estimating the direction of the mean with
item-level privacy is hard.
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Discussion

In this work, we explore the fundamental limits of learning under user-level privacy constraints.
Importantly, we provide practical algorithms with significantly improved privacy cost in the regime
where the number of samples per user m� 1. However, our work provides generalization guarantees
under a limited heterogeneity assumption. Extending our work to more heterogeneous settings is
an interesting research direction. Secondly, our work focuses on establishing information-theoretic
limits and we do not optimize the runtime of our algorithms. For example, in the case of SCO, our
algorithm runs in min{(nm)3/2, n2m3/2/

√
d} time, while achieving the optimal item-level private

rate requires at most min{nm, (nm)2/d} time [10]. Developing faster algorithms in these settings is
a possible future direction.

Potential negative societal impact

Our work is theoretical in nature and we do not foresee major direct negative societal consequences.
Because of the growing prevalence of data collection from all sources (mobile, browser, medical
records etc.), providing meaningful guarantees—such as user-level DP—while preserving adequate
accuracy is an important direction of research. Our work suffers from the same potential negative
impact as any work in the broad differential privacy area in two ways: first, a simple way to
guarantee privacy is to limit data collection or delete data the users provided in the past. Second,
the guarantees we provide are contingent on careful choices of ε and δ as well as rigorous and
independent methodologies for evaluating the privacy of deployed models.

A Function Classes with Bounded Metric Entropy under Pure DP

We consider the general task of learning hypothesis class with finite metric entropy (i.e., such that
there exists a finite ∆-cover under a certain norm) and bounded loss under pure user-level DP
constraints.

For this setting, we present Algorithm 5, which we complement with an information-theoretic
lower bound. As in the previous sections, we consider a sample set S = (S1, . . . , Sn), with
Su = {z(u)

j }j∈[m] ⊂ Z . We begin by considering the case of a finite parameter space: for K ∈
N,K < +∞, we have

Θ =
{
θ(1), . . . , θ(K)

}
. (8)

For 0 ≤ B <∞, we denote FB := {` : Θ×Z → R : ‖`‖∞ ≤ B} the set of B-bounded functions
and Auser

ε the set ε-user-level DP estimators from Zn to Θ, the goal of this section is to elicit the
constrained minimax rate [62, 7, 1]

Muser
m,n(Θ,FB , ε) := sup

Z,P⊂P(Z)

inf
A∈Auser

ε

sup
`∈FB ,P∈P

E
Siid∼(Pm)n

[
L(A(S);P )− inf

θ∈Θ
L(θ;P )

]
.

We start with providing the estimator, which combines the private mean estimator of Section 3 with
the private selection techniques of [45]. Given a collection of ε-DP mechanisms, the latter provides
an ε-DP way to find an (approximate) minimum by sampling from each mechanism at random with
the same data and returning the maximum of the values observed. In our setup, each mechanism Ak

will be a private release of L(θ(k);S).

A.1 Combining mean estimation and private selection
Our first step is to show that the conditions of Section 3 are met, that is, the data are concentrated
with high probability.

Lemma 1. Let S = (S1, . . . , Sn)
iid∼ (Pm)n and α ∈ (0, 1). With probability greater than 1− α, it

holds that

max
k∈K

max
u∈[n]

∣∣∣L(θ(k);Su)− L(θ(k);P )
∣∣∣ ≤ B

2

√
log(|Θ| · n) + log(2/α)

m
. (9)

In other words, (S,QΘ) is (B/(2
√
m)
√

log(2Kn/α), α) uniformly concentrated where QΘ =
{L(θ; ·) : θ ∈ Θ}.
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Proof. The proof is straightforward: for a fixed θ(k) ∈ Θ and u ∈ [n], the random variable
L(θ(k);Su) is B2

4m -sub-Gaussian around its mean L(θ(k);P ). A union bound over the samples and
parameters concludes the proof.

Conditioned on that event, the data are well concentrated and the results of Theorem 1 apply. We now
describe the algorithm and then go on to prove privacy and utility guarantees. We call it “idealized”
because it is not computationally efficient. Roughly, the running time scales as |Θ|/α to obtain
good accuracy with probability greater than 1− α. In certain problems, |Θ| can be exponential in
the dimension (e.g., the Lipschitz stochastic optimization problem considered in Remark 1), which
makes it computationally intractable.

Algorithm 5 Idealized estimator for learning with bounded losses
1: Input: Privacy parameter ε, probability of stopping γ ∈ (0, 1], concentration parameter τ > 0,

finite parameter set Θ, dataset S = {S1, . . . , Sn}
2: Denote

Ak(S) := WinsorizedMean1D
(
{L(θ(k);Su)}u∈[n], ε/3, τ

)
3: Initialize T = ∅.
4: for t = 0, . . . ,∞ do
5: Sample Jt ∼ Uniform({1, . . . , |Θ|}).
6: Sample Vt ∼ AJt(S).
7: Update T → T ∪ {(Jt, Vt)}.
8: Sample wt ∼ Bernoulli(γ), if wt = 1, break;
9: end for

10: t∗ → argmint Vt.
11: return (Jt∗ , Vt∗).

We state the privacy and utility of our algorithm. The result follows from the utility guarantees of the
mean estimator (Algorithm 1) and the guarantees of private selection in [45].

Theorem 6. Let α ∈ (0, 1] and let us consider Algorithm 5 with q = 1/K = 1/|Θ| and τ =
B
2

√
(log(Kn) + log(10/α)/m. Assuming that n ≥ 8

ε log
(

25 log(5/α)
α2 · KBτ

)
, the following holds:

(i) The mechanism of Algorithm 5 is ε-user-level DP.
(ii) Let Jt∗ be the output of Algorithm 5, with probability greater than 1 − α it achieves the

following utility

L(θ(Jt∗ );S)− inf
θ′∈Θ
L(θ′;S) ≤ 8

B

n
√
mε

log

(
25K · log(5/α)

α2

)√
log(Kn) + log(10/α).

(10)

Proof. We first state the privacy guarantee followed by the utility guarantee.

Proof of (i) Since each Ak is ε/3-user-level DP, Theorem 3.2 in [45] guarantees that the output of
Algorithm 5 is ε-user-level DP.

Proof of (ii) The proof is adapted from Theorem 5.2 in [45]. First of all, with probability greater
than 1− α1, as we prove in Lemma 1, the data are uniformly concentrated for all θ(k), meaning

max
k∈K

max
u∈[n]

∣∣∣L(θ(k);Su)− L(θ(k);P )
∣∣∣ ≤ {B

2

√
log(|Θ| · n) + log(2/α1)

m
=: τ

}
.

We condition on this event (Event 1) for the rest of the proof. Let α1 ∈ (0, 1] and γ ∈ (0, 1]. Let Ts
denotes the time that the algortihm exists the loop, which is number of queries the algorithm makes.

Let us denote k∗, the best hypothesis in Θ i.e.

k∗ = argmin
k≤K

L(θ(k);S).
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We choose γ such that k∗ is queried with probability greater than 1− α1, i.e., if E¬k∗ is the event
(denote ¬E¬k∗ as Event 2) that the algorithm finishes without querying k∗, we choose γ such that
P(E¬k∗) ≤ α1. More precisely,

P(E¬k∗) =

∞∑
l=1

P(E¬k∗ |Ts = l)P(Ts = l)

=

∞∑
l=1

(
1− 1

K

)l
· (1− γ)

l−1 · γ

=

(
1− 1

K

)
γ

∞∑
l=0

[(
1− 1

K

)
(1− γ)

]l
=

(
1− 1

K

)
γ

1−
(
1− 1

K

)
(1− γ)

.

Choosing γ = α1/K guarantees that P(E¬k∗) ≤ α1. Let L := log(1/α1)
γ = log(1/α1) Kα1

, we have

P(Ts > L) = P(ω1 = . . . = ωL = 0) = (1− γ)L ≤ exp(−Lγ) = α1.

Hence with probability at least 1−α1, the algorithm ends in less than L throws (Event 3). Conditioned
on this event, by Theorem 1 and union bound, with probability greater than 1− L · Bτ exp(−nε/8),
the output of AJt for all t ≤ Ts is

AJt(S) = L(θ(Jt);S) + Lap

(
8τ

nε

)
=

1

m · n
∑

j∈[m],u∈[n]

`
(
θ(Jt); z

(u)
j

)
+ Lap

(
8τ

nε

)
,

which we denote as Event 4. For a Laplace distribution, computing the tail gives that P(|Lap(λ)| ≥
u) ≤ exp(−u/λ) and with a union bound and change of variables it holds that if Y1, Y2, . . . , YL

iid∼
Lap( 8τ

nε ), then with probability greater than 1− α1

max
i=1,...L

|Yi| ≤
8τ

nε
log

(
L

α1

)
.

In other words, except with probability α1, the noise is bounded by 8τ
nε log(L/α1) (Event 5). Condi-

tioned on all these events, the parameter θ(Jt∗ ) that the algorithm outputs is sub-optimal by at most
16τ
nε log(L/α1) as in the worst-case the noise is + 8τ

nε log(L/α1) for Jt∗ and − 8τ
nε log(L/α1) for k∗.

Setting α1 = α/5 and as we assume that n ≥ 8
ε log

(
25 log(5/α)

α2 · KBτ
)

, we conclude the proof by
taking a union bound over all 5 events.

Corollary 3. Assume n ≥ Ω̃(1) 1
ε max

{
1
Km , log(Km)

}
. It holds that

Muser
m,n(Θ,FB , ε) = Õ

(
B

{√
logK

m · n
+

log3/2(Knmε)

n
√
mε

})
, (11)

where Õ, Ω̃ ignores only numerical constants and log-log factors in this case.

Proof. We get the result directly from Theorem 6, by setting α = logK/(n
√
mε), applying standard

uniform convergence results for bounded losses with finite parameter set (Hoeffding bound) and
ignoring log-log factors.

Corollary 4 (Parameter sets with finite metric entropy). Let us further assume that our loss functions
are G-Lipschitz with respect to some norm ‖·‖ with (finite) covering number N‖·‖(Θ,∆)—i.e. there
exists a set Γ‖·‖,∆ ⊂ Θ such that |Γ‖·‖,∆| = N‖·‖(Θ,∆) and for all θ ∈ Θ, there exists τ ∈ Γ‖·‖,∆
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such that ‖θ − τ‖ ≤ ∆. In this case, for any ∆ > 0 and applying Algorithm 5 with parameter set Γ
guarantees that

Muser
m,n(Θ,FB,(G,‖·‖), ε) = Õ(1) inf

∆>0

{
B

[√
logN‖·‖(Θ,∆)

m · n
+

log3/2
(
N‖·‖(Θ,∆)nmε

)
n
√
mε

]
+G∆

}
.

Remark 1. For ‖·‖ = `2,Θ = Bd∞(0, 1) and setting ∆ = B
G

{√
d/(mn) + d3/2/(nε

√
m)
}

, we
directly get

Muser
m,n(Bd∞(0, 1),FB,(G,`2), ε) = Õ

{
B

√
d

m · n
+B

d3/2

n
√
mε

}
.

The first term, which corresponds to the statistical rate, is optimal (see e.g. Proposition 2 in [44]).
Whether the privacy rate is optimal remains open.

A.2 Information-theoretic lower bound

We now prove a lower bound on Muser
m,n(Θ,FB , ε) when |Θ| = K < ∞. We follow the standard

machinery of reducing estimation to testing [62, 57] but under privacy constraints [7, 1].

Theorem 7 (Lower bound for finite-hypothesis class). Let K,m, n ∈ N,K < ∞, ε ∈ R+, and
0 ≤ B <∞. Assume log2K ≥ 32 log 2 and n ≥ log2K max{ 1

192
√
mε
, 1

96m}, there exists a sample
space Z and parameter set Θ with |Θ| = K and |Z| = dlog2Ke such that the following holds

Muser
m,n(Θ,FB , ε) = Ω

(
B

√
log|Θ|
m · n

+B
log|Θ|
n
√
mε

)
. (12)

We detail the proof of the theorem below. The proof relies on a (standard) generalization of Fano’s
method, whcih reduces optimization to multiple hypothesis tests. We refer to the results of [1]
to obtain the lower bounds in the case of a constrained—in this case, ε-DP—estimators. For the
user-level case, we simply consider that samples from an m-fold product of measures—the separation
does not change but the KL-divergence increase by at most a m factor and TV-distance increase by at
most a

√
m factor thus yielding the final answer.

Proposition 2 (Acharya et al. [1, Corollary 4]). Let P be a collection of distributions over a common
sample space Z and a loss function ` : Θ×Z → R+. For P,Q ∈ P , define

sepL(P,Q; Θ) := sup

{
δ ≥ 0

∣∣∣∣ for all θ ∈ Θ,
L(θ, P ) ≤ δ implies L(θ,Q) ≥ δ
L(θ,Q) ≤ δ implies L(θ, P ) ≥ δ

}
.

Let V be a finite index set and PV := {Pv}v∈V be a collection of distributions contained in P such
that for ∆ ≥ 0, minv 6=v′ sep(Pv, Pv′ ,Θ) ≤ ∆. Then

Mitem
n (Θ,F , ε) ≥ ∆

4
max

{
1− I(Xn

1 ;V ) + log 2

log|V|
,min

{
1,

|V|
exp(c0nεdTV(PV))

}}
,

where V ∼ Uniform(V), c0 = 10,dTV(PV) := maxv 6=v′‖Pv−Pv′‖TV and I(X;Y ) is the (Shannon)
mutual information.

Proof of Theorem 7. We follow the standard steps: we first compute the separation, we bound the
testing error for any (constrained) estimator in the item-level DP case (with Proposition 2) and finally,
we show how to adapt the proof to obtain the user-level DP lower bound.

Separation For simplicity, assume K = 2d, if not, the problem is harder than for K = 2blog2Kc ≤
K which is of the same order. Let us define the sample space Z , the parameter set Θ and the loss
function ` we consider.

We define
Z = Θ := {−1,+1}d and `(θ; z) := B

∑
j≤d

1θj=zj .
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We consider V an d/2-`1 packing of {±1}d of size at least exp(d/8)—which the Gilbert-Varshimov
bound (see e.g., [56, Ex. 4.2.16]) guarantees the existence of—and consider the following family of
distribution P = {Pv : v ∈ V} such that if X ∼ Pv then

X =

{
vjej with probability 1+∆

2d

−vjej with probability 1−∆
2d .

(13)

For θ ∈ Θ, we have that

L(θ;Pv) = EPv

B∑
j≤d

1θj=Zj

 = B
∑
j≤d

1 + θjvj∆

2d
.

Naturally, L(θ;Pv) achieves its minimum at θ∗v = −v such that infθ′∈θ L(θ;Pv) = B 1−∆
2 . We now

compute the separation by noting that

sepL(Pv, Pv′ ,Θ) ≥ 1

2
min
θ′∈Θ
{L(θ′;Pv) + L(θ′;Pv′)− L(θ∗v ;Pv)− L(θ∗v′ ;Pv′)}. (14)

A quick computation shows that sepL(Pv, Pv′ ,Θ) ≥ B∆
8 by noting that dHam(v, v′) ≥ d/4.

Obtaining the item-level lower bound We can now use the results of Proposition 2. We have that
minv 6=v′ sepL(Pv, Pv′ ,Θ) ≥ B∆

8 . The identity DKL(Pv, Pv′) = ∆ log 1+∆
1−∆ ≤ 3∆2 implies that

I(Zn;V ) ≤ 3n∆2. Similarly, Pinsker’s inequality guarantees that

dTV ≤
√

1

2
max
v 6=v′

DKL(Pv, Pv′) ≤
√

3/2∆.

We put everything together and it holds that for ∆ ∈ [0, 1],

Mitem
n (Θ,F , ε) ≥ B∆

32
max

{
1− 3n∆2 + log 2

d/8
,min

{
1,

exp(d/8)

exp(30nε∆)

}}
. (15)

Since d ≥ 32 log 2, ∆ =
√
d/(96n) guarantees that 1 − 3n∆2+log 2

d/8 ≥ 1/2. On the other hand,

setting ∆ = 5
960

d
nε , guarantees that min

{
1, exp(d/8)

exp(30nε∆)

}
≥ 1/2. The assumption on n guarantees

that these two values are in [0, 1] and thus setting ∆∗ = max
{√

d/(96n), 1
192

d
nε

}
which implies

that

Mitem
n (Θ,F , ε) ≥ B

32

{√
d

96n
+

1

192

d

nε

}
.

Concluding for user-level DP Let m ∈ N,m ≥ 1. For the user-level DP lower bound, the proof
remains the same except that the collectionPV becomes {Pmv }v∈V i.e. them-fold product distribution
of Pv . The separation remains exactly the same but we now have

DKL(Pmv , P
m
v′ ) ≤ 3m∆2 and dTV(PV) ≤

√
3m

2
∆.

Under the assumption ∆∗ = max
{√

d/(96mn), 1
192

d
n
√
mε

}
is less than 1 and thus concludes the

proof.

Note, the upper bound of Theorem 6 and the lower bound above match only up to
√

logK. Given that
K can be exponential in the dimension—e.g. in the case of Θ being a cover of an `p ball—the bound
is only tight for “small” hypothesis class. However, it seems this extra-factor cannot be removed
using the techniques we present in this paper, as we need to both obtain uniform concentration and
bound the maximum of i.i.d. noise over K samples—both of which are tight. We leave the problem
of finding an optimal estimator for this problem to future work.
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B Limit of Learning with a Fixed Number of Users

In this section, we consider the following binary testing problem between P1 and P2 supported on
{+B,−B} where

P0(+B) = 1, P0(−B) = 0,

P1(+B) = 0, P1(−B) = 1.

We prove the following result.
Theorem 8. For all user-level (ε, δ)-DP algorithm A : {+B,−B}m×n → [0, 1], let S be n ×m
i.i.d samples from Pϑ, ϑ ∈ {0, 1}, we have when δ < 1/2nenε,

max
θ∈{0,1}

E
[
(A(S)− ϑ)

2
]

= Ω(e−nε).

Before proving the theorem, we describe the implications of the theorem to applications considered
in this work. Let Auser

ε,δ denote the set of all user-level (ε, δ)-DP algorithms.

Reduction from mean estimation P0 and P1 are both bounded distributions. Moreover, we have
µϑ = B(2ϑ − 1). For any user-level (ε, δ)-DP mean estimator µ̂ : {+B,−B}m×n → [−B,+B],
set Aµ̂(S) = (µ̂+B)/(2B) ∈ [0, 1], we have ∀ϑ ∈ {0, 1},

E
[
(µ̂(S)− µϑ)

2
]

= 4B2E
[
(Aµ̂(S)− ϑ)

2
]
.

We have

inf
µ̂∈Auser

ε,δ

max
ϑ∈{0,1}

E
[
(µ̂(S)− µϑ)

2
]

= 4B2 inf
µ̂∈Auser

ε,δ

max
ϑ∈{0,1}

E
[
(Aµ̂(S)− ϑ)

2
]

≥ 4B2 inf
A∈Auser

ε,δ

max
ϑ∈{0,1}

E
[
(A(S)− ϑ)

2
]

= Ω(B2e−nε).

Reduction from SCO Let Θ = [−1, 1] and `(θ, Z) = θ ·Z. Setting B = G. The loss is linear (and
thus convex), G-Lipschitz and satisfies Assumptions A3 and A4. For Pϑ,

L(θ, Pϑ) = θG(2ϑ− 1).

Hence the minimizer is θ∗ϑ = 1− 2ϑ and

L(θ, Pϑ)−L(θ∗ϑ, Pϑ) = (2ϑ−1)G(θ−1+2ϑ) = G(1−θ(2ϑ−1)) ≥ G

2
(θ−2ϑ+1)2 =

G

2
(θ−µϑ)2.

With similar arguments as in the mean estimation reduction, we get

inf
A∈Auser

ε,δ

max
ϑ∈{0,1}

E
[
L(A(S);Pϑ)− min

θ∈[−1,1]
L(θ;Pϑ)

]
= Ω(Ge−nε).

Reduction from Bounded Losses In the reduction from SCO, the loss is uniformly bounded and
thus this is a sub-problem of the boundeed loss class and the same bound holds.

Finally, let us prove the theorem.

Proof of Theorem 8. Note that there is only two possible sets that each user can observe. Let S+ be
the multiset consisting of m copies of +B and Let S− be the multiset consisting of m copies of
−B. Let β1 = P(A((S+)n) < 1/2) and β0 = P(A((S−)n) ≥ 1/2). We first show that these two
probabilities cannot be simultaneously small.

Since (S+)n can be changed into (S−)n by changing n users’ samples, by group property of
differential privacy,

1− β1 = P(A((S+)n) ≥ 1/2) ≤ enεP(A((S−)n) ≥ 1/2) + nenεδ = enεβ0 + nenεδ.

Similarly, we get
1− β0 ≤ enεβ1 + nenεδ.
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Combining the two, we get:

β0 + β1 ≥
2(1− nδenε)

1 + enε
≥ 1

1 + enε
.

Note that when ϑ = 1, we have P(S = (S+)n) = 1. Hence

EP1

[
(A(S)− 1)

2
]
≥ 1

4
P(A((S+)n) < 1/2).

Similarly,

EP0

[
(A(S)− 0)

2
]
≥ 1

4
P(A((S−)n) ≥ 1/2).

We conclude the proof by noting that

max
ϑ∈{0,1}

E
[
(A(S)− ϑ)

2
]
≥ 1

2

(
EP0

[
(A(S)− 0)

2
]

+ EP1

[
(A(S)− 1)

2
])
.

C Extension to Limited Heterogeneity Setting

In this section, we show that our results and techniques developed under the homogeneous setting
(Assumption A2) can be extended to the setting with limited heterogeneity (Assumption A1).

In particular, we show that applying the algorithms under the i.i.d setting in a black-box fashion will
work with an additional bounded error under the limited heterogeneity setting, stated in the theorem
below.
Theorem 9. Let A : Zm×n → Θ be a learning algorithm and ` : Z ×Θ→ R+ be a loss function
with maxz∈Z maxθ∈Θ L(θ; z) ≤ B. Given samples S = (S1, . . . , Sn) ∼ ⊗u∈[n](Pu)m, if under
Assumption A2, we have

E [L(A(S);P0)]− min
θ′∈Θ
L(θ′;P0) ≤ L(m,n),

then under Assumption A1, we have

max
u

{
E [L(A(S);Pu)]− min

θ′∈Θ
L(θ′;Pu)

}
≤ L(m,n) +B(mn+ 2)∆.

Before proving the theorem, we can see that for any learning task, when ∆ < L(m,n)/(B(mn+2)),
we can get the same performance as in the homogeneous case up to constant factors. This is only
inverse polynomial in the problem parameters for all considered tasks.

Proof. We first show that S have a similar distribution under Assumption A2 and A1 when ∆ is
small. By sub-additivity of total variantion distance. Under Assumption A1, we have

‖⊗u∈[n](Pu)m − (P0)n×m‖TV ≤ mn∆. (16)

By definition of TV distance, there exists a coupling (S,S ′) where S ∼ ⊗u∈[n](Pu)m, S ′ ∼
(P0)n×m and

P(S 6= S ′) ≤ mn∆.

Since maxz∈Z maxθ∈Θ L(θ; z) ≤ B, we have

E [L(A(S);P0)]− E [L(A(S ′);P0)] ≤ B × P(S 6= S ′) ≤ Bmn∆. (17)

Under Assumption A1, for all u ∈ [n], ‖Pu − P0‖TV ≤ ∆. For all θ ∈ Θ,

L(θ;P0)− L(θ;Pu) ≤ B∆,

Hence we have

min
θ′∈Θ
L(θ′;P0)− min

θ′∈Θ
L(θ′;Pu) ≤ max

θ∈Θ
|L(θ;P0)− L(θ;Pu) ≤ B∆, (18)

and
E [L(A(S ′);Pu)]− E [L(A(S ′);P0)] ≤ B∆. (19)
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Therefore, for all u ∈ [n],

E [L(A(S);Pu)]− min
θ′∈Θ
L(θ′;Pu)

= (E [L(A(S);Pu)]− E [L(A(S ′);Pu)]) + (E [L(A(S ′);Pu)]− E [L(A(S ′);P0)])

+

(
E [L(A(S ′);P0)]− min

θ′∈Θ
L(θ′;P0)

)
+

(
min
θ′∈Θ
L(θ′;P0)− min

θ′∈Θ
L(θ′;Pu)

)
≤ L(m,n) +B(mn+ 2)∆,

where we bound each term using (16), (17), (18) and (19) respectively.

D Proofs for Section 3

D.1 Private range estimation

Algorithm 6 PrivateRange(Xn, ε, τ, B): Private Range Estimation [27]
Require: Xn := (X1, X2, ..., Xn) ∈ [−B,B]n, τ : concentration radius, privacy parameter ε > 0.

1: Divide the interval [−B,B] into l = B/τ disjoint bins9, each with width 2τ . Let T be the set of
middle points of intervals.

2: ∀i ∈ [n], let X ′i = minx∈T |Xi − x| be the point in T closest to Xi.
3: ∀x ∈ T , define cost function

c(x) = max{|{i ∈ [n] | X ′i < x}|, |{i ∈ [n] | X ′i > x}|}.

4: Sample x ∈ T based on the following distribution:

P(µ̂ = x) =
e−εc(x)/2∑

x′∈T e
−εc(x′)/2 .

5: Return R = [µ̂− 2τ, µ̂+ 2τ ].

D.2 Proof of Theorem 1

Theorem 1. Let Xn be a dataset supported on [−B,B]. The output of Algorithm 1, denoted by
A(Xn), is ε-DP. Furthermore, if Xn is (τ, γ)-concentrated, it holds that

A(Xn) ∼β
1

n

n∑
i=1

Xi + Lap
(

8τ

nε

)
,

where β = min
{

1, γ + B
τ exp

(
−nε8

)}
. Moreover, Algorithm 1 runs in time Õ(n+ log(B/τ)).

Proof. The privacy guarantee of the algorithm follows from the composition theorem of DP and
the privacy guarantees of the exponential and Laplace mechanisms. For utility, it is enough to
show that with probability at least 1 − (γ + B

τ exp
(
−nε8

)
),∀i ∈ [n], Xi is not truncated, i.e.

Xi ∈ [µ̂− 2τ, µ̂+ 2τ ].

Recall thatX ′i is the middle of the interval in whichXi falls. By the definition of (τ, γ)-concentration,
with probability at least 1− γ,∀i ∈ [n],

|Xi − x0| ≤ τ.

This implies that ∀i ∈ [n],
|X ′i − x0| ≤ 2τ,

hence so is the
(

1
4 ,

3
4

)
-quantile of {X ′i}ni=1. According to [27] (Theorem 3.1), Algorithm 6 outputs(

1
4 ,

3
4

)
-quantile of {X ′i}ni=1 with probability at least 1− B

τ e
−nε8 . The proof follows by a union bound

of both events.
9The last interval is of length 2B − (t− 1)τ if τ doesn’t divide B.
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D.3 Proof of Theorem 2
Theorem 2. Let A(Xn) = WinsorizedMeanHighD(Xn, ε, δ, τ, B, γ) be the output of Algorithm 2.
A(Xn) is (ε, δ)-DP. Furthermore, if Xn is (τ, γ)-concentrated in `2-norm, there exists an estimator
A′(Xn) such that A(Xn) ∼β A′(Xn) and

E[A′(Xn)|Xn] =
1

n

n∑
i=1

Xi and Var(A′(Xn)|Xn) ≤ c0
dτ2 log(dn/α) log(1/δ)

n2ε2
, (6)

where c0 = 102, 400 and β = min

{
1, 2γ +

d2B
√

log(dn/γ)

τ exp

(
− nε

24
√
d log(1/δ)

)}
.

We start by proving the following Lemma, which states that if the data is concentrated in `2-norm
with radius τ , then after a random rotation, the points are concentrated in `∞-norm with radius τ/

√
d

up to logarithmic factors.
Lemma 2. Let U = 1√

d
HD, where H is the Walsh Hadamard matrix and D is a diagonal matrix

with i.i.d. uniformly random {+1,−1} entries. Let x1, x2, . . . , xn and x0 be vectors in Rd. With
probability at least 1− α, then the following holds.

max
i
‖Uxi − Ux0‖∞ ≤

10 maxi ‖xi − x0‖2
√

log nd
α√

d
.

Proof. Let zi = xi − x0. It suffices to show that

max
i
‖Uzi‖∞ ≤

10 maxi ‖zi‖2
√

log nd
α√

d
.

holds with probability at least 1− α. Let yi = Uzi and let yi,j denote the jth coordinate of yj . Let
Dj denote that jth diagonal of D. Then

yi,j =
1√
d

∑
k

Hj,kDkzi,k

Hence,

E[yi,j ] =
1√
d

∑
k

Hj,kE[Dk]zi,k = 0.

However, observe that changing one coordinate of D, say Dk changes the value of yi,j by at most

yi,j − y′i,j ≤
2√
d
zi,k ≤

2‖zi‖2√
d

.

Hence, by the McDiarmid’s inequality with probability at least 1− α′

|yi,j | ≤
10‖zi‖2

√
log 1

α′√
d

.

Choosing α′ = α/nd and applying union bound over all coordinates of all vectors yields the desired
bound.

Thus, after applying the random rotation, we have with probability 1 − 2γ that for all j ∈ [d],
{Yi(j)}u∈[n] is (τ ′, 0)-concentrated with τ ′ = 10τ

√
log(nd/α)/d. Hence conditioned on this event,

by Theorem 1 and a union bound over d coordinates, after applying WinsorizedMean1D to each
dimension, we have that for all j ∈ [d], Ȳ (j) ∼β Ȳ ′(j) where β = 1−

√
dB
τ ′ exp

(
−nε

′

8

)
and

Ȳ ′(j) =
1

n

n∑
i=1

Yi(j) + Lap
(

8τ ′

nε′

)
,

Plugging in values of τ ′ and ε′, it can be seen that Ȳ ′ satisfies the conditions in the theorem. By
subadditivity of TV distance, we have

Ȳ ∼dβ Ȳ ′.
The theorem follows by noting the random rotation is an orthogonal transform and preserves variance.
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D.4 Proof of Corollary 1

For all i ∈ [n], let Xi = 1
m

∑m
j=1 Z

(i)
j , i.e., the average of user i’s samples. Since ‖Z(i)

j ‖ ≤ B,
we know that Xn is (B

√
log(2n/γ)/(2m), γ)-concentrated (e.g., see [36]). Hence by Theo-

rem 2, if we apply Algorithm 2 to Xn, we have A(Xn) ∼β A′(Xn) with β = min{1, γ + α +
d2B
√

log(dn/α)

τ exp(− nε

24
√
d log(1/δ)

)} with τ = B
√

log(2n/γ)/(2m) and

E[A′(Xn)|Xn] =
1

n

n∑
i=1

Xi and Var(A′(Xn)|Xn) ≤ c0
dτ2 log(dn/α) log(1/δ)

n2ε2
.

Hence

E[A′(Xn)] = E[E[A′(Xn)|Xn]] = E

[
1

n

n∑
i=1

Xi

]
= µ.

Var(A′(Xn)) = E[Var(A′(Xn)|Xn)] + Var(E[A′(Xn)|Xn])

≤ Var

(
1

n

n∑
i=1

Xi

)
+ c0

dτ2 log(dn/α) log(1/δ)

n2ε2

=
Var(P0)

mn
+ c0

dB2 log(2n/γ) log(dn/α) log(1/δ)

mn2ε2
.

Combining the two, we have

E
[
‖A′(Xn)− µ‖22

]
≤ Var(P0)

mn
+ c0

dB2 log(2n/γ) log(dn/α) log(1/δ)

mn2ε2
.

Since A(Xn) ∼β A′(Xn), we have

E
[
‖A(Xn)− µ‖22

]
≤ Var(P0)

mn
+ c0

dB2 log(2n/γ) log(dn/α) log(1/δ)

mn2ε2
+ βB2.

Taking α = γ = c0d
3mn2ε2 , we have when n ≥ c1

√
d log(1/δ)

ε log(dm3/2ε2) for a constant c1, we have

E
[
‖A(Xn)− µ‖22

]
≤ Var(P0)

mn
+ c0

2dB2 log(mn2ε2/d) log(mn3ε2)) log(1/δ)

mn2ε2
.

Tightness of Corollary 1. The first term is the classic statistical rate even with unconstrained access
to the samples. We prove the tightness of the second term using the following family of truncated
Gaussian distributions. The proof follows a similar line of argument of the proof for Theorem 5 in
Section F.2. For a mean µ ∈ Rd, a covariance Σ ∈ Rd×d and B > 0, we consider the family of
`∞-truncated Gaussians, meaning

Z ∼ Ntr(µ,Σ, B) if Z0 ∼ N(µ,Σ) and set for all j ∈ [d] Z(j) =
Z0(j)

max{1, |Z0(j)|/B}
. (20)

In other words, the standard high-dimensional Gaussian distribution where the mass outside of
Bd∞(0, B) has been projected back onto the hyperrectangle coordinate-wise.

In this proof, we will take Σ = σ2Id. We first state the following Lemma, proved in Section F.2,
which shows that when B is large enough compared to ‖µ‖2 and σ, then the expectation of
Ntr(µ, σ2Id, B/

√
d) and µ are exponentially close in `2-norm.

Lemma 3. Suppose ‖µ‖2 + 10
√
dσ < G,

‖EZ∼Ntr(µ,σ2Id,G/
√
d) [Z]− µ‖2 = O

(
σe−10d

)
.

Reducing to standard Gaussian mean estimation We will take σ = B/20
√
d and ‖µ‖2 ≤ B/2,

Hence assuming m,n is polynomial in d, O
(
σe−10d

)
is small compared to the bound in Corollary 1.
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Note that we can always simulate a sample from Ntr(µ, σ2Id, B/
√
d) using a sample from N(µ, σ2Id)

by performing truncation. Taking σ = B/20
√
d, it would be enough to prove the following:

inf
µ̂∈Aitem

ε,δ

sup
µ:‖µ‖2≤B/2

E
Siid∼N(µ,σ2Id)

[
‖µ̂(S)− µ‖22

]
= Ω̃

(
d2σ2

mn2ε2

)
,

where Auser
ε,δ denotes set of all user-level (ε, δ)-DP algorithms. The next proposition, based on the

fact that sample mean is a sufficient statistic for i.i.d Gaussian samples, shows that we can reduce the
problem to Gaussian mean estimation under item-level DP, with a smaller variance. The proposition
is proved in Section F.2.
Proposition 3 (From multiple samples to one good sample). Suppose each user u ∈ [n] observe

(Z
(u)
1 , . . . , Z

(u)
m )

iid∼ N(µ, σ2Id). For any (ε, δ) user-level DP algorithm Auser, there exists an (ε, δ)-
item-level DP algorithm Aitem that takes as input (Z̄(1), . . . , Z̄(n)) with Z̄(u) := 1

m

∑
j≤m Z

(u)
j and

has the same performance as Auser.

Since Z̄(u) is a sample from N(µ, σ
2

m Id), it remains to prove

inf
µ̂∈Aitem

ε,δ

sup
µ:‖µ‖2≤B/2

E
Zn

iid∼N(µ,σ
2

m Id)

[
‖µ̂(Zn)− µ‖22

]
= Ω̃

(
d2σ2

mn2ε2

)
,

where Aitem denotes set of all item-level (ε, δ)-DP algorithms. This directly follows from Kamath
et al. [38, Lemma 6.7], concluding the proof.

D.5 Mean Estimation of Sub-Gaussian Distribution
In this section, we prove error guarantees for mean estimation of sub-Gaussian distributions. We note
that known results in mean estimation of Gaussian distributions and moment bounded distributions [38,
39] imply this bound. We include it here for the sake of completeness to demonstrate the strength of
our techniques.
Corollary 5. Suppose P is a σ-sub-Gaussian distribution supported on [−B,B]d with mean µ.

Assume n ≥ (c1
√
d log(1/δ)/ε) log(B(dn+n2ε2)/σ) for a numerical constant c1 <∞, ifXn iid∼ P ,

the output A(Xn) of Algorithm 2 statisfies10

E
[
‖A(Xn)− µ‖22

]
= Õ

(
dσ2

n
+
d2σ2

n2ε2

)
.

Furthermore, the bound is tight up to logarithmic factors.

The proof is almost parallel to the proof of Corollary 1 by noting that Xn is (σ
√
d log(2n/γ), γ)-

concentrated and

Var

(
1

n

n∑
i=1

Xi

)
=
dσ2

n
.

The tightness of the result follows from Theorem 3.1 and Lemma 3.1 in [18], which proves lower
bounds for mean estimation of k-dimensional random variables supported on [−σ, σ]k under (ε, δ)-
DP constraints.

D.6 Uniform concentration: answering many queries privately
The statistical query framework subsumes many learning algorithms. For example, we easily express
stochastic gradient methods for solving ERM in the language of SQ algorithms (see beginning of
Section 4). In the next theorem, we show that with a uniform concentration assumption we can answer
a sequence of adaptively chosen queries with variance—or, equivalently, privacy cost—proportional
to the concentration radius of the queries instead of the full range.
Theorem 10. If (Zn,QdB) is (τ, γ)-uniformly concentrated, then for any sequence of (possibly
adaptively chosen) queries φ1, φ2, ..., φK ∈ QdB , there exists an (ε, δ)-DP algorithm A, such that A
outputs v1, v2, ..., vK satisfying (v1, v2, ..., vK) ∼β (v′1, v

′
2, ..., v

′
K), where

E [v′k|Zn] =
1

n

n∑
i=1

φk(Zi) and Var(v′k|Zn) ≤ 8c0dKτ
2 log(Kdn/γ) log2(2K/δ)

n2ε2
= Õ

(
dKτ2

n2ε2

)
,

10For precise log factors, see Appendix D.5.
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where c0 = 102400 and β = min

{
1, 2γ +

d2KB
√

log(dKn/γ)

τ exp

(
− nε

48
√

2dK log(2/δ) log(2K/δ)

)}
.

The algorithm for Theorem 10 is simply applying Algorithm 2 to {φk(Zi)}i∈[n] with ε0 =
ε

2
√

2K log(2/δ)
and δ0 = δ

2K for each query. Algorithm 3 is an illustration of an application of

this result.

Proof. For each query φk, k ∈ [K], the algorithm computes φk(Zi), i ∈ [n] and returns

vk = WinsorizedMeanHighD
(
{φk(Zi)}i∈[n], ε0, δ0, τ, B, γ/K

)
where

ε0 =
ε

2
√

2K log(2/δ)
, δ0 =

δ

2K
.

Privacy guarantee. The proof is immediate and hinges on the strong-composition theorem. Under
the standard strong composition results of [23, Theorem III.3], for any δ′ ∈ (0, 1], the output of
Algorithm 3 is (ε̄, δ̄)-user-level DP with

ε̄ = Kε0(exp(ε0)− 1) +
√

2K ln(1/δ′)ε0, δ = Kδ0 + δ′.

Plugging in values of ε0, δ0 concludes the proof.

Utility guarantee. The proof follows is very similar to the proof of Theorem 2 with α = γ/K. We
conclude by using the subadditivity of the TV distances (or equivalently, a union bound) over all K
queries.

E Proofs from Section 4

E.1 Uniform Concentration

Proposition 1 (Concentration of random gradients). Let Su
iid∼ Pu, |Su| = m for u ∈ [n] and α ≥ 0.

Under Assumptions A3 and A4, with probability greater than 1− α it holds that

max
u∈[n]

sup
θ∈Θ
‖∇L(θ;Su)−∇L(θ;Pu)‖2 = O

σ
√
d log

(
RHm
dσ

)
m

+
log
(
n
α

)
m

.
Proof. The proof relies on a standard covering number argument. We know that supθ1,θ2∈Θ‖θ1 −
θ2‖ ≤ R. This implies that Θ ⊂ Bd2(θ0, R), where Bd2(v, r) is the d-dimensional `2-ball centered at
v ∈ Rd of radius r. Without loss of generality, we assume θ0 = 0, i.e. the constraint set Θ is centered
at 0.

Let us consider Γ‖·‖2(Θ,∆) =: Γ, a ∆-net of Θ for the `2 norm, i.e. such that |Γ| <∞ and that for
all θ, ϑ ∈ Θ, ‖θ − ϑ‖2 ≤ ∆. Standard results (e.g. Vershynin [56, Corollary 4.2.13]) guarantee that
there exists such a set and that its cardinality is smaller than (1 + 2R/∆)d.

Since ` is uniformly H-smooth, for any sample S we immediately have that

sup
θ∈Θ
‖∇L(θ;S)−∇L(θ;P )‖2 ≤ max

ϑ∈Γ
‖∇L(ϑ;S)−∇L(ϑ;P )‖2 + 2H∆.

Consequently, letting t > 0, we have that

P
(

sup
θ∈Θ
‖∇L(θ;S)−∇L(θ;P )‖2 ≥ t

)
≤ P

(
max
ϑ∈Γ
‖∇L(ϑ;S)−∇L(ϑ;P )‖ ≥ t/2

)
+P(H∆ ≥ t/4).

For the second term, we simply need to ensures that when choosing t and ∆, it holds that H∆ < t/4.
Let us now bound the first term. Once again, let us consider Ξ a 1/2-net of Bd2(0, 1). For any v ∈ Rd,
it holds that

‖v‖2 = sup
‖u‖2≤1

〈u, v〉 ≤ max
ũ∈Ξ
〈ũ, v〉+ sup

w∈Bd2(0,1/2)

〈w, v〉 = max
ũ∈Ξ
〈ũ, v〉+

1

2
‖v‖2,
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which implies that ‖v‖2 ≤ 2 maxũ∈Ξ〈ũ, v〉. Thus,

P
(

max
ϑ∈Γ
‖∇L(ϑ;S)−∇L(ϑ;P )‖2 ≥ t/2

)
≤ P

(
max

ϑ∈Γ,v∈Ξ
〈v,∇L(ϑ;S)−∇L(ϑ;P )〉 ≥ t/4

)
≤ |Γ| · |Ξ|e−

mt2

2σ2

= 5d
(
1 + 2R

∆

)d
e−

mt2

2σ2 ,

where the penultimate line follows from a union bound and Assumption A4 which guarantees

that ∇L(ϑ;S) is a σ2/m-sub-Gaussian vector. We set t = σ
√

2
m (d log(5 + 10R/∆) + log(n/α)).

Picking ∆ = min{1,
√

2σ
4H

√
d
m} and applying a union bound over n points conclude the proof.

E.2 Stochastic gradient algorithms

Algorithm 7 Generic optimization algorithm
1: Input: Number of steps T , stochastic first-order oracle OF,ν2 , optimization algorithm with
{O,Query,Update,Aggregate}, initial output o0.

2: for t = 0, . . . , T − 1 do
3: θt ← Query(ot).
4: gt ← OF,ν2(θt).
5: ot+1 ← Update(ot, gt).
6: end for
7: return θ̂T ← Aggregate(o0, . . . , oT ).

Proposition 4 (Convergence of stochastic gradient methods). Let F : Θ → R be an H-smooth
function. Assume that we have access to a stochastic first-order gradient oracle with variance
bounded by ν2, denoted by OF,ν2 . In each of the following cases, let T be the desired number of calls
to OF,ν2 , there exist an optimization algorithm—defined by Update, Query and Aggregate and
used as in Algorithm 7—with output θ̂T ∈ Θ such that the following convergence guarantees hold.

(i) [16, Theorem 6.3] Assume F is convex, then it holds that

E[F (θ̂T )− inf
θ′∈Θ

F (θ′)] ≤ O
(
HR2

T
+
νR√
T

)
. (21)

(ii) [43, Corollary 32] Assume that F is µ-strongly-convex, and that we have access to θ0 ∈ Θ
such that F (θ0)− infθ′∈Θ F (θ′) ≤ ∆0, then it holds that

E[F (θ̂T )− inf
θ′∈Θ

F (θ′)] ≤ O
(

∆0 exp
(
− µ
H
T
)

+
ν2

µT

)
. (22)

(iii) [20, Corollary 3.6] Let us define the gradient mapping GF,γ

GF,γ(θ) :=
1

γ
[θ −ΠΘ(θ − γ∇F (θ))].

Assume that we have access to θ0 such that ‖GF,1/H(θ0)‖2 − infθ′‖GF,1/H(θ′)‖2 ≤ ∆1, it
holds that

E‖GF,1/H(θ̂T )‖22 ≤ O

(
H∆

T
+ ν

√
H∆1

T

)
. (23)

Remark 2. For convex functions, the algorithm is fixed-stepsize, averaged, projected SGD. For
strongly-convex functions, the algorithm consists of projected SGD with a fixed stepsize and non-
uniform averaging followed by a single restart with decreasing stepsize. Finally, in the non-convex
case, the Query and Update sub-routine are also projected SGD with fixed stepsize while the
Aggregate selects one of the past iterates uniformly at random.
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E.3 Proof of Theorem 3

Theorem 3 (Privacy and utility guarantees for ERM). Assume A2 holds and recall that G̃ = σ
√
d,

assume11 n = Ω̃(
√
dT/ε) and let θ̂ be the output of Algorithm 3. There exists variants of projected

SGD (e.g. the ones we present in Proposition 4) such that, with probability greater than 1− γ:

(i) If for all z ∈ Z, `(·; z) is convex, then

E
[
L(θ̂;S)− inf

θ′∈Θ
L(θ′;S)

∣∣∣∣ S] = Õ

(
R2H

T
+RG̃

√
d

n
√
mε

)
.

(ii) If for all z ∈ Z, `(·; z) is µ-strongly-convex, then

E
[
L(θ̂;S)− inf

θ′∈Θ
L(θ′;S)

∣∣∣∣ S] = Õ

(
GR exp

(
− µ
HT
)

+ G̃2 d

µn2mε2

)
.

(iii) Otherwise, defining the gradient mapping12 GF,γ(θ) := 1
γ [θ −ΠΘ(θ − γ∇F (θ))], we have

E
[
‖GL(·;S),1/H(θ̂)‖22|S

]
= Õ

(
H2R

T
+HRG̃

√
d

n
√
mε

)
.

For ε ≤ 1, δ > 0, Algorithm 3 instantiated with any first-order gradient algorithm is (ε, δ)-user-level
DP. In the case that only A1 holds, the same guarantees hold whenever ∆ ≤ poly(d, 1

n ,
1
m ,

1
ε ).

Proof. First note that the gradient estimation steps (Step 5 and 6) in Algorithm 3 can be viewed as
answering T adaptively chosen queries.

Privacy guarantees. The privacy guarantee follows directly from Theorem 10.

Utility guarantees. By Proposition 1, we have the gradients are (τ, γ/3)-concentrated with τ =

σ

√
d log

(
RHm
dσ

)
/m+ log

(
3n
γ

)
/m. Hence, Theorem 10 guarantees that

(ḡ0, . . . , ḡT−1) ∼β (ḡ′0, . . . , ḡ
′
T−1),

where β = min

{
1, 2γ

3 +
d2TB

√
log(3dTn/γ)

τ exp

(
− nε

48
√

2dT log(2/δ) log(2T/δ)

)}
and ∀i ∈ [T ], ḡ′0

is from OL(·;S),ν2(θt) with

ν2 ≤ 8c0dTτ
2 log(3Tdn/γ) log2(2T/δ)

n2ε2
≤ 8c0d

2Tσ2 log(3Tdn/γ) log2(2T/δ) log(3RHmn/dσγ)

n2ε2
.

Moreover, when n ≥ Ω̃(1)
√
dT log(2/δ) log(2T/δ) log(dmTB/σγ)/ε, where Ω̃(1) hides log-log

factors, we have β < γ.

Convergence rates Finally, depending on the assumptions on the function L(·;S), we use the
various results of Proposition 4 for the value of ν above. To make the results simpler we note that for
(ii) of Proposition 4, we upper bound ∆0 by GR and for (iii), we upper bound ∆1 by HR2. This
concludes the proof.

F Proofs for Section 5

F.1 Proofs for Theorem 4
We begin with a result that guarantees that the (regularized) empirical risk minimizer has good
generalization properties. It relies on a combination of convex analysis and stability arguments. This
proof exists in the literature (see, e.g. [51]), we add it here for completeness and with some small
variation: (1) that the optimization is constrained (2) that Assumption A4 might improve stability
when σ

√
d ≤ G.

11For precise log factors, see Appendix E.3.
12In the unconstrained case—Θ = Rd—this corresponds to an ε-stationary point as GF,γ(x) = ∇F (x).
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Proposition 5 (Generalization properties of regularized ERM). Let (Z1, . . . , ZN )
iid∼ P . Let ` :

Θ×Z → R be convex, G-Lipschitz with respect to the ‖·‖2 and such that Assumption A4 holds. Let
us denote G = min{G, σ

√
d}. Let

θ∗S,λ,ϑ := argmin
θ∈Θ

{
L(θ;S) +

λ

2
‖θ − ϑ‖22

}
.

The following holds

E
[
L(θ∗S,λ,ϑ;P )

]
− L(θ;P ) ≤ λ

2
E
[
‖θ − ϑ‖22

]
+ Õ(1)

GG

Nλ
, for all θ ∈ Θ. (24)

Proof. We first show the stability of the minimizer of the regularized empirical risk. Let us consider
S0 = {Z1, . . . , ZN} and S1 = {Z ′1, . . . , Z ′N} where Zj = Z ′j for all j 6= i in [N ]. We first show
that ∥∥θ∗S,λ,ϑ − θ∗S′,λ,ϑ∥∥2

≤ Õ(1)
G

Nλ
.

For conciseness, we denote Lb(θ) := L(θ;Sb) + λ
2 ‖θ − ϑ‖

2
2 and θ∗Sb,λ,ϑ = θb for b ∈ {0, 1}. Since

L0 is λ-strongly-convex, its gradients are co-coercive, meaning
λ

2
‖θ0 − θ1‖22 ≤ 〈∇L0(θ0)−∇L0(θ1), θ0 − θ1〉.

First, let us note that∇L0(θ1) = ∇L1(θ1) + 1
N (∇`(θ1;Zi)−∇`(θ1;Z ′i)). In other words,

λ

2
‖θ0−θ1‖22 ≤ 〈∇L0(θ0), θ0 − θ1〉+〈∇L1(θ1), θ1 − θ0〉+

1

N
〈∇`(θ1;Zi)−∇`(θ1;Z ′i), θ1 − θ0〉.

Since θb is the minimizer of Lb(·) constrained in Θ for b ∈ {0, 1}, by first-order optimiality condition,
it holds that

〈∇Lb(θb), θb − θ1−b〉 ≤ 0.

Consequently,
λ

2
‖θ0−θ1‖22 ≤

1

N
〈∇`(θ1;Zi)−∇`(θ1;Z ′i), θ1 − θ0〉 ≤

1

N
‖∇`(θ1;Zi)−∇`(θ1;Z ′i)‖2‖θ1−θ0‖2.

Since `(·; z) is G-Lipschitz for all z ∈ Z , we have that ‖∇`(θ1;Zi)−∇`(θ1;Z ′i)‖2 ≤ 2G. However,
with the addition of Assumption A4, Proposition 1 (applied with m = 1) guarantees that with
probability greater than 1− α,

sup
θ∈Θ
‖∇L(θ;Zi)−∇L(θ;P )‖ ≤ Õ(1)σ

√
d,

where we note that the dependence is only logarithmic in α. This immediately yields that with
probability greater than 1− α,

λ

2
‖θ0 − θ1‖2 ≤ Õ(1)

G

λN
.

Finally, this implies that

for all z ∈ Z,E[|`(θ0; z)− `(θ1; z)|] ≤ GE[‖θ0 − θ1‖2] ≤ Õ(1)
GG

λN
,

by G-Lipschitzness of ` and setting α = G
λNR , or in the language of stability (see e.g. [14]),

S → θ∗S,λ,ϑ is GG
λN -uniformly-stable. Standard stability arguments let us conclude the proof.

We now state and prove Theorem 4.
Theorem 4 (Phased ERM for SCO). Algorithm 4 is user-level (ε, δ)-DP. When A2 holds and n =

Ω̃(min{ 3
√
d2mH2R2/(GGε4), HR

√
m/(σε)}), or, equivalently,H = Õ(

√
n2ε2σ2

R2m + GGn3ε4

d2R2m ) for
all P and ` satisfying Assumptions A3 and A4, we have

E [L(APhasedERM(S);P0)]− min
θ′∈Θ
L(θ′;P0) = Õ

(
R
√
GG√
mn

+RG̃

√
d

n
√
mε

)
.

Furthermore, our results still hold in the heterogeneous setting (Assumption A1) whenever ∆ ≤
poly(d, 1

n ,
1
m ,

1
ε ); the risk guarantee being with respect to any user distribution Pu.
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Proof. The proof hinges on repeatedly using of Corollary 2 and Proposition 5 after decomposing the
excess risk. Recall that θ̂t is the output of round t i.e.

θ̂t ≈ argmin
θ∈Θ

L(θ;St) +
λt
2
‖θ − θ̂t−1‖22.

We denote by θ∗t the true minimizer at round t i.e.

θ∗t := argmin
θ∈Θ

L(θ;St) +
λt
2
‖θ − θ̂t−1‖22.

Let us denote θ∗ = argminθ∈Θ L(θ;P ), we decompose the regret in the following way

E[L(θ̂T ;P )− L(θ∗;P )] = E
[
L(θ̂T ;P )− L(θ∗T ;P )

]
︸ ︷︷ ︸

=:∆0

+

T∑
t=2

E
[
L(θ∗t ;P )− L(θ∗t−1;P )

]
︸ ︷︷ ︸

=:∆1

+ E[L(θ∗1 ;P )− L(θ∗;P )]︸ ︷︷ ︸
=:∆2

.

By Proposition 5 and because Θ is bounded by R, we directly have that

∆2 ≤
λ1R

2

2
+ Õ

(
GG

λ1n1m

)
.

Turning to ∆1, for every t ∈ {2, . . . , T}, again by Proposition 5, it holds that

E
[
L(θ∗t ;P )− L(θ∗t−1;P )

]
≤ λt

2
E
[
‖θ∗t−1 − θ̂t−1‖22

]
+ Õ

(
GG

λtntm

)
.

≤ Õ
(
λt
2

σ2d2

λ2
t−1n

2
t−1mε

2
+

GG

λtntm

)
≤ Õ

(
σ2d2

λt−1n2
t−1mε

2
+

GG

λtntm

)
,

where the second inequality is an application of Corollary 213 and the third is because λt−1 = λt/4.
Noting that λt−1n

2
t−1 = 2t−1λn, we have

∆1 ≤ Õ

(
(T − 1)

σ2d2

λn2mε2
+

GG

λnm

T∑
t=2

2−t

)
= Õ

(
σ2d2

λn2mε2
+

GG

λnm

)
,

where we use that T is logarithmic. Finally, using Corollary 2, and that L(·;P ) is G-Lipschitz, we
have that

∆0 ≤ E
[
G‖θ∗T − θ̂T ‖2

]
≤ G

√
E
[
‖θ∗T − θ̂T ‖22

]
= Õ

(
Gσd

2Tλn
√
mε

)
.

Combining the upper bounds, we have

E
[
L(θ̂T ;P )− L(θ∗;P )

]
= Õ

(
Gσd

2Tλn
√
mε

+
σ2d2

λn2mε2
+

GG

λnm
+
λ1R

2

2
+

GG

λ1n1m

)
,

and setting T = dlog2(Gn
√
mε

σd )e and λ =
√

σ2d2

n2mε2 + GG
nm/R yields the final result.

13The condition on n for the corollary holds when the condition on n is satisfied in the Theorem statement.
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F.2 Proofs of Theorem 5

Theorem 5 (Lower bound for SCO). There exists a distribution P and a loss ` satisfying Assump-
tions A3 and A4 such that for any algorithm A satisfying (ε, δ)-DP at user-level, we have

E [L(A(S);P )]− min
θ′∈Θ
L(θ′;P ) = Ω

(
RG√
mn

+RG

√
d

n
√
mε

)
.

The first term is a lower bound for SCO without any constraints [44, 2]. We only prove the second
term here. Note that without loss of generality, we can assume G ≥ 20σ

√
d and prove a lower

bound of Ω(RG̃
√
d/n
√
mε). Else, we set σ′ = G/(20

√
d) and embed the original problem into

a lower-dimensional (thus easier) problem where the gradients are σ′2sub-Gaussian. In the rest of
the section, we consider Θ = Bd2(0, R) for R > 0. As we explained in Section 5.2, we consider the
following loss14

`(θ; z) := −〈θ, z〉.

Finally, we define (a collection) of data distributions. For a mean µ ∈ Rd, a covariance Σ ∈ Rd×d
and B > 0, we consider the family of `∞-truncated Gaussians. Recall the definition in (20),

Z ∼ Ntr(µ,Σ, B) if Z0 ∼ N(µ,Σ) and set for all j ∈ [d] Z(j) =
Z0(i)

max{1, |Z0(j)|/B}
.

In other words, the standard high-dimension Gaussian distribution where the mass outside of
Bd∞(0, B) has been radially projected back on the sphere on each dimension.

Consequently, considering the data distribution P = Ntr(µ, σ2Id, G/
√
d), ` is almost surely G-

Lipschitz. Additionally, both assumptions A3 and A4 hold.

We now formally state the reduction from SCO to Gaussian mean-estimation. The main difficulty is
that the mean of Ntr(µ, σ2Id, G/

√
d) and N(µ, σ2Id) do not coincide. However, we show that when

G is sufficiently large compared to ‖µ‖2—which implies that we rarely clip—then the reduction
holds.

Proposition 6 (Reduction from SCO to Gaussian mean estimation with item-level DP constraints).
Let B > 0, σ > 0, G > 0 such that B + 10σ

√
d < G, we consider the following collections of

distributions

Pσ,B :=
{
N(µ, σ2Id) : ‖µ‖2 ∈ [B/2, B]

}
and Ptr

σ,B,G/
√
d

:=
{
Ntr(µ, σ2Id, G/

√
d) : ‖µ‖2 ∈ [B/2, B]

}
.

The following reduction holds

inf
A:Z→Θ
A∈Aitem

ε,δ

sup
P∈Ptr

σ,B,G/
√
d

EP
[
L(A(Zn);P )− inf

θ′∈Θ
L(θ′;P )

]
≥

BR

4
inf

û:Z→Sd−1

û∈Aitem
ε,δ

sup
P∈Pσ,B

EP
[
‖û(Zn)− µ/‖µ‖2‖22

]
+O

(
Rσe−10d

)
,

where we recall that Aitem
ε,δ is the set of (ε, δ)-item-level DP algorithm for which the domain and

co-domain are clear from context.

Before proving the proposition, we prove a Lemma that says, as previewed, that when G is large
enough compared to ‖µ‖2 and σ, then the expectation of Ntr(µ, σ2Id, G/

√
d) and µ are exponentially

close in `2-norm.

Lemma 3. Suppose ‖µ‖2 + 10
√
dσ < G,

‖EZ∼Ntr(µ,σ2Id,G/
√
d) [Z]− µ‖2 = O

(
σe−10d

)
.

14The negative sign is here for convenience; a positive sign would entail reducing it to finding the negative
normalized mean.
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Proof of Lemma 3. It would be enough to show that ∀i ∈ [d],

|EZ∼Ntr(µ,σ2Id,G/
√
d) [Z] (i)− µ(i)| = O(σe−10d/

√
d).

Let α = µ(i)+G/
√
d

σ , β = µ(i)−G/
√
d

σ and φ(x) = 1√
2π
e−

1
2x

2

be the density function of N(0, 1). We
have

EZ∼Ntr(µ,σ2Id,G/
√
d) [Z] (i) = µ(i)− σφ(α)− φ(β)∫ β

α
φ(x)dx

.

Plugging in ‖µ‖2 + 10
√
dσ < G we obtain the lemma.

We can now prove the proposition.

Proof. Let P = Ntr(µ, σ2Id, G/
√
d) and denote µtr = EP [Z] the mean of the truncated Gaussian.

We consider θ0 = −R µ
‖µ‖2 , in other words the minimum of L(θ;P ), if the Gaussian was not

truncated. Let θ ∈ Θ, we have that

L(θ;P )− L(θ∗;P ) ≥ −L(θ;P )− L(θ0;P )

= −〈θ − θ0, µ
tr〉

= −〈θ − θ0, µ〉 − 〈θ − θ0, µ
tr − µ〉

≥ −〈θ − θ0, µ〉+ 2 inf
θ′
〈θ′, µtr − µ〉

= −〈θ − θ0, µ〉+O(Rσe−10d),

where the final line uses the fact that inf‖v‖2≤R〈u, v〉 = −R‖u‖2 and Lemma 3.

Moreover, we have

〈θ0 − θ, µ〉 = R‖µ‖2
(

1−
〈
θ
R ,

µ
‖µ‖2

〉)
≥ R‖µ‖2

2

(∥∥ θ
R

∥∥2

2
+
∥∥∥ µ
‖µ‖2

∥∥∥2

2
− 2
〈
θ
R ,

µ
‖µ‖2

〉)
=
R‖µ‖2

2

∥∥∥ θR − µ
‖µ‖2

∥∥∥2

2
,

where we used that ‖θ/R‖ ≤ 1 and completed the square.

We now finally prove the main statement of the proposition. The first observation is that, since the
loss is linear, we only need to consider estimators A : Zn → Θ such that ‖A(zn)‖2 = R for all
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zn ∈ Zn, as the minimum is always on the boundary15. Consequently, we have

inf
A:|A|2≤R

sup
P∈Ptr

σ,B,G/
√
d

E[L(A(Zn);P )− min
θ′∈Θ
L(θ′;P )]

= inf
A:|A|2=R

sup
P∈Ptr

σ,B,G/
√
d

E[L(A(Zn);P )− min
θ′∈Θ
L(θ′;P )]

≥ inf
A:|A|2=R

sup
P∈Ptr

σ,B,G/
√
d

E
R‖µ‖2

2

∥∥∥A(Zn)
R − µ

‖µ‖2

∥∥∥2

2
+O

(
Rρe−10d

)
≥ inf

A:|A|2=R
sup

P∈Ptr
σ,B,G/

√
d

RB

4
E
∥∥∥A(Zn)

R − µ
‖µ‖2

∥∥∥2

2
+O

(
Rρe−10d

)
= inf
û:‖û‖=1

sup
P∈Ptr

σ,B,G/
√
d

RB

4
E
∥∥∥û(Zn)− µ

‖µ‖2

∥∥∥2

2
+O

(
Rρe−10d

)
≥ inf
û:‖û‖=1

sup
P∈Pσ,B

RB

4
E
∥∥∥û(Zn)− µ

‖µ‖2

∥∥∥2

2
+O

(
Rρe−10d

)
,

where the last line uses that we can always sample from Ntr(µ, σ2Id, G/
√
d) using samples from

N(µ, σ2Id) and truncating them, thus the problem over Ptr
σ,B,G is harder than over Pσ,B . This

concludes the proof.

Because of this reduction, for the remainder of this proof we consider Gaussian mean estimation with
user-level DP constraints. Recall that in this setting, we have n users, each having m i.i.d. samples
from N(µ, σ2Id). However, the lower bound of [38] only holds for item-level DP constraints. In the
next proposition, we show that mean estimation of N(µ, σ2Id) with n users and m samples per user
under user-level DP constraints is equivalent to mean estimation of N(µ, σ

2

m Id) with n samples under
item-level constraints. In other words, any user-level DP estimator taking as input n ·m samples is
equivalent to an item-level DP estimator taking as input n samples corresponding the each user’s
average.

Proposition 3 (From multiple samples to one good sample). Suppose each user u ∈ [n] observe

(Z
(u)
1 , . . . , Z

(u)
m )

iid∼ N(µ, σ2Id). For any (ε, δ) user-level DP algorithm Auser, there exists an (ε, δ)-
item-level DP algorithm Aitem that takes as input (Z̄(1), . . . , Z̄(n)) with Z̄(u) := 1

m

∑
j≤m Z

(u)
j and

has the same performance as Auser.

Proof. First of all, note that for Gaussians with unknown mean but known variance, the sample mean
is a sufficient statistic. As such, we have that for all u ∈ [n]

the distribution of (Z
(u)
1 , . . . , Z(u)

m )|Z̄(u) does not depend on µ.

Let us now consider an arbitrary user-level DP estimator Auser and show how to construct an equivalent
item-level DP estimator. When provided with (Z̄(1), . . . , Z̄(n)), for each j ≤ m, we can sample

S̃u = (Z̃
(u)
1 , . . . Z̃(u)

m )
iid∼ (Z

(u)
1 , . . . , Z(u)

m )|Z̄(u) (25)

and return Aitem((Z̄(u))u≤n) = Auser((S̃1, . . . , S̃n)). Since the distributions are equal given Z̄(u), in
expectation the error is the same.

This proposition allows us to reduce Gaussian mean estimation with user-level DP, to Gaussian mean
estimation with item-level DP albeit with the variance divided by m. We thus conclude with (a

15To make this rigorous, we consider Yao’s minimax principe. It holds that
minA:|A|2≤R maxµ E[L̄(A(Zn);P )] = maxDminA:|A|2≤R Eµ∼DE[L̄(A(Zn);P )|µ] where L̄(θ;P ) :=
L(θ;P ) − infθ′ L(θ′;P ) and D is a prior over µ. For a given prior D, the Bayes optimal classifier is the
minimum of the posterior mean, which means that A(Zn) minimizes 〈θ,E[µ|Zn]〉 over Bd2(0, R) and thus
has norm R. We can thus constrain the class of estimators to be of norm exactly R for any prior D. Another
application of Yao’s minimax principle guarantees that this is also the case for the original (minimax) problem.
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slight modification of) the results of [38]. Indeed, we differ only in that their results show that mean
estimation is hard, whereas we require that estimating the direction of the mean is hard.

First, let us recall the a modified version of the result in [38]16.

Proposition 7 (Kamath et al. [38, Lemma 6.7]). Let Zn iid∼ N(µ, σ2Id) and assume
δ ≤

√
d

48
√

2Bn
√

log(100Rn/
√
d)

, then it holds that if n < dσ/(512Bε),

inf
µ̂,µ̂∈Aitem

ε,δ

sup
µ:B/2≤‖µ‖2≤B

E
[
‖µ̂(Zn)− µ‖22

]
≥ B2

6
.

Corollary 6 (Estimating the direction of the mean is hard). Let Zn iid∼ N(µ, σ2Id), set B = dρ
512nε

and assume that δ ≤
√
d

48
√

2Bn
√

log(100Rn/
√
d)

, then it holds that if n < dσ/(512Bε),

inf
û:‖û‖2=1

û∈Aitem
ε,δ

sup
P∈Pσ,B

E

[∥∥∥∥û(Zn)− µ

‖µ‖2

∥∥∥∥2

2

]
≥ 1

10
.

Proof. We prove the corollary by contradiction. Assume there exists an (ε, δ)-DP estimator û such
that

sup
P∈Pσ,B

E

[∥∥∥∥û(Zn)− µ

‖µ‖2

∥∥∥∥2

2

]
<

1

10
.

Then let µ̂ = 3
4B û,

E[‖µ̂(Zn)− µ‖22] = E

[∥∥∥∥3B

4
û(Zn)− µ

∥∥∥∥2

2

]

≤ E
[∥∥∥∥3B

4
û(Zn)− ‖µ‖2 · û(Zn)

∥∥∥∥]+ E
[
‖‖µ‖2 · û(Zn)− µ‖22

]
=

(
3B

4
− ‖µ‖2

)2

+ ‖µ‖22 E

[∥∥∥∥û(Zn)− µ

‖µ‖2

∥∥∥∥2

2

]

≤ B2

16
+
B2

10

<
B2

6
,

which contradicts with Proposition 7.

Applying Corollary 6 with B = σ/
√
m concludes the proof of the lower bound.

16It is not guaranteed in the lower bound construction of [38] that B/2 ≤ ‖µ‖2 ≤ B. In their construction,
the mean is taken uniformly from [−

√
2B/
√
d,
√

2B/
√
d]d. However, the probability that the mean in the

lower bound construction being out of this range is exponentially small in d. Hence the same lower bound can
be obtained by straightforward modifications of the construction.
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