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Abstract We present data-dependent learning bounds for the general sce-
nario of non-stationary non-mixing stochastic processes. Our learning guaran-
tees are expressed in terms of a data-dependent measure of sequential com-
plexity and a discrepancy measure that can be estimated from data under
some mild assumptions. Our learning bounds guide the design of new algo-
rithms for non-stationary time series forecasting for which we report several
favorable experimental results.
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1 Introduction

Time series forecasting plays a crucial role in a number of domains ranging
from weather forecasting and earthquake prediction to applications in eco-
nomics and finance. The classical statistical approaches to time series analysis
are based on generative models such as the autoregressive moving average
(ARMA) models, or their integrated versions (ARIMA) and several other ex-
tensions [Engle, 1982; Bollerslev, 1986; Brockwell and Davis, 1986; Box and
Jenkins, 1990; Hamilton, 1994]. Most of these models rely on strong assump-
tions about the noise terms, often assumed to be i.i.d. random variables sam-
pled from a Gaussian distribution, and the guarantees provided in their sup-
port are often only asymptotic.
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An alternative non-parametric approach to time series analysis consists
of extending the standard i.i.d. statistical learning theory framework to that
of stochastic processes. In much of this work, the process is assumed to be
stationary and suitably mixing [Doukhan, 1994]. Early work along this ap-
proach consisted of the VC-dimension bounds for binary classification given
by Yu [1994] under the assumption of stationarity and S-mixing. Under the
same assumptions, Meir [2000] presented bounds in terms of covering numbers
for regression losses and Mohri and Rostamizadeh [2009] proved general data-
dependent Rademacher complexity learning bounds. Vidyasagar [1997] showed
that PAC learning algorithms in the i.i.d. setting preserve their PAC learn-
ing property in the S-mixing stationary scenario. A similar result was proven
by Shalizi and Kontorovich [2013] for mixtures of S-mixing processes and by
Berti and Rigo [1997] and Pestov [2010] for exchangeable random variables.
Alquier and Wintenberger [2010] and Alquier et al. [2014] also established
PAC-Bayesian learning guarantees under weak dependence and stationarity.
Chen and Wu [2018] provide concentration results for linear time series.

A number of algorithm-dependent bounds have also been derived for the
stationary mixing setting. Lozano et al. [2006] studied the convergence of reg-
ularized boosting. Mohri and Rostamizadeh [2010] gave data-dependent gen-
eralization bounds for stable algorithms for ¢-mixing and S-mixing stationary
processes. Steinwart and Christmann [2009] proved fast learning rates for regu-
larized algorithms with a-mixing stationary sequences and Modha and Masry
[1998] gave guarantees for certain classes of models under the same assump-
tions.

However, stationarity and mixing are often not valid assumptions. For ex-
ample, even for Markov chains, which are among the most widely used types
of stochastic processes in applications, stationarity does not hold unless the
Markov chain is started with an equilibrium distribution. Similarly, long mem-
ory models such as ARFIMA, may not be mixing or mixing may be arbitrarily
slow [Baillie, 1996]. In fact, it is possible to construct first order autoregres-
sive processes that are not mixing [Andrews, 1983]. Additionally, the mix-
ing assumption is defined only in terms of the distribution of the underlying
stochastic process and ignores the loss function and the hypothesis set used.
This suggests that mixing may not be the right property to characterize learn-
ing in the setting of stochastic processes.

A number of attempts have been made to relax the assumptions of station-
arity and mixing. Adams and Nobel [2010] proved asymptotic guarantees for
stationary ergodic sequences. Agarwal and Duchi [2013] gave generalization
bounds for asymptotically stationary (mixing) processes in the case of stable
on-line learning algorithms. Kuznetsov and Mohri [2014] established learning
guarantees for fully non-stationary 8- and p-mixing processes.

In this paper, we consider the general case of non-stationary non-mixing
processes. We are not aware of any prior work providing generalization bounds
in this setting. In fact, our bounds appear to be novel even when the process
is stationary (but not mixing). The learning guarantees that we present hold
for both bounded and unbounded memory models. Deriving generalization



bounds for unbounded memory models even in the stationary mixing case
was an open question prior to our work [Meir, 2000]. Our guarantees cover
the majority of approaches used in practice, including various autoregressive
models.

The key ingredients of our generalization bounds are a data-dependent
measure of sequential complexity (ezpected sequential covering number or se-
quential Rademacher complexity [Rakhlin et al., 2010]) and a measure of dis-
crepancy between the sample and target distributions. Kuznetsov and Mohri
[2014, 2017a] also give generalization bounds in terms of discrepancy. However,
unlike these result, our analysis does not require any mixing assumptions which
are hard to verify in practice. More importantly, under some additional mild
assumption, the discrepancy measure that we propose can be estimated from
data, which leads to data-dependent learning guarantees for non-stationary
non-mixing case.

We use the theory that we develop to devise new algorithms for non-
stationary time series forecasting that benefit from our data-dependent guar-
antees. The parameters of generative models such as ARIMA are typically
estimated via the maximum likelihood technique, which often leads to non-
convex optimization problems. In contrast, our objective is convex and leads
to an optimization problem with a unique global solution that can be found
efficiently. Another issue with standard generative models is that they address
non-stationarity in the data via a differencing transformation which does not
always lead to a stationary process. In contrast, we address the problem of
non-stationarity in a principled way using our learning guarantees.

The rest of this paper is organized as follows. The formal definition of
the time series forecasting learning scenario as well as that of several key
concepts is given in Section 2. In Section 3, we introduce and prove our new
generalization bounds. Section 4 provides an analysis in the special case of
kernel-based hypotheses with regression losses. In Section 5, we give data-
dependent learning bounds based on the empirical discrepancy. These results
are used to devise new forecasting algorithms in Section 6. In Appendix 7, we
report the results of preliminary experiments using these algorithms.

2 Preliminaries

We consider a general time series prediction scenario where the learner receives
a realization Zi,...,Zr of some stochastic process, where, for any t € [T],
Zy = (Xt,Yy) isin Z =X x Y, with X an input space and ) an output space.
We will often use the shorthand Z" to denote a sequence of random variables
Zny Zonily - - -y Zm. Given a loss function L: Y x ) — [0, 00) and a hypothesis set
‘H of functions mapping from X to ), the objective of the learner is to select
a predictor h: X — Y in ‘H that achieves a small path-dependent generalization
error £T+1(h,Zf), that is the generalization error conditioned on the data
observed:

Lra(h,ZT) = E[L(W(X141), Yra1)| Z1, - .., Z7). (1)



The path-dependent generalization error that we consider in this work is a
finer measure than the averaged generalization error

Lri1(h) =E[L(M(X71:1),Yr:1)] =E[E[L(A(X741), Y741 Z1,---, Z7]], (2)

since it takes into consideration the specific realization of the stochastic process
and does not average over all possible histories. The results presented in this
paper apply as well to the setting where the time parameter ¢ can take non-
integer values and where the prediction lag is an arbitrary value [ > 0. Thus,
the error can be defined more generally by E[L(h(Xr.1), Yr)|Z1,. .., Z1],
but for notational simplicity we set [ = 1.

Our setup covers a larger number of scenarios commonly used in practice.
The case X = VP corresponds to a large class of autoregressive models. Taking
X = Up2y VP leads to growing memory models which, in particular, include
state space models. More generally, X may contain both the history of the
process {Y;} and some additional side information. Note that the output space
Y may also be high-dimensional. This covers both the case where we seek to
forecast a multi-variate or high-dimensional time series, and that of multi-step
forecasting.

We denote by F the family of loss functions associated to H: F = {(z,y) —
L(h(z),y):h e H}. For any z = (z,y) € £, L(h(z),y) can thus be replaced by
f(z) for some f € F. We will assume a bounded loss function, that is | f| < M
for all f € F for some M € R,.

The key quantity of interest in the analysis of generalization is the following
supremum of the empirical process defined as follows:

T
P(Z1) =SHP(E[f(ZT+1)IZ1T] - thf(Zt))7 (3)
feF t=1
where ¢q1,...,qr are real numbers, which in the standard learning scenarios

are chosen to be all equal to % In our general setting, different Z;s may follow
different distributions, thus distinct weights could be assigned to the errors
made on different sample points, depending on their relevance to forecasting
the future Zr,;. The generalization bounds that we present below are for
an arbitrary sequence q = (q1,...gr) which, in particular, covers the case
of uniform weights. Remarkably, our bounds do not even require the non-
negativity of q.

The two key ingredients of our analysis are the notions of sequential com-
plexity [Rakhlin et al., 2010] and that of discrepancy measure between target
and source distributions. In the next two sections, we give a detailed descrip-
tion of these notions.

2.1 Sequential Complexities

Our generalization bounds are expressed in terms of data-dependent measures
of sequential complexity such as expected sequential covering number or se-
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Fig. 1 Weighted sequential cover and sequential covering numbers.

quential Rademacher complexity [Rakhlin et al., 2010], which we review in
this section.
We adopt the following definition of a complete binary tree: a Z-valued

complete binary tree z is a sequence (z1,...,27) of T mappings z;: {1} —
Z,te[l1,T]. A path in the tree is o = (01,...,07-1) € {1}771. To simplify
the notation, we will write z;(o) instead of z;(o1,...,04-1), even though z

depends only on the first t—1 elements of o. The following definition generalizes
the classical notion of covering numbers to sequential setting. A set V of R-
valued trees of depth T' is a sequential a-cover (with respect to g-weighted
¢, norm) of a function class G on a tree z of depth T if for all g € G and all
o € {+}T, there is v € V such that

T D\
(;M(U) - g(z(a))| ) < lalg'a,

where ||, is the dual norm associated to |-|,, that is %+% = 1. The (sequential)
covering number Np(a, G, z) of a function class G on a given tree z is defined to
be the size of the minimal sequential cover. The mazimal covering number is
then taken to be N,(a,G) = sup, N,(a,G,z). In the case of uniform weights,
this definition coincides with the standard definition of sequential covering
numbers. Note that this is a purely combinatorial notion of complexity which
ignores the distribution of the process in the given learning problem.
Data-dependent sequential covering numbers can be defined as follows.
Given a stochastic process distributed according to the distribution p with
p:(-|zi™1) denoting the conditional distribution at time ¢, we sample a Z x 2Z-
valued tree of depth T according to the following procedure. Draw two in-
dependent samples Z7,Z] from pj: in the left child of the root draw Zs, Z
according to p2(-|Z;) and in the right child according to p2(+|Z7). More gen-
erally, for a node that can be reached by a path (o1,...,0:), we draw Z;, Z]
according to pt(:[S1(0o1),...,St-1(0t-1)), where S;(1) = Z; and S¢(-1) = Z|.
Let z denote the tree formed using Z;s and 7 the distribution of trees z thereby
defined. Then, the expected covering number is defined as E,.7[N,(, G, 2z)].
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Figure 1 illustrates these notions. For i.i.d. sequences, the notion of expected
sequential covering numbers exactly coincides with that of expected covering
numbers from classical statistical learning theory.

The sequential Rademacher complexity ::5°%(G) of a function class G is
defined by

RT49) = sup B l S;:g; Ut‘]tg(zt(o'))la (4)

where the supremum is taken over all complete binary trees of depth T with
values in Z and where o is a sequence of Rademacher random variables
[Rakhlin et al., 2010, 2011, 2015a,b]. Similarly, one can also define the notion
of distribution-dependent sequential Rademacher complexity as well as other
notions of sequential complexity such as Littlestone dimension and sequential
metric entropy that have been shown to characterize learning in the on-line
learning scenario. For further details, we refer the reader to [Littlestone, 1987;
Rakhlin et al., 2010, 2011, 2015a,b].

2.2 Discrepancy Measure

The final ingredient needed for expressing our learning guarantees is the notion
of discrepancy between target distribution and the distribution of the sample:

T
discr(q) - ?Elfp(E[f(Zm)IZlT] -3 qtﬂ«:[f<zt>|Z§-1J). 5)

In what follows we will omit subscript 7" and write discy to simplify the nota-
tion. Figure 2 illustrates the key difference term in the definition of discrepancy.

The discrepancy disc is a natural measure of the non-stationarity of the
stochastic process Z with respect to both the loss function L and the hypoth-
esis set H. In particular, note that if the process Z is i.i.d., then we simply
have disc(q) = 0 provided that ¢;s form a probability distribution. To help the
reader develop further intuition about discrepancy, we provide several explicit
examples below.

Ezxample 1. Consider the case of a time-homogeneous Markov chain on
set {0,..., N — 1} such that P(X; = (- 1) mod N|X;-; =4) = p and P(X;
(i+1) mod N|X;_1 =) = 1-p for some 0 < p < 1. This process is non-stationary

o



if it is not started with an equilibrium distribution. Suppose that the set of
hypothesis is {x —» a(x -1) +b(x + 1):a+b=1,a,b >0} and the loss function
L(y,y") = £(Jy — y'|) for some £. It follows that for any (a,b)

E[f(Z)|Z7'] = pla~b-1]+ (1 -p)la-b+1]

and hence disc(q) = 0 provided q is a probability distribution. Note that if we
chose a larger hypothesis set {x — a(z—1) +b(x + 1):a,b >0} then

E[f(Z)ZE ) =pl(a+b-1) X, +a-b|+(1-p)|(a+b+1)X, +a-Db

and in general it may be the case that disc(q) # 0. This highlights an impor-
tant property of discrepancy: it takes into account not only the underlying
distribution of the stochastic process but other components of the learning
problem such as the loss function and the hypothesis set that is being used.

Ezample 2. Let €y, €1, ... be a sequence of i.i.d. random variables such that
P(e; =-1) =p and P(e =1) = 1 - p for some 0 < p < 1. Consider the following
stochastic: Y; = Y;_1 + Yy for t > 1 and Xg = €. Observe that this process
is not Markov, not stationary and not mixing. Furthermore, when p # % this
process has a stochastic trend. Let H = {z —» x + c:c € [-1,1]} and consider a
loss function L such that L(y',y) = £(y’ - y) for some £ and any y,y’. Observe
that discrepancy in this case is given by

1 T
sup (I[-EET+1 [l(c-ers1X0)] - T Z E.,[¢(c- Eth)]) =0.
heH t=1

This result combined with Corollary 2 below can be used to provide a learning
guarantee for this setting.

Ezample 3. The next example is concerned with periodic time series. Let
€0, €1, ... be a sequence of i.i.d. standard Gaussian random variables and con-
sider a stochastic process Y; = sin(¢t) +¢;,. We let H be a set of offset functions
as before! H={zwx+c:ce[-1,1]}. If L(y',y") = (y —y')? then discrepancy
is given by

sup ((c —sin(p(T +1))% - i qi(c— sin(¢t))2)
heH t=1

and since sin is a periodic function it is possible to choose q such that above

expression is non-positive and |q||2 = % This result together with Corollary 2

Vi
below can be used to provide learning guarantees in this setting and shows that

periodic time series can be improperly learned with offset functions.

The weights q play a crucial role in the learning problem. Consider our
Example 1, where transition probability distributions (p;,1 - p;) are differ-
ent for each state ¢. Note that choosing q to be a uniform distribution, in
general, leads to a non-zero discrepancy. However, with ¢; = 1x, ,-x, and
@ = ¢,/ T, ¢/ discrepancy is zero. Note that in fact it is not the only choice

L A set of periodic functions would also be sufficient for this example.



that leads to a zero discrepancy in this example and in fact any distribution
that is supported on ts for which X; 1 = Xp will lead to the same result.
However, ¢;s based on ¢, have an advantage of providing the largest effective
sample.

It is also possible to give bounds on disc(q) in terms of other natural
distances between distribution. For instance, if q is a probability distribution
then Pinsker’s inequality yields

dise(a) <M [PraCiZD)-Y a2

T
st (Pra 12D | G2,
t=1

where | - || is the total variation distance and D(- || -) the relative entropy,
P.1(|Z") the conditional distribution of Z,,1, and Y1, ¢;P;(:|Z%™") the mix-
ture of the sample marginals. Note that these upper bounds are often too loose
since they are agnostic to the loss function and the hypothesis set that is be-
ing used. For our earlier Markov chain example, the support of Pr,;(-Z7T) is
{X7 -1, X7 +1} while the mixture £ ¥/, P,(-[Z%™) is likely to be supported
on the whole set {0,..., N —1} which leads to a large total variation distance.
Of course, it is possible to choose ¢;s so that the mixture is also supported
only on {X7 -1, X7 + 1} but that may reduce the effective sample size which
is not necessary when working with disc(q).

However, the most important property of the discrepancy disc(q) is that, as
shown later in Section 5, it can be estimated from data under some additional
mild assumptions. Kuznetsov and Mohri [2014] also give generalization bounds
based on averaged generalization error for non-stationary mixing processes in
terms of a related notion of discrepancy. It is not known if the discrepancy
measure used in [Kuznetsov and Mohri, 2014] can be estimated from data.

3 Generalization Bounds

In this section, we prove new generalization bounds for forecasting non-stationary
time series. The first step consists of using decoupled tangent sequences to es-
tablish concentration results for the supremum of the empirical process ®(ZT).
Given a sequence of random variables ZT we say that Z/7 is a decoupled tan-
gent sequence if Z/ is distributed according to P(-|Z{™!) and is independent
of Z°. It is always possible to construct such a sequence of random variables
[De la Pena and Giné, 1999]. The next theorem is the main result of this
section.

Theorem 1 Let ZT be a sequence of random variables distributed according
to p. Fix € >2a>0. Then, the following holds:

. (e— 2&)2
IP’((P(ZT) —disc(q) > E) < VINET [Nl(a,F,V)] P (_8]\42||q|§)



Proof Since the difference of two suprema is upper bounded by the supremum
of the difference, by Markov’s inequality, the following holds for any € > 0:

P(®(Z7]) - disc(q) > €)

< IP’( sup(é%(E[f(ZtNZﬁl] - f(Zt))) 2 6)

feF

< exp(-Ae) E[exp ()\?g-‘) (tiQt(E[f(ZtNZil] - f(Zf))))]

Let Z'T be a decoupled tangent sequence associated to ZT, then, the following
equalities hold: E[f(Z,)|Z¢ 1] = E[f(Z))|Z{'] = E[f(Z])|ZT]. Using these
equalities and Jensen’s inequality, we obtain the following:

]E[exp()\supz(h( [f(Z)|Z71] - f(Zt)))]

feF t=1

=E|:exp()\sup]E[zT: (f(Z f(Zt))|ZT]):|

feF t=1
< E[exp (Asup th(f(Zé) - f(Zt)))],
feF t=1

where the last expectation is taken over the joint measure of Z7 and Z'.
Applying Lemma 2 (Appendix A), we can further bound this expectation by

5 5o (Ao S (100 - stanton) )|

(z,2")~T @ feF

< E E[exp()\?cupZatqtf(zt(a'))+A§upz ~01q: f(z¢(o )))]

(z,2")~T @

<1 E E[exp(Z/\zupZUtQtf Zt(U)))]

(z.2") @ F =1

+1 (Z]E;,) E [ exp (2)\ ;up > UtQtf(Zt(U)))]

= ]ETE[exp(QASUPZUtQtf(Zt(U)))]v
z~T o feF t=1

where the second inequality holds by the convexity of the exponential function
and the last inequality by symmetry. Given z, let C' denote the minimal -
cover with respect to the g-weighted ¢;-norm of F on z. Then, the following
bound holds

;up ZUtQtf(Zt(O')) < maxz orqici (o) + .



10

By the monotonicity of the exponential function,

E [exp (2)\ sup i atqtf(zt(a')))] <exp(2)\a)E [exp (2)\max i thtct(a))]
o feF t=1 v ceC 13

T
<exp(2Xa) ), IEJ [exp (2)\ > thtct(a))].

ceC t=1
Since c;(o) depends only on o1,...,07_1, by Hoeffding’s bound,
T
E [exp (2)\ Z thtct(a))]
4 t=1

T-1
=E [exp (2)\ Z atqtct(a')) E |:exp (2)\UTchT(0'))

o]

Iterating this inequality and using the union bound, we obtain the following:

T-1
<E [exp (2)\ > thtct(a)) exp(ZAzq%MQ)].

t=1

T
P( sup Z wELF(Z)IZ7] - f(Zy)) > 5)
feF t=1
< E Wi (.G,v)]exp (- Ae - 20) + 20°M%|q3).
Optimizing over A > 0 completes the proof. O

An immediate consequence of Theorem 1 is the following result.

Corollary 1 For any 6 > 0, with probability at least 1 — 6, the following in-
equality holds for all f € F and all a > 0:

T
E[f(Zra)Zi]< ), Qtf(Zt)+disc(q)+2a+M|q||2\/8 log ]EVNT[Nléo‘v]:aV)] .
=1

We are not aware of other finite sample bounds in a non-stationary non-mixing
case. In fact, our bounds appear to be novel even in the stationary non-mixing
case.

While Rakhlin et al. [2015a] give high probability bounds for a different
quantity than the quantity of interest in time series prediction,

feF \ t=1

sup(iqt(E[f(Zt)IZ’i_l] —f(Zt)))7 (6)

their analysis of this quantity can also be used in our context to derive high
probability bounds for ®(ZT) - disc(q). However, this approach results in
bounds that are in terms of purely combinatorial notions such as maximal
sequential covering numbers A7 («, F). While at first sight, this may seem as
a minor technical detail, the distinction is crucial in the setting of time series
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prediction. Consider the following example. Let Z; be drawn from a uniform
distribution on {0,1} and Z; ~ p(:|Z;-1) with p(:ly) being a distribution over
{0,1} such that p(z|y) = 2/3 if = y and 1/3 otherwise. Let G be defined by G =
{g(x) = 1,5¢:0 € [0,1]}. Then, one can check that Ey.7[N1(a,G,v)] = 2, while
Ni(a,G) > 2. The data-dependent bounds of Theorem 1 and Corollary 1
highlight the fact that the task of time series prediction lies in-between the
familiar i.i.d. scenario and the adversarial on-line learning setting.

However, the key component of our learning guarantees is the discrepancy
term disc(q). Note that in the general non-stationary case, the bounds of The-
orem 1 may not converge to zero due to the discrepancy between the target and
sample distributions. This is also consistent with the lower bounds of Barve and
Long [1996] that we discuss in more detail in Section 5. However, convergence
can be established in some special cases. In the i.i.d. case, our bounds reduce to
the standard covering numbers learning guarantees. The discrepancy examples
of the previous section also show that convergence can be established for vari-
ous stochastic processes, including non-mixing and non-stationary ones. In the
drifting scenario, with ZT being a sequence of independent random variables,
our discrepancy measure and bounds coincide with those studied in [Mohri
and Munoz Medina, 2012]. In the case of ¢-mixing non-stationary stochas-
tic processes, our results provide tighter learning bounds for path-dependent
generalization error than the previous best results in [Kuznetsov and Mohri,
2017a].? However, shown in Section 5, the most important advantage of our
bounds is that the discrepancy measure we use can be estimated from data.

We now show that expected sequential covering numbers can be upper
bounded in terms of the sequential Rademacher complexity. Generalization
bounds in terms of the sequential Rademacher complexity are not as tight
as bounds in terms the expected sequential covering numbers since the for-
mer is a purely combinatorial notion. Nevertheless, the analysis of sequential
Rademacher complexity may be simpler for certain hypothesis classes such as
for instance that of kernel-based hypotheses, which we study in Section 4. We
have the following extension of Sudakov’s Minoration Theorem to the setting
of sequential complexities.

Theorem 2 The following bound holds for the sequential Rademacher com-
plexity of F:

sup %\/logj\/'g(Qm}') <34/ g log TR7(F),

a>0

whenever No(2a, F) < +00.

Proof We consider the following Gaussian-Rademacher sequential complexity:

&Y (F,z)= E

V| feF =1

aup (32 qmmf(zt(a)))], ™

2 For further details, see the discussion following Corollary 2.



12

where o is an independent sequence of Rademacher random variables, - is
an independent sequence of standard Gaussian random variables and z is a
complete binary tree of depth 7" with values in Z.

Observe that if V' is any a-cover with respect to the g-weighted ¢s-norm
of F on z, then, the following holds by independence of v and o:

sup ( Z (ItUt%Vt(U'))

veV T Y| veV

&*4(F,z) > EE lsup ( Z qoyvi(o ))] EE[
Observe that V is also 2a-cover with respect to the g-weighted ¢2-norm of F
on z. We can obtain a smaller 2a-cover Vj from V be eliminating vs that are
a close to some other v’ € V. Since V' is finite, let V' = {v',...,vIVl}, and for
each v* we delete v7 € {v;1,... 7V|V|} such that

T 1/2
(Z:(qtvt o)- qtvt(a))) <a.

It is straightforward to verify that Vj is 2a-cover with respect to the gq-weighted
£o-norm of F on z. Furthermore, it follows that for a fixed o, the following
holds:

T T 2
El( Y aoyvi(o) - ZQtUt'YtV,t(U)) ] >a”.

t=1 t=1

for any v/, v eVy. Let Z;,i=1,...,|Vy| be a sequence of independent Gaussian
random variables with E[Z;] = 0 and E[ Z?] = a?/2. Observe that E[(Z;-Z;)] =
a? and hence by Sudakov-Fernique inequality it follows that

sup ( Z QtUt’YtVt(U))l

velp =1

IEE[&‘:e(ZmMﬂ)] EE[

E [ '=1rf~1?,}|(V0\ Zi]

Vl1og [Vol,

where the last inequality is the standard result for Gaussian random variables.
Therefore, we conclude that &%°(F,z) > sup,.q 5+/1og No(2a, F,z). On the
other hand, by the standard properties of Gaussian complexity [Ledoux and
Talagrand, 1991], we can write:

BU(F,z) < 3 /glogT E

[\

> <
T2

SUP ( i t0t€tf(2t(0'))) )
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where € is an independent sequence of Rademacher variables. We re-arrange
z into z€ so that z;(0) = zf(ea) for all o € {+1}T and it follows that

feF

sup ( Z qtatetf(zt(a)))] lSUp ( i tUtEtf(Zf(Go')))]

T
SEsupElsup(ZQtUtétf(Zt(eo')))]
Tz O\ feF ‘=1

z

sup ( Z QtUtf(Zt(O')))]

= supIE
feF

Therefore, the following inequality holds

sup% log N2 (2ar, F,z) < 34 /glonggﬁq(]_-)

a>0

and the proof is completed by taking the supremum with respect to z of both
sides of this inequality. m]

Observe that, by definition of the sequential complexities, the following
inequalities hold: Ey.7[Ni(,G,v)] < Ev.7[Na(a,G,v)] < No(e, G). Thus,
setting a = |q|2/2, applying Corollary 1 and Theorem 2, and using the fact
that \/z +y <+/x+\/y for z,y > 0, yields the following result.

Corollary 2 For any 6 > 0, with probability at least 1 — 6, the following in-
equality holds for all f € F and all a > 0:

E[f(Z71:1)|Z] ]
se 1
Z @t f(Zy) +disc(q) + | a2 + 6M /47 log TR q(}")+M\|q\|2\/8log5.

!

As already mentioned in Section 2, sequential Rademacher complexity can
be further upper bounded in terms of the sequential metric entropy, sequen-
tial Littlestone dimension, maximal sequential covering numbers and other
combinatorial notions of sequential complexity of F. These notions have been
extensively studied in the past [Rakhlin et al., 2015b]. Note that, in [Kuznetsov
and Mohri, 2017a], an almost identical bound on E[ f(Z7,4)|ZT] is proven un-
der the assumption that the underlying stochastic process is ¢-mixing (see
Theorem 3 in [Kuznetsov and Mohri, 2017a]). Our result requires neither of
these assumptions.

Corollary 1 or Corollary 2 can also be used to derive oracle inequalities for
the setting that we are considering. Let f* = argming E[f(Z7141)|ZT] and
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fo = argmin z YL, qef(Z;). Then, it follows that

T
Elfo(Zro)|Z]] - BLf* (Zr)1ZT ] = ELfo(Zra)|Z] 1= Y arfo(Z0)
t=1
T T
+ Z qfo(Z:) - Z af*(Zy)
i=1 t=1
T
+ 2 aef*(Ze) ~ELf*(Zra)|Z]]
t=1
<20(Z1).
The following result immediately follows.

Corollary 3 For any § >0, with probability at least 1 -0, for all a >0,
E[ fo(Zr41)|Z7 ]

. . se 1
< inf E[f(Zr1) 2] T+ disc(a) + |alz + 63/ IxTog TRY(F) + Ml a2y [los 5.

We conclude this section by observing that our results also hold in the
case where ¢; = q:(f, X141, 7Z:), which is a common heuristic used in some
algorithms for forecasting non-stationary time series [Lorenz, 1969; Zhao and
Giannakis, 2016]. We formalize this result in the following theorem.

Theorem 3 Let ¢: Fx X x Z — [-B, B] and suppose X1 is Z{—measumble.
Then, for any 6 >0, with probability at least 1 -0, for all f € F and all o> 0,

E[f(Zr:1)|Z7 ]

Ev.r[Ni(a,G,v)]

o
Q(f,XT+1,Zt)f(Zt)+diSC(Q)+20¢+2MB\} §25 T6 )
1

~

Nl =

t

where disc(q) is defined by
T
disc(q) = ?Cu]r._)(]E[f(ZT+1)|Z1T] - Z IZE[Q(fa X141, Zt)f(Zt)|Z§1])7 (8)
€ =14t

and where G = {(x,2) » q(f,z,2)f(2): f € F}.

We illustrate this result with some examples. Consider for instance a Gaus-
sian Markov process with P;(}|ZT) being a normal distribution with mean Z;_;
and unit variance. Suppose f(h, z) = £(|h(z)-y]2) for some function £. We let

a(ha',(2.)) = exp(~§ |y ~h(x) ~a'+ h(")[3)  exp (- 5= ~y]3) and observe
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that for any f:
Ela(Xr, Z0)f(Z0)|217]
= [ty n1alh, X, (X)) exp (S ly - Xol3)dy
= [ Wy =Xl exp (= 5y~ G = X + (X)) dy
= [ ey exp (- 5lo = Xros + h(Xr)I3)do

= [ W= h(Xra) ) e (- 5ly - Xra3)dy
=E[f(Zr+)|Z1 ],

which shows that disc(¢) = 0 in this case. More generally, if Z is a time-
homogeneous Markov process, then one can use the Radon-Nikodym deriva-
tive ‘211)3(('.‘@,)) (y—h(x) +h(z")) for ¢, which will again lead to zero discrepancy.
The major obstacle for this approach is that Radon-Nikodym derivatives are
typically unknown and one needs to learn them from data via density esti-
mation, which itself can be a difficult task. In Section 4, we investigate an
alternative approach to choosing weights q based on extending the results of
Theorem 1 to hold uniformly over weight vectors q.

4 Kernel-Based Hypotheses with Regression Losses

In this section, we present generalization bounds for kernel-based hypotheses
with regression losses. Our results in this section are based on the learning
guarantee presented in Corollary 2 in terms of the sequential Rademacher
complexity of a class. Our first result is a bound on the sequential Rademacher
complexity of the kernel-based hypothesis with regression losses.

Lemma 1 Let p>1 and F = {(x,y) - (W -¥(x) —y)?: |w|u < A} where H
is a Hilbert space and U: X — H a feature map. Assume that the condition
|w-x—y| < M holds for all (x,y) € Z and all w such that |w|g < A. Then,
the following inequalities hold:

R(F) < pMP CrRy (M) < Or(pMP~ Ar|al), 9)

where K is a PDS kernel associated to H, H = {x - w-¥(x) : |w|m < A},
r=sup, K(z,), and Cp = 8(1 + 4v/210g*? (eT?)).

Proof We begin the proof by setting ¢; f(z:(o)) = ¢:(w - ¥ (x:(0)) - yi(0))? =
T(w-x'(0)-y})?, where x}(0) = VTq¥ (x:(0)) and y; (o) = /Tqy (o). We
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let z; = (x},y;). Then we observe that

Df{;eq(f)— sup Elsuplet(W Xt(o') Yt(a))]

z/=(x"y") 7

z=(x,y) 7| w =1

= sup ElsuqutJt(W x¢(o) - Yt(a))]

Since z — |z|P is pMP~'-Lipschitz over [-M, M], by Lemma 13 in [Rakhlin
et al., 2015a], the following bound holds:

RFUF) < pMPOrRTI(H),

where H' = {(x,y) > w-¥(x) -y : |[w|mg < A}. Note that Lemma 13 re-
quires that R%Y(H') > 1/T which is guaranteed by Khintchine’s inequality.
By definition of the sequential Rademacher complexity

T
Rr4(H') = sup E { sup ), ovqe(w - ¥ (x¢(a)) - y(a))]

(x,y) wot=1

=supE lsup ZUtQtW ‘Ap(xt("'))] + SUPE[ ZUtQty(U)] Sch(H),

x T w o=

where for the last equality we used the fact that o;s are mean zero random
variables and o, is independent of y(o) = y(o1,09,...,0:-1). This proves the
first result. To prove the second bound we observe that the right-hand side
can be bounded as follows:

x 7w =1

SUPElSUPZUtQtW LD(Xt(f")):| <ASUPE ZUtQtW(Xt(U))
t=1 H

2

SAstip\Igl ;

T
:ASI)JCP\ IE[ Z 0105q1qs¥ (x¢(a)) "I/(XS(U))]

t,s=1

T
< ASlip\ > q? E[K(zi(a),2:(a))]

t=1
< Arfqlz,

where again we are using the fact that if s <t then
E[0.:0:0:0.K (2:(0), 7.(0))] = E[02) E[0.:0:0.K (2 (0), 7.(0))] = 0

by the independence of o; from oy, as well as x¢(0) = z¢(o1,...,04-1) and
2s(0) =xs(01,...,05). u]
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Our next result establishes a high-probability learning guarantee for kernel-
based hypothesis. Combining Corollary 2 with Lemma 1, yields the following
result.

Theorem 4 Let p > 1 and F = {(x,y) > (W -¥(x) —y)?:|w|m < A} where
H is a Hilbert space and W:X — H a feature map. Assume that the condition
|w-x —y| < M holds for all (x,y) € Z and all w such that |w|g < A. If
ZT = (XT,YT) is a sequence of random variables then, for any § > 0, with
probability at least 1-§ the following holds for all h € {x - w-W(x):|w|g < A}:

T
E[(h(X7+1) = Yr:1)P|ZT] < 3 ai(h(Xe) = V)P + disc(q) + O 4|l
t=1

1
+2M a2y [8log 5.

where Cr = 48pMP\/4drlogT(1 + 4\/§log3/2(eT2)). Thus, for p=2,

T
E[(h(X7+1) = Y7:1)?|Z7 ] S; gr(h(X¢) = Y2) + disc(q) + 0((10g2 T)/lr|q|2).

The results in Theorem 4 (as well as Theorem 1) can be extended to hold
uniformly over q and we provide exact statement in Theorem 6 in Appendix A.
This result suggests that we should seek to minimize Y7, q.f(Z;) + disc(q)
over q and w. This insight is used to develop our algorithmic solutions for
forecasting non-stationary time series in Section 6.

5 Estimating Discrepancy

In Section 3, we showed that the discrepancy measure disc(q) is crucial for
forecasting non-stationary time series. In particular, if we could select a dis-
tribution q over the sample ZT that would minimize the discrepancy disc(q)
and use it to reweight training points, then we could achieve a more favor-
able learning guarantee for an algorithm trained on this reweighted sample.
In some special cases, the discrepancy disc(q) can be computed analytically.
However, in general, we do not have access to the distribution of Z7 and hence
we need to estimate the discrepancy from data. Furthermore, in practice, we
never observe Zr,; and it is not possible to estimate disc(q) without some
further assumptions. One natural assumption is that the distribution P; of
Z; does not change drastically with ¢ on average. Under this assumption, the
last s observations ngs .1 are effectively drawn from the distribution close to
Pr.1. More precisely, we can write

T
disc<q>ssup(1 S ELAZ)Z - IR Al 1])

FeF \ S t=T"s+1

1 T
+sup( [f(Zre)ZT]-= Y. E[f(Z)|Z 1])
feF S

t=T-s+1
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We will assume that the second term, denoted by discs, is sufficiently small
and will show that the first term can be estimated from data. But, we first
note that our assumption is necessary for learning in this setting. Observe that
the following inequalities hold:

T
sup (E[Zr|2]] - E[f(Z,)|277]) < Y. sup (E[f(Zi)|21] - E[f(2)|2¢1))
feF t=r feF

T
<MY P (127) - P (127 v,
t=r
forallr=T -s+1,...,T. Therefore, we must have

. 1
disc, <= Y sup(E[ZralZ]]-E[f(Z)|21]) <
S t=T—s+1 feF

s+1

M,

where y=sup,|P.1(:|Zt) - P:(-|/Z11)| rv. Barve and Long [1996] showed that
[VC-dim(#)7]3 is a lower bound on the generalization error in the setting of
binary classification where Z7 is a sequence of independent but not identically
distributed random variables (drifting).

More precisely, Barve and Long [1996] consider the setting in which the
learner observes a sequence (X1,Y7), (X2,Y2),... from Py, Ps,... respectively.
It is shown that there exists a sufficiently small € > 0 and a constant ¢ > 0
such that if v > ce?/d then, for any algorithm A and any t(, there exists a
sequence Py, P5,... and T > tg such that the generalization error of h 4 is
at least € = .Q((fyd)%), where h_4 is the hypothesis produced by A using the
sample (X1,Y7),..., (X7, Yr).

Observe that this setting is the special case of the general setup consid-
ered in our work, since in our case the pairs (X;,Y;) are not required to be
independent.

The following result shows that we can estimate the first term in the upper
bound on disc(q).

Theorem 5 Let ZT be a sequence of random variables. Then, for any & > 0,
with probability at least 1 -6, the following holds for all a > 0:

feF \ t=1 feF \ t=1

T T
sup ( >(pe - Qt)E[f(ZtNZﬁ_l]) <sup ( >(pe - Qt)f(Zt)) + B,

where B = 2a+ M||q - p||2\/8 log w and where p is the uniform
distribution over the last s points.

Proof The first step consists of upper-bounding the difference of suprema by
the supremum of the differences:

T T
sup ( >(pe - Qt)E[f(ZtNZtl_l]) - ?Eg(;(pt - qt)f(Zt))

feF \ t=1

T
< sup( (e —a)(BLf(Z)1Z57] - f(Zt)))-
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Next, arguments similar to those in the proof of Theorem 1 can be applied to
complete the proof. O

Theorem 1 and Theorem 5 combined with the union bound yield the fol-
lowing result.

Corollary 4 Let ZT be a sequence of random variables. Then, for any § >0,
with probability at least 1 -6, the following holds for all f € F and all o> 0:

T
E[f(Z7r+1)|ZT] <> af(Z4) + disc(q) + disc, +4a
t=1

vt [N1(a,G,z
+ M[lafls + |q - pl2]\/8log 2Ee=r M (@8]

where disc(q) = SUp e ( > (pe —qt)f(Zt)) and p is the uniform distribution
over the last s points.

We note that, while we used a uniform prior p over the last s points to state
Theorem 5 and Corollary 4, any other distribution over the sample points can
be used as well. Our choice of p is based on the assumption that the last s
points admit a distribution that is the most similar to the future that we are
seeking to predict.

In Section 6, we combine these results with Theorem 6 that extends learn-
ing guarantees to hold uniformly over gs to derive novel algorithms for non-
stationary time series prediction.

6 Algorithms

In this section, we use our learning guarantees to devise algorithms for fore-
casting non-stationary time series. We consider a broad family of kernel-based
hypothesis classes with regression losses which we analyzed in Section 4.

Suppose L is the squared loss and H = {x > w-¥(x): |[w|g < A}, where
¥: X — H is a feature mapping from X to a Hilbert space H. Theorem 4, The-
orem 6 and Theorem 4 suggest that we should solve the following optimization
problem:

T
min { lqt(W'W(xt)—yt)2+(’i_i\S-é(Q)+)\1|W|12H[} (10)

qQeQ,w | ;T

where \; is a regularization hyperparameter and Q is some convex bounded
domain. Note that for simplicity, we have omitted O(|q|) terms in (10). One
can extend the formulation in (10) to account for these terms as well.

The optimization problem in (10) is quadratic (and hence convex) in w
and convex in q since (ﬁ(q) is a convex function of q as a supremum of
linear functions. However, this objective is not jointly convex in (q,w). Of
course, one could apply a block coordinate descent to solve this objective which
alternates between optimizing over q and solving a QP in w. In general, no
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convergence guarantees can be provided for this algorithm. In addition, each
g-step involves finding disc(q) which in itself may be a costly procedure. In
the sequel we address both of these concerns.

First, let us observe that if a(w) = ¥, p(w- ¥ () —y;)? with p, being
a uniform distribution on the last s points, then by definition of empirical
discrepancy

L T
disc(w) = fvlg)l (a(W) -2 a(w- () - yt)Z)

T ) T
= fvgﬁ(;(ut —qr)a(w) - ;qt((w W () )’ - a(W)))
T
< Z;qtdt +A2fla - vl

where Ay is some constant (a hyperparameter), v is a prior typically chosen to
uniform weights u, p > 1 and d;s are instantaneous discrepancies defined by

di = sup la(w) = (w- ¥ (z1) -y0)?|-

Note that d; can also be defined in terms of windows averages, where (w -
() —y;)? is replaced with % YL (w-w(x,) - ys)? for some [
This leads to the following optimization problem:

T T
g, { 0 W@ -0 Ndas Ml rala-vi,f D)
1 t=1

qeQ,w | (=

This optimization problem is still not convex but now d;s can be precomputed
before solving (11) which may be considerably more efficient. For instance, the
g-step in the block coordinate descent reduces to a simple LP. Below we show
how (11) can be turned into a convex optimization problem when Q = [0,1]7.

6.1 Convex Optimization over [0,1]7 and Dual Problems

In this section, we consider the case when Q = [0,1]7 and we show how (11)
can be turned into a convex optimization problem which then can be solved
efficiently. We apply change of variables r; = 1/¢;, which leads to the following
optimization problem:

reD,w -1 Tt

1/p
T N —u)2+d T
min {Z (W (xt) yt) + ag +)\1|W|H2_H+)\2(Z|Tt_l _,Ut|p) }, (12)
t t=1



21

where D = {r:r; > 1}. We can remove the (-)'/? on the last term by first turning
it into a constraint, raising it to the pth power and then moving it back to the
objective by introducing a Lagrange multiplier:

T . — )2 T
min {Z(W () ~y1) *dt+A1|w§H+A22|r;1_vt|p}. (13)

reDw {3 Tt t=1

Note that the first two terms in (12) are jointly convex in (r,w): the first term
is a sum of quadratic-over-linear functions which is convex and the second term
is a squared norm which is again convex.

The last step is to observe that |r;' — vy| = [y P|ry — v P < oy — 0P
since r;! < 1. Therefore, we have the following optimization problem:

min {;T: (W-W(xy)—y)* +dy

-1 Tt

T
2 Pl _ o L|P
min Ml Sttt )
which is jointly convex over (r,w).
For many real-world problems, ¥ is specified implicitly via a PDS kernel
K and it is computationally advantageous to consider the dual formulation of
(14). Using the dual problem associated to w (14) can be rewritten as follows:

T T T
min { max {—)\1 S raf —aTKa+2)\1aTY} +y i +Ao > 0P |re—vy ! |p}7 (15)
reD @ -1 t=1 Tt t=1
where K is the kernel matrix and Y = (y1,...,y7)T. We provide a full deriva-
tion of this result in Appendix B.

Both (14) and (15) can be solved using standard descent methods, where,
at each iteration, we solve a standard QP in a or w, which admits a closed-
form solution.

6.2 Discrepancy Computation

The final ingredient that is needed to solve optimization problems (14) or (15)
is an algorithm to find instantaneous discrepancies d;s. Recall that in general
these are defined as

T
sup | 3 pel(W' -0 (xs) = ys) — (W' U () = 1) (16)

w/<A | s=1

where ¢ is some specified loss function. For an arbitrary ¢ this may be a dif-
ficult optimization problem. However, observe that if ¢ is a convex function
then the objective in (16) is a difference of convex functions so we may use
DC-programming to solve this problem. For general loss functions, the DC-
programming approach only guarantees convergence to a stationary point.
However, for the squared loss, our problem can be cast as an instance of the
trust region problem, which can be solved globally using the DCA algorithm
of Tao and An [1998].
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6.3 Two-Stage Algorithms

An alternative simpler algorithm based on the data-dependent bounds of
Corollary 4 consists of first finding a distribution q minimizing the discrepancy
and then using that to find a hypothesis minimizing the (regularized) weighted
empirical risk. This leads to the following two-stage procedure. First, we find
a solution q* of the following convex optimization problem:

min{ sup (ZT:(pt —q) (W W (xy) - yt)z)}7 (17)

20 | wi<A Mo

where A is parameter that can be selected via cross-validation (for example
using techniques in [Kuznetsov and Mohri, 2016]). Our generalization bounds
hold for arbitrary weights q but we restrict them to being positive sequences.
Note that other regularization terms such as |q|3 and |q-p]|3 from the bound
of Corollary 4 can be incorporated in the optimization problem, but we discard
them to minimize the number of parameters. This problem can be solved
using standard descent optimization methods, where, at each step, we use
DC-programming to evaluate the supremum over w’'.

The solution g* of (17) is then used to solve the following (weighted) kernel
ridge regression problem:

T
min{ i w () - el (18)

Note that, in order to guarantee the convexity of this problem, we require
q” > 0. We note that one can also use e-sensitive loss instead of squared loss
for this algorithm.

6.4 Further Extensions and Discussion

We conclude this section with the observation that the learning guarantees
that we presented in Section 3 and Section 4 can be used to derive algorithms
for many other problems that involve time series data with loss functions and
hypothesis set distinct from regression losses and linear hypotheses considered
in this section.

For instance, we can choose a hypothesis set H to be a set of neural net-
works with pre-specified architecture. In that case, we can apply stochastic
gradient descent (SGD) to solve the optimization problem (10). Note that
computing disc(q) in that case is almost identical to solving the Wasserstein
GAN optimization problem [Arjovsky et al., 2017]. However, no convergence
guarantees are known for this setting. We leave these extensions to future
work.
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Fig. 3 Synthetic datasets (top to bottom): ads1, ads2, ads3, ads4.

7 Experiments

In this section, we present the results of experiments evaluating our algorith-
mic solutions on a number of synthetic and real-world datasets. In particular,
we consider the one-stage algorithm presented in Section 6 which is based on
solving the optimization problem in (11). While solving this problem as op-
posed to (14) may result in a sub-optimal results, this simplification allows us
to use an alternating optimization method described in Section 6: for a fixed
q, problem (11) is a simple QP over w and, for a fixed w, the problem reduces
to an LP in q. This iterative scheme admits a straightforward implementation
using existing QP and LP solvers. In the rest of this section, we will refer to
this algorithm as discrepancy-based forecaster (DBF).
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Fig. 4 True (green) and estimated (red) instantaneous discrepancies for synthetic data (top
to bottom): ads1, ads2, ads3, ads4.

We have chosen ARIMA models as a baseline comparator in our exper-
iments. These models are standard and are commonly used in practice for
forecasting non-stationary time series.

We present two sets of experiments: synthetic data experiments (Section 7.1)
and real-world data experiments (Section 7.2).

7.1 Experiments with Synthetic Data

In this section, we present the results of our experiments on some synthetic
datasets. These experimental results allow us to gain some further understand-
ing of the discrepancy-based approach to forecasting. In particular, they help
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Fig. 5 Weights q chosen by DBF when used with true (green) and estimated (red) instan-
taneous discrepancies for synthetic data (top to bottom): ads1, ads2, ads3, ads4.

us study the effects of using estimated instantaneous discrepancies instead of
the true ones.

We have used four artificial datasets: ads1, ads2, ads3 and ads4. These
datasets are generated using the following autoregressive processes:

adsl: Y, =Y 1 +e&, «p=-0.9if t€[1000,2000] and 0.9 otherwise,

ads2: Yi=auYi1+€¢, ap=1-(t/1500),

ads3: Y, =a;Yi-1+t€, a1 =-0.5and az=0.9

adsd: Y; =-0.5Y;_1 + ¢,

where ¢; are independent Gaussian random variables with zero mean and o =
0.05. Note that i(¢) in the definition of ads3 is a stochastic process on {1,2},
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Fig. 6 Running MSE for synthetic data experiments (top to bottom): ads1, ads2, ads3,
ads4. For each time ¢ on the horizontal axis we plot MSE up to time ¢ of tDBF (blue), eDBF
(red), ARIMA (green).

such that P(i(t +s) = ili(t +s-1) = ... =i(s) = i,i(s = 1) # i) = (0.99995)".
In other words, if the process i(t) spends exactly 7 last time steps in state 4,
then at the next time step it will stay in ¢ with probability (0.99995)" and
will move to a different state with probability 1 - (0.99995)".

The first stochastic process (ads1) is supposed to model sudden abrupt
changes in the data generating mechanism. The scenario in which parameters
of the data generating process smoothly drift is modeled by ads2. The setting
in which the changes can occur at random times is captured by ads3. Finally,
ads4 is generated by a stationary random process. See Figure 3.
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Table 1 Mean squared error (standard deviation) for synthetic data. tDBF is DBF with
true instantaneous discrepancies d; as its input. eDBF is DBF with estimated instantaneous
discrepancies d; as its input. The results in bold are statistically significant using one-sided
paired t-test at 5% level.

Dataset tDBF eDBF ARIMA
ads1 3.135x10°3 3.743x 1073 5.723 x 1073
(7.504x1073) | (6.171x1073) | (10.143 x 1073)
ads2 2.800 x 10°3 3.530 x 1073 4.348x 1073
(3.930x1073) | (6.620x1073) | (6.770 x 1073)
ads3 3.282x1073 3.887 x 1073 4.066 x 1073
(6.417x1073) | (9.277x1073) | (6.122x1073)
ads4 2.573x 1073 2.889 x 1073 2.593 x 1073
(3.516x1073) | (4.262x1073) | (3.578 x 1073)

For each dataset, we have generated time series with 3,000 sample points. In
all our experiments, we used the following protocol. For each t € [750, 775, ...,2995],
(y1,---,y¢) is used as a development set and (yy11,---,Yrr25) is used as a test
set. On the development set, we first train each algorithm with different hy-
perparameter settings on (y1,...,¥y:—25) and then select the best performing
hyperparameters on (y;—24,...,¥y:). This set of hyperparameters is then used
for training on the full development set (y1,...,y;) and mean squared error
(MSE) on (Y411, - - -, Yt+25) averaged over all t € [750, 775, ...,2995] is reported.
Recall that DBF algorithm requires two regularization hyperparameters Ay
and \o. We optimized these parameters over the following two sets of values for
A1 and A, respectively: {1073,107*,107°,107%} and {100, 10, 1, 0.1, 0.05, 0.01, 0.001, 0}.
ARIMA models have three hyperparameters p,d and ¢ that we also set
via the validation procedure described above. Recall that ARIMA(p,d, q) is a
generative model defined by the following autoregression:

p-1 q
(1 - Z ¢Z£l)(1 - S)dY;ng = (1 + Z ej,gj)et.

i=0 j=1
where £ is a lag operator, that is, £Y; = Y;_1. Therefore, validation over (p,d, q)
is equivalent to validation over different sets of features used to train the model.
For instance, (p,d,q) = (3,0,0) means that we are using (y;—3,Yt—2,%1-1) as
our features while (p,d,q) = (2,1,0) corresponds to (y¢-3—Yi—2, Yt-2— Y1 ). For
DBF, we fix feature vectors to be (y;-3,yi-2,¥:-1). For ARIMA, we optimize
over p,d,q € {0,1,2}%. We use the maximum likelihood approach to estimate
the unknown parameters of ARIMA models.

Finally, observe that the discrepancy estimation procedure discussed in
Section 6 also requires a hyperparameter s representing the length of the most
recent history of the stochastic process. We did not make an attempt to opti-
mize this parameter and in all of our experiments we set s = 20.

The results of our experiments are presented in Table 1. We have compared
DBF with true discrepancies as its input tDBF, DBF with estimated discrepan-
cies as its input eDBF and ARIMA. In all experiments with non-stationary pro-
cesses (ads1, ads2, ads3), tDBF performs better than both eDBF and ARIMA.
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Table 2 Real-world datasets statistics

Dataset URL Size
bitcoin https://www.quandl.com/data/BCHARTS/BTCNCNY | 1705
coffee https://www.quandl.com/data/COM/COFFEE_BRZL | 2205
eur/jpy https://www.quandl.com/data/ECB/EURJPY 4425
jpy/usd http://data.is/269FpLF 4475
mso http://data.is/269F3EV 1235
silver https://www.quandl.com/data/COM/AG_-EIB 2251
soy https://www.quandl.com/data/COM/SOYB_1 2218
temp http://data.is/1q1X2AN 3649

Table 3 Mean squared error (standard deviation) for real-world data.

are statistically significant using one-sided paired t-test at 5% level.

Dataset DBF ARIMA
bitcoin 4.400 x 1073 4.900 x 1073
(26.500x1073) | (29.990 x 1073)
coffee 3.080x10°3 3.260 x 1073
(6.570x1073) (6.390 x 1073)
eur/jpy 7.100 x 1075 7.800 x 107°
(16.900x1075%) | (24.200 x 1075)
jpy/usd 9.770 x 1071 10.004 x 1071
(25.893x1071) | (27.531x1071)
mso 32.876 x 107 32.193 x 107
(55.586x10°) (51.109 x 10°)
silver 7.640 x 1072 34.180 x 1072
(46.65x107%) | (158.090 x 1074)
soy 5.071 x 1072 5.003 x 1072
(9.938x1072) (10.097 x 1072)
temp 6.418 x 107 6.461 x 10°
(9.958x10°) (10.324 x 10°)

The results in bold

Similarly, eDBF outperforms ARIMA on the same datasets. These results are
statistically significant at 5%-level using one-sided paired t-test. Figure 6 il-
lustrates the dynamics of MSE as a function of time ¢ for all three algorithms
on all of the synthetic datasets.

Our results suggest that accurate discrepancy estimation can lead to a
significant improvement in performance. We present the results of discrepancy
estimation for our experiments in Figure 4. Figure 5 shows the corresponding
weights q chosen by DBF.

7.2 Experiments with Real-World Data

In this section, we present the results of our experiments with real-world
datasets. For our experiments, we have chosen eight time series from different
domains: currency exchange rates (bitcoin, eur/jpy, jpy/usd), commodity
prices (coffee, soy, silver) and meteorology (mso, temp). Further details of
these datasets are summarized in Table 2.
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Fig. 7 Running MSE for real-world data experiments (top to bottom): bitcoin, coffee,
eur/jpy, jpy/usd, mso, silver, soy, temp. For each time ¢ on the horizontal axis we plot
MSE up to time ¢ of DBF (red) and ARIMA (green).

In all our experiments, we used the same protocol as in the previous section.
In particular, for each ¢ € [750,775,..., (y1,...,yt) is used as a development
set and (Ye+1,- -, Yt+25) is used as a test set. On the development set, we first
train each algorithm with different hyperparameter settings on (y1,...,yt-25)
and then select the best performing hyperparameters on (yi-24,...,y:). This
set of hyperparameters is then used for training on the full development set
(y1,.-.,y:) and mean squared error (MSE) over the remaining data points
is reported. The range of the hyperparameters for both DBF and ARIMA is
also the same as in previous section. Note that since true discrepancies are
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unknown, we only present the results for DBF with discrepancies estimated
from data.

The results of our experiments are summarized in Table 3. Observe that
DBF outperforms ARIMA on 5 out of 8 datasets. It should be noted that
the error variance is high compared to the mean error. However, the higher
variance is likely due to inherent low signal-to-noise ratio in these real world
datasets.

Figure 7 illustrates the dynamics of MSE as a function of time ¢ for all
three algorithms on all of the synthetic datasets. These results are statistically
significant at 5%-level using one-sided paired ¢-test. There is no statistical
difference in the performance of ARIMA and DBF on the rest of the datasets.

Our results suggest that discrepancy-based approach to prediction of non-
stationary time series may lead to improved performance compared to other
traditional approaches such as ARIMA.

8 Conclusion

We presented a general theoretical analysis of learning in the broad scenario
of non-stationary non-mixing processes, the realistic setting for a variety of
applications. We discussed in detail several algorithms benefiting from the
learning guarantees presented. Our theory can also provide a finer analysis
of several existing algorithms and help devise alternative principled learning
algorithms.

The key ingredient of our analysis and algorithms is the notion of dis-
crepancy. This is as a fundamental concept for learning with non-stationary
stochastic processes and was used in the analysis of several other time series
forecasting techniques [Kuznetsov and Mohri, 2017b; Kuznetsov and Mariet,
2019; Zimin and Lampert, 2017; Kuznetsov and Mohri, 2016] following the
earlier work in [Kuznetsov and Mohri, 2015].
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A Proofs

In the construction described in Section 2.1, we denoted by z the tree defined using Zs and
denoted by T the distribution of z. Here, we will also denote by z’ the tree formed by Z;s
and denote by T the joint distribution of (z,2’).

Lemma 2 Let Zf be a sequence of random variables and let Z'lT be a decoupled tangent
sequence. Then, for any measurable function G, the following equality holds:

L ! L !
E|G(sup ¥ a(f(Z)=1(Z) =B B _[G(sup Y oran(S(z(@) =S (z(o))] (19)

7 (2,2/)~T
The result also holds with the absolute value around the sums in (19).

Proof The proof follows an argument invoked in the proof of Theorem 3 of Rakhlin et al.
[2011]. We only need to check that every step holds for an arbitrary weight vector q, in lieu
of the uniform distribution vector u, and for an arbitrary measurable function G, instead
of the identity function. Let p denote the joint distribution of the random variables Z;s.
Observe that we can write the left-hand side of (19) as follows:

E E G| sup X(o))|,
Z1,Z1~p1 Z2,Z5~p2(-|Z1) ZT,Zapr(-\Z?‘l)[ (fs}' ( ))]

E|[G|sup X(o))|=
[6(s0p )]
where o = (1,...,1) € {1} and (o) = 2L, o1q:(f(Z!) - f(Z:)). Now, by definition
of decoupled tangent sequences, the value of the last expression is unchanged if we swap
the sign of any o;_1 to —1 since that is equivalent to permuting Z; and Z!. Thus, the last
expression is in fact equal to

E E E [G(supE(O'))]
Z1,21~p1 Z2,Z24~p2(|1S1(01))  Zr,ZL~pr (|S1(01),....87-1(07-1)) feF

for any sequence o € {+1}T, where S¢(1) = Z; and Z; otherwise. Since this equality holds
for any o, it also holds for the mean with respect to uniformly distributed o. Therefore, the
last expression is equal to

E E E E [G(supz(a))].
0 Z1,Z1~p1 Z2,Z,~p2(|S1(01)) Z7,Z~p7(|S1(01),-..,ST-1(0T-1)) feF

This last expectation coincides with the expectation with respect to drawing a random tree
z and its tangent tree z’ according to 7 and a random path o to follow in that tree. That
is, the last expectation is equal to

BB _[6(sw Y maitai(on - o))

(z,2")~T
which concludes the proof. ul

Theorem 6 Let p>1 and F = {(x,y) > (w-¥(x) —y)P: |w|m < A} where H is a Hilbert
space and U: X — H a feature map. Assume that the condition |w-x—y| < M holds for all
(x,y) € Z and all w such that |w|g < A. Fiz q*. Then, if ZT = (XT,YT) is a sequence
of random variables, for any 6 >0, with probability at least 1 -4, the following bound holds
forallhe H={x->w -¥(x):|w|g <A} and all q such that 0< ||q-q*|1 < 1:

T
E[(h(X741) = Yr:1)P|Z1] < ;1 qt(h(Xt) = Y¢) +disc(q) + G(q) +4M[q-q*[1
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where G(a) = 4M(y/8log 2 + /2loglogy 2(1 — [a- a*[1) 1 + CrAr)(la* |2 + 2[a - a*|1)
and Cp = 48pMP /A log T (1 +4\/§log3/2(eT2))‘ Thus, for p=2,

T
E[(h(X141) - Yr41)?|Z7 ] < Zl gt (h(Xt) - Y2)? + disc(a)
t=

+ 0(/17"(10g2 T)\/loglogy 2(1 - [a-a 1) ([a* |2 + la-a* |1))~

This result extends Theorem 4 to hold uniformly over q. Similarly, one can prove an
analogous extension for Theorem 1. This result suggests that we should try to minimize
YL q:f(Z¢) +disc(q) over q and w. This bound is in certain sense analogous to margin
bounds: it is the most favorable when there exists a good choice for q* and we hope to find
q that is going to be close to this weight vector. These insights are used to develop our
algorithmic solutions for forecasting non-stationary time series in Section 6.

Proof Let (ex)p2, and (q(k))s2, be infinite sequences specified below. By Theorem 4, the
following holds for each k

T
P( E[f(Zra)IZ1] > Zl qt (k) f(Z:) + A(a(k)) + C(a(k)) + 4M”q”2€k) <exp(-€}),

where A(q(k)) denotes the discrepancy computed with respect to the weights q(k) and
C(a(k)) =Cr|a(k)|2- Let ex = €+ /2logk. Then, by the union bound we can write

2
ek

M8

k

I
-

T
P(HR:E[J“(ZTH)IZﬁ > 2; qt(k)f(zt)+A(Q(k))+C(Q(k))+4M||Q(k)|2€Ic) <
t=

752710g k2

s

e

Il
fun

*62

e

[N

<

We choose the sequence q(k) to satisfy |q(k) — q*|1 = 1 —27%. Then, for any q such that
0<|g-ul1 <1, there exists k > 1 such that

L-fak) a1 <1-la-q*[1 <1-[a(k-1)-q* |1 <2(1- |a(k) - q*[1)-
Thus, the following inequality holds:

V2logk < \/2loglog, 2(1 - [q - q*[1) 1.

Combining this with the observation that the following two inequalities hold:

T T
D ar(k=1)f(Zt) < Y aef(Zs) +2M|a - q*|1
= =1

A(q(k-1)) < A(q) +2M|a-q*||1,
la(k -2 <2la-q*[1 +la*|2

shows that the event

T
{E[f(ZT+1)IZ1T] > ZIQtf(Zt) +disc(q) + G(q) +4M|q-q" |1}

where G(q) = 4M (e + /2loglogy 2(1 — [a-a*[1) 1 + COrAr)([la* |2 + 2[a - a*[1) implies
the following one

t=1

T
{E[f(ZT+1)|Z1T]> > at(k-1)f(Z1)+A(a(k -1))+C(q(k - 1)) +4M | q(k - 1)25k—1}>

which completes the proof. O
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B Dual Optimization Problem

In this section, we provide a detailed derivation of the optimization problem in (15) starting
with optimization problem in (11). The first step is to appeal to the following chain of
equalities:

L 14 2 2
Y (wezh - y))? + daflwi }
t=1

BsBrxxy +2X2 Y. 5ty,'5}

1 t=1

BsBi/asN/@i Kot + 222 Y Ben/Geye |
t=1
=L —a"Ka+2x0aY}, (20)

where the first equality follows by substituting z; = \/qz¥(x¢) and y; = \/gsyt the second
equality uses the dual formulation of the kernel ridge regression problem and the last equality
follows from the following change of variables: o = |/q¢t.

By (20), optimization problem in (11) is equivalent to the following optimization problem

T .2
i - LT T . -
Oglégl{mgx{ )qt:zl p a Ka+2\ia Y}+(d q) + A2]q qu}.

Next, we apply the change of variables 7+ = 1/¢: and appeal to the same arguments as were
given for the primal problem in Section 6 to arrive at (15).
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