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Abstract

We explore automated discovery of topically-
coherent segments in speech or text sequences.
We give two new discriminative topic segmen-
tation algorithms which employ a new measure
of text similarity based on word co-occurrence.
Both algorithms function by finding extrema in
the similarity signal over the text, with the lat-
ter algorithm using a compact support-vector
based description of a window of text or speech
observations in word similarity space to over-
come noise introduced by speech recognition er-
rors and off-topic content. In experiments over
speech and text news streams, we show that these
algorithms outperform previous methods. We
observe that topic segmentation of speech rec-
ognizer output is a more difficult problem than
that of text streams; however, we demonstrate
that by using a lattice of competing hypotheses
rather than just the one-best hypothesis as input
to the segmentation algorithm, the performance
of the algorithm can be improved.

1 Introduction

Natural language streams, such as news broadcasts and
telephone conversations, are marked with the presence of
underlying topics that influence the statistics of the speech
produced. Learning to identify the topic underlying a given
segment of speech or text, or to detect boundaries between
topics is beneficial in a number of ways. We describe our
work on topic segmentation, defined here as automatic di-
vision of a stream of text or speech into topic-coherent
segments. Topic segmentation is an important task in text
and speech processing, with many potential applications.
For example, knowledge of the topic-wise segmentation
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can be used to enable effective presentation of the underly-
ing word stream and to improve speech transcription qual-
ity through the use of a speech recognizer with a topic-
dependent language model (Laneet al., 2005). It can also
be used to improve navigation of audio and video collec-
tions, by enabling the consideration of topic-coherent seg-
ment closeness as a feature when creating links between
items. Finally, in real-time speech recognition applications,
topicality information can be used to improve the dialogue
path selected by the system (Riccardiet al., 1997).

We address specifically the case when the input to the
topic segmentation algorithm is a speech audio sequence.
Speech-to-text transcription of audio streams is a process
inherently marked with errors and uncertainty, which re-
sults in difficulties for algorithms trying to discover top-
ical structure. We create novel algorithms for topic seg-
mentation that use word co-occurrence statistics to evaluate
topic-coherence between pairs of adjacent windows over
the speech or text stream and hypothesize segment bound-
aries at extrema in the similarity signal. These algorithms
make local decisions about topic-coherence, rather than re-
quiring the entire speech or text document to be analyzed
globally in order to produce a segmentation. Hence, they
are well suited for use in tasks where it is important to pro-
cess the input speech or text in an online way, such as for
streaming news broadcasts or telephone conversations.

To improve algorithm robustness in the presence of off-
topic content in a generally topic-coherent observation
stream, we employ the use of a compact support-vector
based description of a window of text or speech observa-
tion learned discriminatively in word similarity space. In
empirical trials, we demonstrate that this approach results
in a more accurate topic segmentation algorithm that also
outperforms a modern generative learning technique, the
hidden topic Markov model (HTMM) (Gruberet al., 2007),
in the topic segmentation task. We further demonstrate
that incorporating competing speech recognition hypothe-
ses, rather then only the one-best, into the topic segmenta-
tion algorithm can result in an improvement in segmenta-
tion quality.
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1.1 Previous Work

Topic models or topic labeling algorithms assign a topic la-
bel sequence to a stream of text or speech. Since a topic as-
signment to a stream of text or speech also implies a topic-
wise segmentation of the stream, these algorithms are also
topic segmentation algorithms. Much of the recent work
on topic analysis has been focused on generative models,
in which a text sequence is explained by a latent sequence
of topic labels. LetV = {w1, w2, . . . , wn} be the vocab-
ulary of n words. Then anobservationa is an observed
set of text or speech expressed through the empirical fre-
quency, or expected count,Ca(wi) for eachwi ∈ V . A
simple generative formulation of a topic model is

z = argmax
z

Pr(z|a) = arg max
z

Pr(a|z) Pr(z), (1)

wherez is the topic label assigned. Under such topic mod-
els, the observation sequence is labeled by decoding the
maximuma posteriorisequence of topics accounting for
the observations. In these models,a is treated as a “bag
of words,” meaning the order of the words in the text or
speech stream underlyinga is generally not considered. In
practice,a can correspond to a sentence, a window over
a text, an utterance, or a single word. In Latent Dirich-
let Allocation (LDA) (Blei et al., 2003), the formulation of
equation 1 is used, but the distributionsPr(a|z) andPr(z)
are modeled as multinomial distributions with Dirichlet pri-
ors. Hidden Topic Markov Models (HTMMs) (Gruberet
al., 2007) use an HMM structure where each state corre-
sponds to a topicz and an underlying topic model (such as
LDA or n-gram), as in Blei and Moreno (2001); Yamronet
al. (1998).

Generative topic analysis algorithms such as LDA and
HTMM attempt to model the distribution of words in a par-
ticular topic, the distribution of topic-to-topic transitions,
and/or the global distribution of topic labels. Certainly if
one can accurately model the distribution of the underly-
ing topic sequence, one can also easily solve the problem
of topic segmentation or any other related problem. How-
ever, our goal in this work is simpler – to arrive at the best
topic-wise segmentation of a stream of text or speech, and
we endeavor to create an algorithm specifically designed
for this problem. A number of efforts have been made to
create algorithms specifically for the segmentation task. In
TextTiling (Hearst, 1997), word counts are computed for a
sliding window over the input text. Text similarity is then
evaluated between pairs of adjacent windows according to
a cosine similarity measure,

P

n
i=1

C1(wi)C2(wi)√
P

n
i=1

C1(wi)2
P

n
i=1

C2(wi)2
.

The segmentation is obtained by thresholding this similar-
ity function. In this approach, words that are naturally more
prevalent in the corpus effectively receive a higher weight
in the cosine score. One popular way to bypass this limita-
tion is by using the term frequency–inverse document fre-

quency (tf–idf) (Salton and Buckley, 1988) to weight each
word’s contribution to the similarity score. However, even
with tf–idf weighting, considering words in isolation for
topic segmentation results in a natural impairment of the al-
gorithms created. Word pair similarity can be used to move
beyond this limitation (Kozima, 1993). It is also possible to
view the topic segmentation task as a binary classification
problem at every possible segment boundary, with maxi-
mum entropy models a popular classifier choice (Beefer-
manet al., 1999; Reynar, 1999).

The window-based approaches just mentioned segment a
stream of observations by topic by making local decisions
about whether adjacent sets of observations are similar.
However, in recent years several approaches have been
developed for making globally-optimal decisions about
topic segmentation by analyzing the whole document to
be segmented. In Utiyama and Isahara (2001), the au-
thors model topic-coherence by the repetition frequency of
words within a segment, and posit the task of optimally
segmenting a document as finding a minimum-cost path
in a weighted graph. Ji and Zha (2003) used cosine dis-
tance as a between-sentence similarity measure to obtain
an image representing the sentence closeness matrix, and
employed image processing algorithms to refine the ma-
trix so that a topical segmentation can be found using a dy-
namic programming-basedsearch. In Malioutov and Barzi-
lay (2006), the authors also used cosine distance and mod-
eled the segmentation problem as a graph, but proposed
an efficient way to find the minimum-cost partition of the
graph, which allowed them to take into account long-range
topic coherence within a segment. The algorithm presented
in the last work can be viewed as an application of cluster-
ing to text observations, where the number of partitionsK
of the text stream must be decided in advance. In addition,
all three approaches just mentioned are global approaches,
and as we have already mentioned, this mandates that they
cannot be used in an online text or speech processing set-
ting, which limits their applicability in real-world tasks.
In contrast with these approaches, the algorithms we will
present make local decisions about topic-coherence, and
are thus broadly applicable in online as well as offline set-
tings.

2 Measuring Topical Similarity

Let the input to a segmentation algorithm be a sequence
of observationsT = (x1, . . . , xm). We refer to the cor-
rect segmentation provided by human judges of topicality
or some other oracle as the reference, and that provided
by a topic segmentation algorithm to be evaluated as the
hypothesis. The most popular topic segmentation quality
measure used in past work is known as the Co-occurrence
Agreement Probability, or CoAP. CoAP (Beeferman
et al., 1999) is broadly defined asPD(ref, hyp) =
∑

1≤i≤j≤m D(i, j) (δref(i, j)⊕δhyp(i, j)), where D(i, j)
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is a distance probability distribution over observationsi, j;
δref(i, j) andδhyp(i, j) are indicator functions that are one
if observationsi andj are in the same topic in the refer-
ence and hypothesis segmentations, respectively; and⊕ is
the exclusive NOR operation (“both or neither”). In prac-
tice, the choice ofD is almost always the distribution with
its mass placed entirely on one distancek. CoAP scor-
ing is then reduced to a single fixed-size sliding window
over the observations. CoAP is marked with several limita-
tions, such as that it functions purely by analyzing the seg-
mentation of the observations into topic-coherent chunks
without taking into account the content of the chunks la-
beled as topic-coherent, that it depends on the choice of
window sizek and that it implicitly requires that the ref-
erence and the hypothesis segmentations are obtained by
placing boundaries in the same stream of text.

To develop an improved topic segmentation quality mea-
sure and novel segmentation algorithms, we seek a general
similarity function between segments of text and speech.
One rudimentary similarity function is the cosine distance.
However, this is based on evaluating the divergence in em-
pirical frequency for a given word between the two seg-
ments. For example, if the first segment being considered
has many occurrences of “sport”, then a segment making
no mention of “sport” but mentioning “baseball” frequently
might be assigned the same similarity score as a segment
not mentioning anything relevant to sports at all. To de-
velop a more robust approach, letx, y ∈ V be two words.
If T is a training corpus, then letCT (x, y), CT (x), and
CT (y) be the empirical probabilities (i.e., the counts nor-
malized by the total number of words inT ) of x andy ap-
pearing together in the same topic-coherent chunk, and that
of x andy appearing, inT , respectively. A similarity mea-
sure between words issim(x, y) = CT (x,y)

CT (x)CT (y) , which is
just the pointwise mutual information (PMI) (Church and
Hanks, 1990) without the logarithm.

We will evaluate the total similarity of a
pair of observations a and b as K(a, b) =
∑

w1∈a,w2∈b Ca(w1) Cb(w2) sim(w1, w2). Let A andB
be the column vectors of empirical word frequencies such
that Ai = Ca(wi) andBi = Cb(wi) for i = 1, . . . , n.
Let K be the matrix such thatKi,j = sim(wi, wj). The
similarity score can then be written as a matrix operation,
K(a, b) = A⊤

KB. We normalize to ensure that the
score is in the range[0, 1] and that for any input, the
self-similarity is1,

Knorm(a, b) =
A⊤

KB
√

(A⊤KA)(B⊤KB)
. (2)

Proposition 1. Knorm is a positive-definite symmetric
(PDS) kernel.

Proof. In the following, the empirical frequencies and ex-
pectations are computed as before over a training corpusT .
For notational simplicity we omit the subscriptT . Let 1wi

be the indicator function of the event “wi occurred.” Then

Kij =
C(wi, wj)

C(wi)C(wj)
=

E[1wi
1wj

]

E[1wi
]E[1wj

]

= E

[

1wi

E[1wi
]

1wj

E[1wj
]

]

. (3)

Clearly K is symmetric. Recall that for two random
variablesX and Y , we haveCov(X, Y ) = E[XY ] −
E[X ]E[Y ] and observe that for alli,E [1wi

/E[1wi
]] = 1.

Thus we have

Cov

(

1wi

E[1wi
]
,

1wj

E[1wj
]

)

= E

[

1wi

E[1wi
]

1wj

E[1wj
]

]

− 1 (4)

Next, recall that any covariance matrix is positive semidefi-
nite. Applying this fact to the covariance matrix of equation
4, we get

m
∑

i,j=1

cicj E

[

1wi

E[1wi
]

1wj

E[1wj
]

]

−
m
∑

i,j=1

cicj ≥ 0. (5)

Now, let 1 andC denote column vectors of sizem such
that1i = 1 andCi = ci for i = 1, . . . , m. Then,

m
∑

i,j=1

cicj = Tr(CC⊤
11

⊤) = Tr(C⊤
11

⊤C)

= Tr((C⊤
1)2) ≥ 0. (6)

Combining equations 5 and 6, we get

m
∑

i,j=1

cicj E

[

1wi

E[1wi
]

1wj

E[1wj
]

]

≥
m
∑

i,j=1

cicj ≥ 0. (7)

This shows that theK is positive semidefinite. If
K(a, b) = A⊤

KB, whereA is a column vector of counts,
A = (Ca(w1), . . . , Ca(wN ))⊤, and similarly withB, then
K(a, b) =< K

1/2A,K1/2B >. HenceK is a PDS kernel.
Normalization preserves PDS, soKnorm is also a PDS ker-
nel.

This property ofKnorm enables us to map word observa-
tions into a similarity feature space for the support vector
based topic segmentation algorithm we will present in Sec-
tion 3.1. However, we have also in previous work used
this general measure of similarity for text to create a topic
segmentation quality measure that we call the Topic Close-
ness Measure (TCM) (Mohriet al., 2009; Weinstein, 2009).
TCM overcomes the limitations of CoAP discussed above,
and as we shall see in Section 5, correlates strongly with
CoAP in empirical trials.

Let k and l be the number of segments in the reference
and hypothesis segmentation, respectively. Additionally,
let r1, . . . , rk and h1, . . . , hl be the segments in the ref-
erence and hypothesis segmentation, respectively.Q(i, j)
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quantifies the overlap between the two segmentsi, j. In this
work,Q(i, j) is the indicator variable that is one when ref-
erence segmenti overlaps with hypothesis segmentj, and
zero otherwise. However, various other functions can be
used forQ, such as the duration of the overlap or the num-
ber of overlapping sentences or utterances. Similarly, other
similarity scoring functions can be incorporated in place of
Knorm. The Topic Closeness Measure (TCM) between the
reference segmentationR and the hypothesis segmentation
H is defined as

TCM(R, H) =

∑k
i=1

∑l
j=1 Q(i, j)Knorm (ri, hj)
∑k

i=1

∑l
j=1 Q(i, j)

. (8)

3 New Topic Segmentation Algorithms

Let the input be a sequence of observationsT =
(x1, . . . , xm). Then a topic segmentation algorithm must
decide the setb of topic boundaries inT , that is the set of
indicesi such thatxi andxi+1 belong to different topics.
For i ∈ {δ, . . . , m}, we will refer to awindowof observa-
tions of sizeδ ending ati as the setwi = {xi−δ+1, . . . , xi}.
The windowing of an observation stream is illustrated in
Figure 1(a). Letsi = s(wi, wi+δ) be either a similarity
score or a distance betweenwi andwi+δ . If si is a similar-
ity score, we can hypothesize a segment boundary where
the similarity signal dips below a global thresholdθ to de-
fine the boundary setb = {i : si < θ}. Because the range
of s on either side of a true boundary might vary, a more
robust segmentation algorithm is to look for range extrema
in s. This is accomplished by passing a window of size
δ over s and hypothesizing boundaries where minima or
maxima occur, depending on whethers is a similarity or
distance score. Letsi = Knorm(wi, wi+δ). Further, to
denote the minimum and maximum of a range ofs values,
let rmax(s, i, j) = max(si, . . . , sj) and rmin(s, i, j) =
min(si, . . . , sj). Then we obtain a segmentation algorithm
by detecting range minima ins, and applying the absolute
thresholdθ to each range minimum,b = {i : si < θ∧ si =
rmin(s, i − ⌊δ/2⌋, i + ⌊δ/2⌋)}. This simple search for
range extrema, combined with the use ofKnorm to eval-
uate similarity, results in a novel segmentation algorithm,
to which we will refer as the similarity-based segmentation
algorithm.

3.1 Support Vector Topic Segmentation Algorithm

One disadvantage of using the verbatim empirical word dis-
tribution to compare windows of observations, as in the
above algorithm, is that speech recognition errors or var-
ious spoken language phenomena might result in off-topic
content within a generally topic-coherent stream of obser-
vations, resulting in a reduction in segmentation quality.
To combat this drawback, we seek a description of the text
or speech being considered that is able to discriminate be-
tween the observations belonging to the true distribution

and noise or outlier observations, but without attempting to
learn the distribution. The sphere-based descriptors of Tax
and Duin (1999) attempt to find a sphere in feature space
that encloses the true data from a given class but excludes
outliers within that class and data from other classes. An
alternative approach of Schölkopfet al. (1999) posits this
task as separating data from the origin in feature space, a
problem that is equivalent to the spheres problem for many
kernels, including the one used in this work. This problem
is often referred to as one-class classification, and because
the problem formulation resembles that of support vector
machines (SVM) (Cortes and Vapnik, 1995; Vapnik, 1998),
often as the one-class SVM.

More formally, given a set of observationsx1, . . . , xm ∈
X , our task is to find a ball or sphere that, by enclosing
the observations in feature space, represents a compact de-
scription of the data. We assume the existence of a map-
ping of observations into a feature space,Φ: X 7→ F . This
results in the existence of a kernel operating on a pair of
observations,K(x, y) = Φ(x) · Φ(y). A sphere in feature
space is then parametrized by a centerc ∈ F and radius
R ∈ R. We allow each observationxi to lie outside the
sphere by a distanceξi, at the cost of incurring a penalty in
the objective function. The optimization problem written
in the form of Schölkopfet al. (1999) is

min
R∈R,ξ∈Rm,c∈F

R2 +
1

νm

∑

i

ξi

subject to ‖Φ(xi) − c‖2 ≤ R2 + ξi, ξi ≥ 0,

i ∈ [1, m]. (9)

The objective function attempts to keep the size of the
sphere small, while reducing the total amount by which
outlier observations violate the sphere constraint. The pa-
rameterν controls the tradeoff between these two goals.
Using standard optimization techniques, we can write the
Lagrangian of this optimization problem using Lagrangian
variablesαi ≥ 0, i ∈ [0, m]. Solving for c, we obtain
c =

∑

i αiΦ(xi). Substituting this back into the primal
problem of equation 9, we obtain the dual problem, in
which the kernelK takes the place of dot products between
training observations,

min
α

∑m
i,j=1 αiαjK(xi, xj) −

∑m
i=1 αiK(xi, xi)

subject to 0 ≤ αi ≤ 1
νm ,

∑m
i=1 αi = 1. (10)

By substitution into the equation of a sphere in feature
space, the classifier then takes the form

f(x) = sgn

(

R2 −
m
∑

i,j=1

αiαjK(xi, xj)

+2

m
∑

i=1

αiK(xi, x) − K(x, x)

)

(11)
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(a) (b)

Figure 1: (a) An illustration of windowing a stream of observations. Each square represents an observation, and the
rectangle represents the current position of the window. Toadvance the window one position, the window is updated to
add the observation marked with+ and to remove that marked with−. (b) An illustration of two sets of observations being
compared in feature space based on their sphere descriptors. The dashed line indicates the shortest distance between the
two spheres.

The resulting data description is a combination of the sup-
port observations{xi : αi 6= 0}. The radius can be re-
covered by finding the value that yieldsf(xSV ) = 0,
wherexSV is any support observation. As pointed out in
Schölkopfet al.(1999), for any kernelK such thatK(x, x)
is a constant, the sphere problem described above has the
same solution as the separation from the origin problem.
We haveKnorm(x, x) = 1, thus the condition for equiv-
alence is met and thus our geometric description can be
viewed as an instance of either problem.

The sphere data description yields a natural geometric for-
mulation for comparing two sets of observation streams.
To accomplish this, we calculate the geometric shortest dis-
tance in feature space between the two spheres representing
them. This comparison is illustrated in Figure 1(b). As-
sume that we are comparing two windows ofm observa-
tions (in the case of topic segmentation, two windows ofm
utterances or sentences),w1 andw2. Let x1,1, . . . , xm1,1

and x1,2, . . . , xm2,2 be the word frequency counts, and
let α1,1, . . . , αm1,1 andα1,2, . . . , αm2,2 be the dual coef-
ficients resulting from solving the optimization problem of
equation 10, forw1 andw2, respectively. The resulting sup-
port vector descriptions are represented by spheres(c1, R1)
and(c2, R2). Then, the distance between the centers of the
spheres is the Euclidean distance in the feature space. Since
the mappingΦ(·) is implicitly expressed through the kernel
K(·, ·), the distance is also computed by using the kernel,
as

‖c1 − c2‖2 =

m1
∑

i,j=1

αi,1αj,1K(xi,1, xj,1)

+

m2
∑

i,j=1

αi,2αj,2K(xi,2, xj,2)

−2

m1
∑

i=1

m2
∑

j=1

αi,1αj,2K(xi,1, xj,2).

(12)

The shortest distance between the spheres is simply ob-
tained by subtracting the radii to obtaindist(w1, w2) =

‖c1 − c2‖ − (R1 + R2). Note that it is possible for the
sphere descriptors to overlap, and in fact in practice this is
frequently the case for adjacent windows of observations.
Hence, the quantitydist(w1, w2) does not always represent
a geometric margin, but nevertheless it can be viewed as an
an algebraic measure of separation even if it is negative.

Distances between a pair of observations in the Hilbert
space defined byKnorm represent the divergence in sim-
ilarity between word pairs across two observations com-
puted according to our co-occurrence based word similarity
score. SinceKnorm is a PDS kernel, the convexity of the
optimization problems above is guaranteed. To construct
our final discriminative topic segmentation algorithm, we
simply setsi = dist(w1, w2), and hypothesize segment
boundaries in the observation at range maxima in thes sig-
nal,b = {i : si > θ∧si = rmax(s, i−⌊δ/2⌋, i+ ⌊δ/2⌋)}.

4 Lattice-based Topic Analysis

There is a significant literature on topic analysis of spo-
ken language (e.g., Blei and Moreno (2001); Yamronet al.
(1998)). However, the majority of these works use only the
one-best recognition hypothesis as input to a topic labeling
and/or segmentation algorithm. Since modern recognizers
use the Viterbi sub-optimal beam search to approximate
the most likely word sequence, there is always a beam of
almost-as-likely hypotheses being considered. As a result,
it is possible to produce a list, or more compactly, a graph,
of the top hypotheses along with their likelihoods. Such
a graph is known as alattice. Lattices can be represented
with finite automata, which enables compactness, lookup
efficiency, and easy implementation of necessary lattice
manipulations with general automata algorithms (Mohri,
1997). A recent work demonstrated an improvement us-
ing word and phoneme lattices for assigning topic labels to
pre-segmented utterances in isolation (Hazen and Margolis,
2008). We focus exclusively on word lattices.

In our topic segmentation and labeling algorithms, we use
two information sources derived from lattices, expected
counts and confidence scores, as follows. The input to all
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the algorithms we described is a sequence of bag-of-word
observations. Leta be a set of observations andfa(w) the
set of word weights to be computed. If no lattice informa-
tion is available thena is represented by a bag-of-words
of its one-best hypothesis,(w1, . . . , wl). Thenfa(w) =
∑l

i=1 1wi=w. If a word lattice is available, we can compute
for each word in the lattice a total posterior probability, or
expected count, accumulated over all the paths that con-
tain that word. IfV is the vocabulary the expected count
of the wordw according to a stochastic lattice automaton
A, i.e., that with the weights of all the paths summing to
one, isfa(w) =

∑

u∈V ∗ |u|w[[A]](u), where|u|w is the
number of occurrences of wordw in string u and [[A]](u)
is the probability associated byA to stringu. The set of
expected counts associated with all the words found in the
lattice can be computed efficiently (Mohri, 2003). We also
compute word-level confidence scores for the one-best hy-
pothesis using a logistic regression classifier. The classifier
takes two features as input, the word expected counts just
mentioned and a likelihood ratio between the standard rec-
ognizer with full context-dependent acoustic models and
a simple recognizer with context-independent models. If
each wordwi has an associated confidencec(wi), then
fa(w) =

∑l
i=1 c(wi)1wi=w. Finally, the word weights

fa(w) are normalized to produce the counts that serve as in-
put to the segmentation algorithm,Ca(w) = fa(w)

P

w∈V fa(w) .

5 Experiments

Our experimental work has been in the context of the En-
glish portion of the TDT corpus of broadcast news speech
and newspaper articles (Kong and Graff, 2005). The
speech corpus consisted of447 news show recordings of
30-60 minutes per show, for a total corpus size of around
311 hours, with human-labeled story boundaries treated
here as topic boundaries. For the experiments involving
speech data, we used41 and69 shows containing957 and
1,674 stories, for development and testing, respectively.
The 337 remaining shows containing6,310 stories were
used for training. For those experiments using text data,
a total of1,314 training news streams were used, including
the human transcripts of the337 news shows already men-
tioned as well as977 non-speech news streams, with a total
of 15,110 non-speech stories. The task in our empirical
evaluation was to automatically reconstruct the story/topic
boundaries from a stream of speech utterance transcriptions
or text sentences. The HTMM was trained with20 topics
and with hyperparametersα andβ set as in (Steyvers and
Griffiths, 2007).

To evaluate our co-occurrence based similarity score em-
pirically, we computedKnorm between all pairs of test
and development stories with human topic labels such as
“Earthquake in El Salvador.” With291 stories, there were
3,166 same-topic story pairs and39,172 different-topic

pairs in our experiment. The average pairwise similarity
between different-topic story pairs was0.2558 and that be-
tween same-topic story pairs was0.7138, or around2.8
times greater. This indicates that our text similarity mea-
sure is a good indicator of topical similarity between two
segments of text or speech. We also explored the corre-
lation betweenKnorm and true segmentation boundaries
by processing each show’s transcription by sliding a win-
dow of δ = 6 sentences along the text and accumulating
the word frequencies within each window. For each sen-
tencet, letwt be the window ending at sentencet. Figure 2
displays the plot ofKnorm(wt, wt+δ) for a representative
show. As this figure illustrates, true topic boundaries are
extremely well correlated with range minima in the simi-
larity score. Similar trends are observed with other shows
in the corpus.

5.1 Topic Segmentation Results

For the speech experiments, the audio for each show was
first automatically segmented into utterances, while remov-
ing most non-speech audio, such as music and silence (Al-
berti et al., 2009). Each utterance was transcribed using
Google’s large-vocabulary continuous speech recognizer
(the baseline system of (Albertiet al., 2009)). The word
error rate of this recognizer on the standard 1997 Broad-
cast News evaluation set was17.7%. The vocabulary for
the HTMM algorithm consisted of a subset of8,821 words.
This was constructed by starting with the set of words seen
in the recognizer transcription of the training data, apply-
ing Porter stemming (Porter, 1980), removing a stoplist of
function and other words not likely to indicate any topic,
and keeping only those words occurring more than five
times. The HTMM was trained with an Expectation Maxi-
mization (EM) algorithm initialized with random values for
model parameters. To minimize the possibility of a partic-
ular randomization overfitting the test data, we ran 20 trials
of model training and testing and picked the model that had
the best segmentation quality on the development data set.

For the algorithms based onKnorm, the parameter set in-
cluded the thresholdθ and the window sizeδ for both algo-
rithms. The sphere-distance based algorithm was addition-
ally parametrized by the regularization tradeoff parameter
ν. For both algorithms, we performed parameter selection
on the development data set. Since these two algorithms
rely on the use of the co-occurrence based word similar-
ity score, their training consists of calculating word and
word pair frequencies over a corpus of text segmented into
topic-coherent chunks. The input to the training stage of
all the segmentation algorithms were human transcriptions
of the speech news broadcasts as well as non-speech news
sources, as detailed above.

The experiment results are given in Tables 1 and 2. The
former gives segmentation quality scores for degenerate
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Figure 2: The distanceKnorm(wt, wt+δ) for a representa-
tive show. The vertical lines are true story boundaries. A
line at sentencet denotes that sentencet + 1 is from a new
story.

segmentations with boundaries decided by a fair coin toss
(Random), all possible boundaries (Full), and no bound-
aries at all (None). The results for the similarity-based
segmentation algorithm and the sphere-distance based al-
gorithm of Section 3.1 are denoted as Sim and SV, respec-
tively. We tested on the reference text (Text), as well as
three different varieties of speech transcriptions, transcrip-
tions only (One-best), and speech transcriptions weighted
with lattice expected counts (Counts) and confidence scores
(Confidence).

5.2 Discussion

In the following, all comparisons are made in terms of rel-
ative error improvement. TCM error and CoAP error are
both defined as1 − TCM and 1 − CoAP, respectively.
In our experiments, segmentations produced by all three
algorithms significantly outperform degenerate segmenta-
tions by both measures. The similarity-based segmenta-
tion algorithm does not show a consistent improvement
over HTMM in the cases where the inputs are derived from
speech recognition data. However, for text test data, this
algorithm outperforms HTMM. This result verifies empiri-
cally that the variability in the word distribution introduced
by speech recognition errors is a challenge for similarity-
based segmentation algorithms. While the performance of
the similarity-based algorithm degrades in the presence of
speech recognition errors, the SV algorithm outperforms
HTMM and Sim significantly across all test conditions by
both measures. For example, compared to HTMM, seg-
mentation error is reduced by 29.3% and 18.6% when we
test on text data and by 10.3% and 11.7% when we test on
one-best speech data, with CoAP and TCM, respectively.
Improvements are additionally demonstrated by using lat-
tice information in segmentation algorithms. For example,
for HTMM, lattice counts yield a 2.3% relative improve-

Input Type CoAP TCM
Text Random 50.4% 58.4%

Text Full 50.4% 51.8%
Text None 49.6% 56.2%

One-best Random 50.8% 48.8%
One-best Full 51.0% 43.0%
One-best None 49.1% 52.9%

Table 1: CoAP and TCM measured on degener-
ate segmentations.

Input Type Algorithm Quality Measure
CoAP TCM

Text
HTMM 66.9% 72.6%

Sim 72.0% 75.0%
SV 76.6% 77.7%

One-best
HTMM 65.0% 61.5%

Sim 60.4% 62.8%
SV 68.6% 66.0%

Counts
HTMM 65.5% 62.4%

Sim 59.4% 63.4%
SV 68.5% 66.5%

Confidence
HTMM 68.3% 64.2%

Sim 59.7% 63.8%
SV 69.2% 66.8%

Table 2: Topic segmentation quality.

ment, in TCM error compared to the one-best baseline,
1.4% in terms of CoAP. Confidence scores also yield im-
provements with both measures, 7.0% relative by TCM and
9.4% by CoAP. The SV algorithm also achieves improve-
ments when confidence scores are used, of 1.9% and 2.4%
by CoAP and TCM over the one-best baseline.

As we have already mentioned, the algorithms described
make local decisions about topic coherence. However, it is
worth noting that if the entire document to be segmented
is available in advance, global information can be incor-
porated into our algorithm as well. While our algorithm
functions by thresholding locally the distance between ad-
jacent sphere descriptors of windowed observations, we
could create a global algorithm by, for example, placing the
topic boundaries at those locations with the largestn gaps
between adjacent windows of observations, or by using
one of the graph-based segmentation methods mentioned
in Section 1.1.

In addition, it should be noted that the algorithms presented
are supervised, both since we compute co-occurrence fre-
quencies on a corpus of pre-segmented observations and
because we pick the algorithm parameters using accuracy
on a development set. Though HTMM in general is un-
supervised in that it does not use pre-segmented observa-
tions, it is also noteworthy that our use of HTMM can be
considered supervised in that we pick the one HTMM out
of 20 that gives the best accuracy on the development set.
In addition, the Sim algorithm does represent a simpler su-
pervised algorithm than the more sophisticated SV. In fact,
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the Sim algorithm can be viewed as the supervised coun-
terpart of cosine-distance based algorithms such as Text-
Tiling. Hence, it is significant that SV yields a substantial
improvement over both HTMM and Sim.

6 Conclusion

In this paper, we gave two new topic segmentation algo-
rithms for speech content based on a general measure of
topical similarity derived from word co-occurrence statis-
tics. The first algorithm functions by comparing adjacent
observation windows according to a similarity measure for
words trained on co-occurrence statistics. The second is
based on comparing compact geometric descriptions of the
adjacent windows in topic similarity feature space. We
have demonstrated both algorithms to be empirically ef-
fective. The support vector based algorithm significantly
and consistently surpasses in quality the segmentation pro-
duced by a hidden topic Markov model (HTMM). We have
demonstrated that in the presence of uncertainty resulting
from the use of a speech recognizer, topic segmentation al-
gorithms can be improved by using recognition hypotheses
other than that receiving the highest likelihood.
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