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Abstract We present an extensive analysis of relative deviation bounds, includ-
ing detailed proofs of two-sided inequalities and their implications. We also give
detailed proofs of two-sided generalization bounds that hold in the general case
of unbounded loss functions, under the assumption that a moment of the loss is
bounded. We then illustrate how to apply these results in a sample application:
the analysis of importance weighting.
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1 Introduction

Most generalization bounds in learning theory hold only for bounded loss functions.
This includes standard VC-dimension bounds [47], Rademacher complexity [30,4,
31,6] or local Rademacher complexity bounds [29,5], as well as most other bounds
based on other complexity terms. This assumption is typically unrelated to the
statistical nature of the problem considered but it is convenient since when the
loss functions are uniformly bounded, standard tools such as Hoeffding’s inequality
[24,3], McDiarmid’s inequality [35], or Talagrand’s concentration inequality [46]
apply.

There are however natural learning problems where the boundedness assump-
tion does not hold. This includes unbounded regression tasks where the target
labels are not uniformly bounded, and a variety of applications such as sample
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bias correction [19,25,15,45,9], domain adaptation [7,10,18,28,33,14], or the anal-
ysis of boosting [17], where the importance weighting technique is used [12]. It is
therefore critical to derive learning guarantees that hold for these scenarios and
the general case of unbounded loss functions.

When the class of functions is unbounded, a single function may take arbi-
trarily large values with arbitrarily small probabilities. This is probably the main
challenge in deriving uniform convergence bounds for unbounded losses. And the
methods of [32] do not seem to help in this context, for instance because the prob-
ability of the event that a function takes arbitrarily larger values is not known,
and it would not be useful to rule it out with a high-probability statement.

The problem, however, can be avoided by assuming the existence of an enve-
lope, that is a single non-negative function with a finite expectation lying above
the absolute value of the loss of every function in the hypothesis set [20,40,21,
41,23]. An alternative assumption similar to Hoeffding’s inequality based on the
expectation of a hyperbolic function, a quantity similar to the moment-generating
function, is used by [36]. However, in many problems, e.g., in the analysis of impor-
tance weighting even for common distributions, there exists no suitable envelope
function [12].

Instead, the second or some other ath-moment of the loss seems to play a
critical role in the analysis. Thus, we will adopt here the assumption that some
ath-moment of the loss functions is bounded as in [47,48].

Relatedly, in [8] they prove a concentration inequality under a second moment
assumption on the envelope function class, using the entropy method of Ledoux.
But their bounds hold only for countable function classes, while our guarantees
hold for arbitrary classes with finite expected shattering coefficients. They further
require an assumption on the boundedness of the average of the supremum over
the class of functions of the empirical error times the root of the sample size, as
well as a bracketing assumption for some results.

Another approach is taken in [37], which avoids concentration based methods
for the squared loss function, though the bounds produced are not straightforward
to interpret. The approach taken in [34], on the other hand, is to derive general
risk bounds for the empirical risk minimizer when the classification rules belong to
a VC-class under margin conditions. The paper [27] gives a different perspective,
giving asymptotic results for families of distributions bounded above or below
by certain conditions, leading to a limiting Gumbel distribution, suggesting that
under some conditions there might be alternative bounds other than sub-Gaussian
ones.

In [38] a clever symmetrization approach is applied that seems to lead to self-
normalized deviation bounds for VC-classes based on the mixture of the variance
and empirical variance. However, the proof seems to lack some explanation, since
the covering number estimate used is for VC-classes of bounded functions. Self-
normalized processes have attracted attention in other domains as well, outside of
the Machine Learning community, for instance in [39] and [8].

In this paper, we present in detail two-sided generalization bounds for un-
bounded loss functions under the assumption that some ath-moment of the loss
functions, o > 1, is bounded. The proof of these bounds makes use of relative
deviation generalization bounds in binary classification, which we also prove and
discuss in detail. Much of the results and material we present is not novel and the
paper has therefore a survey nature. However, our presentation is motivated by the
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fact that the proofs given in the past for these generalization bounds either had
errors or were incomplete. We also apply these results to two sample applications
of particular interest: importance weighting, and excess risk bounds in the context
of the Tsybakov noise condition.

We now discuss in more detail prior results and proofs. One-side relative de-
viation bounds were first given by [47], later improved by a constant factor by
[1]. These publications and several others have all relied on a lower bound on the
probability that a binomial random variable of m trials exceeds its expected value
when the bias verifies p > % This also later appears in [48] and implicitly in other
publications referring to the relative deviations bounds of [47]. To the best of our
knowledge, no proof of this inequality was given in the past in the machine learn-
ing literature before our work [22]. One attempt was made to prove this lemma
in the context of the analysis of some generalization bounds [26], but that proof
was not sufficient to support the general case needed for the proof of the relative
deviation bound of [47].

We present the proof of two-sided relative deviation bounds in detail using
the recent results of [22]. The two-sided versions we present, as well as several
consequences of these bounds, appear in [2]. However, we could not find a full
proof of the two-sided bounds in any prior publication. Our presentation shows
that the proof of the other side of the inequality is not symmetric and cannot
be immediately obtained from that of the first side inequality. Additionally, this
requires another proof related to the binomial distributions given by [22].

Relative deviation bounds are very informative guarantees in machine learning
of independent interest, beyond the key role they play in the proof of unbounded
loss learning bounds. They lead to sharper generalization bounds whose right-hand
side is expressed as the interpolation of a O(1/m) term and a O(1/4/m) term that
admits as a multiplier the empirical error or the generalization error. In particular,
when the empirical error is zero, this leads to faster rate bounds. We present in
detail the proof of this type of results as well as that of several others of interest [2].
In the form presented by [47], relative deviation bounds suffer from a discontinuity
at zero (zero denominator), a problem that also affects inequalities for the other
side, and which seems not to have been treated by previous work. Our proofs and
results explicitly deal with this issue.

We use relative deviations bounds to give the full proofs of two-sided gener-
alization bounds for unbounded losses with finite moments of order «, both in
the case 1 < a < 2 and the case a > 2. One-sided generalization bounds for
unbounded loss functions were first given by [47,48] under the same assumptions
and also using relative deviations. The one-sided version of our bounds for the
case 1 < a < 2 coincides with that of [47,48] modulo a constant factor, but the
proofs in both books appear to be in error.! The core component of our proof
is based on a different technique using Holder’s inequality. We also present some
more explicit bounds for the case 1 < a < 2 by approximating a complex term
appearing in these bounds. The one-sided version of the bounds for the case a > 2

1 In [47, p.204-206], statement (5.37) cannot be derived from assumption (5.35) as required,
and in general it does not hold: the first integral in (5.37) is restricted to a sub-domain and is
thus smaller than the integral of (5.35). Furthermore, the main statement in Section (5.6.2) is
not valid. In [48, p.200-202], the Lagrange method is invoked to show the main inequality. But
with our best efforts, we could not justify some of the steps. In particular, the way function z
is concluded to be equal to one over the first interval without sufficient justification.
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are also due to [47,48] with similar gaps in the proofs.? In that case as well, we
give detailed proofs using the Cauchy-Schwarz inequality in the most general case
where a positive constant is used in the denominator to avoid the discontinuity
at zero. These learning bounds can be used directly in the analysis of unbounded
loss functions as in the case of importance weighting [12].

The remainder of this paper is organized as follows. In Section 2, we briefly in-
troduce some definitions and notation used in the next sections. Section 3 presents
in detail relative deviation bounds as well as several of their consequences. Next,
in Section 4 we present generalization bounds for unbounded loss functions under
the assumption that the moment of order « is bounded first in the case 1 < a < 2
(Section 4.1), then in the case a > 2 (Section 4.2). Finally, in Section 5 we demon-
strate two sample applications of these results.

2 Preliminaries

We consider an input space X and an output space Y, which in the particular case
of binary classification is ) = {—1,4+1} or Y = {0, 1}, or a measurable subset of
R in regression. We denote by D a distribution over Z = X x Y. For a sample
S of size m drawn from D™, we will denote by D the corresponding empirical
distribution, that is the distribution corresponding to drawing a point from S
uniformly at random. Throughout this paper, H denotes a hypothesis class of
functions mapping from X to ). The loss incurred by hypothesis h € H at z € Z is
denoted by L(h, z). L is assumed to be non-negative, but not necessarily bounded.
We denote by £(h) the expected loss or generalization error of a hypothesis h € H
and by Es(h) its empirical loss for a sample S:

L(h) = E_[L(h,z)] Ls(h) = E_[L(h,2)]. (1)

z~D z~D

For any a > 0, we also use the notation La(h) = E,~p[L%(h, z)] and Za(h) =
E__5[L%(h,z)] for the ath moments of the loss. When the loss L coincides with
the standard zero-one loss used in binary classification, we equivalently use the

following notation

R(E)= B [lh. Rsh)= E  [paredl. 2
(h) Z:(z,y)ND[ h(z)#y) s(h) z:(z,y)wﬁ[ h(w)y) (2)

We will sometimes use the shorthand z7* to denote a sample of m > 0 points
(z1,...,2m) € X™. For any hypothesis set H of functions mapping X to Y =
{=1,41} or ¥ = {0,1} and sample z7", we denote by Sy (z7*) the number of
distinct dichotomies generated by H over that sample and by IT,,(H) the growth
function:

Su(z1") = Card ({(h(z1),...,h(zm)): h € H}) (3)
I, (H) = T{ry;}ga%(m Su(z1"). (4)

2 Several of the comments we made for the case 1 < a < 2 hold here as well. Some of the
given steps we could not justify, even with our best efforts.
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3 Relative deviation bounds

In this section we prove a series of relative deviation learning bounds which we use
in the next section for deriving generalization bounds for unbounded loss functions.
We will assume throughout the paper, as is common in much of learning theory,
that each expression of the form supj ¢ g[...] is a measurable function, which is not
guaranteed when H is not a countable set. This assumption holds nevertheless in
most common applications of machine learning.

We start with the proof of a symmetrization lemma (Lemma 2) originally
presented by [47], which is used and improved by [1]. These publications and
several others have all relied on a lower bound on the probability that a binomial
random variable of m trials exceeds its expected value when the bias verifies p > %
To our knowledge, no rigorous proof of this fact was ever provided previously in
the literature in the full generality needed. The proof of this result (Lemma 1) was
recently given by us [22].

Lemma 1 Let X be a random variable distributed according to the binomial dis-
tribution B(m,p) with m a positive integer (the number of trials) and p > % (the
probability of success of each trial). Then, the following inequality holds:

Pr[X > E[X]] > i (5)

and, if instead of requiring p > % we require p < 1 — %, then

Pr[X < E[X]] > % (6)

where in both cases E[X] = mp.

The lower bound in (5) is never reached but is approached asymptotically when
m=2asp— % from the right.

Our symmetrization lemma proof (Lemma 2) is more concise than that of [47].
Furthermore, our statement and proof handle the technical problem of discontinu-
ity at zero ignored by previous authors. The denominator may in general become
zero, which would lead to an undefined result. We resolve this issue by including
an arbitrary positive constant 7 in the denominator in most of our expressions.

For the proof of the following result, we will use the function F' defined over
(0, +00) x (0, +00) by F: (z,y) — Vﬁ By Lemma 4, F(z,y) is increasing

in x and decreasing in y.

Lemma 2 Let 1 < o < 2. Assume that me~—1 > 1. Then, for any hypothesis set
H and any ™ > 0, the following holds:

qup B0~ Bs(h) } <1 pr | Be@-Rst)
nerw  {/R(h)+7 SSPThel 31 Rg(h) + R/ (h) + L]

I
S~Dm

Proof We give a concise version of the proof given by [47]. We first show that the
following implication holds for any h € H:

(R(h)—ﬁs(h) > 6) A (}?S,(h) > R(h)) = F(Rs (h), Rs(h)) > . (7)
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The first condition can be equivalently rewritten as }?is(h) < R(h)—e€(R(h) —|—7')i
which implies

)

o

Rs(h) < R(h) — eR(h)=  and  ea=1 < R(h), (8)

since ﬁs(h) > 0. Assume that the antecedent of the implication (7) holds for
h € H. Then, in view of the monotonicity properties of function F' (Lemma 4), we
can write:

F(Rs/(h), Rs(h)) > F(R(h), R(h) — eR(h)=)  (Rg/(h) > R(h) and 1st ineq. of (8))
_R(h) — (R(h) — eR(h)~)
{/S2R(h) — eR(R)T + 2]

> ER(h);a (2nd ineq. of (8))
{/32R() - 7 + 4]

> _cR(h)e =g, (meﬁ > 1)
i/ 312R(h)]

which proves (7). Now, by definition of the supremum, for any n > 0, there exists
ho € H such that

R(h) — Rs(h) _ R(ho) — Rs(ho) <

nerr o/R(h) +7 Rho) 17 ©)

Using the definition of hg and implication (7), we can write

i Rs/(h) — Rs(h)

Pr | sup — — > €
55!~ | et ‘\’/%[Rs(h)+RS/(h)+i]

Rs(ho) — Rs(ho)
| {1 (Rs(ho) + Rs: (ho)

| ((Blro) — Rs(ho)
s.s’~om |\ {/R(ho) + 7

R(ho) — Rs(ho) _ ]

We now show that this implies the following inequality

v

S,S'P~rDm - > e] (by def. of sup)
+ 5]

Y

> 6) A (ﬁsl(ho) > R(ho))} (implication (7))

Pr [ﬁs/(ho) > R(ho)} (independence).

S~Dm S'~Dm

Pr sup Es/(h)iﬁs(h) >e€ >1 Pr [Supw
5,5'~D™ | heH o %[ﬁs(h)—i—ésl(h)-’-%] 4 S~Dm heH ¢ R(h)+7_

>e+n|,

(10)
by distinguishing two cases. If R(ho) > €a-1, since ea-1 > %7 by Lemma 1 the
inequality Prg/pm [Es/(ho) > R(ho)} > 1 holds, which yields immediately (10).
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p>1/m
[P[Xl.i m p]

0’%.0 02 04 06 08 1.0p

Fig. 1 These plots depict Pr[X > E[X]], the probability that a binomially distributed random
variable X exceeds its expectation, as a function of the trial success probability p. The top plot
shows only regions satisfying p > # whereas the bottom plot shows only regions satisfying

p > % Each colored line corresponds to a different number of trials, m = 2,3,...,14. The
dashed horizontal line at i represents the value of the lower bound used in the proof of lemma 2

R(ho)—Rs(ho)

S/ R(ho)+T

cannot hold for any sample S ~ D™ which by (9) implies that the condition

Otherwise we have R(ho) < e=-1. Then, by (8), the condition > €

R(h)—Rs(h) ~ DM ;
SUpp e /(e > € + n cannot hold for any sample S ~ D" in which case

(10) trivially holds. Now, since (10) holds for all > 0, we can take the limit n — 0
and use the right-continuity of the cumulative distribution to obtain

s Rs(h) — Rs(h) .. R(h) — Rs(h) . 6}

PI‘ . — — Z i rm |: o
S,S'~D heH O\C/%[Rs(h)—FRS/(h)—i- %] S~D heH R(h)+T

which completes the proof of Lemma 2.

Note that the factor of 4 in the statement of lemma 2 can be modestly improved
by changing the condition assumed from e«-1 > % to €a-1 > % for constant val-

ues of k > 1. This leads to a slightly better lower bound on Prg/pm [I?ls/ (ho) > R(ho)} ,
e.g. 3.375 rather than 4 for k = 2, at the expense of not covering cases where the
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number of samples m is less than —& - For some values of k, e.g. k = 2, covering
eas

these cases is not needed for the proof of our main theorem (Theorem 1) though.
However, this does not seem to simplify the critical task of proving a lower bound

on Prg/pm [ﬁs« (ho) > R(ho)}, that is the probability that a binomial random
variable B(m,p) exceeds its expected value when p > ~ One might hope that

restricting the range of p in this way would help simprlrilfy the proof of a lower
bound on the probability of a binomial exceeding its expected value. However, our
proof in [22] suggests that this is not the case, since the regime where p is small
seems to be the easiest one to analyze (Fig. 1).

The result of Lemma 2 is a one-sided inequality. The proof of a similar result
(Lemma 3) with the roles of R(h) and Rs(h) interchanged makes use of (6).

The proof of the following lemma (Lemma 3) is novel.> While the general
strategy of the proof is similar to that of Lemma 2, there are some non-trivial
differences due to the requirement p < 1 — % of (6). The proof is not symmetric
as shown by the details given below.

Lemma 3 Let 1 < o < 2. Assume that me=—1 > 1. Then, for any hypothesis set
H and any ™ > 0 the following holds:

Pr sup M >e| <4 Pr sup /]\%Sl(h) _ARS(h) > €
S et o/Ro(h) + 7 SSDT | nel ¢/ L Rs(h) + Rso(h) + ]

Proof Proceeding in a way similar to the proof of Lemma 2, we first show that the
following implication holds for any h € H:

M >el| A (R(h) > ISLS/(h)) = F(Rs(h),Rs/(h)) >e.  (11)
t/Rs(h)+ T

The first condition can be equivalently rewritten as R(h) < Rg(h)—e(Rg(h)+7)7,
which implies
R(h) < Rs(h) — eRs(h)=  and  ea-1 < Rg(h), (12)

since Rg(h) > 0. Assume that the antecedent of the implication (11) holds for
h € H. Then, in view of the monotonicity properties of function F' (Lemma 4), we
can write:

F(Rs(h), Rs(h)) > F(Rs(h), R(h)) (R(h) > Rs:(h))
> F(Rs(h), Rs(h) — eRs(h)=) (1st ineq. of (12))
Rs(h) — (Rs(h) — eRs(h)«)
{/32Rs(h) - eRs(h)¥ + 4]

> ER(h)i (2nd ineq. of (12))
{/1RR(0) — a5 + 1]

> M =e, (mew%l > 1)
i/ 32R(R)]

3 A version of this lemma is stated in [11], but no proof is given.
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which proves (11). For the application of (6) to a hypothesis h, the condition
R(h) < 1— % is required. Observe that this is implied by the assumptions Rg(h) >
ea1 and mea1 > 1:

R(h) < Bs(h) — e {/Rs(h) <1—eeati =1 — a1 < 1—%.

The rest of the proof proceeds nearly identically to that of Lemma 2.

In the statements of all the following results, the term E em . p2m[Sh (x3™)]
can be replaced by the upper bound IT2,,(H) to derive simpler expressions. By
Sauer’s lemma [42,49], the VC-dimension d of the family H can be further used to
bound these quantities since Moy, (H) < (%Tm)d for d < 2m. The first inequality
of the following theorem was originally stated and proven by [47,48], later by [1]
(in the special case @ = 2) with a somewhat more favorable constant, in both
cases modulo the incomplete proof of the symmetrization and the technical issue
related to the denominator taking the value zero, as already pointed out. The
second inequality of the theorem and its proof are novel. Our proofs benefit from
the improved analysis of [1].

Theorem 1 For any hypothesis set H of functions mapping a set X to {0, 1},
and any fired 1 < a < 2 and 7 > 0, the following two inequalities hold:

o 2(a—1) 2
sup R(h) — Rs(h) > 6] < 4 B[Sy (a?™)] exp <_m“6>

Pr
S~D™ \ner {/R(h)+7 o2

~ 2a-1) o
Pr |sup M >e| <4 E[Sy(zi™)]exp <ma<:2€> .
ST heH S Rg(h) 47 g

Note that 7 > 0 is required to ensure that the ratio the supremum is taken over
will never have its numerator and denominator be zero at the same time.

Proof We first consider the case where mea-1 < 1, which is not covered by
Lemma 2. We can then write

2@=1) o
4E[Sg (z3™)] exp {me > AE[Sy (z3™)] exp {7}} >1,
27«

at2
a

for 1 < a < 2. Thus, the bounds of the theorem hold trivially in that case. On

the other hand, when mea1 > 1, we can apply Lemma 2 and Lemma 3. There-

fore, to prove theoreAm 1, it is sufficient to work with the symmetrized expression

sup Rgr(h)—Rs(h)
heH

= = , rather than working directly with our original ex-
/4 1Rs (M) +Rgr () + L]

pressions supy,c g %\/%(Th) and supj, ¢y %\/ﬁ(?' To upper bound the prob-

ability that the symmetrized expression is larger than €, we begin by introducing
a vector of Rademacher random variables o = (01,02,...,0m), where the o; are
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independent, identically distributed random variables each equally likely to take
the value +1 or —1. Using the shorthand z3™ for (z1,...,Z2m), we can then write

sup Rsf(h) Rs(h) S e

.
S,S'~D heH\/ Rsh)—i—Ry(h)—F ]

ﬁlzz 1(h($m+z) h(x:))

.2 ) sup >e€
S |k U 2 0 () + ) + 1]

I LS e - )
2mND2m,0' heH ,\,/ z l(h(mm+z)+h(xz))+1}

> €

_ E Pr | sup e oy oi(h(@m+i) — h(w:)) > c|a2m
2m ., H2m o
sAm D heH ¢ LIS (h(wm ) + () + 1]
2m i iey 0i(h(mti) —h(zi)) _
Now, for a fixed 23", we have Eo [ Vi b then | thus, by

Hoeffding’s inequality, we can write

Pr A 0i(h(@meys) — () S

7L (h(wm ) + Blw:)) + 1]

< exp ( ity (h(zm+i) + h(i)

2m

at2

)+ 1]am el 2)
25 Yy (h(wmes) = h(ai)?
< exp ( 7 ((@mri) + b)) om™ o 2) |

at2

27 30 (M@mi) — h(wi))?

Since the variables h(z;), ¢ € [1,2m], take values in {0, 1}, we can write

Z(h($m+z‘) — h(z:))? = Z h(@m+i) + h(@i) — 2h(Tm+i)h(3)
<D h@mea) + hla) < {Z M@m+i) + h(xz')] ;

=1 i=1

where the last inequality holds since a < 2 and the sum is either zero or greater
than or equal to one. In view of this identity, we can write
Pr| =2 > €

_ 2a=1) o
2™ | < exp (m e € ) )
¥/ 2 (S (@) + (o) 2%

We note now that the supremum over h € H in the left-hand side expression
in the statement of our theorem need not be over all hypothesis in H: without
changing its value, we can replace H with a smaller hypothesis set where only one
hypothesis remains for each unique binary vector (h(x1), h(x2),...,h(z2m)). The

LS oi(h(@mai) — h(z:))
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number of such hypotheses is Sy (z3™), thus, by the union bound, the following
holds:

m ) N ) i % 2
Pr | sup 2iz1 Ti(P(@mis) — h(z:)) >e|zi™| < Su(zi™)exp (W) )
nel o LIS (@) + b)) ’

The result follows by taking expectations with respect to 2™ and applying Lemma 2
and Lemma 3 respectively.

Corollary 1 Let 1 < a < 2 and let H be a hypothesis set of functions mapping
X to {0,1}. Then, for any d > 0, each of the following two inequalities holds with
probability at least 1 — J:

log B[Sy (22™)] + 1
R(h) — Rs(h) < 2% ¢/R(h \/Og [HM 3>]+Og‘s

log E[Sg (22™)] + log 4 5

2(a 1)

Rs(h) — R(h) < 2%« {/Rs(h)

Proof The result follows directly from Theorem 1 by setting  to match the upper
bounds and taking the limit 7 — 0.

For a = 2, the inequalities become

log E[Sx (z™)] +log §

R(h) — Rs(h) < # R(h)

- (13)
Rs(h) — R(h) < 2\/§5(h) logE[SH(xim” +log , (14)

with the familiar dependency O (,/logrgl#). The advantage of these relative

deviations is clear. For small values of R(h) (or Rs (h)) these inequalities provide
tighter guarantees than standard generalization bounds. Solving the corresponding

second-degree inequalities in y/R(h) or 4/ ﬁs(h) leads to the following results.

Corollary 2 Let H be a hypothesis set of functions mapping X to {0,1}. Then,
for any § > 0, each of the following two inequalities holds with probability at least
1—6:

R(h) < ﬁs(h)+2\/§S(h)logE[SH(x§m)] +log % "y lOgE[SH( ™Y + log 4

m m

log E[Sp (22™)] + log § g8 E[Su (z1™)] + log §
m m '

Rs(h) < R(h) + 2\/ R(h)

Proof The second-degree inequality corresponding to (13) can be written as

VR(R) = 2y/R(h)u — Rs(h) <0,



12 Corinna Cortes et al.

2m o 4 ~
with u = \/logE[SH(f; I¥los 5 , and implies y/R(h) < u+4/u? + Rg(h). Squaring

both sides gives:

R(h) < [u +\/u? + fzs(h)r = u? + 2u\/u? + Rg(h) + u* + Rs(h)
< u?+2u (\/172-0- \/Es(h)) +u? + ﬁs(h)

= 4u® + 2u\/ Rs(h) + Rs(h).

The second inequality can be proven in the same way from (14).

The learning bounds of the corollary make clear the presence of two terms: a term
in O(1/m) and a term in O(1/y/m) which admits as a factor Rs(h) or R(h) and
which for small values of these terms can be more favorable than standard bounds.
Theorem 1 can also be used to prove the following relative deviation bounds.

The following theorem and its proof assuming the result of Theorem 1 were
given by [2].

Theorem 2 For all 0 < e < 1, v > 0, the following inequalities hold:

R(h) ~ Rs(h) } < AE[Sp (22™)] exp <W>

sup =
ner R(h) + Rs(h) + v 2(1—¢?)

Rs(h) — R(h) om —mue?
s~ |:hEH R(h) + Rs(h) + v g 6} = BB e (2(1 - 62)) '

Ir
S~Dm

Proof We prove the first statement, the proof of the second statement is identical
modulo the permutation of the roles of R(h) and Rs(h). To do so, it suffices to
determine ¢ > 0 such that

Pr sup R(h) iRS(h) >e| < Pr sup M >¢€ ,
S~D™ |her R(h) + Rs(h) +v S~D™ \pern {/R(h)+T

since we can then apply theorem 1 with v = 2 to bound the right-hand side and
take the limit as 7 — 0 to eliminate the 7-dependence. To find such a choice of €,
we begin by observing that for any h € H,

R(h) — Rs(h) ., poy < 1F€

= €
= < Rs(h) +
R(h) + Rs(h) +v 1—e¢ (h) 1-

v (15)

R(h)—Rs(h)

R v/ R(h)+T -

R(h) < Rs(h) + €¢'y/R(h) + 7. We will prove that this implies (15).
To start, we see that for all § > 0

12
VR 7=\ SORM) +7) < g + D(R(R) +7)

by the inequality of arithmetic and geometric means. Hence:

Assume now that ¢’ for some € > 0, which is equivalent to

L2 YRy 4 1)

e
R(h) < Rs(h) + 55¢° + 3
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and therefore, by rearranging to isolate R(h) on one side,

1 4 1 1,2 6
<— — (= —7).
Rh) < =g fis(h) + =47 (296 * 27)

We now only need to choose €, 7 and @ such that

1 <1+e
1-0/2 " 1—c¢

1 1 ,2 0 €
- (= ’r) < .
1-0/2 (296 +27) =1-¢”

It is sufficient to choose

4e
0= 1+e¢
12 862
S m(l’ —27)
which establishes that

1+e~ €
< .
R(h) < 1 6Rs(h) + = 6u

With these choices, the following inequality holds for all h € H:

R(h) = Bs(h) _ o _R(h) = Rs(h)
VRMB) +1 R(h) + Rs(h) +v —

concluding the proof.

€,

The following corollary was given by [2].

Corollary 3 For all e > 0, v > 0, the following inequality holds:

B 5 < 2m —mve )
SFB Sgg R(h) — (1 +v)Rs(h) > €| <4E[Sy(x1™)]exp <74(1 )

Proof Observe that

R(h) — Rs(h)

R(h) + Rs(h) +v > e R(h) = Rs(h) > (B(h) + Rs(h) + v)e

1+e€e~ (2%
17€Rs(h)+176.

< R(h) >

To derive the statement of the corollary from that of Theorem 2, we identify 13

1—e
with 1 + v, which gives €(2 + v) = v, that is we choose ¢ = and similarly

v
2+
identify - with €, that is €’ = 22y = 2y, thus we choose v = %e'. With these
24+v
choices of ¢ and v, the coefficient in the exponential appearing in the bounds of
2

2 ) e ’ 2 ’
. . ve _ 2€¢ 2+v2 _ € v _ v
Theorem 2 can be rewritten as follows: A=) = 20 (git;iz = S IFD T Ity

which concludes the proof.
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The result of Corollary 3 is remarkable since it shows that a fast convergence rate
of O(1/m) can be achieved provided that we settle for a slightly larger value than
the empirical error, one differing by a fixed factor (1 + v). The following is an
immediate corollary when I:Bs(h) = 0, where we take v — oo.

Corollary 4 For all € > 0, the following inequality holds:

Pr [Hh € H: R(h) > e A Rs(h) = o} < AE[Sk(22™)] exp (_Z“) .

~

This is the familiar fast rate convergence result for separable cases.

4 Generalization bounds for unbounded losses

In this section we will make use of the relative deviation bounds given in the
previous section to prove generalization bounds for unbounded loss functions under
the assumption that the moment of order a of the loss is bounded. We will start
with the case 1 < a < 2 and then move on to considering the case when o > 2.
As already indicated earlier, the one-sided version of the results presented in this
section were given by [47] with slightly different constants, but the proofs do not
seem to be correct or complete. The second statements in all these results (other
side of the inequality) are new. Our proofs for both sets of results are new.

4.1 Bounded moment with 1 < a <2

Our first theorem reduces the problem of deriving a relative deviation bound for
an unbounded loss function with L4 (h) = E.~p[L(h,z)%] < +oco for all h € H, to
that of relative deviation bound for binary classification. To simplify the presenta-
tion of the results, in what follows we will use the shorthand Pr[L(h, z) > t] instead
of Prop[L(h, z) > t], and similarly Pr[L(h, z) > t] instead of Pr__5[L(h, z) > 1.
Theorem 3 Let 1 < a <2, 0<e< 1, and0 < e < ea1. For any loss
function L (not necessarily bounded) and hypothesis set H such that Lo (h) < 400
for all h € H, the following two inequalities hold:

L(h) — Ls(h)

Pr sup

Pr[L(h,z) > t] — Pr[L(h, z) > {] ..

sup ————=-- > I'(a,€)e| < Pr
hed Y La(h)+T

heH,teR $/Pr[L(h,z) > t]+ T

L(h) — Ls(h)

Pr | sup —=——== > I'(¢, €) 6} <Pr| sup
|:heH VLa(h)+7 heH,teR i/l/D}[L(h,z) >t 47

a—1

—1
with I'(a, €) = =L (147)w + L (ﬁ)a 1+ (e5h)ra)a |1+ foslid,

(5=)

|

Pr(L(h,2) > ] ~Pr[L(h.2) > 1] __
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The proof of Theorem 3 is given in the Appendix.

The next corollary follows immediately by upper bounding the right-hand side
of the learning bounds of theorem 3 using theorem 1. It provides learning bounds
for unbounded loss functions in terms of the growth functions in the case 1 < a <
2.

Corollary 5 Lete <1, 1 <a <2, and 0 < i < €a-1. For any loss function
L (not necessarily bounded) and hypothesis set H such that Lo (h) < +oo for all
h € H, the following inequalities hold:

. 2(a—1)
L(h) — L(h) 2m —m e €
Pr | sup ———= > I'(a,€)e| <4 E[Sq(z exp| ————
sup S > (o, | < 4 B (A e
L(h) — L(h) T
Pr p L S (a,e)e| <4 E[So(27™)]exp <ma+26> ,
9otz

a

su
ReH S La(h) + 7

where Q is the set of functions Q = {2z + 1p(n2)>¢ | h € H,t € R}, and I'(a,€) =

a—1
1+ ‘Og(l/ﬂl}
(5=)
For comparison with other results in situations where the 2nd moment of the loss
is finite, the following corollary gives the explicit a = 2 case of the above corollary.
Note that in the a = 2 case the expression {/Lq(h) + 7 relates directly to the
standard deviation, and also coincides with the corresponding expression used by
Vapnik.

a—1 o
SN (5) A ()T

a \a—1

Corollary 6 Let e < 1 and 0 < 7 < €*. For any loss function L (not necessarily
bounded) and hypothesis set H such that La(h) < +oo for all h € H, the following
inequalities hold:

L(h) — L(h) 2] oy [ ZTE

Pr sy @mH¢>F@”%§“%d“)”p(4 >
r | su 72(11) — £ €)e 23] ex —me”

p sup 22(h)+T>F(27) <4 E[Sq(=1™)] P( 1 )

with I'(2,¢) = (7‘12“ + \/1 + %\ﬁ\/l + %log %) and Q the set of functions Q =
{Z — 1L(h,z)>t | heH,te R}
Corollary 7 Let L be a loss function (not necessarily bounded) and H a hypothe-

sis set such that L2(h) < 400 for all h € H. Then, for any § > 0, with probability
at least 1 — 3, each of the following inequalities holds for all h € H :

L(h) < Ls(h) + Qm\/QlogE[gQ(me)] + loggpo (2 2\/2logE[gQ(z§mH n 1Og§>

m

Zs(h) < £(h) + 2\/?(]1)\/210gE[SQ(zfm)] + log%FO <2 2\/210gE[SQ(z%m)] + 10g(15>

m
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where Q is the set of functions Q = {2z 1p(h,2)>¢ | h € H,t € R} and I'v(2,¢) =

14+4/1+3logt.

Proof For any € > 0, let f(e) = I9(2,€)e (which is invertible and approximately
linear for e slightly larger than 0). Then, by Corollary 6,

L(h) — L(h) 22 oy —m[f 1 (]*
:ggm E[Sq(z1™)] p< 1 )

Setting the right-hand side to € and using inversion yields immediately the first
inequality. The second inequality is proven in the same way.

Pr > €

Observe that, modulo the factors in I, the bounds of the corollary admit the
standard (1/4/m) dependency and that the factors in I are only logarithmic in
m.

4.2 Bounded moment with o > 2

This section gives two-sided generalization bounds for unbounded losses with finite
moments of order «, with o > 2. As for the case 1 < a < 2, the one-sided version
of our bounds coincides with that of [47,48] modulo a constant factor, but, here
again, the proofs given in both books seem to be incorrect.

Proposition 1 Let a > 2. For any loss function L (not necessarily bounded) and
hypothesis set H such that 0 < Lqo(h) < 400 for all h € H, the following two
inequalities hold:

+M\/PrUXh,z)>>ﬂdt§!P( /La(h) and /" Pr[L(h,z) > t]dt < ¥(a) {/ La(h),

0

a—1
where ¥(a) = (%)2 (ﬁ) “
Note that the difference between the two inequalities above is that the right in-
equality involves the empirical distribution (i.e. drawing a data point uniformly
at random from our fixed data set), whereas the left inequality involves the true,
underlying distribution from which the data points were drawn. The proof of
Proposition 1 is given in the Appendix.

Theorem 4 Let o > 2,0 < e <1, and 0 < 7 < €2. Then, for any loss function
L (not mecessarily bounded) and hypothesis set H such that Lo(h) < 400 and
Lao(h) < 400 for all h € H, the following two inequalities hold:

L(h) — L(h) Pr[L(h, z) > t] — Pr[L(h, 2) > ]
b :lelll?l m > Aleje| < Pr [heSHu,It)eR VPr[L(h,2) > t]+ 7 e
Pr | sup Lk - ) > Al(a)e| <Pr | sup 15;[ L(h,2) > 8] = Pr{L(h, z) > t]

L(h
il S e S < >el,
heH a/L: (h)+ heH,teR \/PI‘ L(h Z) >t]+7’

where A(a) = (%)% (ﬁ)% + %17'%.
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Proof We prove the first statement since the second one can be proven in a very

similar way. Assume that supy, , Pr[L(\};’;)[z?h_F;ri](:’z»t] <eFixheH,letJ=
’ T yZ T

O+°° V/Pr[L(h,z) > t]dt and v = Lo(h). By Markov’s inequality, for any ¢ > 0,
Pr[L(h,z) > t] = Pr[L%(h,z) > t*] < E‘Ziih) = 7. Using this inequality, for any
to > 0, we can write

. +o0 _
L(h) — L(h) :/0 (Pr[L(h,z) > t] — Pr[L(h, ) > t]) dt
= /to (Pr[L(h, 2) > t] — Pr[L(h, 2) > t]) dt
0

+oo _
+/ (Pr[L(h, 2) > {] — Dr[L(h, ) > #]) dt

to 4o
ge/o /Pr[L(h, 2) >t]+7’dt+/to Pr[L(h, z) > t] dt

to “+ oo v
< e/ (v/Pr[L(h, 2) > t] ++/T) dt+/ t—adt
0 to
v
<eJ+eTto+ —— -
<e e\/Tto (o 1)t8‘71

1
Choosing to to minimize the right-hand side yields tg = (6\”5) “ and gives

L(h) — L(h) < eJ + v (ey/7) .

a—1
Since 7 < €2, (e\ﬁ)aT_1 = [67'2“*1*1)7'2&121)]&7_1 < [eer*l)Tz((:;zl)}aT_l -

Thus, by Proposition 1, the following holds:
1

L’(h)—ﬁ(h)< Wla)— Y@ e ve < (o) + e! a=2

€ . - < 67'2:,
/La(h)+1 ( (v+r)a a—1 v+1)a a—1

which concludes the proof.

Combining Theorem 4 with Theorem 1 leads immediately to the following two
results.

Corollary 8 Leta > 2, 0< e <1, and 0 < 7 < €. Then, for any loss function
L (not necessarily bounded) and hypothesis set H such that Lo(h) < 400 and
La(h) < 400 for all h € H, the following two inequalities hold:

L(h) — L(h) o (m62)
Pr | sup ————== > A(a)e| <4 E[Sg(z e
heg o ﬁa(h)+7 ( )6 = [ Q( 1 )] Xp 4
Ay 2
Pr | sup M > Ala)e| <4 E[Sq(21™)]exp ( 726 > ,
hel 2/ 2o (h) + T
where Ala) = (%)2 (ﬁ)T + %7—% and where Q is the set of functions

Q= {Zl—> 1L(h,z)>t | he H,t GR}



18 Corinna Cortes et al.

In the following result, Pdim(G) denotes the pseudo-dimension of a family of
real-valued functions G [40,41,47], which coincides with the VC-dimension of the
corresponding thresholded functions:

Pdim(G) = VCdim ({(z,t) — 1(g(x)—t)>0: g € G}) . (16)

Corollary 9 Let a > 2, 0 < € < 1. Let L be a loss function (not mecessarily
bounded) and H a hypothesis set such that Lo(h) < +oo for all h € H, and
d =Pdim({z — L(h,z) | h € H}) < +00. Then, for any 6 > 0, with probability at
least 1 — &, each of the following inequalities holds for all h € H :

2em 4 log 3
m

L(h) < Z(h) + 24(c) \“/Ea(h)\/ dlog

-~ =~ dlog 2&m 4 log 4
< & o d 5
L(h) < L(h)+24(a) y/ L (h)\/m

where A(a) = (%)% (ﬁ) “

5 Applications

We now apply the above results to a couple sample applications of particular
interest.

5.1 Importance weighting

As an example application of the results above, consider the case of deriving learn-
ing bounds for importance weighting. The importance weighting technique involves
adjusting the cost of each error made on training data points so as to correct for
differences between the distributions from which training points and testing points
are drawn. It has applications in areas such as sample bias correction and adap-
tation [43,16].

Let Q(z) be the probability distribution from which training samples are drawn
and P(z) be the probability distribution from which testing samples are drawn.
Then, by weighting the error made on each point, z, by w(z) = P(z)/Q(z) in
our empirical loss function, we achieve an unbiased estimator of the generalization
error on the distribution P(z), even though the training data is drawn according to
Q(z). Hence, we replace our loss function L(h,z) with the weighted loss function
w(z)L(h, z).

Producing deviation bounds in the case of importance weighting is complicated
by the fact that the weights w(z) may be unbounded (if the distribution Q(z)
approaches 0 faster than P(z) in some regions). Assume that our loss function
(prior to weighting) is restricted to the range [0, 1], but our entire loss w(z)L(h, z)
is still potentially unbounded due to the unbounded weights. Then, assuming
da (P]|Q) is bounded, we note that:

La(h) = E w(2)"L%(h,2)] < B [(P(2)/Q(2))"] = da(Pl|Q)*™"

where dq (P]|Q) is the exponential base 2 of the Rényi divergence.
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Corollary 9 then immediately tells us that when Lo (h) < 400, we have for
a>2,0<e<1,and for all h € H and any § > 0, with probability at least 1 — §
the following inequality holds for all h € H:

2em 4
L(h) < L(h) + 24() da(p|Q)‘21\/‘mgd+k’ga_

m

Note that when « is slightly bigger than 2 this result is extremely similar to
Theorem 3 of [13], but with an improved rate of convergence with respect to the
sample size m.

What’s more, Corollary 7 tells us that for the o = 2 case, with probability at
least 1 — ¢§ the following inequality holds for all h € H:

~ 2log E[Sq(22™)] + log 1 \/210 E[Sq(22™)] + log *
£ < Eoty 2y aPTY 2 el oes (2,2 sPBal o s
where @ is the set of functions Q@ = {z — ly)o(h,2)>e | b € H,t € R} and

I'b(2,€) = 3 +1/1+ 3 log L. These bounds are again better than those in [13].
Note further that in this @ = 2 case, we have:

Lo(h) = B [w(x)’L*(h2)] < E [w)] = E [(P(2)/Q(2)"] = da(PQ)

so d2(P||Q) simply coincides with the second moment of w.

5.2 The Tsybakov noise condition and excess risk bounds

The Tsybakov noise condition [34,44,50] provides a means to study excess risk
bounds. Corollary 1, if it is extended to cover the case of hypotheses with absolute
values in {0, 1},
can be used along with the Tsybakov noise condition to achieve fast rates for ex-
cess risk in a classification setting, by comparing the Bayes classifier h*(x) (which
by definition minimizes the classification error) to the empirical risk minimizer
lAL(ac) (i.e. the hypothesis with the lowest error on the training data).
We proceed by defining

R(h) = E[Ln(z)2y)
Rs(h) = E[lp(z)2y]-
and define our loss function as
L(h‘(x)vy) = 1h(:c)7$y - 1h*(ac)7$y

which is 0 when h(x) and h*(x) agree, 1 when h(z) makes a classification mistake
that h*(z) doesn’t, and -1 when h*(x) makes a classification mistake that h(x)
doesn’t. Now we apply an extended form of Corollary 1 to L(h(x),y) for any fixed
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a satisfying 1 < a < 2. Then, for any § > 0, the following inequality holds with
probability at least 1 — §:

o~ log B[S (22™)] +1
R —R(W) < Rs(h)— s (h*) 425 WW Hml] 85

Now, since the above holds for any h in our hypothesis set H, we can choose h
to be h, the empirical risk minimizer. Furthermore, if we assume that h* € H (a
strong assumption, but standard in this context), we have:

Rs(h) — Rs(h*) <0

since by definition h achieves the minimum classification error on S of any h € H.
Therefore:

A 1 ES 1
R() — R(h™) < 252 ¢/BIL(h@), \/Og il = o)+ %8 5

_2“\/ L(h(a), >|%10gE[SH( ")l +log s

2(a—1)
o

By applying the Tsybakov noise assumption we have.
E[[L(h(2),y)[] = Ell @)y — L+ @)yl = El(Ln@yzy = Lne (@)2y)]

< po(R(h) — R(h"))"
for some 7 € [0, 1] and some Sy > 0. Therefore:

R(/ﬁ) — R(h*) < \//B(R(h) R(h*))zg IOgE[SH(Z(LmI))] + log 5

m

for some 8 > 0 (dependent on «) and

m o

~ N logE[Sx (2¥™)] + log £ \ 2%
R(h)—R(h)§<B SulgdT) e )

Choosing o = 2 we have
1
log E[Su (23™)] + log g) =
m

R(h) — R(h") < (/3
=1
which proves a fast rate of convergence in m?2-~.

6 Conclusion

We presented a series of results for relative deviation bounds used to prove gener-
alization bounds for unbounded loss functions. These learning bounds can be used
in a variety of applications to deal with the more general unbounded case. The
relative deviation bounds are of independent interest and can be further used for
a sharper analysis of guarantees in binary classification and other tasks.
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Lemmas in Support of Section 3

Lemma 4 Let 1 < a <2 and for anyn > 0, let f: (0,+00) x (0,+00) — R be the function
defined by f: (z,y) — % Then, f is a strictly increasing function of x and a strictly
decreasing function of y.

Proof f is differentiable over its domain of definition and for all (z,y) € (0, +o00) x (0, +0c0),

OF (44 = (E+y+n)%—%(w;lry+n)é’l _ O‘T’lﬂ%lytn =0

e (z+y+nea (@+y+n)'ta

0 () = —(@ty+n) - 7”;1“’(3624-y+n)éf1 s "T_ly-tn —0.
9y (z+y+nea (@+y+n)'ta

Proofs in Support of Section 4

Proof of Theorem 8

Proof We prove the first statement. The second statement can be shown in a very similar way.
Fix 1 < a <2 and € > 0 and S assume that for any h € H and ¢t > 0, the following holds:

Pr[L(h, 2) > t] — Pr[L(h, z) > t] ..

§/Pr[L(h,z) > t]+ T -

We show that this implies that for any h € H, M < I'(e, €)e. By the properties of

Vv La(h)+1 —

(17)

the Lebesgue integral, we can write

—+o0

L(h) =E.~plL(h, 2)] =/0 Pr[L(h,z) > t]dt

~ +oo
L(h) =, _5[L(h, )] =/ Br[L(h, 2) > 1] dt,
0
and, similarly,
—+oo —+oo
Lo(h) = La(h) = / Pr[L%(h,z) > t]dt = / at® Y Pr[L(h, z) > t] dt.
0 0
1 1
In what follows, we use the notation In = Lo (h) + 7. Let to = sI§ and t1 = to [%] a—1
for s > 0. To bound L(k) — £(h), we simply bound Pr[L(h,z) > #] — Pr[L(h,z) > t] by
Pr[L(h,z) > t] for large values of t, that is t > ¢1, and use inequality (17) for smaller values of
t:

_ oo _
L(h) — L(h) = /0 Pr(L(h, 2) > t] — Dr[L(h, 2) > ¢] dt

t1 400
< / e /PrL(h,2) > F rdt + Pr[L(h, 2) > 4] dt.
0 ty

For relatively small values of ¢, Pr[L(h, z) > t] is close to one. Thus, we can write

L) —L(h) < /Oto c a\/1+7dt+/tt1 e {/PrLh, z)>t]+7—dt+/+oo Pr[L(h, =) > f]dt

ty

—+o0
- /0 F®)gt) dt,
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with
. if0<t<to
Nl /T 7 if 0 <t<to el ifto <t <t
. R
FO) =\ 72 [ate =1 (Pr[L(h,2) > ]+ 7)] 7 eifto <t <ty 9=\ S@end B sish
1 . a—1
vz [at® =1 Pr[L(h,z) > t]] = € ift; <t %l if t1 < t,

where 71,72 are positive parameters that we shall select later. Now, since a > 1, by Holder’s
inequality,

cw>—Em><[1fwfuwd@i[A+wmw¥*d4

The first integral on the right-hand side can be bounded as follows:

“+oo to L}l t1 “+oo
/ f@)>dt :/ 14+7) (1™ € dt + yge%/ at® Ldt 4~ / at® "L Pr[L(h, 2) > t]e* dt
0 0 to to

a—1
A+ T0 " toe® + 78 T(t] — 18) + 45 Lo
<P +7)s+78 (1 +s%(1/€)5-17))e I
¢

1
SOT(A+7)s+75 (14 5% )% [a.

1
Since t1/to = (1/€) =1, the second one can be computed and bounded following

+oo o to dt t1 1 dt +oo  Pr[L(h,z) >t
/ g(t)e=T dt = / =1 + = — -‘r/ %dt
0 0 t

VI o A TaseT t 1y Taa-TeaTt
1 1 +oo qte=1Pr[L(h,z) >t
= Sa + — — log — + @ = UL az) ]dt
710171 72@171 (a—1)aa—T € ty 72&71 (ae) a1 to
1 1 +° qt*=1Pr[L(h,z) >t
S Sa + a 1 IOg*JF 2 a r[ ( QZ) ]dt
’Yla_l ’Yza_l (@ =Da=-T ¢ £1 '72'1_1 (o) a=T ¢
1 1 I
<t —log = + — S
a—1 a=T(\ _1)qa—-1 € a—1 ST gag (LyasT
71 Yo (O‘ )O‘ Yo (ae) S a(e)

Il
Q
+

s 1 1 1 1
= — log — + = .
’Yla_l 72@-1 (@ = Da=-T ¢ anetlse

Combining the bounds obtained for these integrals yields directly

£(h) = £(h)
a—1
1 s s 1 1 1 1 :
<[P +ms a8+ ] | S + ( ; bg-+¢1>
’Yln—l 72{1—1 (Oé _ 1)0“‘(,1 € o -1 8%
a—1
1,1 s 1 1 1 1 ° 1
=(rA+7)s+y3 (A +s%7a))e | — + —= < —log — + — ) els.
'Yf71 ,Y2a—1 (a _ l)aw—l € Qe-18%
1
Observe that the expression on the right-hand side can be rewritten as [[ulallv]|_o_ eIg

where the vectors u and v are defined by u = (v1(1 + T)isi,vg(l + so‘Ti)%) and v =
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a—1

a—1 «
(vi,v2) = | 2 Wa , L L logl+ — . The inner product u-v does not
1 72 (afl)aﬁ € aa—1go
_1 1
depend on 1 and 72, and equality holds if and only if the vectors u and v/ = (v;* ™", v5 ")
are collinear (as we can see by applying Holder’s inequality).
~1 and 2 can be chosen so that det(u, v’) = 0, since this condition can be rewritten as

1
1 1 1 «
sa(l+7)a—5 [ —log ~ + —a ] —sa(l4+s°7m)a 25— =0, (18)
e I ==
or equivalently,
a1 1 1 1 o
(l) L logt | —(14srE)E =0 (19)
Y2 (ai l)aﬁ € aa—1 g
Thus, for such values of y; and -2, the following inequality holds:
~ 1 1
L(h) —L(h) <(u-v)el§ = f(s)elg,
with
a—1
1 1.1 1 1 1 «
fls) =(1+m)as+(1+s%7ra)a | —————log—+ —5—
(a_l)am € aa—1go
1 1+ SaTé)é « 1 1 ot
= (1 o 1 - —_ .
(14 r)es+ @ {(a—l) Oge+so‘}
Setting s = % yields the statement of the theorem.

Proof of Proposition 1
Proof We prove the first inequality. The second can be proven in a very similar way. Fix a > 2

and h € H. As in the proof of Theorem 3, we bound Pr[L(h, z) > t] by 1 for ¢ close to 0, say
t < to for some tg > 0 that we shall later determine. We can write

+oo to 400 +o0
/ NIOD) >t}dt§/ 1dt+/ VPrL(h, %) >t]dt:/ F(D)g(t)dt,
0 0 to 0

with functions f and g defined as follows:

Iu; fo<< 1 ifo<t<t
o i t <t Za
[ = {7106 a—1 1. T 0 g(t) = 710‘1 .
a2t 2 Pr[L(h,z) > t]2 if to < t. I,aT if 1o <t,
«

where Io = Lq(h) and where v is a positive parameter that we shall select later. By the
Cauchy-Schwarz inequality,

/Oﬂo PrL(h,2) > fdt < (/0+oo f(t)zdt>% </0+°° g(t)zdt>%.

Thus, we can write
“+ o0

VPr[L(h, 2) > fldt

0
1
a=1 +oo 3 to teo 1 ’
< (VQICX‘x to +/ at® "' Pr[L(h, z) > t]dt) T "‘/ prrell
to 72IT to at®
1
9 a—1 % to 1 :
SV to+ la a1 T a—2
e ala=2)g
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Introducing t1 with tg = Ig/atl leads to

3
+oo 5 1 t1 1
/ VPr[L(h,z) > t]dt < (v Iat1 + 1a)2 — + —
0 V2In ™ 01(04—2)15‘1)‘72104‘x
1
1/t 1 2 1
<P+ |54+ —m | IS
( ) 7 ala-— 2)t‘1"72 «
1 2
We now seek to minimize the expression ('yQtl + l) 2 % + ﬁ , first as a function
v a(a—2)t]
1
of ~. This expression can be viewed as the product of the norms of the vectors u = (yt{,1)
1
2
and v = (t}Y , %H), with a constant inner product (not depending on «). Thus, by
Va(a—=2)t, 2

the properties of the Cauchy-Schwarz inequality, it is minimized for collinear vectors and in
that case equals their inner product:

1
u-v=t; + ——5 -
ala —2)t, 2

Differentiating this last expression with respect to t; and setting the result to zero gives the
2

minimizing value of ¢1: (ﬁ«/a(a — 2))7% = (% "‘72) “ . For that value of t1,

@

( 2 ) a (1 [a=2 (1>%(a72)1%’
u-v=|(1+ t1 = st — ,
a—2 a—2\2 « 2 «

which concludes the proof.
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