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Abstract

The recent proliferation of large multimedia collectionash

gathered immense attention from the speech research commu-

nity, because speech recognition enables the transcriptid
indexing of such collections. Topicality information camised

to improve transcription quality and enable content naidga

In this paper, we give a novel quality measure for topic segme
tation algorithms that improves over previously used messu
Our measure takes into account not only the presence or@bsen
of topic boundaries but also the content of the text or speech
segments labeled as topic-coherent. Additionally, we demo
strate that topic segmentation quality of spoken languagée
improved using speech recognition lattices. Using lastice-
provements over the baseline one-best topic model arewvauser
when measured with the previously existing topic segmiamtat
quality measure, as well as the new measure proposed in this
paper (9.4% and 7.0% relative error reduction, respeglivel

Index Terms: Topic segmentation, speech recognition lattices,
text similarity, speech processing.

1. Introduction

Natural language streams, such as news broadcasts and tele-

phone conversations, are marked with the presence of under-
lying topics. These topics influence the statistics of tix¢ oe
speech produced. Learning to identify the topic underlyang
given segment of speech or text, or to detect topic changes is
beneficial in a number of ways. For example, knowledge of
the topic of a speech recording being transcribed by a speech
recognizer can be used to improve transcription quality &y u
ing a topic-dependent language model. Topicality inforomat
can also be used to improve navigation of audio and video col-

lections such as YouTube, by considering a common topic as a

feature when creating links between items.

In this paper, we focus on topic segmentation, or the au-
tomatic detection of topic changes in text or speech. After a
review of previous work, we point out major limitations ofth
currently accepted topic segmentation quality measurevkno
as CoAP, including the fact that it does not take into accthmt
word content of the segments produced by the algorithms. We
then introduce a general measure of text similarity and give
topic segmentation quality measure incorporating thidlaim
ity score and overcoming many of the limitations of CoAP. In
experiments over speech and text streams from the Topicbete
tion and Tracking (TDT) corpus, we demonstrate that our @opi
Closeness Measure (TCM) is an effective indicator of segmen
tation quality. We additionally explore the topic segmé¢iota
task when the input to the segmentation algorithm is theudutp
of a speech recognizer. We demonstrate that informatian fro
speech recognition lattices can help improve topic segatient
over the one-best baseline.

2. Topic Modeling and Segmentation

Much of the recent work on topic analysis has been focused on
generative topic models. Léf = {wi,ws2,...,w,} be the
vocabulary ofn. words. Then ambservationa is an observed
set of text or speech expressed through the empirical freyye

or expected count, (w;) for eachw; € V. In generative
topic models, a sequence of word observations is explaiged b
a latent sequence of topic labels. As a result, high-dinoerasi
text can be described with a low-dimensional mixture of the
topics learned. A simple generative formulation topic masle

z = argmax Pr(z|a) = argmax Pr(a|z) Pr(z), (1)
wherea is the sequence of observed text, arid the topic label
assigned. The second equality follows by Bayes’ rule and the
realization that the prior over the observatidhga) does not
change with respect to topic. Under such topic models, text i
labeled by decoding a maximuarposteriorisequence of topics
accounting for the text. In these modeisis treated as a “bag
of words,” meaning the order of the words in the text or speech
stream underlying is generally not considered, merely the oc-
currence frequency of each word within In practice,a can
be a sentence, a window afwords, an utterance, or a single
word. In Latent Dirichlet Allocation (LDA) [1], the formula
tion of Equation 1 is used, but the distributioRs(w|z) and
Pr(z) are modeled as multinomial distributions with Dirich-
let priors. Hidden Topic Markov Models (HTMMs) [2] use an
HMM structure where each state corresponds to a topitd an
underlying topic model (such as LDA argram), as in [3, 4].
Topic labeling algorithms are also topic segmentation al-
gorithms because a topic assignment to a stream of text or
speech also implies a topic-wise segmentation of the stream
Nevertheless, a number of efforts have been made to create
algorithms specifically for the segmentation task. In TéxtT
ing [5], word counts are computed for a sliding window over
the input text. Text similarity is then evaluated betweeirspa
of adjacent windows according to a cosine similarity measur
2oie1 C1(wi)Co(w;) PR ;
AT ST ER The segmentation is obtained by
thresholding this similarity function. In this approachonds
that are naturally more prevalent in the corpus effectively
ceive a higher weight in the cosine score. One popular way to
bypass this limitation is by using the term frequency—iseer
document frequencyt{-idf) [6] to weight each word’s contri-
bution to the similarity score.

3. Measuring Topic Segmentation Quality

In order to evaluate the quality of topic segmentation algo-
rithms, it is necessary to have a segmentation quality nneasu
Various measures have been proposed for measuring topic seg
mentation quality. The most popular measure is known as Co-
occurrence Agreement Probability, or CoAP.



3.1. Co-Agreement Occurrence Probability
COoAP [7] is broadly defined as:

Pp(ref,hyp) = > D(i, ) (dret(i, 1) Bnyp(i 5)) ,  (2)

1<i<j<n

whereD(i, j) is a distance probability distribution over obser-
vationsi, ; dref @anddnyp are indicator functions that are one if
observationg andj are in the same topic in the reference and
hypothesis segmentations, respectively; ani the exclusive
NOR operation (“both or neither”). In practice, the choi¢eb

is almost always the distribution with its mass placed eftir
on one distancé&. COAP scoring is then reduced to a single
fixed-size sliding window over the observations. This forin o
COoAP is often referred to in the literature Bs. Various modi-
fications of CoAP have been used in previous studies, inofudi
those assigning different weights to false positive ansEfaleg-
ative segment boundaries (e.g., [8]).

In CoAP, every spurious or missing topic boundary is pe-
nalized equally without regard for the topics that it fajyssbpa-
rates or fails to correctly separate. For example, consideg-
ment with word distributiorz; - in the reference. Suppose that
for a particular hypothesis segmentation, this refereialk
overlaps with two chunks with distributions » andzz .. As a
result, a spurious topic boundary would be detected anddvoul
be penalized by CoAP in the same way as any other boundary
error. However, it is entirely possible that distributiong, and
z9,,, are both statistically very similar te, .. Thus, this error
should be penalized less than failing to separate and z3 5,
wherezs ;, is far in linguistic content fronzy ;.

Additionally, CoAP is dependent on the choice of window
sizek. Various heuristics exist for the choice bf One idea
used in previous work has been to getuch that the score for
degenerate segmentations (e.g.., those that place evssy po
ble boundary or none at all) get a score of arogs. This
latter heuristic is the one used in the implementation of EoA
in this paper. Finally, by matching sentendesnd j of Equa-
tion 2 between the reference and hypothesis, CoAP implicitl
requires that the reference and the hypothesis segmergdte
obtained by placing boundaries in the same stream of text, or
at least two streams of text where sentende the reference
corresponds exactly to sentencim the hypothesis. However,
when the hypothesis text is produced by a speech recognizer,
the text may be different due to recognition errors, and migh
be broken differently into utterances and/or sentences tta
reference. One way of handling this limitation used in poasi
work [8] and in this paper is to align the reference text wité t
hypothesis text temporally. This results in a rather sigaiit

mismatch between the measure used for the text case and the

speech case.

3.2. New Topic Segmentation Quality Measure

We next describe our new Topic Closeness Measure (TCM),
which overcomes the limitations just mentioned, and as \a# sh
see in the experimental section, correlates with CoAP iniemp
ical trials. To incorporate word content information intaro
topic segmentation quality measure, we need to quantify the
similarity between chunks of text or speech. One rudimegntar
similarity function is the cosine distance between wordfien-
cies. Alternatively, if the word frequencies are viewed as a
probability distribution, a number of probability distanfunc-
tions can be used, including the symmetrized relative egton
KL-divergence. However, these distance measures aravall li
ited in that they are based on evaluating the divergenceen th
frequency or probability of a given word between the two seg-
ments. For example, if the first segment being considered has

many occurrences of “sport”, then a segment making no men-
tion of “sport” but mentioning “baseball” frequently woulke
assigned the same similarity score as a segment not margioni
anything relevant to sports at all.

Clearly, a measure of closeness between words is required.
One powerful indicator of word similarity is co-occurrenice
speech or text segments known to be topic-coherent. A mea-
sure that captures this intuition mutual information Let V/
be the vocabulary, and,y € V be two words. IfT is a
large training corpus, then letr(x,y), Cr(z), and Cr(y)
be the empirical probabilities of and y appearing together,
and that ofx andy appearing, inl’, respectively. The point-
wise mutual information (PMI) betweenandy is then defined

asPMI(z,y) = log 54—, The definition of “appear-
ing together” can be interpreted to mean proximity in thedvor
stream [9]. However, since topic segmentation is our tagk, w
assume that our training corpiisis pre-segmented into topic-
coherent chunks, and we say thaandy appear together when
they appear in the same chunk.

The logarithm in the PMI is customarily used due to con-
nections with well-understood quantities in informatibedry,
such as entropy. However, since logarithm is a monotone func
tion, dropping it in the above formula does not change the or-
dering of word pairs and enables the similarity meadrgm
given below to be a positive definite symmetric kernel. Thus,
our similarity between words (sometimes referred torasr-
es) shall be evaluated as

_ CT(xv y)
= T ()’ ®)

Our goal is to design a segmentation quality measure that
penalizes segments spanning multiple topics while rewugrdi
segments that respect topic boundaries. In the following-me
sure, we match segments between the reference and the hypoth
esis segmentation. The intuition is that those segmentisein t
hypothesis that span multiple reference segments wilMiget
a low similarity score when compared to either reference seg
ment, while hypothesis segments respecting referenceesggm
boundaries will receive a high similarity score.

sim(z,y)

We will evaluate the total similarity of a
pair of observations @ and b as K(a,b) =
2w cawges Ca(wi) Cp(wz) sim(wi,w2). Let A and

B be the column vectors of empirical word frequencies such
that A; = Cu(w;) and B; = Cy(w;) for i = 1,...,n.
Let K be the matrix such thaK;; = sim(w;,w;). The
similarity score can then be written as a matrix operation,
K(a,b) = ATKB. We normalize to ensure that the score is in
the rangd0, 1] and that for any input, the self-similarity is

ATKB
V(ATKA)(BTKB)' )

It can be shown that this general measure of text similar-
ity is a positive definite symmetric (PDS) kernel, and thus it
can be used in future discriminative learning for topic segm
tation and labeling algorithms. However, in this paper atw p
mary use for this similarity score is to create our segméntat
quality measure. Let and! be the number of segments in the
reference and hypothesis segmentation, respectivelyitidid
ally, letRq, ..., Ry andH., ..., H; be the normalized column
count vectors of the segments in the reference and hypethesi
segmentation, respectively)(s, j) quantifies the overlap be-
tween the two segmentsj. In this work,Q (%, j) is the indica-
tor variable that is one when reference segmieverlaps with
hypothesis segment, and zero otherwise. However, various
other functions can be used f6, such as the duration of the
overlap or the number of overlapping sentences or uttesance
Similarly, other similarity scoring functions can be inporated

Knorm(‘% b) =




in place of Knorm. The TCM score between the reference seg-
mentationR and the hypothesis segmentatifinis defined as

— Zf:1 22:1 Q(i7j)Knorm (7‘1'7 hj)
Y YL Qs

Like CoAP, TCM is in the rang, 1], and is symmetric in
the sense the if the reference and hypothesis segmentatiens

TCM(R, H) (5)

exchanged the score is the same. Further, since TCM makes use

of the general text content similarity measure of Equatipit 4
considers not only where the topic boundaries lie but also th
closeness of the content of the segments being separatbd by t
boundaries. Additionally, the use of TCM is not dependent on
the window size parametérused in previous measures. TCM
does consider the placement of topic boundaries, and accord
ingly, accomplishes the goal of CoAP — to penalize false pos-
itive and false negative segmentations. For example, gdalin
spurious boundary (i.e., one that separates two segmettie of
same topic) in a hypothesis segmentation would add orie to
and would thus be penalized by the extra contribution to the
normalization tern_" | 3"\, Q(i, j). Deleting a boundary
between two different-topic segments is also penalizedurse
the similarity scoreinorm between the combined segment and
the overlapping reference segments would be decreased.

4. Lattice-based Topic Analysis

Now that we have defined a general quality measure that applie
to both speech and text topic segmentation algorithms, we ex
plore the application of topic models to the output of a sheec
recognizer. There is a significant literature on topic asialpf
spoken language (e.g., [3, 4]). However, the majority ofdhe
proaches use only the one-best recognition hypothesispas in
to a topic labeling and/or segmentation algorithm. Singe la
tices carry more information than just the one-best hymithe
we are interested in using them to improve the quality ofehes
algorithms. A recent work [10] demonstrated an improvement
using word and phoneme lattices for topic identificationlaer
beling pre-segmented utterances in isolation. In this waek
focus exclusively on word lattices.

In our topic segmentation and labeling algorithms, we use
two information sources derived from lattices, expecteahts
and confidence scores. Each word found in a lattice is asso-
ciated with a total posterior probability, or expected dpae-
cumulated over all the paths that contain that word.Vis
the vocabulary the count of the wosdaccording to a stochas-
tic lattice automatori is C(x) = 3, oy« [u|=[A](u), where
|u| is the number of occurrences of wosdin string w and
[A](u) is the probability associated by to stringu. The set
of expected counts for the words found in a lattice can be com-
puted efficiently [11]. We also compute word-level confidenc
scores for the one-best hypothesis using a logistic reigress
classifier. The classifier takes two features as input, thetfe-
ing the word expected counts just mentioned. The second fea-
ture is a likelihood ratio between the standard recognizér w
full context-dependent acoustic models and a simple rezegn
with context-independent models. Since the input to genera
tive topic models is a sequence of bag-of-word observations
be labeled with topics, it is straightforward to incorperéat-
tice counts and confidence scores into the generative medel a
a prior weighting on the input word frequencies.

5. Experiments

We have applied HTMM to learn a topic model over the En-
glish speech portion of the TDT corpus of broadcast news
speech [12]. In total, there werel7 news show recordings

of 30-60 minutes per show, for a total corpus size of around
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Figure 1: The window distanc&nom(ws, wet+a¢) for a rep-
resentative show. The vertical lines are true story bouesar
from the human-labeled corpus. A line at sentehgeeans that
sentence + 1 is from a new story.

311 hours. For development and testing, we udédand 69
shows picked from the Voice of America English News Pro-
gram (VOAEENG) and MS-NBC News With Brian Williams
(MNB_NBW), containing957 and 1,674 stories, respectively.
The 337 shows from other sources were used for training. The
training shows containe®l 310 stories, and were annotated with
human story segmentations and transcriptions for eacly. stor
Certain stories were also annotated by hand with topics asich
“Earthquake in El Salvador,” but these labels were not used i
the model training. The HTMM was trained with 20 topics.

5.1. Text Similarity Evaluation

To evaluate our co-occurrence based similarity score émpir
cally, we computednorm between all pairs of test and devel-
opment stories with human topic labels. Wa#l stories, there
were 3,166 same-topic story pairs angb,172 different-topic
pairs in our experiment. The average pairwise similarity be
tween between different-topic story pairs wag558 and that
between same-topic story pairs Wa%138, or around.8 times
greater. This indicates that our text similarity measuegsod
indicator of topical similarity between two segments ofttex
speech.

The following experiment explores the correlation between
Knorm and true segmentation boundaries. For our text test set,
we processed each show’s transcription by sliding a windbw o
At = 6 sentences along the text, accumulating the word fre-
guencies within each window. This value fAr was selected
to yield good performance on the development set of a new
topic segmentation algorithm that is being developed imeng
ing research. For each sentericdet w: be the window end-
ing at sentenceé. We computed the distance between all pairs
Knorm(we, werae) and plotted this distance. Figure 1 displays
this plot for a representative show. As this figure illusisatrue
topic boundaries are extremely well correlated with local-m
ima in the similarity score. Similar trends are observechwit
other shows in the corpus.

5.2. Topic Segmentation Results

For our text-only experiments we used the human news show
transcriptions. For the speech experiments, the audio for
each show was first automatically segmented into utterances
while removing most non-speech audio, such as music and
silence[13]. Each utterance was transcribed using the IBoog
large-vocabulary continuous speech recognizer. Thigrézer

(the baseline system of [13]) used standard PLP cepstral fea



Table 1: Topic segmentation quality as measured with CoAP
and TCM.

Condition CoAP TCM CoAP TCM
(Text Training)  (Speech Training)
Text Random 50.4% 58.4% - -
Text Full 50.4% 51.8% - -
Text None 49.6% 56.2% - -
One-best Random 50.8% 48.8% - -
One-best Full 51.0% 43.0% - -
One-best None 49.1% 52.9% - -
Text 66.9% 72.6% - -
One-best 65.0% 61.5% 67.3% 62.8%
Counts 65.5% 62.4% 69.7% 64.1%
Confidence 68.3% 64.2% 68.8% 64.9%

tures, a vocabulary of about 71K words, GMM-based triphone
HMM acoustic models, and smoothed 4-gram language models
pruned to about 8Mh-grams. Both the acoustic and language
models were trained on standard Broadcast News (BN) carpora
The word error rate of this recognizer on the 1997 BN evalua-
tion set was 17.7%. The vocabulary for the HTMM algorithm
consisted of a subset 8821 words. This was constructed by
starting with the set of words seen in the recognizer tragscr
tion of the training data, applying Porter stemming [14inow-

ing a stoplist of function and other words not likely to inalie

any topic, and keeping only those words occurring more than
five times. Since our topic model EM training algorithm begin
with random values, we ran 20 trials of model training ant+tes
ing and picked the model that had the best performance on the
development data set.

The results of the experiment are given in Table 1. We
trained two separate HTMM topic models, the first using the
reference text as training data (Text Training), and theséc
using the one-best transcription of the training data (8jpee
Training). We tested on the reference text (Text), as well as
three different varieties of speech transcriptions, aptons
only (One-best), and speech transcriptions weighted attite
counts (Counts) and confidence scores (Confidence). The first
six rows give scores for degenerate segmentations witlorand
segment boundaries (Random), all possible boundarie$),(Ful
and no boundaries at all (None).

These results show that TCM is an effective measure of
topic segmentation quality. Qualitatively, its output engrally
correlated with that of CoAP. Segmentations produced by the
topic model significantly outperform degenerate segmimtst
by both measures. Lattice counts yield a 2.3% and 3.5% rel-
ative improvement with text and speech training, respebtiv
in TCM error compared to the one-best baseline, and 1.4% and
7.3% in terms of CoAP. Confidence scores yield even larger
improvements with both measures, 9.4% and 4.6% relative by
CoAP and 7.0% and 5.6% by TCM. One interesting compar-

ison to make is that between the Text case and the One-best

case. Certainly we can expect topic segmentation on the ref-
erence transcriptions to be a much easier task than thateon th
output of a speech recognizer, due to the transcriptiorrerro
present in the latter. Indeed, error reductions from Orst-tme
Text are achieved, but 5.4% as measured by CoAP, and 28.8%
by TCM. This asymmetry can possibly be attributed to the mis-
match between the CoAP used for text and that used for speech
mentioned in Section 3.1.

6. Conclusion and Future Work

In this paper, we have made several contributions to topat an
ysis of spoken language. The first is to give a new measure of

topic segmentation quality that overcomes major limitagiof

past evaluation techniques. Unlike previous quality messu
TCM applies generally to either speech or text sources, does
not depend on a fixed window size, and considers similarity
between segments labeled as topic-coherent, rather than si
ply the presence or absence of a segment boundary in the same
places as in the reference. In empirical trials, TCM is datesl

with the previous measures. Additionally, the general saxt
ilarity measure underlying TCM is empirically correlatedthw

the ground truth topic boundaries and topic labels. We have
also demonstrated that a topic segmentation and idenitiicat
algorithm can be improved by using lattice information.

We are currently working on a topic segmentation algo-
rithm that explicitly attempts to maximize TCM by placing
topic boundaries at points in the observation stream wledte t
similarity is low. We believe that such an algorithm will pet-
form the ones used in the present work.
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