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Abstract

We explore automated discovery of topically-
coherent segments in speech or text sequences.
We give two new discriminative topic segmen-
tation algorithms which employ a new measure
of text similarity based on word co-occurrence.
Both algorithms function by finding extrema in
the similarity signal over the text, with the lat-
ter algorithm using a compact support-vector
based description of a window of text or speech
observations in word similarity space to over-
come noise introduced by speech recognition er-
rors and off-topic content. In experiments over
speech and text news streams, we show that these
algorithms outperform previous methods. We
observe that topic segmentation of speech rec-
ognizer output is a more difficult problem than
that of text streams; however, we demonstrate
that by using a lattice of competing hypotheses
rather than just the one-best hypothesis as input
to the segmentation algorithm, the performance
of the algorithm can be improved.
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can be used to enable effective presentation of the underly-
ing word stream and to improve speech transcription qual-
ity through the use of a speech recognizer with a topic-
dependent language model (Lagteal., 2005). It can also

be used to improve navigation of audio and video collec-
tions, by enabling the consideration of topic-coherent seg
ment closeness as a feature when creating links between
items. Finally, in real-time speech recognition applicas,
topicality information can be used to improve the dialogue
path selected by the system (Riccagtlal., 1997).

We address specifically the case when the input to the
topic segmentation algorithm is a speech audio sequence.
Speech-to-text transcription of audio streams is a process
inherently marked with errors and uncertainty, which re-
sults in difficulties for algorithms trying to discover top-
ical structure. We create novel algorithms for topic seg-
mentation that use word co-occurrence statistics to etalua
topic-coherence between pairs of adjacent windows over
the speech or text stream and hypothesize segment bound-
aries at extrema in the similarity signal. These algorithms
make local decisions about topic-coherence, rather than re
quiring the entire speech or text document to be analyzed
globally in order to produce a segmentation. Hence, they
are well suited for use in tasks where it is important to pro-
cess the input speech or text in an online way, such as for
streaming news broadcasts or telephone conversations.

To improve algorithm robustness in the presence of off-

Natural language streams, such as news broadcasts atupic content in a generally topic-coherent observation
telephone conversations, are marked with the presence gfream, we employ the use of a compact support-vector
underlying topics that influence the statistics of the sheecbased description of a window of text or speech observa-
produced. Learning to identify the topic underlying a givention learned discriminatively in word similarity space. In
segment of speech or text, or to detect boundaries betweampirical trials, we demonstrate that this approach result
topics is beneficial in a number of ways. We describe ouiin a more accurate topic segmentation algorithm that also
work on topic segmentation, defined here as automatic dieutperforms a modern generative learning technigue, the
vision of a stream of text or speech into topic-coherentidden topic Markov model (HTMM) (Grubet al., 2007),
segments. Topic segmentation is an important task in texh the topic segmentation task. We further demonstrate
and speech processing, with many potential applicationghat incorporating competing speech recognition hypothe-
For example, knowledge of the topic-wise segmentatiorses, rather then only the one-best, into the topic segmenta-
- tion algorithm can result in an improvement in segmenta-
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1.1 PreviousWork guency (tf-idf) (Salton and Buckley, 1988) to weight each
word’s contribution to the similarity score. However, even
Topic models or topic labeling algorithms assign a topic la-yjth tf—idf weighting, considering words in isolation for
bel sequence to a stream of text or speech. Since a topic agmic segmentation results in a natural impairment of the al
signment to a stream of text or speech also implies a topicgorithms created. Word pair similarity can be used to move
wise segmentation of the stream, these algorithms are alg@eyond this limitation (Kozima, 1993). Itis also possilde t
topic segmentation algorithms. Much of the recent workyjew the topic segmentation task as a binary classification
on topic analysis has been focused on generative modelgromem at every possible segment boundary, with maxi-
in which a text sequence is explained by a latent sequeng@um entropy models a popular classifier choice (Beefer-
of topic labels. Let/ = {wy,ws,...,w,} be the vocab- manet al, 1999; Reynar, 1999).
ulary of n words. Then arobservationa is an observed _ ) _
set of text or speech expressed through the empirical frel "€ Window-based approaches just mentioned segment a

quency, or expected court,, (w;) for eachw; € V. A stream of observations by topic by making local decisions
simple generative formulation of a topic model is about whether adjacent sets of observations are similar.

However, in recent years several approaches have been

developed for making globally-optimal decisions about

z = argmax Pr(z|a) = argmax Pr(a|z) Pr(z), (1)  topic segmentation by analyzing the whole document to
be segmented. In Utiyama and Isahara (2001), the au-

wherez is the topic label assigned. Under such topic mod-thors model topic-coherence by the repetition frequency of

els, the observation sequence is labeled by decoding th‘@Ords W'_th'n a segment, and_ PQS” the 'Fa,Sk of optimally
maximuma posteriorisequence of topics accounting for S€gmenting a document as finding a minimum-cost path

the observations. In these modesis treated as a “bag " @ Weighted graph. Ji and Zha (2003) used cosine dis-
of words,” meaning the order of the words in the text or

tance as a between-sentence similarity measure to obtain
speech stream underlyingis generally not considered. In 21 image representing the sentence closeness matrix, and

practice,a can correspond to a sentence, a window ove€MPIoyed image processing algorithms to refine the ma-

a text, an utterance, or a single word. In Latent Dirich-{"' SO that a topical segmentation can be found using a dy-

let Allocation (LDA) (Blei et al, 2003), the formulation of ~aMic programming-based search. In Malioutov and Barzi-

equation 1 is used, but the distributioRs(a|z) andPr(z) lay (2006), the auth(_)rs also used cosine distance and mod-
are modeled as multinomial distributions with Dirichleepr €/€d the segmentation problem as a graph, but proposed
ors. Hidden Topic Markov Models (HTMMs) (Grubet 2" efficient way to find the minimum-cost partition of the

al., 2007) use an HMM structure where each state corredraph, which allowed them to take into account long-range

sponds to a topie and an underlying topic model (such as _toplc coherence within a segment. The algorithm presented

LDA or n-gram), as in Blei and Moreno (2001); Yamren in the last work can be viewed as an application of cluster-
al. (1998) ' ’ ing to text observations, where the number of partitihs

of the text stream must be decided in advance. In addition,
Generative topic analysis algorithms such as LDA andall three approaches just mentioned are global approaches,
HTMM attempt to model the distribution of words in a par- and as we have already mentioned, this mandates that they
ticular topic, the distribution of topic-to-topic transits,  cannot be used in an online text or speech processing set-
and/or the global distribution of topic labels. Certainfly i ting, which limits their applicability in real-world tasks
one can accurately model the distribution of the underly4n contrast with these approaches, the algorithms we will
ing topic sequence, one can also easily solve the problefresent make local decisions about topic-coherence, and
of topic segmentation or any other related problem. How-are thus broadly applicable in online as well as offline set-
ever, our goal in this work is simpler — to arrive at the besttings.
topic-wise segmentation of a stream of text or speech, and

we endeavor to create an algorithm specifically designe . . A
for this problem. A number of efforts have been made to(é M ring Topical Similarity
creatg .algonthms specifically for the segmentation task. | Let the input to a segmentation algorithm be a sequence
TextTiling (Hearst, 1997), word counts are computed for a .
- - 4 N of observationd” = (z1,...,z,,). We refer to the cor-
sliding window over the input text. Text similarity is then : . : -
. : . . _rect segmentation provided by human judges of topicality
evaluated between pairs of adjacent windows according tQ .
. o S G (w:)Ca (wy) or some other oracle as the reference, and that provided
a cosine similarity measure; = . . . ; ; ;
T Cr(wi)2 2, Ca(w;)? by a topic segmentation algorithm to be evaluated as the
The segmentation is obtained by thresholding this similarhypothesis. The most popular topic segmentation quality
ity function. In this approach, words that are naturally mor measure used in past work is known as the Co-occurrence
prevalent in the corpus effectively receive a higher weightAgreement Probability, or CoAP. CoAP (Beeferman
in the cosine score. One popular way to bypass this limitaet al, 1999) is broadly defined a$p(ref, hyp) =
tion is by using the term frequency—inverse document fre_, _, ., D(i, ) (Sret (4, J)Bnyp (i, 7)), where D(i, j)
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is a distance probability distribution over observations  be the indicator function of the eveni; occurred.” Then
dret (4, 7) @andényp, (2, 7) are indicator functions that are one

if observations and; are in the same topic in the refer- C(w;, w;) E[lu, 1w ]

ence and hypothesis segmentations, respectivelygaisd Kij = C(w:)C(w;) = E[l ]E[lj ]

the exclusive NOR operation (“both or neither”). In prac- ! / T

tice, the choice oD is almost always the distribution with E [ Lo, Tu ] ) (3)
its mass placed entirely on one distarice COAP scor- E[ly,] E[Ly,]

ing is then reduced to a single fixed-size sliding window

over the observations. CoAP is marked with several limitaClearly K is symmetric. Recall that for two random
tions, such as that it functions purely by analyzing the segvariablesX andY, we haveCov(X,Y) = E[XY] —
mentation of the observations into topic-coherent chunk&E[X] E[Y] and observe that for all E [1,,,/ E[1,,]] = 1.
without taking into account the content of the chunks la-Thus we have

beled as topic-coherent, that it depends on the choice of

window sizek and that it implicitly requires that the ref- Lo, Lo, \ _ lw, Tluw;
erence and the hypothesis segmentations are obtained by *" (E[lwi]’ E[le]) B {E[lw.] E[l,.]

placing boundaries in the same stream of text. ) 1. ) ’ . o
Next, recall that any covariance matrix is positive semidefi

To develop an improved topic segmentation quality meanjte  Applying this fact to the covariance matrix of equatio
sure and novel segmentation algorithms, we seek a general ye get

similarity function between segments of text and speech.

One rudimentary similarity function is the cosine distance i lw, Tluw;
However, this is based on evaluating the divergence in em- Z cicj B [E[lwi] E[le]}
pirical frequency for a given word between the two seg-
ments. For example, if the first segment being considereflow, let 1 and C' denote column vectors of size such

]—1 (4)

- zm: CiCj > 0. (5)

ij=1 ij=1

has many occurrences of “sport”, then a segment makinghatl; = 1 andC; = ¢; fori =1,...,m. Then,

no mention of “sport” but mentioning “baseball” frequently m

might be assigned the same similarity score as a segment Z cic; = Tr(ccT11")=Tr(CT117C)

not mentioning anything relevant to sports at all. To de- ij=1

velop a more robust approach, lety € V' be two words. = Tr((CT1)?) > 0. (6)

If T is a training corpus, then letr(z,y), Cr(x), and
Cr(y) be the empirical probabilities (i.e., the counts nor-
malized by the total number of words i) of = andy ap-
pearing together in the same topic-coherentchunk, andthat  m

Combining equations 5 and 6, we get

e . ntenu 1, 1w m
of z andy appearing, irl’, respectively. A similarity mea- ici B i J > ici > 0. 7
= andy appearing, ir p . Asi y me Z cicy [E[L,,,] E[lu,,]] > Z cicj > 0. (7)
sure between words igm(z,y) = Cr @)@ which is i,j=1 ‘ I i,j=1
just the pointwise mutual information (PMI) (Church and This shows that theK is positive semidefinite.  If
Hanks, 1990) without the logarithm. K (a,b) = ATKB, whereA is a column vector of counts,
We wil evaluate the total similarity of a A= (Ca(wi),...,Ca(wy))", and similarly withB, then

pair of observatonsa and b as K(a,b) = Klab)=< K!/2A,K!/2B >. Hencek is a PDS kernel.
Zwlea wach Ca (w1) Cy(ws) sim(wy,ws). Let A and B Normalization preserves PDS, 8, is also a PDS ker-
be the column vectors of empirical word frequencies suche! O

that A; = Co(w;) and B; = Cy(w;) fori = 1,...,n.  This property ofK,,,,» enables us to map word observa-
Let K be the matrix such tha; ; = sim(w;,w;). The  tions into a similarity feature space for the support vector
similarity score can then be written as a matrix operationpased topic segmentation algorithm we will present in Sec-
K(a,b) = ATKB. We normalize to ensure that the tion 3.1. However, we have also in previous work used
score is in the rangg), 1] and that for any input, the thjs general measure of similarity for text to create a topic

self-similarity is1, segmentation quality measure that we call the Topic Close-
K (a,b) = ATKB @) ness Measure (TCM) (Mohet al., 2009; Weinstein, 2009).
rormATy L V(ATKA)(BTKB) ' TCM overcomes the limitations of CoAP discussed above,

and as we shall see in Section 5, correlates strongly with

Proposition 1. K,..» iS a positive-definite symmetric CoAP in empirical trials

(PDS) kernel.

Let £ and! be the number of segments in the reference
Proof. In the following, the empirical frequencies and ex- and hypothesis segmentation, respectively. Additionally
pectations are computed as before over a training cdfpus let r4,...,7r, andhq, ..., h; be the segments in the ref-
For notational simplicity we omit the subscript Let1,, erence and hypothesis segmentation, respectivg(y, j)
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guantifies the overlap between the two segméntsinthis  and noise or outlier observations, but without attempting t
work, Q(i, j) is the indicator variable that is one when ref- learn the distribution. The sphere-based descriptors xf Ta
erence segmeritoverlaps with hypothesis segmeintand  and Duin (1999) attempt to find a sphere in feature space
zero otherwise. However, various other functions can behat encloses the true data from a given class but excludes
used forQ, such as the duration of the overlap or the num-outliers within that class and data from other classes. An
ber of overlapping sentences or utterances. Similarlgroth alternative approach of Scholkoef al. (1999) posits this
similarity scoring functions can be incorporated in plate o task as separating data from the origin in feature space, a
Korm- The Topic Closeness Measure (TCM) between theproblem that is equivalent to the spheres problem for many
reference segmentatighand the hypothesis segmentation kernels, including the one used in this work. This problem

H is defined as is often referred to as one-class classification, and becaus
Z’?Zl Zl’:l Qi j) Knorm (ri, hy) the problem formulation resembles that of support vector
TCM(R, H) = = i — . (8)  machines (SVM) (Cortes and Vapnik, 1995; Vapnik, 1998),
2im1 ijl Q(i, ) often as the one-class SVM.
3 New Topic Segmentation Algorithms More formally, given a set of observations, ..., z,, €

X, our task is to find a ball or sphere that, by enclosing
the observations in feature space, represents a compact de-
scription of the data. We assume the existence of a map-
ping of observations into a feature spa®e,X — F'. This
results in the existence of a kernel operating on a pair of
observationsK (z,y) = ®(x) - ®(y). A sphere in feature
space is then parametrized by a center F' and radius

R € R. We allow each observatian; to lie outside the
sphere by a distancg, at the cost of incurring a penalty in

score or a distance betweenanduw, . s. If s, is a similar- the objective function. The optimization problem written

ity score, we can hypothesize a segment boundary wher8 the form of Scholkopet al. (1999) is

the similarity signal dips pelow a global threshdldo de- min R2 4 1 Z 13

fine the boundary sét= {i : s; < 0}. Because the range = ReR.(cR™ ccF vm £

of s on either S|d(_a ofa tru_e boyndary might vary, a more subject to 1B () — > < B2+ &, & > 0,
robust segmentation algorithm is to look for range extrema
in s. This is accomplished by passing a window of size i€ [1,m]. )

0 over s and hypothesizing boundaries where minima or

maxima occur, depending on whetheis a similarity or  The objective function attempts to keep the size of the
distance score. Let; = Ky, orm(w;, wits). Further, to  sphere small, while reducing the total amount by which
denote the minimum and maximum of a range eflues,  outlier observations violate the sphere constraint. The pa
let rmax(s,4,j) = max(s;,...,s;) andrmin(s,i,j) = rameterv controls the tradeoff between these two goals.
min(s;, ..., s;). Then we obtain a segmentation algorithm Using standard optimization techniques, we can write the
by detecting range minima iy and applying the absolute Lagrangian of this optimization problem using Lagrangian
threshold to each range minimund,= {i : s; < O As; =  variablesa; > 0,i € [0,m]. Solving forc, we obtain
rmin(s,7 — |§/2],% + [6/2])}. This simple search for ¢ = . «;®(z;). Substituting this back into the primal
range extrema, combined with the useldf,,, to eval-  problem of equation 9, we obtain the dual problem, in
uate similarity, results in a novel segmentation algorithm which the kernekK takes the place of dot products between
to which we will refer as the similarity-based segmentationtraining observations,

algorithm.

Let the input be a sequence of observatidhis =
(z1,...,zm). Then a topic segmentation algorithm must
decide the sef of topic boundaries ifT’, that is the set of
indices: such thatr; andx;, belong to different topics.
Fori € {4,...,m}, we will refer to awindowof observa-
tions of sized ending at as the setv; = {;_s11,...,%;}.
The windowing of an observation stream is illustrated in
Figure 1(a). Lets; = s(w;, w;+s) be either a similarity

min Z;njzl i K (x,w5) = Y00 i K (w4, 2)
P ;
3.1 Support Vector Topic Segmentation Algorithm subject to 0<ar<-L, Y7 a;=1 (10)

One disadvantage of using the verbatim empirical word dis-

tribution to compare windows of observations, as in theBy substitution into the equation of a sphere in feature
above algorithm, is that speech recognition errors or varSPace, the classifier then takes the form

ious spoken language phenomena might result in off-topic m
content within a generally topic-coherent stream of obser- f(z) = sgn|R2— Z aio K (zi, ;)
vations, resulting in a reduction in segmentation quality. e

To combat this drawback, we seek a description of the text m

or speech being considered that is able to discriminate be- +22 @K (5, 1) — K(z I>> (11)
tween the observations belonging to the true distribution pa ’ ’

ij=1
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Figure 1: (a) An illustration of windowing a stream of obsaions. Each square represents an observation, and the
rectangle represents the current position of the windowadwance the window one position, the window is updated to
add the observation marked withand to remove that marked with. (b) An illustration of two sets of observations being
compared in feature space based on their sphere descriptoesdashed line indicates the shortest distance between th
two spheres.

The resulting data description is a combination of the sup{lci — ¢2|| — (R1 + R2). Note that it is possible for the
port observationgz;: «; # 0}. The radius can be re- sphere descriptors to overlap, and in fact in practice this i
covered by finding the value that yield§zsy) = 0,  frequently the case for adjacent windows of observations.
wherezgy is any support observation. As pointed out in Hence, the quantittist(w; , w2 ) does not always represent
Scholkopfet al.(1999), for any kernek’ such thati («, x) a geometric margin, but nevertheless it can be viewed as an
is a constant, the sphere problem described above has the algebraic measure of separation even if it is negative.
same solution as the separation from the origin problem
We haveK,,.,m(z,z) = 1, thus the condition for equiv-
alence is met and thus our geometric description can b
viewed as an instance of either problem.

Distances between a pair of observations in the Hilbert
space defined b¥K ..., represent the divergence in sim-
ﬁarity between word pairs across two observations com-
puted according to our co-occurrence based word similarity
The sphere data description yields a natural geometric forscore. Sinces,,,..., is a PDS kernel, the convexity of the
mulation for comparing two sets of observation streamsoptimization problems above is guaranteed. To construct
To accomplish this, we calculate the geometric shortest disour final discriminative topic segmentation algorithm, we
tance in feature space between the two spheres representisignply sets, = dist(wy,w2), and hypothesize segment
them. This comparison is illustrated in Figure 1(b). As-boundaries in the observation at range maxima irstbig-
sume that we are comparing two windowsrofobserva- nal,b = {i:s; > 0 As; = rmax(s,i—|§/2],i+ |0/2])}.
tions (in the case of topic segmentation, two windows:of

utterances or sentences); andws;. Letx;q,...,Tm, 1 4 Lattice-based TOpiC Analysis

andzo,...,zm, 2 be the word frequency counts, and

let g 1,...,m,,1 @Ndag g, ..., am, 2 be the dual coef- ) o ) ) )

ficients resulting from solving the optimization problem of 1here is a significant literature on topic analysis of spo-
equation 10, for; andws, respectively. The resulting sup- K€n language (e.g., Blei and Moreno (2001); Yameoal.

port vector descriptions are represented by spheres, ) (1998)). Howeve_r,_ the majorlty_of thgse works use only the
and(c2, R»). Then, the distance between the centers of th@N€-best recognition hypothesis as input to a topic lagelin
spheres is the Euclidean distance in the feature spacee Sin@"d/0r segmentation algorithm. Since modern recognizers
the mappingp (-) is implicitly expressed through the kernel USe the Viterbi sub-optimal beam search to approximate

K(-,-), the distance is also computed by using the kernelthe most likely word sequence, there is always a beam of
as almost-as-likely hypotheses being considered. As a result

it is possible to produce a list, or more compactly, a graph,
) s of the top hypotheses along with their likelihoods. Such
ller — el = Z @i K (@i, 2)) a graph is known as lattice. Lattices can be represented
hi=1 with finite automata, which enables compactness, lookup
efficiency, and easy implementation of necessary lattice
manipulations with general automata algorithms (Mohri,
s ;997). dA reacerr:t work cliemons;rated an .improvlerinintl us-
o _ _ ing word and phoneme lattices for assigning topic labels to
-2 Z Z Qi1 2 K (i1, 52). pre-segmented utterances in isolation (Hazen and Margolis
2008). We focus exclusively on word lattices.

ma2

+ E 200K (252,22)

4,J=1

i=1 j=1

(12)

In our topic segmentation and labeling algorithms, we use

The shortest distance between the spheres is simply oltwo information sources derived from lattices, expected
tained by subtracting the radii to obtadist(wq,w2) =  counts and confidence scores, as follows. The input to all
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the algorithms we described is a sequence of bag-of-worgairs in our experiment. The average pairwise similarity
observations. Let be a set of observations arfg(w) the  between different-topic story pairs w2558 and that be-
set of word weights to be computed. If no lattice informa-tween same-topic story pairs wasr138, or around2.8

tion is available them is represented by a bag-of-words times greater. This indicates that our text similarity mea-
of its one-best hypothesi¢w.,...,w;). Thenf,(w) = sure is a good indicator of topical similarity between two
Zézl 1w, —w- Ifaword lattice is available, we can compute segments of text or speech. We also explored the corre-
for each word in the lattice a total posterior probability, o lation betweenk,,.,, and true segmentation boundaries
expected count, accumulated over all the paths that corPy processing each show’s transcription by sliding a win-
tain that word. IfV is the vocabulary the expected count dow of § = 6 sentences along the text and accumulating
of the wordw according to a stochastic lattice automatonthe word frequencies within each window. For each sen-
A, i.e., that with the weights of all the paths summing totencet, letw; be the window ending at sentencé-igure 2
one, is fo(w) = 3 ,cp- [ulw[Al(u), wherelul,, is the  displays the plot OfC,0rm (W, wets) fOr @ representative
number of occurrences of word in stringu and[A](v) ~ show. As this figure illustrates, true topic boundaries are
is the probability associated by to stringu. The set of extremely well correlated with range minima in the simi-
expected counts associated with all the words found in théarity score. Similar trends are observed with other shows
lattice can be computed efficiently (Mohri, 2003). We alsoin the corpus.

compute word-level confidence scores for the one-best hy-

pothesis using a logistic regression classifier. The dlassi . .

takes two features as input, the word expected counts just! Topic Segmentation Results

mentioned and a likelihood ratio between the standard rec-

ognizer with full context-dependent acoustic models and™0r the speech experiments, the audio for each show was
a simple recognizer with context-independent models. first automatically segmented into utterances, while remov

each wordw, has an associated confidendev;), then ing most non-speech audio, such as music and silence (Al-
falw) = Zl (wi)1p,—w. Finally, the word weights berti et al., 2009). Each utterance was transcribed using

i=1C ; : :
fa(w) are normalized to produce the counts that serve as incoogle’s large-vocabulary continuous speech recognizer

. . _ fa(w) (the baseline system of (Alberit al, 2009)). The word
putto the segmentation algorithel, (w) = 2wev fa(w)’ error rate of this recognizer on the standard 1997 Broad-

cast News evaluation set wa%.7%. The vocabulary for
5 Experiments the HTMM algorithm consisted of a subsetso$21 words.
This was constructed by starting with the set of words seen
in the recognizer transcription of the training data, apply

Our experimental work has been in the context of the En- : . )
. . ing Porter stemming (Porter, 1980), removing a stoplist of
glish portion of the TDT corpus of broadcast news speec . . oo )
unction and other words not likely to indicate any topic,

and newspaper articles (Kong and Graff, 2005). The . . .
. . and keeping only those words occurring more than five
speech corpus consisted $f7 news show recordings of

30-60 minutes per show, for a total corpus size of aroundtlmes' The HTMM was trained with an Expectation Maxi-

311 hours, with human-labeled story boundaries treatecinlzatlon (EM) algorlthmlnmal_|zed with rand.o.m valuesfqr
. . . . .~ model parameters. To minimize the possibility of a partic-
here as topic boundaries. For the experiments involvin

. Qlar randomization overfitting the test data, we ran 20drial
speech data, we usdd and69 shows containing57 and L . .
: . - of model training and testing and picked the model that had
1,674 stories, for development and testing, respectlvely.the best segmentation quality on the development data set
The 337 remaining shows containing,310 stories were 9 q y P '

used for training. For those experiments using text datak-or the algorithms based d#,,,,-., the parameter set in-

a total of1,314 training news streams were used, includingcluded the thresholé and the window sizé for both algo-

the human transcripts of tf837 news shows already men- rithms. The sphere-distance based algorithm was addition-
tioned as well a877 non-speech news streams, with a totalally parametrized by the regularization tradeoff paramete
of 15,110 non-speech stories. The task in our empiricalv. For both algorithms, we performed parameter selection
evaluation was to automatically reconstruct the storyétop on the development data set. Since these two algorithms
boundaries from a stream of speech utterance transcriptiomely on the use of the co-occurrence based word similar-
or text sentences. The HTMM was trained with topics ity score, their training consists of calculating word and
and with hyperparametetsand 3 set as in (Steyvers and word pair frequencies over a corpus of text segmented into
Griffiths, 2007). topic-coherent chunks. The input to the training stage of

S all the segmentation algorithms were human transcriptions
To evaluate our co-occurrence based similarity score em-

pirically, we computedK .., between all pairs of test of the speech news broadcasts as well as non-speech news

and development stories with human topic labels such a2ourees, as detailed above.

“Earthquake in El Salvador.” WitR91 stories, there were The experiment results are given in Tables 1 and 2. The
3,166 same-topic story pairs angd,172 different-topic  former gives segmentation quality scores for degenerate
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08 Input Type CoAP TCM
Text Random 50.4% 58.4%
o7 Text Full 50.4% 51.8%
J\ M l Text None 49.6% 56.2%

0.6

i

\ One-best Random 50.8%  48.8%
One-best Full 51.0% 43.0%
h One-bestNone  49.1% 52.9%

05 ~

0.4

Window Similarity

Il \
oal | \.‘\HM‘ ; “‘W | I /j H H H o Table 1: CoAP and TCM measured on degener-
i "“\HU »‘ H"N‘U il F) M I ‘\‘ | ate segmentations.
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I I
i Y
/ | Input Type Algorithm  Quality Measure
0 CoAP TCM
0 50 100 150 200 250
Sentence # HTMM 669% 726%
Text Sim 72.0% 75.0%
. . SV 76.6% 71.7%
Figure 2: The distanc&,, ., (w;, wi4s) for a representa- HTMM 65.0% 61.5%
tive show. The vertical lines are true story boundaries. A One-best Sim 60.4%  62.8%
line at sentenceédenotes that sentenee- 1 is from a new SV 68.6%  66.0%
story. HTMM  65.5%  62.4%
Counts Sim 59.4% 63.4%
SV 68.5% 66.5%

. . . . . . HTMM 68.3% 64.2%
segmentations W|th_boundar|es qlemded by a fair coin toss Confidence Sim 59.7% 63.8%
(Random), all possible boundaries (Full), and no bound- sV 69.2%  66.8%
aries at all (None). The results for the similarity-based
segmentation algorithm and the sphere-distance based al- Table 2: Topic segmentation quality.

gorithm of Section 3.1 are denoted as Sim and SV, respec-
tively. We tested on the reference text (Text), as well as
three different varieties of speech transcriptions, weps  ment, in TCM error compared to the one-best baseline,
tions only (One-best), and speech transcriptions weighted.4% in terms of CoAP. Confidence scores also yield im-
with lattice expected counts (Counts) and confidence scorgsrovements with both measures, 7.0% relative by TCM and

(Confidence). 9.4% by CoAP. The SV algorithm also achieves improve-
ments when confidence scores are used, of 1.9% and 2.4%
5.2 Discussion by CoAP and TCM over the one-best baseline.

As we have already mentioned, the algorithms described
. . make local decisions about topic coherence. However, it is
ative error improvement. TCM error and CoAP error are . . .

) . worth noting that if the entire document to be segmented

both defined a3 — TCM and1 — CoAP, respectively. . ; . . : .
. . is available in advance, global information can be incor-
In our experiments, segmentations produced by all three : : . .
) - porated into our algorithm as well. While our algorithm
algorithms significantly outperform degenerate segmenta:

tions by both measures. The similarity-based segmentayncuons by thresholding locally the distance between ad-

. . . . {acent sphere descriptors of windowed observations, we
tion algorithm does not show a consistent improvemen : .
could create a global algorithm by, for example, placing the

over HTMM in the cases where the inputs are derived fromto ic boundari . .
. .topic boundaries at those locations with the largegaps
speech recognition data. However, for text test data, thi etween adjacent windows of observations, or by using

algorithm outperforms HTMM. This result verifies empiri- . ;
L o one of the graph-based segmentation methods mentioned
cally that the variability in the word distribution introded in Section 1.1

by speech recognition errors is a challenge for similarity-

based segmentation algorithms. While the performance dh addition, it should be noted that the algorithms presgnte
the similarity-based algorithm degrades in the presence ddre supervised, both since we compute co-occurrence fre-
speech recognition errors, the SV algorithm outperformgjuencies on a corpus of pre-segmented observations and
HTMM and Sim significantly across all test conditions by because we pick the algorithm parameters using accuracy
both measures. For example, compared to HTMM, segen a development set. Though HTMM in general is un-
mentation error is reduced by 29.3% and 18.6% when weupervised in that it does not use pre-segmented observa-
test on text data and by 10.3% and 11.7% when we test otions, it is also noteworthy that our use of HTMM can be
one-best speech data, with CoAP and TCM, respectivelyconsidered supervised in that we pick the one HTMM out
Improvements are additionally demonstrated by using latof 20 that gives the best accuracy on the development set.
tice information in segmentation algorithms. For example,In addition, the Sim algorithm does represent a simpler su-
for HTMM, lattice counts yield a 2.3% relative improve- pervised algorithm than the more sophisticated SV. In fact,

In the following, all comparisons are made in terms of rel-



Discriminative Topic Segmentation of Text and Speech

the Sim algorithm can be viewed as the supervised counjunbo Kong and David Graff. TDT4 Multilingual Broadcast New
terpart of cosine-distance based algorithms such as Text- Speech Corpus. http://www.ldc.upenn.edu/Catalog/
Tiling. Hence, it is significant that SV yields a substantial ~CatalogEntry.jsp?catalogld=LDC2005S11, 2005.

improvement over both HTMM and Sim. Hideki Kozima. Text segmentation based on similarity beme
words. InACL, pages 286—288, Morristown, NJ, USA, 1993.
ACL.

6 Conclusion lan R. Lane, Tatsuya Kawahara, Tomoko Matsui, and Satoshi

Nakamura. Dialogue speech recognition by combining hi-
In this paper, we gave two new topic segmentation algo- erarchical topic classification and language model switch-
rithms for speech content based on a general measure ofing. IEICE - Transactions on Information and Syster&88-
topical similarity derived from word co-occurrence statis D(3):446-454, 2005.
tics. The first algorithm functions by comparing adjacent!gor Malioutov and Regina Barzilay. Minimum cut model for
observation windows according to a similarity measure for gp‘éke” 'iCt”re I.Segm?”gg(')%”' QOLING/ACL, pages 25-32,
words trained on co-occurrence statistics. The second is > <Y’ u§tra 'a, July ' o
based on comparing compact geometric descriptions of thifehryar Mohri, Pedro Moreno, and Eugene Weinstein. A new
adjacent windows in topic similarity feature space. We ﬂnutglrléy measuire for topic segmentation of text and speeah. |

peechBrighton, UK, 2009.

have demonstrated both algorithms to be empirically ef'Mehryar Mohri. Finite-state transducers in language aresip

fective. The support vector based algorithm significantly processingComputational Linguistics23(2):269-311, 1997.

and consistently surpasses in quality the segmentaticn pPre, i . .
. : h Mohri. L f . GOLT,
duced by a hidden topic Markov model (HTMM). We have eﬁsrgigmo 2rc|)03.earn|ng fom uncertain data. GOLT, pages

demonstrated that in the presence of uncertainty resultin?/l
from the use of a speech recognizer, topic segmentation al- 14(3):130-137, 1980.

goriihms can be |mpr9ved by gsmg rgcognltlon hypOtheseﬁeffrey C. Reynar. Statistical models for topic segmeaniatiln
other than that receiving the highest likelihood. ACL, pages 357364, College Park, Maryland, 1999.

artin F. Porter. An algorithm for suffix strippingProgram

G. Riccardi, A. Gorin, A. Ljolje, and M. Riley. A spoken lanage
system for automated call routing. IGASSPR pages 1143—
1146, Munich, Germany, 1997.
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