
Bandits with Feedback Graphs and Switching Costs

Raman Arora
Dept. of Computer Science
Johns Hopkins University

Baltimore, MD 21204
arora@cs.jhu.edu

Teodor V. Marinov
Dept. of Computer Science
Johns Hopkins University

Baltimore, MD 21204
tmarino2@jhu.edu

Mehryar Mohri
Google Research &

Courant Institute of Math. Sciences
New York, NY 10012
mohri@google.com

Abstract

We study the adversarial multi-armed bandit problem where the learner is supplied
with partial observations modeled by a feedback graph and where shifting to a new
action incurs a fixed switching cost. We give two new algorithms for this problem in
the informed setting. Our best algorithm achieves a pseudo-regret of Õ(γ(G)

1
3T

2
3),

where γ(G) is the domination number of the feedback graph. This significantly
improves upon the previous best result for the same problem, which was based on
the independence number of G. We also present matching lower bounds for our
result that we describe in detail. Finally, we give a new algorithm with improved
policy regret bounds when partial counterfactual feedback is available.

1 Introduction

A general framework for sequential learning is that of online prediction with expert advice [Littlestone
and Warmuth, 1994, Cesa-Bianchi et al., 1997, Freund and Schapire, 1997], which consists of repeated
interactions between a learner and the environment. The learner maintains a distribution over a set of
experts or actions. At each round, the loss assigned to each action is revealed. The learner incurs
the expected value of these losses for their current distribution and next updates her distribution.
The learner’s goal is to minimize her regret, which, in the simplest case, is defined as the difference
between the cumulative loss over a finite rounds of interactions and that of the best expert in hindsight.

The scenario just described corresponds to the so-called full information setting where the learner is
informed of the loss of all actions at each round. In the bandit setting, only the loss of the action they
select is known to the learner. These settings are both special instances of a general model of online
learning with side information introduced by Mannor and Shamir [2011], where the information
available to the learner is specified by a feedback graph. In an undirected feedback graph, each
vertex represents an action and an edge between vertices a and a′ indicates that the loss of action a′
is observed when action a is selected and vice-versa. The bandit setting corresponds to a feedback
graph reduced to only self-loops at each vertex, the full information setting to a fully connected graph.
Online learning with feedback graphs has been further extensively analyzed by Alon et al. [2013,
2017] and several other authors [Alon et al., 2015, Kocák et al., 2014, Cohen et al., 2016, Yun et al.,
2018, Cortes et al., 2018].

In many applications, the learner also incurs a cost when switching to a new action. Consider, for
example, a commercial bank that issues various credit card products, many of which are similar,
e.g., different branded cards with comparable fees and interest rates. At each round, the bank offers
a specific product to a particular sub-population (e.g., customers at a store). The payoff observed
for this action also reveals feedback for related cards and similar sub-populations. At the same
time, offering a different product to a group incurs a switching cost in terms of designing a new
marketing campaign. Another example of a problem with feedback graph and switching costs is a
large company seeking to allocate and reallocate employees to different tasks so that the productivity

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

is maximized. Employees with similar skills, e.g., technical expertise, people skills, can be expected
to perform as well as each other on the same task. Reassigning employees between tasks, however, is
associated with a cost for retraining and readjustment time. We refer the reader to Appendix B for
more motivating examples.

The focus of this paper is to understand the fundamental tradeoffs between exploration and exploita-
tion in online learning with feedback graphs and switching costs, and to design learning algorithms
with provably optimal guarantees. We consider the general case of a feedback graph G with a set
of vertices or actions V . In the expert setting with no switching cost, the min-max optimal regret is
achieved by the weighted-majority or the Hedge algorithm [Littlestone and Warmuth, 1994, Freund
and Schapire, 1997], which is in Θ(

√
log (|V |)T). In the bandit setting, the extension of these

algorithms, EXP3 [Auer et al., 2002], achieves a regret of O(
√
|V | log (|V |)T). The min-max

optimal regret of Θ(
√
|V |T) can be achieved by the INF algorithm [Audibert and Bubeck, 2009].

The
√
|V |-term in the bandit setting is inherently related to the additional exploration needed to

observe the loss of all actions.

The scenario of online learning with side information modeled by feedback graphs, which interpo-
lates between the full information and the bandit setting, was introduced by Mannor and Shamir
[2011]. When the feedback graph G is fixed over time and is undirected, a regret in the order of
O(
√
α(G) log (|V |)T) can be achieved, with a lower bound of Ω(

√
α(G)T), where α(G) denotes

the independence number of G. There has been a large body of work studying different settings of
this problem with time-varying graphs (Gt)

T
t=1, in both the directed or undirected cases, and in both

the so-called informed setting, where, at each round, the learner receives the graph before selecting
an action, or the uninformed setting where it is only made available after the learner has selected an
action and updated its distribution [Alon et al., 2013, Kocák et al., 2014, Alon et al., 2015, Cohen
et al., 2016, Alon et al., 2017, Cortes et al., 2018].

For the expert setting augmented with switching costs, the min-max optimal regret remains in
Θ̃(
√

log (|V |)T). However, classical algorithms such as the Hedge or Follow-the-Perturbed-Leader
[Kalai and Vempala, 2005] no more achieve the optimal regret bound. Several algorithms designed by
Kalai and Vempala [2005], Geulen et al. [2010], Gyorgy and Neu [2014] achieve this min-max optimal
regret. In the setting of bandits with switching costs, the lower bound was carefully investigated by
Cesa-Bianchi et al. [2013] and Dekel et al. [2014] and shown to be in Ω̃(|V | 13T 2

3). This lower bound
is asymptotically matched by mini-batching the EXP3 algorithm, as proposed by Arora et al. [2012].

The only work we are familiar with, which studies both bandits with switching costs and side
information is that of Rangi and Franceschetti [2019]. The authors propose two algorithms for
time-varying feedback graphs in the uninformed setting. When reduced to the fixed feedback graph
setting, their regret bound becomes Õ(α(G)

1
3T

2
3). We note that, in the informed setting with a fixed

feedback graph, this bound can be achieved by applying the mini-batching technique of Arora et al.
[2012] to the EXP3-SET algorithm of Alon et al. [2013].

Our main contributions are two-fold. First, we propose two algorithms for online learning in the
informed setting with a fixed feedback graph G and switching costs. Our best algorithm admits a
pseudo-regret bound in Õ(γ(G)

1
3T

2
3), where γ(G) is the domination number of G. We note that

the domination number γ(G) can be substantially smaller than the independence number α(G) and
therefore that our algorithm significantly improves upon previous work by Rangi and Franceschetti
[2019] in the informed setting. We also extend our results to achieve a policy regret bound in
Õ(γ(G)

1
3T

2
3) when partial counterfactual feedback is available. The Õ(γ(G)

1
3T

2
3) regret bound in

the switching costs setting might seem at odds with a lower bound stated by Rangi and Franceschetti
[2019]. However, the lower bound of Rangi and Franceschetti [2019] can be shown to be technically
inaccurate (see Appendix C). Our second main contribution is a lower bound in Ω̃(T

2
3) for any

non-complete feedback graph. We also extend this lower bound to Ω̃(γ(G)
1
3T

2
3) for a class of

feedback graphs that we will describe in detail. In Appendix I, we show a lower bound for the setting
of evolving feedback graphs, matching the originally stated lower bound in [Rangi and Franceschetti,
2019].

The rest of this paper is organized as follows. In Section 2, we describe in detail the setup we analyze
and introduce the relevant notation. In Section 3, we describe our main algorithms and results. We

2

further extend our algorithms and analysis to the setting of online learning in reactive environments
(Section 4). In Section 5, we present and discuss in detail lower bounds for this problem.

2 Problem Setup and Notation

We study a repeated game between an adversary and a player over T rounds. For any n ∈ N, we
denote by [n] the set of integers {1, . . . , n}. At each round t ∈ [T], the player selects an action
at ∈ V and incurs a loss `t(at), as well as a cost of one if switching between distinct actions in
consecutive rounds (at 6= at−1). For convenience, we define a0 as an element not in V so that the
first action always incurs a switching cost. The regret RT of any sequence of actions (at)

T
t=1 is thus

defined by RT = maxa∈V
∑T
t=1 `t(at)− `t(a) +M , where M =

∑T
t=1 1at 6=at−1 is the number of

action switches in that sequence. We will assume an oblivious adversary, or, equivalently, that the
sequence of losses for all actions is determined by the adversary before the start of the game. The
performance of an algorithm A in this setting is measured by its pseudo-regret RT (A) defined by

RT (A) = max
a∈V

E

[
T∑
t=1

(
`t(at) + 1at 6=at−1

)
− `t(a)

]
,

where the expectation is taken over the player’s randomized choice of actions. The regret of A is
defined as E[RT], with the expectation outside of the maximum. In the following, we will abusively
refer to RT (A) as the regret of A, to shorten the terminology.

We also assume that the player has access to an undirected graph G = (V,E), which determines
which expert losses can be observed at each round. The vertex set V is the set of experts (or actions)
and the graph specifies that, if at round t the player selects action at, then, the losses of all experts
whose vertices are adjacent to that of at can be observed: `t(a) for a ∈ N(at), where N(at) denotes
the neighborhood of at in G defined for any u ∈ V by: N(u) = {v : (u, v) ∈ E}. We will denote
by deg(u) = |N(u)| the degree of u ∈ V in graph G. We assume that G admits a self-loop at
every vertex, which implies that the player can at least observe the loss of their own action (bandit
information). In all our figures, self-loops are omitted for the sake of simplicity.

We assume that the feedback graph is available to the player at the beginning of the game (informed
setting). The independence number ofG is the size of a maximum independent set inG and is denoted
by α(G). The domination number of G is the size of a minimum dominating set and is denoted by
γ(G). The following inequality holds for all graphs G: γ(G) ≤ α(G) [Bollobás and Cockayne,
1979, Goddard and Henning, 2013]. In general, γ(G) can be substantially smaller than α(G), with
γ(G) = 1 and α(G) = |V | − 1 in some cases. We note that all our results can be straightforwardly
extended to the case of directed graphs.

3 An Adaptive Mini-batch Algorithm

In this section, we describe an algorithm for online learning with switching costs, using adaptive
mini-batches. All proofs of results are deferred to Appendix D.

The standard exploration versus exploitation dilemma in the bandit setting is further complicated
in the presence of a feedback graph: if a poor action reveals the losses of all other actions, do we
play the poor action? The lower bound construction of Mannor and Shamir [2011] suggests that we
should not, since it might be better to just switch between the other actions.

Adding switching costs, however, modifies the price of exploration and the lower bound argument of
Mannor and Shamir [2011] no longer holds. It is in fact possible to show that EXP3 and its graph
feedback variants switch too often in the presence of two good actions, thereby incurring Ω(T) regret,
due to the switching costs. One way to deal with the switching costs problem is to adapt the fixed
mini-batch technique of Arora et al. [2012]. That technique, however, treats all actions equally while,
in the presence of switching costs, actions that provide additional information are more valuable.

We deal with the issues just discussed by adopting the idea that the mini-batch sizes could depend
both on how favorable an action is and how much information an action provides about good actions.

3

Algorithm 1 Algorithm for star graphs

Input: Star graph G(V,E), learning rates (ηt), exploration rate β ∈ [0, 1], maximum mini-batch τ .
Output: Action sequence (at)

T
t=1.

1: q1 = 1
|V | .

2: while
∑
t bτtc ≤ T do

3: pt = (1− β)qt + βδ(r) % δ(r) is the Dirac distribution on r
4: Draw at ∼ pt, set τt = pt(r)τ
5: if at−1 6= r and at 6= r then
6: Set at = at−1
7: end if
8: Play at for the next bτtc iterations
9: Set ̂̀t(i) =

∑t+bτtc−1
j=t I(at = r)

`j(i)
pt(r)

10: For all i ∈ V , qt+1(i) =
qt(i) exp(−ηt ̂̀t(i))∑
j∈V qt(j) exp(−ηt ̂̀t(j))

11: t = t+ 1
12: end while

3.1 Algorithm for Star Graphs

We start by studying a simple feedback graph case in which one action is adjacent to all other actions
with none of these other actions admitting other neighbors. For an example see Figure 1.

Figure 1: Example of a star graph.

We call such graphs star graphs and we refer to the action
adjacent to all other actions as the revealing action. The
revealing action is denoted by r. Since only the revealing
action can convey additional information about other ac-
tions, we will select our mini-batch size to be proportional
to the quality of this action. Also, to prevent our algorithm
from switching between two non-revealing actions too of-
ten, we will simply disallow that and allow switching only
between the revealing action and a non-revealing action.
Finally, we will disregard any feedback a non-revealing
action provides us. This simplifies the analysis of the regret of our algorithm. The pseudocode of the
algorithm is given in Algorithm 1.

The following intuition guides the design of our algorithm and its analysis. We need to visit the
revealing action sufficiently often to derive information about all other actions, which is determined
by the explicit exploration factor β. If r is a good action, our regret will not be too large if we visit it
often and spent a large amount of time in it. On the other hand if r is poor, then the algorithm should
not sample it often and, when it does, it should not spend too much time there. Disallowing the
algorithm to directly switch between non-revealing actions also prevents it from switching between
two good non-revealing actions too often. The only remaining question is: do we observe enough
information about each action to be able to devise a low regret strategy? The following regret
guarantee provides a precise positive response.
Theorem 3.1. Suppose that the inequality E[`2t (i)] ≤ ρ holds for all t ≤ T and all i ∈ V , for some
ρ and β ≥ 1

τ . Then, for any action a ∈ V , Algorithm 1 admits the following guarantee:

E

[
T∑
t=1

`t(at)− `t(a)

]
≤ log (|V |)

η
+ Tητρ+ Tβ.

Furthermore, the algorithm does not switch more than 2T/τ times, in expectation.

The exploration parameter β is needed to ensure that τt = pt(r)τ ≥ 1, so that at every iteration of the
while loop Algorithm 1 plays at least one action. The bound assumed on the second moment E[`2t (i)]
might seem unusual since in the adversarial setting we do not assume a randomization of the losses.
For now, the reader can just assume that this is a bound on the squared loss, that is, `2t (i) ≤ ρ. The
role of this expectation and the source of the randomness will become clear in Section 3.3. We note
that the star graph admits independence number α(G) = |V | − 1 and domination number γ(G) = 1.

4

In this case, the algorithms of Rangi and Franceschetti [2019] and variants of the mini-batching
algorithm only guarantee a regret bound of the order Õ(α(G)

1
3T

2
3), while Algorithm 1 guarantees a

regret bound of the order Õ(T
2
3) when we set η = 1/T

2
3 , τ = T

2
3 , and β = 1/T

1
3 .

3.2 Algorithm for General Feedback Graphs

We now extend Algorithm 1 to handle arbitrary feedback graphs. The pseudocode of this more
general algorithm is given in Algorithm 2.

Algorithm 2 Algorithm for general feedback graphs

Input: Graph G(V,E), learning rates (ηt), exploration rate β ∈ [0, 1], maximum mini-batch τ .
Output: Action sequence (at)t.

1: Compute an approximate dominating set R
2: q1 ≡ Unif(V), u ≡ Unif(R)
3: while

∑
t τt ≤ T do

4: pt = (1− β)qt + βu.
5: Draw i ∼ pt, set τt = pt(ri)τ , where ri is the dominating vertex for i and set at = i.
6: if at−1 6∈ R and at 6∈ R then
7: Set at = at−1
8: end if
9: Play at for the next bτtc iterations.

10: Set ̂̀t(i) =
∑t+bτtc−1
j=t I(at = ri)

`j(i)
pt(ri)

.

11: For all i ∈ V , qt+1(i) =
qt(i) exp(−ηt ̂̀t(i))∑
j∈V qt(j) exp(−ηt ̂̀t(j)) .

12: t = t+ 1.
13: end while

The first step of Algorithm 2 consists of computing an approximate minimum dominating set for G
using the Greedy Set Cover algorithm [Chvatal, 1979]. The Greedy Set Cover algorithm naturally
partitions G into disjoint star graphs with revealing actions/vertices in the dominating set R. Next,
Algorithm 2 associates with each star-graph its revealing arm r ∈ R. The mini-batch size at time t
now depends on the probability pt(r) of sampling a revealing action r, as in Algorithm 1. There are
several key differences, however, that we now point out. Unlike Algorithm 1, the mini-batch size can
change between rounds even if the action remains fixed. This occurs when the newly sampled action
is associated with a new revealing action in R, however, it is different from the revealing action. The
above difference introduces some complications, because τt conditioned on all prior actions a1:t−1 is
still a random variable, while it is a deterministic in Algorithm 1. We also allow switches between
any action and any vertex r ∈ R. This might seem to be a peculiar choice. For example, allowing
only switches within each star-graph in the partition and only between revealing vertices seems more
natural. Allowing switches between any vertex and any revealing action benefits exploration while
still being sufficient for controlling the number of switches. If we further constrain the number of
switches by using the more natural approach, it is possible that not enough information is received
about each action, leading to worse regret guarantees. We leave the investigation of such more natural
approaches to future work. Algorithm 2 admits the following regret bound.

Theorem 3.2. For any β ≥ |R|τ The expected regret of Algorithm 2 is

log (|V |)
η

+ ητT + βT.

Further, if the algorithm is augmented similar to Algorithm 7, then it will switch between actions at
most 2T |R|

τ times.

Setting η = 1/(|R| 13T 2
3), τ = |R| 23T 1

3 and β = |R| 13 /T 1
3 , recovers a pseudo-regret bound of

Õ(|R| 13T 2
3), with an expected number of switches bounded by 2|R| 13T 2

3 . We note that |R| =

O(γ(G) log (|V |)) and thus the regret bound of our algorithm scales like γ(G)
1
3 . Further, this is a

strict improvement over the results of Rangi and Franceschetti [2019] as their result shows a scaling
of α(G)

1
3 . The proof of Theorem 3.2 can be found in Appendix D.3.

5

Algorithm 3 Corralling star-graph algorithms

Input: Feedback graph G(V,E), learning rate η, mini-batch size τ
Output: Action sequence (at)

T
t=1.

1: Compute an approximate minimum dominating setR and initialize |R| base star-graph algorithms,
B1, B2, . . . , B|R|, with step size η′

2|R| , mini-batch size τ and exploration rate 1/τ (Algorithm 1).

2: T ′ = T
τ , β = 1

T ′ , β̃ = exp
(

1
log(T)

)
, η1,i = η, ρ1,i = 2|R| for all i ∈ [|R|], q1 = p1 = 1

|R|
3: for t = 1, . . . , T ′ do
4: Draw it ∼ pt
5: for jt = (t− 1)τ + 1, . . . , (t− 1)τ + τ do
6: Receive action aijt from Bi for all i ∈ [|R|].
7: Set ajt = aitjt , play ajt and observe loss `jt(ajt).

8: Send `jt (ajt)

pt(it)
I{i = it} as loss to algorithm Bi for all i ∈ [|R|].

9: Update ̂̀t(i) = ̂̀
t(i) + 1

τ

`jt (ajt)

pt(it)
I{i = it}.

10: end for
11: Update qt+1 = Algorithm 4(qt, ̂̀t, ηt).
12: Set pt+1 = (1− β)qt+1 + β 1

|R| .
13: for i = 1, . . . , |R| do
14: if 1

pt(i)
> ρt,i then

15: Set ρt+1,i = 2
pt(i)

, ηt+1,i = β̃ηt,i and restart i-th star-graph algorithm, with updated

step-size η′

ρt+1,i

16: else
17: Set ρt+1,i = ρt,i, ηt+1,i = ηt,i.
18: end if
19: end for
20: end for

3.3 Corralling Star Graph Algorithms

Algorithm 4 Log-Barrier-OMD(qt, `t, ηt)

Input: Previous distribution qt, loss vector `t, learning rate vector ηt.
Output: Updated distribution qt+1.

1: Find λ ∈ [mini `t(i),maxi `t(i)] such that
∑|R|
i=1

1
1

qt(i)
+ηt,i(`t(i)−λ)

= 1

2: Return qt+1 such that 1
qt+1(i)

= 1
qt(i)

+ ηt,i(`t(i)− λ).

An alternative natural method to tackle the general feedback graph problem is to use the recent
corralling algorithm of Agarwal et al. [2016]. Corralling star graph algorithms was in fact our initial
approach. In this section, we describe that technique, even though it does not seem to achieve an
optimal rate. Here too, the first step consists of computing an approximate minimum dominating
set. Next, we initialize an instance of Algorithm 1 for each star graph. Finally, we combine all of
the star graph algorithms via a mini-batched version of the corralling algorithm of Agarwal et al.
[2016]. Mini-batching is necessary to avoid switching between star graph algorithms too often. The
pseudocode of this algorithm is given in Algorithm 3. Since during each mini-batch we sample a
single star graph algorithm, we need to construct appropriate unbiased estimators of the losses `jt ,
which we feed back to the sampled star graph algorithm. The bound on the second moment of these
estimators is exactly what Theorem 3.1 requires. Our algorithm admits the following guarantees.

Theorem 3.3. Let τ = T
1
3 /|R| 14 , η = |R| 14 /(40c log (T ′)T

1
3 log (|V |)), and η′ = 1/T

2
3 , where c

is a constant independent of T , τ , |V | and |R|. Then, for any a ∈ V , the following inequality holds
for Algorithm 3:

E

[
T∑
t=1

`t(at)− `t(a)

]
≤ Õ

(√
|R|T 2

3

)
.

6

Algorithm 5 Policy regret with side observations

Input: Feedback graph G(V,E), learning rate η, mini-batch size τ , where η and τ are set as in
Theorem 3.3.

Output: Action sequence (at)t.
1: Transform feedback graph G from m-tuples to actions and initialize Algorithm 2.
2: for t = 1, . . . , T/m do
3: Sample action at from pt generated by Algorithm 2 and play it for the next m rounds.
4: if at−1 = at then
5: Observe mini-batched loss ̂̀t(at) = 1

m

∑m
j=1 `(t−1)m+j(at) and additional side observa-

tions. Feed mini-batched loss and additional side observations to Algorithm 2.
6: else
7: Set ̂̀t(at) = 0 and set additional feedback losses to 0. Feed losses to Algorithm 2.
8: end if
9: end for

Furthermore, the expected number of switches of the algorithm is bounded by T
2
3 |R| 13 .

This bound is suboptimal compared to the γ(G)
1
3 -dependency achieved by Algorithm 2. We conjec-

ture that this gap is an artifact of the analysis of the corralling algorithm of Agarwal et al. [2016].
However, we were unable to improve on the current regret bound by simply corralling.

4 Policy Regret with Partial Counterfactual Feedback

In this section, we consider games played against an adaptive adversary, who can select losses based
on the player’s past actions. In that scenario, the notion of pseudo-regret is no longer meaningful
or interpretable, as pointed out by Arora et al. [2012]. Instead, the authors proposed the notion of
policy regret defined by the following: maxa∈V

∑T
t=1 `t(a1, . . . , at) −

∑T
t=1 `t(a, . . . , a), where

the benchmark action a does not depend on the player’s actions. Since it is impossible to achieve
o(T) policy regret when the t-th loss is allowed to depend on all past actions of the player, the authors
made the natural assumption that the adversary is m-memory bounded, that is that the t-th loss can
only depend on the past m actions chosen by the player. In that case, the known min-max policy
regret bounds are in Θ̃(|V | 13T 2

3) [Dekel et al., 2014], ignoring the dependency on m.

Here, we show that the dependency on |V | can be improved in the presence of partial counterfactual
feedback. We assume that partial feedback on losses with memory m is available. We restrict the
feedback graph to admitting only vertices for repeated m-tuples of actions in V , that is, we can only
observe additional feedback for losses of the type `t(a, a, . . . , a), where a ∈ V . For a motivating
example, consider the problem of prescribing treatment plans to incoming patients with certain
disorders. Two patients that are similar, for example patients in the same disease sub-type or with
similar physiological attributes, when prescribed different treatments, reveal counterfactual feedback
about alternative treatments for each other.

Our algorithm for incorporating such partial feedback to minimize policy regret is based on our
algorithm for general feedback graphs (Algorithm 2). The learner receives feedback aboutm-memory
bounded losses in the form of m-tuples. We simplify the representation by replacing each m-tuple
vertex in the graph by a single action, that is vertex (a, . . . , a) represented as a.

As described in Algorithm 5, the input stream of T losses is split into mini-batches of size m, indexed
by t, such that ̂̀t(·) = 1

m

∑m
j=1 `(t−1)m+j(·). This sequence of losses, (̂̀t)T/mt=1 , could be fed as input

to Algorithm 2 if it were not for the constraint on the additional feedback. Suppose that between the
t-th mini-batch and the t+ 1-st mini-batch, Algorithm 2 decides to switch actions so that at+1 6= at.
In that case, no additional feedback is available for ̂̀t+1(at+1) and the algorithm cannot proceed as
normal. To fix this minor issue, the feedback provided to Algorithm 2 is that the loss of action at+1

was 0 and all actions adjacent to at+1 also incurred 0 loss. This modification of losses cannot occur
more than the number of switches performed by Algorithm 2. Since the expected number of switches
is bounded by O(γ(G)

1
3T

2
3), the modification does not affect the total expected regret.

Theorem 4.1. The expected policy regret of Algorithm 5 is bounded as Õ((mγ(G))
1
3T

2
3).

7

The proof of the above theorem can be found in Appendix E. Let us point out that Algorithm 5
requires knowledge (or an upper bound) on the memory of the adversary, unlike the algorithm
proposed by Arora et al. [2012]. We conjecture that this is due to the adaptive mini-batch technique
of our algorithm. In particular, we believe that for m-memory bounded adversaries, it is necessary to
repeat each sampled action at at least m times.

5 Lower Bound

The main tool for constructing lower bounds when switching costs are involved is the stochastic
process constructed by Dekel et al. [2014]. The crux of the proof consists of a carefully designed
multi-scale random walk. The two characteristics of this random walk are its depth and its width.
At time t, the depth of the walk is the number of previous rounds on which the value of the current
round depends. The width of the walk measures how far apart two rounds that depend on each other
are in time. The loss of each action is equal to the value of the random walk at each time step, and the
loss of the best action is slightly better by a small positive constant. The depth of the process controls
how well the losses concentrate in the interval [0, 1]1. The width of the walk controls the variance
between losses of different actions and ensures it is impossible to gain information about the best
action, unless one switches between different actions.

5.1 Lower Bound for Non-complete Graphs

v1 v2

v3

Figure 2: Feedback graph for switching costs

We first verify that the dependence on the time hori-
zon cannot be improved from T

2
3 for any feedback

graph in which there is at least one edge missing, that
is, in which there exist two vertices that do not reveal
information about each other. Without loss of gener-
ality, assume that the two vertices not joined by an
edge are v1 and v2. Take any vertex that is a shared
neighbor and denote this vertex by v3 (see Figure 2
for an example). We set the loss for action v3 and all other vertices to be equal to one. We now focus
the discussion on the subgraph with vertices {v1, v2, v3}. The losses of actions v1 and v2 are set
according to the construction in [Dekel et al., 2014]. Since {v1, v2} forms an independent set, the
player would need to switch between these vertices to gain information about the best action. This is
also what the lower bound proof of Rangi and Franceschetti [2019] is based upon. However, it is im-
portant to realize that the construction in Dekel et al. [2014] also allows for gaining information about
the best action if its loss is revealed together with some other loss constructed from the stochastic
process. In that case, playing vertex v3 would provide such information. This is a key property which
Rangi and Franceschetti [2019] seem to have missed in their lower bound proof. We discuss this
mistake carefully in Appendix C and provide a lower bound matching what the authors claim in the
uninformed setting in Appendix I. Our discussion suggests that we should set the price for revealing
information about multiple actions according to the switching cost and this is why the losses of all
vertices outside of the independent set are equal to one. We note that the losses of the best action
are much smaller than one sufficiently often, so that enough instantaneous regret is incurred when
pulling action v3. Our main result follows and its proof can be found in Appendix F.
Theorem 5.1. For any non-complete feedback graph G, there exists a sequence of losses on which
any algorithm A in the informed setting incurs expected regret at least

RT (A) ≥ Ω

(
T

2
3

log (T)

)
.

5.2 Lower Bound for Disjoint Union of Star Graphs

How do we construct a lower bound for a disjoint union of star graphs? First, note that if two adjacent
vertices are allowed to admit losses set according to the stochastic process and one of them is the
best vertex, then we could distinguish it in time O(

√
T) by repeatedly playing the other vertex. This

suggests that losses set according to the stochastic process should be reserved for vertices in an
1Technically, the losses are always clipped between [0, 1].

8

independent set. Second, it is important to keep track of the amount of information revealed by
common neighbors.

· · ·

v1 v2 v3 v4

Figure 3: Disjoint union of star graphs.

Consider the feedback graph of Figure 3. This disjoint
union of star graphs admits a domination number equal
to four and its minimum dominating set is denoted by
{v1, v2, v3, v4}. Probably the most natural way to set
up the losses of the vertices is to set the losses of the
maximum independent set, which consists of the colored
vertices, according to the construction of Dekel et al.
[2014] and the losses of the minimum dominating set
equal to one. Let v1 be the vertex with highest degree. Any time the best action is sampled to be not
adjacent to v1, switching between that action and v1 reveals deg(v1) information about it. On the
other hand, no matter how we sample the best action as a neighbor of v1, it is then enough to play v1
to gain enough information about it. If I denotes the maximum independent set, the above reasoning
shows that only O(T

2
3 |I|/deg(v1)) rounds of switching are needed to distinguish the best action.

Since deg(v1) can be made arbitrarily large and thus |I|/deg(v1) gets arbitrary close to one, we see
that the regret lower bound becomes independent of the domination number and equal to Ω̃(T

2
3).

We now present a construction for the disjoint union of star graphs which guarantees a lower bound
of the Ω̃(γ(G)

1
3T

2
3). The idea behind our construction is to choose an independent set such that

none of its members have a common neighbor, thereby avoiding the problem described above. We
note that such an independent set cannot have size greater than γ(G). Let R be the set of revealing
vertices for the star graphs. We denote by Vi the set of vertices associated with the star graph with
revealing vertex vi. To construct the losses, we first sample an active vertex for each star graph from
its leaves. The active vertices are represented in red in Figure 3. This forms an independent set I
indexed by R. Next, we follow the construction of Dekel et al. [2014] for the vertices in I , by first
sampling a best vertex uniformly at random from I and then setting the losses in I according to the
multi-scale random walk. All other losses are set to one. For any star graph consisting of a single
vertex, we treat the vertex as a non-revealing vertex. This construction guarantees the following.
Theorem 5.2. The expected regret of any algorithm A on a disjoint union of star graphs is lower
bounded as follows:

RT (A) ≥ Ω

(
γ(G)

1
3T

2
3

log (T)

)
.

The proof of this theorem can be found in Appendix G. This result can be viewed as a consequence
of that of Dekel et al. [2014] but it can also be proven in alternative fashion. The general idea is
to count the amount of information gained for the randomly sampled best vertex. For example, a
strategy that switches between two revealing vertices vi and vj will gain information proportional to
deg(vi)deg(vj). The lower bound follows from carefully counting the information gain of switching
between revealing vertices. This counting argument can be generalized beyond the disjoint union of
star graphs, by considering an appropriate pair of minimal dominating/maximal independent sets. We
give an argument for the disjoint union of star graphs in Appendix G and leave a detailed argument
for general graphs to future work.

6 Conclusion

We presented an extensive analysis of online learning with feedback graphs and switching costs in the
adversarial setting, a scenario relevant to several applications in practice. We gave a new algorithm
whose regret guarantee only depends on the domination number. We also presented a matching
lower bound for a family of graphs that includes disjoint unions of star graphs. The technical tools
introduced in our proofs are likely to help derive a lower bound for all graph families. We further
derived an algorithm with more favorable policy regret guarantees in the presence of feedback graphs.

Acknowledgements

This research was partly supported by NSF BIGDATA grants IIS-1546482 and IIS-1838139, and by
NSF CCF-1535987, NSF IIS-1618662, and a Google Research Award.

9

References

Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E. Schapire. Corralling a band of
bandit algorithms. arXiv preprint arXiv:1612.06246, 2016.

Noga Alon, Nicolò Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. From bandits to experts:
A tale of domination and independence. In Advances in Neural Information Processing Systems,
pages 1610–1618, 2013.

Noga Alon, Nicolò Cesa-Bianchi, Ofer Dekel, and Tomer Koren. Online learning with feedback
graphs: Beyond bandits. In JMLR Workshop and Conference Proceedings, volume 40. Microtome
Publishing, 2015.

Noga Alon, Nicolò Cesa-Bianchi, Claudio Gentile, Shie Mannor, Yishay Mansour, and Ohad Shamir.
Nonstochastic multi-armed bandits with graph-structured feedback. SIAM Journal on Computing,
46(6):1785–1826, 2017.

Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an adaptive adversary:
from regret to policy regret. In Proceedings of the 29th International Conference on Machine
Learning, pages 1747–1754, 2012.

Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic bandits.
In COLT, pages 217–226, 2009.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Béla Bollobás and Ernest J Cockayne. Graph-theoretic parameters concerning domination, indepen-
dence, and irredundance. Journal of Graph Theory, 3(3):241–249, 1979.

Swapna Buccapatnam, Atilla Eryilmaz, and Ness B. Shroff. Stochastic bandits with side observations
on networks. In The 2014 ACM International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’14, pages 289–300. ACM, 2014.

Stephane Caron, Branislav Kveton, Marc Lelarge, and Smriti Bhagat. Leveraging side observations
in stochastic bandits. In UAI, 2012.

Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P Helmbold, Robert E. Schapire, and
Manfred K. Warmuth. How to use expert advice. Journal of the ACM (JACM), 44(3):427–485,
1997.

Nicolò Cesa-Bianchi, Ofer Dekel, and Ohad Shamir. Online learning with switching costs and other
adaptive adversaries. In Advances in Neural Information Processing Systems, pages 1160–1168,
2013.

Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations research,
4(3):233–235, 1979.

Alon Cohen, Tamir Hazan, and Tomer Koren. Online learning with feedback graphs without the
graphs. In International Conference on Machine Learning, pages 811–819, 2016.

Corinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, and Scott Yang. Online learning
with abstention. In 35th ICML, 2018.

Ofer Dekel, Jian Ding, Tomer Koren, and Yuval Peres. Bandits with switching costs: T 2/3 regret. In
Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 459–467.
ACM, 2014.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Sascha Geulen, Berthold Vöcking, and Melanie Winkler. Regret minimization for online buffering
problems using the weighted majority algorithm. In COLT, pages 132–143, 2010.

10

Wayne Goddard and Michael A. Henning. Independent domination in graphs: A survey and recent
results. Discrete Mathematics, 313(7):839–854, 2013.

Andras Gyorgy and Gergely Neu. Near-optimal rates for limited-delay universal lossy source coding.
IEEE Transactions on Information Theory, 60(5):2823–2834, 2014.

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of
Computer and System Sciences, 71(3):291–307, 2005.

Tomávs Kocák, Gergely Neu, Michal Valko, and Rémi Munos. Efficient learning by implicit explo-
ration in bandit problems with side observations. In Advances in Neural Information Processing
Systems, pages 613–621, 2014.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and
computation, 108(2):212–261, 1994.

Fang Liu, Swapna Buccapatnam, and Ness Shroff. Information directed sampling for stochastic
bandits with graph feedback. In 32nd AAAI Conference on Artificial Intelligence, 2018.

Shie Mannor and Ohad Shamir. From bandits to experts: On the value of side-observations. In
Advances in Neural Information Processing Systems, pages 684–692, 2011.

Anshuka Rangi and Massimo Franceschetti. Online learning with feedback graphs and switching costs.
In The 22nd International Conference on Artificial Intelligence and Statistics, pages 2435–2444,
2019.

Aristide Tossou, Christos Dimitrakakis, and Devdatt Dubhashi. Thompson sampling for stochastic
bandits with graph feedback. In 31st AAAI Conference on Artificial Intelligence, 2017.

Yifan Wu, András György, and Csaba Szepesvari. Online learning with gaussian payoffs and side
observations. In Advances in Neural Information Processing Systems 28, pages 1360–1368. Curran
Associates, Inc., 2015a.

Yifan Wu, András György, and Csaba Szepesvári. Online learning with Gaussian payoffs and side
observations. In NIPS, pages 1360–1368, 2015b.

Donggyu Yun, Alexandre Proutiere, Sumyeong Ahn, Jinwoo Shin, and Yung Yi. Multi-armed bandit
with additional observations. Proc. ACM Meas. Anal. Comput. Syst., 2(1):13:1–13:22, 2018.

11

A Related Work

We now discuss the work involving online learning with feedback graphs carefully. Most of the work
we discuss deals with a feedback graph sequence (Gt)

T
t=1. The work of Mannor and Shamir [2011]

is the first to study the online learning problem when feedback graphs model which losses the player
gets to observe after choosing an action. Their work proposes two algorithms, the ExpBan, which

has regret O(
√∑T

t=1 χ̄(Gt)), where χ̄(G) is the clique partition number, and the ELP algorithm

which has regret O(
√∑T

t=1 α(Gt)). They also show a regret lower bound when Gt = G for all

G of the order Ω(
√
α(G)T). The work of Alon et al. [2013] improves on that Mannor and Shamir

[2011] in two significant ways. First the authors consider a setting in which the feedback graphs are
directed and can be observed only after taking an action. Secondly the provided algorithms even for
the informed setting are more efficient than the ones in Mannor and Shamir [2011]. Their algorithm

Exp3-SET has regret Õ(
√∑T

t=1 mas(Gt)) for the uninformed setting with directed feedback graphs.
Here mas(Gt) is the size of the maximum acyclic subgraph of Gt. When considering the undirected
setting mas(Gt) can be replaced by α(Gt). In the informed setting Alon et al. [2013] propose the
algorithm Exp3-DOM, which requires approximating or computing a minimum dominating set of Gt.
Kocák et al. [2014] avoid such tedious computation with their algorithm Exp3-IX. The regret achieved

by their algorithm is of the order Õ(
√∑T

t=1 α(Gt)) even in the uninformed setting. The paper also
extends the implicit exploration trick used by Exp3-IX to Follow the Perturbed Leader and solves the
combinatorial bandit problem with side observations, where at each round the player is permitted to

select m out of the |V | available actions. The achieved regret is of the order Õ(m2/3

√∑T
t=1 α(Gt)).

In Alon et al. [2015] the authors consider a setting where the feedback graph system is fixed i.e.
Gt = G for all t ∈ [T], however, the graph need not have self loops. The authors distinguish between
three settings. First a setting in which each vertex either has a self loop or is revealed by all other
vertices, called the strongly observable setting. The second setting assumes that every vertex is
revealed by some other vertex but there exists at least one vertex which is not strongly observable.
This setting is called the weakly observable setting. The third setting is that of some vertex not being
revealed by any other vertex. This is called the not observable setting. Alon et al. [2015] show that
the regret bounds are respectively Θ̃(

√
α(G)T) in the strongly observable setting, Θ̃(γ(G)1/3T 2/3)

in the weakly observable setting and Θ(T) in the not observable setting. The work of Cohen et al.
[2016] studies a setting where the feedback graph is never fully revealed to the player. They show
that if the feedback graph and the losses are generated by the adversary a lower bound for the regret
of any strategy is Ω(

√
|V |T), which matches the lower bound of the bandit setting. In contrast it is

possible to recover a Θ̃(
√
α(G)T) regret bound if the losses are stochastic.

We also note that online learning with feedback graphs has also been studied in the setting of stochastic
losses by numerous works [Caron et al., 2012, Buccapatnam et al., 2014, Wu et al., 2015a,b, Tossou
et al., 2017, Liu et al., 2018], however, we chose not to discuss these works here as our focus is on
the adversarial case.

B Motivating Examples

In this section we provide more motivating examples for studying the problem of online learning
with feedback graphs and switching costs.

Stock investment: Consider a stock market investor who is charged a fixed commission when
selling one stock or buying another (switching cost), but who may be exempt from additional fees
when keeping their position in a stock. Similarly, an investor can sign a contract with an expert giving
market advice, which, if broken, entails a termination fee. We assume that each expert works for
a parent company and each parent company is willing to share the predictions made by its experts,
together with the incurred losses.

Store location: In certain states grocery stores are allowed to sell liquor, however, if a store brand
has more than seven stores in a city, only seven of the stores are allowed to sell liquor. Switching

12

which store is selling liquor comes at a cost since a new liquor licence is required. If two stores in
different cities have similar customer demographic, they reveal information about each other’s sales
and can be predictive of liquor sales revenue.

Transportation logistics: Logistic companies within the European Union are tasked with ef-
ficiently moving cargo within and between countries. Cargo is usually moved through ground
transportation in the form of freight trucks. Since most logistic companies do not own their own
trucks or drivers they have to chose among a set of truck companies serving different routes. A Truck
companies like loyal customers and prefer working with logistic companies which regularly use the
truck company’s service. If a logistic company, however, decides to switch between several truck
companies among serving the same route along a short period of time, the truck companies will
raise their prices or altogether decide to not take more orders from the logistic company. Additional
information is in the following form. A truck company offers a service between Paris and Berlin. The
same truck company offers a service between Barcelona and Amsterdam. Since the routes are similar,
the logistic company expects the utility of using this truck company for one of the routes to be close
to the utility of using it for the other route.

Moving between houses: Students usually rent houses throughout their undergraduate and graduate
studies. Moving between houses is a costly and time consuming process. However, students also get
additional information when choosing a property to move to based on their current landlord/managing
company. For example if a landlord is good but the property has some problems, the students might
want to move to a different property managed by the same landlord.

Oil field drilling: A company in the oil business wants to decide where to setup drilling sites. They
only have partial information about areas and can assume that two areas within some range have
equal likelihood to have the same amount of oil resources. Switching between possible drilling sites
is costly as it requires developing infrastructure. Further, switching between already build oil rigs and
refineries requires relocating personal which is costly.

C Lower Bound of Rangi and Franceschetti [2019]

While going through the proof of Theorem 1 in Rangi and Franceschetti [2019], we came across an
important technical mistake. In page 2 of the supplementary material, in the paragraph after Equation
8, the authors state that, at a single time instance, the loss of only one single action can be observed
from the independent set in their construction. This is not correct since a player’s strategy can play an
action that is not in the independent set but is adjacent to two or more vertices in the independent set.

The problem with this statement becomes apparent when one considers a fixed feedback graph system,
i.e., Gt = G,∀t ∈ [T], where G is a star graph. In that case, the construction of the losses by Rangi
and Franceschetti [2019] amounts to sampling a best action from the leaves of G, setting its loss to be
ε1 smaller than the loss of all other actions in the leaves of G, and setting the revealing action to be ε2
larger than the losses in the leaves of G. The losses of the remaining actions are set according to the
stochastic process of Dekel et al. [2014]. With these choice of losses and ε1 and ε2 set according to
what the authors suggest, a very simple strategy is information-theoretically optimal: the player only
needs to play the revealing action T 2/3 times to distinguish which of the leaves of G contains the
best action. This strategy would actually incur expected regret of the order Θ̃(

√
T).

Let α(G1:T) denote the largest cardinality among all intersections of independent sets of the sequence
(Gt)

T
t=1. A lower bound of Ω̃(α(G1:T)1/3T 2/3) is still possible under additional assumptions about

how the feedback graph system is generated in the uninformed setting. In particular, we show that if
we allow the feedback graphs to be chosen by the adversary, there still exists a sequence of feedback
graphs for which the lower bound is Ω̃(α(G1:T)1/3T 2/3), while for each Gt, we have γ(Gt) = 1.
This construction is presented in Section I with the main result stated in Theorem I.3.

D Proofs from Section 3

D.1 Approximation to Minimum Dominating Set

13

Algorithm 6 Greedy algorithm for minimum dominating set

Input: An undirected graph G(V,E)
Output: A dominating set S

1: R = ∅
2: if V == ∅ then
3: Return S
4: else
5: Find v ∈ V s.t. deg(v) is maximized
6: R = S

⋃
{v}

7: V = V \ {{v}
⋃
N(v)} and update G to be the induced graph on the new set of vertices V .

8: end if

The following notes http://ac.informatik.uni-freiburg.de/teaching/ss_12/netalg/
lectures/chapter7.pdf provide us with a proof that the greedy Algorithm 6 returns a dominating
set R which is 2 + log (∆) approximation to the smallest size minimal dominating set, where
∆ is the maximum degree if G. It is possible to implement the algorithm so that it has total
runtime of the order O((|V | + |E|) log (V)) (e.g. http://homepage.cs.uiowa.edu/~sriram/
3330/spring17/greedyMDS.pdf). We note that this is essentially the Greedy Set Cover algorithm
of Chvatal [1979] and that it is possible to extend to directed graphs, by replacing the degree of v by
the out-degree of v and the neighbours of v by just the vertices which have in-going edge from v.

D.1.1 Adaptive Mini-batching for Star Graphs

The proof of Theorem 3.1 begins by considering a slightly modified version of Algorithm 1. In
particular we remove lines 5 through 7 which disallow switching between non-revealing actions. This
intuitively should not change the policy which Algorithm 1 produces as such switches do not provide
any new information to the algorithm. For convenience of the reader we give the pseudo-code of the
modified algorithm in Algorithm 7, where the lines in red are commented out and are not part of the
algorithm.

Algorithm 7 Algorithm for star graphs (modified)

Input: Star graph G(V,E), learning rate sequence (ηt), exploration rate β ∈ [0, 1], maximum
mini-batch τ .

Output: Action sequence (at)t.
1: q1 ≡ Unif(V).
2: while

∑
t τt ≤ T do

3: pt = (1− β)qt + βδ(r).
4: Draw at ∼ pt, set τt = pt(r)τ .
5: if at−1 6= r and at 6= r then
6: Set at = at−1
7: end if
8: Play at for the next bτtc iterations.
9: Set ̂̀

t(i) =

t+bτtc−1∑
j=t

I(at = r)
`j(i)

pt(r)
.

10: For all i ∈ V , qt+1(i) =
qt(i) exp(−ηt ̂̀t(i))∑
j∈V qt(j) exp(−ηt ̂̀t(j)) .

11: t = t+ 1.
12: end while

Algorithm 7 comes with the following regret guarantee.

14

http://ac.informatik.uni-freiburg.de/teaching/ss_12/netalg/lectures/chapter7.pdf
http://ac.informatik.uni-freiburg.de/teaching/ss_12/netalg/lectures/chapter7.pdf
http://homepage.cs.uiowa.edu/~sriram/3330/spring17/greedyMDS.pdf
http://homepage.cs.uiowa.edu/~sriram/3330/spring17/greedyMDS.pdf

Theorem D.1. Suppose that for all t ≤ T and all i ∈ V it holds that E[`t(i)
2] ≤ ρ and β ≥ 1

τ . Then
Algorithm 7 produces an action sequence (at)

T
t=1 satisfying:

E

[
T∑
t=1

`t(at)− `t(a)

]
≤ log (|V |)

η
+ Tητρ+ Tβ,

for any a ∈ V .

Proof. Since β ≥ 1
τ , this implies that bτtc ≥ 1 and the algorithm terminates, producing an action

sequence (at)
T
t=1. Let i∗t be the best action at time t and let Lt,∗ =

∑t
s=1

̂̀
s(i
∗
t). Let wt(i) =

exp
(
−η
∑t−1
j=1

̂̀
j(i)
)

and Wt =
∑
i∈V wt(i). We have

log

(
Wt+1

wt+1(i∗t+1)

)
− log

(
Wt

wt(i∗t)

)
= η (Lt+1,∗ − Lt,∗)

+ log

∑i∈V wt(i) exp
(
−η
∑t+bτtc−1
j=t I(at = r)

`j(i)
pt(r)

)
Wt


= η (Lt+1,∗ − Lt,∗)

+ log

∑
i∈V

qt(i) exp

−η t+bτtc−1∑
j=t

I(at = r)
`j(i)

pt(r)


≤ η (Lt+1,∗ − Lt,∗)− 1

+
∑
i∈V

qt(i) exp

−η t+bτtc−1∑
j=t

I(at = r)
`j(i)

pt(r)


≤ η (Lt+1,∗ − Lt,∗)− η

I(at = r)

pt(r)

∑
i∈V

qt(i)

t+bτtc−1∑
j=t

`j(i)

+
η2

2

I(at = r)

pt(r)2

∑
i∈V

qt(i)

t+τt−1∑
j=t

`j(i)

2

,

where the first inequality follows from log (x) ≤ x − 1 for all x > 0 and the second inequality
follows from e−x ≤ 1− x+ x2/2 for x ≥ 0. Rearranging terms in the above and taking expectation

15

we have

E

E
 I(at = r)

pt(r)

∑
i∈V

qt(i)

t+bτtc−1∑
j=t

`j(i)|a1:t−1

 ≤ 1

η
E
[
log

(
Wt

wt(i∗t)

)
− log

(
Wt+1

wt+1(i∗t+1)

)]

+
η

2
E

E
 I(at = r)

pt(r)2

∑
i∈V

qt(i)

t+τt−1∑
j=t

`j(i)

2

|a1:t−1


+ E[Lt+1,∗ − Lt,∗]

=⇒

E

∑
i∈V

qt(i)

t+bτtc−1∑
j=t

`j(i)

 ≤ 1

η
E
[
log

(
Wt

wt(i∗t)

)
− log

(
Wt+1

wt+1(i∗t+1)

)]

+
η

2
E

 1

pt(r)

∑
i∈V

qt(i)

t+τt−1∑
j=t

`j(i)

2
+ E[Lt+1,∗ − Lt,∗]

=⇒

E

∑
i∈V

qt(i)

t+bτtc−1∑
j=t

`j(i)

 ≤ 1

η
E
[
log

(
Wt

wt(i∗t)

)
− log

(
Wt+1

wt+1(i∗t+1)

)]

+
η

2
E

 1

pt(r)

∑
i∈V

qt(i)τt

t+τt−1∑
j=t

`j(i)
2

+ E[Lt+1,∗ − Lt,∗]

=⇒

E

∑
i∈V

qt(i)

t+bτtc−1∑
j=t

`j(i)

 ≤ 1

η
E
[
log

(
Wt

wt(i∗t)

)
− log

(
Wt+1

wt+1(i∗t+1)

)]

+
η

2
E

 1

pt(r)

∑
i∈V

qt(i)τt

t+τt−1∑
j=t

E[`j(i)
2|a1:t−1]

+ E[Lt+1,∗ − Lt,∗]

=⇒

E

∑
i∈V

qt(i)

t+bτtc−1∑
j=t

`j(i)

 ≤ 1

η
E
[
log

(
Wt

wt(i∗t)

)
− log

(
Wt+1

wt+1(i∗t+1)

)]

+
η

2
E

[
ρ
pt(r)

2τ2

pt(r)

∑
i∈V

qt(i)

]
+ E[Lt+1,∗ − Lt,∗].

Notice that E[LT,∗] = E[
∑T ′

t=1
I(at=r)
pt(r)

∑t+bτtc−1
j=t `j(i

∗)] = E[
∑T ′

t=1

∑t+bτtc−1
j=t `j(i

∗)]. Summing

over t = 1 through T and using the fact log
(

W1

w1(i∗)

)
= log (|V |) we have

E

 T ′∑
t=1

∑
i∈V

qt(i)

t+bτtc−1∑
j=t

(`j(i)− `j(i∗))

 ≤ log (|V |)
η

+
η

2
τE

ρ T ′∑
t=1

pt(r)τ


≤ log (|V |)

η
+ Tητρ,

where T ′ is the random variable equaling the number of mini-batches. The last inequality in the
above follows since τT ∈ o(T) and from our while loop we know that

∑T ′−1
t=1 τt ≤ T , thus we can

bound E[
∑T ′

t=1 τt] ≤ 2T . Notice that the LHS in the above inequality is almost equal to the expected

16

regret of our algorithm. We have qt(i) ≤ pt(i)− β and thus the expected regret is bounded by

E

[
T∑
t=1

`t(at)− `t(a)

]
≤ log (|V |)

η
+ Tητρ+ Tβ.

Lemma D.2. Algorithm 7 switches between a revealing and a non-revealing action at most Tτ times
in expectation.

Proof. The number of switches can be upper bounded by twice the number of times at is equal to
r. Thus the expected number of switches is bounded by E[

∑T ′

t=1 I(at = r)] = 1
τ E[
∑T ′

t=1 pt(r)τ] =
1
τ E[
∑T ′

t=1 τt] ≤
2T
τ .

To finish the proof of Theorem 3.1 we need to verify that the expected regret of Algorithm 7 is the
same as the expected regret of Algorithm 1.

Lemma D.3. Algorithm 7 and Algorithm 1 have the same expected regret bound.

Proof. Let (pt)
T
t=1 be the sequence of random vectors generated by Algorithm 7 and let (p′t)

T
t=1

be the sequence of random vectors generated by Algorithm 1. First we show by induction that the
distribution of pt is the same as that of p′t. The base case is trivial as p1 = p′1. To see that the
induction step holds we just notice that if we condition on pt either both algorithms update pt+1

and p′t+1 because action r was sampled, in which case the updates are exactly the same, or both
algorithms do not update pt+1, respectively p′t+1. Let at and a′t denote the t-th action of Algorithm 7
and Algorithm 1 respectively. We now show that E[`t(at)] = E[`t(a

′
t)]. Let Xt denote the random

variable indicating the last time before t in which action r was played by Algorithm 7 and let X ′t be
the random variable indicating the last time before t in which action r was played by Algorithm 1.
Since Xt is function of p1, . . . , pt−1 and X ′t is a function of p′1, . . . , p

′
t−1, then Xt and X ′t have the

same distribution. Now we can write

E[`t(at)] =

t−1∑
j=1

P(Xt = j)E[`t(at)|Xt = j] =

t−1∑
j=1

P(Xt = j)E[
∑
i∈V

pt(i)`t(i)|Xt = j]

=

t−1∑
j=1

P(Xt = j)E[
∑
i∈V

pj+1(i)`t(i)|Xt = j]

=

t−1∑
j=1

P(Xt = j)E[
∑
i∈V

p′j+1(i)`t(i)|X ′t = j]

=

t−1∑
j=1

P(X ′t = j)E[`t(a
′
t)|X ′t = j] = E[`t(a

′
t)].

Proof of Theorem 3.1. Lemma D.3 together with Theorem D.1 imply the bound

E

[
T∑
t=1

`t(at)− `t(a)

]
≤ Õ

(√
ρT 2/3

)
.

Lemma D.2 together with the fact that Algorithm 1 can only switch between the revealing action and
non-revealing actions imply the bound on number of switches.

17

D.2 Corralling the Star-graph Algorithms

We use a mini-batch version of Algorithm 1 in Agarwal et al. [2016] where each of the base
algorithms is Algorithm 1. We note that the greedy algorithm for computing an approximate
minimum dominating set gives a natural way to partition the feedback graph G into star graphs. In
particular, whenever the greedy algorithm adds a vertex v to the dominating set, we create a new
instance of the star graph algorithm with revealing vertex v and leaf nodes all neighbors of v which
have not already been assigned to a star graph algorithm.
Lemma D.4. For any i ∈ [|R|], Algorithm 3 ensures that:

E

[
T∑
t=1

`t(at)− `t(ait)

]
≤ O

(
τ |R| log (T ′)

η
+ Tη

)
− E

[
τρT ′,i

40η log (T ′)

]

Proof. From the proof of Lemma 13 in Agarwal et al. [2016] it follows that for any i ∈ [|R|]
T ′∑
t=1

〈pt − ei, ̂̀t〉 ≤ O(|R| log (T ′)

η
+ T ′η

)
+

T ′∑
t=1

2̂̀t(at)
T ′|R|

− ρT ′,i
40η log (T ′)

.

Notice that by construction we have E[̂̀t(at)] =
∑
i∈[|R|]

1
τ

∑t+τ−1
j=t `j(a

i
j) ≤ |R|. Also notice that

E[〈pt, ̂̀t〉] = E[1τ
∑t+τ−1
j=t `j(aj)] and E[̂̀t(i)] = 1

τ

∑t+τ−1
j=t `t(a

i
j). These imply

E

 T ′∑
t=1

1

τ

t+τ−1∑
j=t

`j(aj)−
1

τ

t+τ−1∑
j=t

`t(a
i
j)

 ≤ O(|R| log (T ′)

η
+ T ′η

)
+

T ′∑
t=1

2̂̀t(at)
T ′|R|

− ρT ′,i
40η log (T ′)

.

Multiplying by τ and using the fact that T ′τ = T finishes the proof.

The following theorem from Agarwal et al. [2016] shows that restarting the i-th algorithm in line 16
of Algorithm 3 does not hinder the regret bound by too much.
Theorem D.5 (Theorem 15 [Agarwal et al., 2016]). Suppose a base algorithm Bi is such that if the
loss sequence (`t)

T
t=1 is replaced by `′t = ρt`t such that E[`′t] = `t, its regret bound changes from

R(T) to E[ρα]R(T), where ρ = maxt≤T ρt. Let (ait)t≤T be the action sequence generated by Bi
ran under Algorithm 3. Then for any action a in the action set of Bi, it holds that

E

[
T∑
t=1

`′t(a
i
t)− `′t(a)

]
≤ 2α

2α − 1
E[ρα]R(T).

Theorem D.6. Let τ = T 1/3

|R|1/4 , η = |R|1/4
40 log(T ′)T 1/3c log(|V |) , where c is a constant independent of T ,

τ , |V | or |R|. For any a ∈ V , Algorithm 3 ensures that:

E

[
T∑
t=1

`t(at)− `t(a)

]
≤ Õ

(√
|R|T 2/3

)
.

Further the expected number of switches of the algorithm is bounded by T 2/3|R|1/3.

Proof of Theorem 3.3. For any action a ∈ V , let ia be the star-graph algorithm which has a in its
actions and let its regret be Ria(T). Notice that the loss estimators `′t(i) =

`t+j(at+j)
pt(it)

I{i = it} we
feed the algorithm are such that E[`′t(i)

2] ≤ ρT . Now Theorem 3.1 implies that the condition of
Theorem D.5 is satisfied with α = 1/2. Thus, Theorem D.5 implies that

E

[
T∑
t=1

`′t(at)− `′t(a)

]
≤
√

2(
√

2 + 1)E[ρ
1/2
T ′,ia

]3T 2/3 log (|V |) .

Combining the above with Lemma D.4 we have

E

[
T∑
t=1

`t(at)− `t(a)

]
≤ O

(
τ |R| log (T ′)

η
+ Tη

)
− E

[
τρT ′,ia

40η log (T ′)

]
+ 3
√

2(
√

2 + 1)E[ρ
1/2
T ′,ia

]T 2/3 log (|V |)

18

Let c = 3
√

2(
√

2 + 1). We now consider the terms containing ρT ′,ia in the above inequality.

cE[ρ
1/2
T ′,ia

]T 2/3 log (|V |)− E
[

τρT ′,ia
40η log (T ′)

]
= E

[
ρ
1/2
T ′,ia

(
cT 2/3 log (|V |)−

τρ
1/2
T ′,ia

40η log (T ′)

)]
.

Set τ = T 1/3

|R|1/4 , η = |R|1/4
40 log(T ′)T 1/3c log(|V |) to get

E

[
ρ
1/2
T ′,ia

(
cT 2/3 log (|V |)−

τρ
1/2
T ′,ia

40η log (T ′)

)]
= cT 2/3 log (|V |)E

[
ρ
1/2
T ′,ia

(
1−

ρ
1/2
T ′,ia

|R|1/2

)]
≤ c
√
|R| log (|V |)T 2/3.

Plugging in the the values of η and τ in the rest of the bound finishes the regret bound.

The number of switches is bounded from the fact that Algorithm 3 can switch between star-graph
algorithms at most T 2/3|R|1/3 times and Lemma D.2.

D.3 Improving the Domination Number Dependence for General Feedback Graphs

For convenience of the reader we restate the pseudo code for Algorithm 2 below.

Algorithm 8 Algorithm for general feedback graphs

Input: GraphG(V,E), learning rate sequence (ηt), exploration rate β ∈ [0, 1], maximum mini-batch
τ .

Output: Action sequence (at)t.
1: Compute an approximate dominating set R
2: q1 ≡ Unif(V), u ≡ Unif(R)
3: while

∑
t τt ≤ T do

4: pt = (1− β)qt + βu.
5: Draw i ∼ pt, set τt = pt(ri)τ , where ri is the dominating vertex for i and set at = i.
6: if at−1 6∈ R and at 6∈ R then
7: Set at = at−1
8: end if
9: Play at for the next bτtc iterations.

10: Set ̂̀
t(i) =

t+bτtc−1∑
j=t

I(at = ri)
`j(i)

pt(ri)
.

11: For all i ∈ V , qt+1(i) =
qt(i) exp(−ηt ̂̀t(i))∑
j∈V qt(j) exp(−ηt ̂̀t(j)) .

12: t = t+ 1.
13: end while

Theorem D.7. For any β ≥ |R|τ The expected regret of Algorithm 2 is

log (|V |)
η

+ 2ητT + βT.

Further, if the algorithm is augmented similar to Algorithm 7, then it will switch between actions at
most 2T |R|

τ times.

Proof of Theorem 3.2. First note that because of the condition β ≥ |R|
τ each of the mini-batches

bτtc is at least 1, since for any r ∈ R we have pt(r) ≥ β
|R| ≥

1
τ , and thus the algorithm will

terminate in at most 2T iterations. Next, similarly to Lemma D.3, we can analyze the regret of
Algorithm 2 by removing lines 6 and 7 when bounding the cumulative loss of the algorithm and
then use lines 6 and 7 to guarantee that the algorithm does not switch too often. Let wt+1(i) =

wt(i) exp
(
−ηt

∑t+bτtc−1
j=t I(at = ri)

`j(i)
pt(ri)

)
and Wt =

∑
i∈V wt(i), so that qt(i) = wt(i)

Wt
. Let

19

Vr be the subset of actions dominated by the vertex r. Let i∗t be the best action at time t and let
Lt,∗ =

∑t
s=1

̂̀
s(i
∗
t). We consider the difference log

(
Wt+1

wt+1(i∗t+1)

)
− log

(
Wt

wt(i∗t)

)
.

log

(
Wt+1

wt+1(i∗t+1)

)
− log

(
Wt

wt(i∗t)

)
= ηt(Lt+1,∗ − Lt,∗)

+ log

∑
r∈R

∑
i∈Vr

qt(i) exp

−ηt t+bτtc−1∑
j=t

I(at = ri)
`j(i)

pt(ri)


≤ ηt(Lt+1,∗ − Lt,∗)− 1

+
∑
r∈R

∑
i∈Vr

qt(i) exp

−ηt t+bτtc−1∑
j=t

I(at = ri)
`j(i)

pt(ri)


≤ ηt(Lt+1,∗ − Lt,∗)− ηt

∑
r∈R

∑
i∈Vr

qt(i)

t+bτtc−1∑
j=t

I(at = ri)
`j(i)

pt(ri)

+
η2t
2

∑
r∈R

∑
i∈Vr

qt(i)

t+τt−1∑
j=t

I(at = r)
`j(i)

pt(r)

2

,

where the first inequality follows from the fact that log (()x) ≤ x− 1 for all x ≥ 0 and the second
inequality follows from the fact that e−x ≤ 1− x+ x2/2, for all x ≥ 0. Set ηt = η and divide both
sides by η. Shuffling terms around, taking expectation and noting that if one drops the floor function
from the quadratic term it will only get larger we arrive at the following

E

∑
r∈R

∑
i∈Vr

qt(i)

t+bτtc−1∑
j=t

I(at = r)
`j(i)

pt(r)
+ Lt+1,∗ − Lt,∗


≤ 1

η
E
[
log

(
Wt

wt(i∗r∗)

)
− log

(
Wt+1

wt+1(i∗r∗)

)]

+
η

2
E

∑
r∈R

∑
i∈Vr

qt(i)

t+τt−1∑
j=t

I(at = r)
`j(i)

pt(r)

2
 .

(1)

Consider the term on the LHS.

E

∑
r∈R

∑
i∈Vr

qt(i)

t+bτtc−1∑
j=t

I(at = r)
`j(i)

pt(r)
+ Lt+1,∗ − Lt,∗


= E

∑
r∈R

∑
i∈Vr

qt(i)

t+bτtc−1∑
j=t

`j(i) + Lt+1,∗ − Lt,∗

 ,
where in the last inequality we used that `j(i) ≤ 1 for all i ∈ V . Now we consider the second term
on the RHS of the inequality.

E

∑
r∈R

∑
i∈Vr

qt(i)

t+τt−1∑
j=t

I(at = r)
`j(i)

pt(r)

2


=E

∑
r∈R

∑
i∈Vr

qt(i)E

 I(at = r)

pt(r)2

t+τt−1∑
j=t

`j(i)

2

|a1:t−1




≤E

[∑
r∈R

∑
i∈Vr

qt(i)E
[
I(at = r)

pt(r)2
τ2t |a1:t−1

]]

20

Consider the term E
[
I(at=r)
pt(r)2

τ2t |a1:t−1
]
. We have at = r with probability pt(r) and so τt = pt(r)τ .

Otherwise we have I(at=r)
pt(r)2

τ2t = 0. Thus the RHS is bounded by

E

∑
r∈R

∑
i∈Vr

qt(i)

t+τt−1∑
j=t

I(at = r)
`j(i)

pt(r)

2


≤E

[∑
r∈R

∑
i∈Vr

qt(i)E
[
I(at = r)

pt(r)2
τ2t |a1:t−1

]]
= E

[∑
r∈R

∑
i∈Vr

qt(i)pt(r)τ
2

]

=τE

[∑
r∈R

pt(r)τP [τt = pt(r)τ]

]
= τE[τt].

Summing the LHS and RHS of Equation 1 and using our respective bounds, we get:

E

 T ′∑
t=1

∑
r∈R

∑
i∈Vr

qt(i)

t+bτtc−1∑
j=t

`j(i)−
t+bτtc−1∑
j=t

`j(i
∗
r∗)


≤ log (|V |)

η
+
η

2
τE

 T ′∑
t=1

τt

 ≤ log (|V |)
η

+ ητT.

Next we notice that the LHS is almost the expected regret of the algorithm, except we need to replace
qt(i) by pt(i). This is done at the cost of an additional βT term, since qt(r) ≤ pt(r) − β

|R| for
r ∈ R. Finally we upper bound the number of times the algorithm switches by the number of times it
samples a revealing arm which is equal to E

[∑T ′

t=1

∑
r∈R I(at = r)

]
. To bound this term we do the

following

2T ≥ E

 T ′∑
t=1

τt

 = E

 T ′∑
t=1

E [τt|pt]

 = E

 T ′∑
t=1

∑
r∈R

pt(r)τ
∑
i∈Vr

pt(i)


≥ E

 T ′∑
t=1

∑
r∈R

τpt(r)
2

 = τE

 T ′∑
t=1

∑
r∈R

pt(r)
2

 ≥ τ

|R|
E

 T ′∑
t=1

(∑
r∈R

pt(r)

)2


≥ τ

|R|
E

 T ′∑
t=1

(
E

[∑
r∈R

pt(r)|a1:(t−1)

])2
 =

τ

|R|
E

 T ′∑
t=1

(∑
r∈R

I(at = r)

)2


=
τ

|R|
E

 T ′∑
t=1

∑
r∈R

I(at = r)

 ,
where the second inequality follows from the fact that

∑
i∈Vr pt(i) ≥ pt(r), the third inequality

follows from the fact that (
∑
r∈R pt(r))

2 ≤ |R|
∑
r∈R pt(r)

2 and the fourth inequality follows from
Jensen’s inequality for conditional expectations.

E Policy Regret Bounds

In this section we assume that we are provided with a feedback graph for losses with memory m. We
restrict the feedback graph to only have vertices for repeated m-tuples of actions in V . In particular
we can only observe additional feedback for losses of the type `t(a, a, . . . , a), where a ∈ V . The
algorithm for this setting is based on Algorithm 2. The feedback graph we provide to our policy regret
algorithm is the same as for the m-memory bounded losses, however, each m-tuple vertex is replaced
by a copy of a single action e.g. the vertex (a, . . . , a) is replaced by a. Next we split the stream
of T losses into mini-batches of size m such that ̂̀t(·) = 1

m

∑m
j=1 `(t−1)m+j(·). Now we would

21

simply feed the sequence (̂̀t)T/mt=1 to Algorithm 2 if it were not for the constraint on the additional
feedback. Suppose that between the t-th mini-batch and the t+ 1-st mini-batch Algorithm 2 decides
to switch actions so that at 6= at+1. In this case no additional feedback is available for ̂̀t+1(at+1)
and the algorithm can not proceed as normal. To fix this minor problem, the provided feedback to
Algorithm 2 is that the loss of action at+1 was 0 and all actions adjacent to at+1 also incurred 0 loss.
This modification can not occur more times than the number of switches Algorithm 2 does. Since the
expected number of switches is bounded by O(γ(G)1/3T 2/3), intuitively the modification becomes
benign to the total expected regret. Pseudocode for the above algorithm can be found in Algorithm 5.

Algorithm 9 Policy regret with side observations

Input: Feedback graph G(V,E), learning rate η, mini-batch size τ , where η and τ are set as in
Theorem 3.3.

Output: Action sequence (at)t.
1: Transform feedback graph G from m-tuples to actions and initialize Algorithm 2.
2: for t = 1, . . . , T/m do
3: Sample action at from pt generated by Algorithm 2 and play it for the next m rounds.
4: if at−1 == at then
5: Observe mini-batched loss ̂̀t(at) = 1

m

∑m
j=1 `(t−1)m+j(at) and additional side observa-

tions. Feed mini-batched loss and additional side observations to Algorithm 2.
6: else
7: Set ̂̀t(at) = 0 and set additional feedback losses to 0. Feed losses to Algorithm 2.
8: end if
9: end for

Theorem E.1. The expected policy regret of Algorithm 5 is bounded by Õ(m1/3γ(G)1/3T 2/3).

Proof of Theorem 4.1. Theorem 3.2 guarantees that

E

T/m∑
t=1

̂̀
t(at)−

T/m∑
t=1

̂̀
t(a)

 ≤ Õ (γ(G)1/3(T/m)2/3
)
,

for any action a. On the other hand we have

E

T/m∑
t=1

̂̀
t(at)−

T/m∑
t=1

̂̀
t(a)

 ≤ E

T/m∑
t=1

̂̀
t(at)−

T/m∑
t=1

1

m

m∑
j=1

`(t−1)m+j(a)


=E

T/m∑
t=1

1

m

m∑
j=1

`(t−1)m+j(at)−
T/m∑
t=1

1

m

m∑
j=1

`(t−1)m+j(a)−
T/m∑
t=1

I(at−1 6= at)
1

m

m∑
j=1

`(t−1)m+j(at)

 .
Combined with the regret bound, the above implies

1

m
E[R(T)] ≤ Õ

(
γ(G)1/3(T/m)2/3

)
+ E

T/m∑
t=1

I(at−1 6= at)

 . (2)

The second term in the right hand side bounded by the number of switches bound in Theorem 3.3 as

E

T/m∑
t=1

I(at−1 6= at)

 ≤ Õ(γ(G)1/3(T/m)2/3).

Multiplying Inequality 2 by m on both sides finishes the proof.

F Lower Bound for Non-complete Graphs

Before proceeding with the proof of Theorem 5.1, we introduce the stochastic process defined
in Dekel et al. [2014].

22

Stochastic process definition: We denote by ξ1:T a sequence of i.i.d. zero-mean Gaussian random
variables with variance σ2 and ρ : [T]→ {0}

⋃
[T] the parent function, which assigns to t ∈ [T] a

parent ρ(t) ∈ [T] with ρ(t) < t. The stochastic process Wt associated with ρ(t) is defined as

W0 = 0

Wt = Wρ(t) + ξt.
(3)

The set of ancestors of t is the set ρ∗(t) = ρ∗(ρ(t))
⋃
{ρ(t)} with ρ∗(0) = {}. The depth of ρ is

d(ρ) = maxt∈[T] |ρ∗(t)|. The cut of ρ is cut(t) = {s ∈ [T] : ρ(s) < t ≤ s} i.e. the set of rounds
which are separated from their parent by t. The width of ρ is defined as ω(ρ) = maxt∈[T] |cut(t)|.
The specific random walk which Dekel et al. [2014] consider has both depth and width logarithmic in
T . In particular the parent function is defined as

ρ(t) = t− 2δ(t),where , δ(t) = max{i ≥ 0 : t ≡ 0 mod 2i} (4)

Let us consider two examples of a stochastic processes defined by Equation 3. The first one is just
setting ρ(t) = 0, so that Wt is just a standard Gaussian variable. The width of this process is just
T and its depth is 1. While we have good concentration guarantees over the maximum value of
Wt uniformly over all t ∈ [T], which is important for controlling the losses, it is very easy to gain
information about actions 1 and 2 without switching. Indeed one can just first play 1 for a sufficient
number of iteration and then play 2 for fixed number of iterations to be able, with high probability, to
distinguish between the two losses. Now consider a Gaussian random walk where ρ(t) = t− 1. In
this case the cut is 1 but the depth is T . It turns out that to distinguish between two processes with
small width, we require that we observe both the processes at the same time (or times differing by a
small amount). This is intuitively because of the large drift of the process that occurs between Wt

and Wt+k. We note that the simple Gaussian walk is not a good process for the losses, since its depth
is too large for us to be able to control the size of the (unclipped) losses.

The feedback graph we work for the reset of this section is G(V,E), where V = {1, 2, 3} and
E = {(1, 3), (2, 3), (1, 1), (2, 2), (3, 3)} (see Figure 2).

Constructing the losses: We consider the following adversarial sequence of losses. First sample
an action uniformly at random from {1, 2}. WLOG we condition on the event that the sampled
action is 1. Next set `t(3) = 1, `t(2) = clip(Wt + 1

2), `t(1) = clip(Wt + 1
2 − ε), where clip(α) =

min{max{α, 0}, 1}. The intuition behind our lower bound is very simple and holds for a general
feedback graph. It is as follows: if we do not have a complete feedback graph then there are at least
two actions which do not tell us anything about each other. We leverage this by selecting one of the
two actions uniformly at random to be the best action. If we play an action which is not 1 or 2 we
incur constant regret in that turn but we can gain information about the losses of both 1 and 2. If we
play 2, then we do not learn anything about 1 and if we play 1 we do not learn anything about 2. In
these two cases the per round regret incurred is ε, however, because of the loss construction, we need
to switch between these actions to be able to distinguish them and thus we will incur regret from
switching. Overall the loss construction together with the result in Dekel et al. [2014] implies that to
distinguish between 1 and 2 we need to observe the losses of both actions at the same time or switch
between them at least Ω̃(T 2/3) rounds. This is what we formally argue below.

Let Yt be the observed loss vector associated with the action at time t, at, i.e. if at = 2 then

Yt = Wt + 1
2 , if at = 1 then Yt = Wt + 1

2 − ε and if at = 3 then Yt =

(
Wt + 1

2
Wt + 1

2 − ε

)
. We let

Y0 = 1/2. We let Q1 be the probability measure on the σ-field F generated by {Yt}Tt=0. Let Q0 be
the probability measure on the same σ-field if `t(1) = `t(2) = clip(Wt + 1

2) i.e. there is no best

action. In this case Yt = Wt + 1
2 for at = 1 or at = 2 and Yt =

(
Wt + 1

2
Wt + 1

2

)
if at = 2. Denote by

dFTV (Q0,Q1) the total variational distance between Q0 and Q1 on the σ-field F . Let DKL (Q0||Q1)
be the KL-divergence betweenQ0 andQ1. We now show that a sufficiently large number of switches
between actions 1 and 2 or choosing action 3 is required to distinguish betweenQ0 andQ1. As it was
discussed above, the width of the process plays an important role, which is clarified by the lemma
below. It essentially is an upper bound on the number of switches required to distinguish between Q0

and Q1.

23

Lemma F.1. Let M be the number of times the player’s strategy switched between actions 1
and 2. Let N be the number of times the payer chose to play action 3. Then dFTV (Q0,Q1) ≤
ε
2σ

√
ω(ρ)EQ0

[M +N].

Proof. Let Y0:t denote (Y0, Y1, . . . , Yt) and whenever Yt is a vector, let Yt(i) be its i-th coordinate.
We assume that the player is deterministic. By Yao’s minimax principle this is without loss of
generality. Thus we have that at is a deterministic function of Y0:t−1. Using the chain rule for relative
entropy and by the construction of Wt, we have:

DKL (Q0(Y0:T)||Q1(Y0:T)) = DKL (Q0(Y0)||Q1(Y1)) +

T∑
t=1

DKL
(
Q0(Yt|Yρ∗(t))||Q1(Yt|Yρ∗(t))

)
.

Let us consider the term DKL
(
Q0(Yt|Yρ∗(t))||Q1(Yt|Yρ∗(t))

)
. First assume that at = aρ(t) 6= 3.

Then Yt = N (Yρ(t), σ
2) under both Q0 and Q1. Next consider the case when at = aρ(t) = 3. In

this case Yt = N
((

Yρ(t)(2)
Yρ(t)(2)

)
, σ2I2

)
under Q0 and Yt = N

((
Yρ(t)(2)− ε
Yρ(t)(2)

)
, σ2I2

)
under Q1.

If at 6= aρ(t) we have 6 options:

1. aρ(t) = 3

(a) at = 1, in this case Yt = N (Yρ(t)(2), σ2) under Q0 and Yt = N (Yρ(t)(2) − ε, σ2)
under Q1;

(b) at = 2 in this case Yt = N (Yρ(t)(2), σ2) under Q0 and Yt = N (Yρ(t)(2), σ2) under
Q1;

2. aρ(t) = 1

(a) at = 3, in this case Yt = N
((

Yρ(t)
Yρ(t)

)
, σ2I2

)
under Q0 and Yt =

N
((

Yρ(t)
Yρ(t) + ε

)
, σ2I2

)
under Q1;

(b) at = 2 in this case Yt = N (Yρ(t), σ
2) underQ0 and Yt = N (Yρ(t) + ε, σ2) underQ1;

3. aρ(t) = 2

(a) at = 3, in this case Yt = N
((

Yρ(t)
Yρ(t)

)
, σ2I2

)
under Q0 and Yt =

N
((

Yρ(t) − ε
Yρ(t)

)
, σ2I2

)
under Q1;

(b) at = 1 in this case Yt = N (Yρ(t), σ
2) under Q0 and Yt = N (Yρ(t) − ε, σ2) under Q1.

Thus we have

DKL
(
Q0(Yt|Yρ∗(t))||Q1(Yt|Yρ∗(t))

)
= Q0(at = aρ(t) = 3)DKL

(
N (0, σ2)||N (−ε, σ2)

)
+Q0(aρ(t)=3, at = 1)DKL

(
N (0, σ2)||N (−ε, σ2)

)
+Q0(aρ(t)=1, at = 3)DKL

(
N (0, σ2)||N (ε, σ2)

)
+Q0(aρ(t)=1, at = 2)DKL

(
N (0, σ2)||N (ε, σ2)

)
+Q0(aρ(t)=2, at = 3)DKL

(
N (0, σ2)||N (−ε, σ2)

)
+Q0(aρ(t)=2, at = 1)DKL

(
N (0, σ2)||N (−ε, σ2)

)
=

ε2

2σ2
Q0(At),

where At is the event that either action 3 was played at round t or there were odd number of switches
between actions 1 and 2. Let N denote the random number of times action 3 was played and let M

24

denote the random number of switches between action 1 and action 2. Let S1:M denote the random
sequence of times during which there was a switch. Then we have

T∑
t=1

1At ≤
M∑
r=1

∑
t∈cut(Sr)

1At +N ≤ ω(ρ)(M +N),

where cut(t) and ω(ρ) are defined in Dekel et al. [2014]. Thus

DKL
(
Q0(Yt|Yρ∗(t))||Q1(Yt|Yρ∗(t))

)
≤ ε2ω(ρ)

2σ2
EQ0

[M +N].

Pinsker’s inequality that dFTV (Q0,Q1) ≤ ε
2σ

√
ω(ρ)EQ0

[M +N]

Next we show that, because of the depth of the random walk, we are able to say that with high
probability most of the non-clipped losses will be equal to the clipped losses. The implications of this
result are two-fold. First the regret incurred on the non-clipped versions is close to the regret incurred
on the clipped version. Secondly, we are able to say that loss of action 3 is worse by a constant from
the losses of actions 1 and 2 often enough, so that we also incur constant regret when playing action
3 as compared to the other two actions. Let `′t denote the non-clipped version of `t and define

R′ =

T∑
t=1

`′t(at) +M −min
a∈A

T∑
t=1

`′t(a)

R =

T∑
t=1

`t(at) +M −min
a∈A

T∑
t=1

`t(a)

Lemma 4 in Dekel et al. [2014] compares R′ to R
Lemma F.2. For T ≥ 6, E[R] ≥ E[R′]− εT/6.

We now lower bound E[R′].
Lemma F.3. Let Q2 be the conditional distribution induced by sampling the best action to be equal
to 2. Then

E[R′] ≥ εT

2
− εT

2
(dFTV (Q0,Q1) + dFTV (Q0,Q2)) + E

[
M +

N

7

]
Proof. First let us consider the amount of regret the player incurs for picking action 3 N times. To do
this we consider the number of times 1/2 +Wt > 5/6. The expected number of times this occurs is

E
T∑
t=1

I(1/2 +Wt > 5/6) ≤
T∑
t=1

P
(
|Wt|+

1

2
≥ 5

6

)
≤

T∑
t=1

e
− 1
d(ρ)σ2 ≤

T∑
t=1

e−
9 log(T)

2 ≤ 1.

Thus in expectation the regret for picking action 2 N times is at least (1/6 + ε)(N − 1). Since we
choose ε = Θ̃(T−1/3), for sufficiently large T we have that in expectation the regret for picking
action 3 N times is at least (N − 1)/6. Let χ denote the uniform random variable over actions {1, 2},
which picks the best action in the beginning of the game. Denote by Bi the number of times action i
was played. Then E[R′] ≥ E[ε(T −N − Bχ) +M + (N − 1)/6] (this is a lower bound since M
only tracks the switches between actions 1 and 2, so the switches to and from action 2 are left out).
Thus we have

E[R′] =
E[ε(T −N −B1) +M + (N − 1)/6|χ = 1] + E[ε(T −N −B2) +M + (N − 1)/6|χ = 2]

2

= εT − ε

2
(EQ1 [B1] + EQ2 [B0]) + E

[
M +

N − 1

6
− εN

]
.

Since ε = Θ̃(T−1/3) we have N−1
6 − εN ≤ N

7 . Consider EQ1
[B1], we have

EQ1 [B1]− EQ0 [B1] =

T∑
t=1

(Q1(at = 1)−Q0(at = 1)) ≤ TdFTV (Q0,Q1) .

25

A similar inequality holds for EQ2 [N0] and thus we get

EQ1
[B1] + EQ2

[B0] ≤ T (dFTV (Q0,Q1) + dFTV (Q0,Q2)) + EQ0
[B0 +B1]

≤ T (dFTV (Q0,Q1) + dFTV (Q0,Q2)) + T − EQ0 [N].

The above implies

E[R′] ≥ εT

2
− εT

2
(dFTV (Q0,Q1) + dFTV (Q0,Q2)) + E

[
M +

N

7

]
+
ε

2
EQ0

[N].

Putting the above two lemmas together, we are able to show the following result.
Theorem F.4. For any non-complete feedback graph G, there exists a sequence of losses on which
any algorithm A in the informed setting incurs expected regret at least

RT (A) ≥ Ω

(
T 2/3

log (T)

)
.

Proof of Theorem 5.1. First assume that the eventM+N/7 > εT does not occur on losses generated
from Q0 or Qi. This implies Q0(M +N/7 > εT) = Qi(M +N/7 > εT) = 0. Then

EQ0
[M +N/7]− E[M +N/7] =

EQ0 [M +N/7]− EQ1 [M +N/7] + EQ0 [M +N/7]− EQ2 [M +N/7]

2

≤ εT

2
(dFTV (Q0,Q1) + dFTV (Q0,Q2)).

The above, together with Lemma F.3 implies

E[R′] ≥ εT

2
− εT (dFTV (Q0,Q1) + dFTV (Q0,Q2)) + EQ0

[
M +

N

7

]
.

Applying Lemma F.2 now gives

E[R] ≥ εT

3
− εT (dFTV (Q0,Q1) + dFTV (Q0,Q2)) + EQ0

[
M +

N

7

]
.

On the other hand we can bound (dFTV (Q0,Q1) + dFTV (Q0,Q2))/2 by Lemma F.1 as

(dFTV (Q0,Q1) + dFTV (Q0,Q2))/2 ≤ ε

σ
√

2

√
EQ0 [M +N] log (T).

This implies

E[R] ≥ εT

3
−
√

2ε2T

σ

√
EQ0

[M +N] log (T) + EQ0

[
M +

N

7

]
.

Let x =
√
EQ0

[M +N]. Then we have

E[R] ≥ εT

3
−
√

2ε2T
√

log (T)

σ
x+

x2

7
.

The quadratic x2

7 −
√
2ε2T
√

log(T)

σ x has minimum − 7 log(T)ε4T 2

2σ2 . We set ε = c 1
T 1/3 log(T)

for a
constant c to be determined later. We then have

E[R] ≥ cT 2/3

3 log (T)
− 7c4

2

T 2/3

log (T)
3
σ2
.

Set σ = 1
log(T) . The above implies

E[R] ≥ T 2/3

log (T)

(
c

3
− 7c4

2

)
.

26

Choosing c = 1
421/3

gives c
3 −

7c4

2 ≥
1
16 .

Suppose there is some strategy for which M +N/7 ≥ c T 2/3

log(T) occurs. Let this strategy have regret
R. We change the strategy in the following way. Keep track of M +N/7 and the moment it exceeds
c T 2/3

log(T) pick an action which has had loss smaller than 5/6. If there is no such action, pick any action
and play it until the end of the game. With probability at least 1/T we know that such an action
exists and that it was set according to the stochastic process construction. Thus the regret of the new
strategy R∗ is bounded by E[R∗] ≤ E[R] + (1− 1/T)εT + 1/T × T ≤ 2E[R] + 1. Since the lower
bound holds for E[R∗] the proof is complete.

G Lower Bound for Disjoint Union of Star Graphs

Let G be the graph which is a union of star graphs. Let R be the set of revealing vertices for the star
graphs. We denote by Vi the set of vertices associated with the star graph with revealing vertex vi.
First for each star graph we sample an active vertex uniformly at random from its leaves. Next we
sample the best vertex uniformly at random from the set of active vertices. We set the loss of the best
vertex to be clip(Wt + 1/2− ε) and the loss of all other active vertices to clip(Wt + 1/2). For any
star graph consisting of a single vertex, we treat the vertex as a leaf. The following theorem follows
as an easy reduction from the proof of Dekel et al. [2014].

Theorem G.1. The expected regret of any algorithm A on a disjoint union of star graphs is lower
bounded as follows:

RT (A) ≥ Ω

(
γ(G)1/3T 2/3

log (T)

)
.

Proof of Theorem 5.2. Let I be the set of all possible ways to sample a set of active vertices. Let
Ei be the expectation conditioned on the event that the set of active vertices indexed by i ∈ I is
sampled in the beginning of the game. Consider the subgraph induced by the active vertices I and all
of their neighbors R. Suppose that there exists a player’s strategy such that Ei[R] ≤ o

(
γ(G)1/3T 2/3

log(T)

)
.

We claim this strategy implies a regret upper bound for bandits with switching costs of the order
o
(
γ(G)1/3T 2/3

log(T)

)
. We convert the player’s strategy over I

⋃
R to a strategy over I . For every time

that at ∈ R is played, we replace at by the unique neighbor of at in I . This updated strategy’s
regret is at most the regret of the original strategy and thus by our assumption it has regret at most
o
(
γ(G)1/3T 2/3

log(T)

)
=
(
|I|1/3T 2/3

log(T)

)
. This is in contradiction with the result of Dekel et al. [2014]

since the subgraph induced by I is precisely modeling bandit feedback and the losses of actions
in I are exactly constructed as in Dekel et al. [2014]. Thus we have E[R] ≥ 1

|I|
∑
i∈I Ei[R] =

Ω̃
(
γ(G)1/3T 2/3

log(T)

)
.

Even though the above theorem is a trivial consequence of the result in Dekel et al. [2014] it can also
be proved in another way. Let I denote the set of conditional distributions induced by the observed
losses, where the conditioning is with respect to the random sampling of vertices as described in
the beginning of the section. The general idea of the complicated proof is to count the number of
distributions which each strategy of the player gains information about. For example a strategy
which switches between two revealing vertices vi and vj will gain information about deg(vi)deg(vj)
distributions. Now the lower bound follows from a careful counting of the number of distributions
for which we gain information by switching between revealing vertices. This counting argument
can be generalized beyond union of star graphs, by considering an appropriate pair of minimal
dominating/maximal independent sets. We leave a detailed argument for future work.

G.1 Counting Argument for Theorem 5.2

Let I denote the set of all possible ways to sample active vertices. The cardinality of this set is
|I| =

∏
vi∈R deg(vi). Denote by Qi0 the conditional distribution generated by the observed losses

if all losses for active vertices indexed by i ∈ I were set to clip(Wt + 1/2). Denote by Qij the

27

conditional distribution generated by the observed losses when active vertex j is chosen to be the
best given the active vertices are indexed by i ∈ I. Let M i

j denote the random variable counting the
number of times the player switched from and to an action adjacent to j. Let N i

j denote the random
variable counting the number of times the player played an action adjacent to j.

Lemma G.2. For all i ∈ I and j ∈ [|R|] it holds that dFTV

(
Qi0,Qij

)
≤ ε

2σ

√
ω(ρ)EQi0 [M i

j +N i
j].

Proof. Fix i ∈ I. Repeat the proof of Lemma H.1. Due to the construction of the losses we have
|I∗i |φ(Gi) = 1, where Gi is the induced subraph of G by the active vertices and the revealing set R
and I∗i is the set of active vertices. The result follows.

Let Mi denote the random variable measurable with respect to the draw of i ∈ I which counts the
total number of switches. Similarly let Ni count the total number of times a revealing vertex of
degree at least 2 was played.
Lemma G.3. The following holds

1

|R||I|
∑
i∈I

∑
j∈[|R|]

dFTV

(
Qi0,Qij

)
≤ ε

σ
√

2|R|

√
ω(ρ)

|I|
∑
i∈I

EQi0 [Mi +Ni].

Proof. Notice that conditioned on the draw of i ∈ I we have
∑
j∈[|R|]N

j
i ≤ Ni. This happens

because there is only one revealing vertex adjacent to the best vertex for every Qji , i.e., the revealing
vertex indexed by j ∈ [|R|]. Similarly we have

∑
j∈[|R|]M

j
i ≤ 2Mi, where the constant two appears

because we have counted each switch twice – once from action j and once to action j. Using
Lemma G.2 with concavity of the square root finishes the proof.

The above lemma was easy to prove because we did not have two vertices which are dominated
simultaneously by two different neighbors in R. This allowed us to count very easily the number
of times we might have over-count Ni for two different choices of the best action. We were also
lucky that it was impossible to gain information about the best action proportional to the degree of a
revealing vertex. For a general graph both of these events can happen and the counting argument
would have to be more careful. Indeed we expect to see a factor similar to φ(G), which appeared in
Lemma H.2, however G would be replaced by an appropriate subgraph.
Lemma G.4. The following holds

E[R′] ≥ εT

2
− εT

|I||R|
∑
i∈I

∑
j∈[|R|]

dFTV

(
Qi0,Qij

)
+

1

|I|
∑
i∈I

Ei
[
Mi +

Ni
7

]

Proof. Let Ei denote the conditional distribution for sampling the active vertex set indexed by i ∈ I .
We have E[R′] = 1

|I|
∑
i∈I Ei[R′]. First let us consider the amount of regret the player incurs for

picking a revealing action Ni times. To do this we consider the number of times 1/2 +Wt > 5/6.
The expected number of times this occurs is

E
T∑
t=1

11/2+Wt>5/6 ≤
T∑
t=1

P
(
|Wt|+

1

2
≥ 5

6

)
≤

T∑
t=1

e
− 1
d(ρ)σ2 ≤

T∑
t=1

e−
9 log(T)

2 ≤ 1.

Thus in expectation the regret for picking a revealing action Ni times is at least (1/6 + ε)(Ni − 1).
Let χi denote the uniform random variable over R which picks the best action. Denote by Bij the
number of times action j was played from the active vertices. Then Ei[R′] ≥ Ei[ε(T −Ni −Biχi) +
Mi +Ni/6− 1/6]. Thus we have

E[R′] =

∑
i∈|I| Ei[ε(T −Ni −Biχi) +Mi +Ni/6− 1/6]

|I|

= εT − ε

|I|
∑
i∈I

Ei[Biχi] +
1

|I|
∑
i∈I

Ei
[
Mi +

Ni
6
− 1/6− εNi

]
.

28

Consider Ei[Biχi] = 1
|R|
∑
j∈[|R|] EQij [B

i
j]. For each term of the sum we have

EQij [B
i
j]− EQi0 [Bij] =

T∑
t=1

(Qij(at = j)−Q0(at = j)) ≤ TdFTV

(
Qi0,Qij

)
.

Thus we get ∑
i∈I

Ei[Biχi] ≤ T
1

|R|
∑
i∈I

∑
j∈[|R|]

dFTV

(
Qi0,Qij

)
+

1

|R|
∑
i∈I

∑
j∈[|R|]

EQi0 [Bij]

≤ T

|R|
∑
i∈I

∑
j∈[|R|]

dFTV

(
Qi0,Qij

)
+ T − 1

|R|
∑
i∈I

EQi0 [Ni].

Using the assumption that |I| ≥ 2, the above implies

E[R′] ≥ εT

2
− εT

|I||R|
∑
i∈I

∑
j∈[|R|]

dFTV

(
Qi0,Qij

)
+

1

|I|
∑
i∈I

Ei
[
Mi +

Ni
6
− 1/6− εNi

]
Since ε = Θ̃(T−1/3) we have Ei

[
Mi + Ni−1

6 − εNi
]
≥ Ei

[
Mi + Ni

7

]
.

Let M denote the random variable counting the total number of switches and N the random variable
denoting the total number of times a revealing action with degree at least 2 was played. We can write
1
|I|
∑
i∈I Ei[Mi] ≤ 1

|I|
∑
i∈I Ei[M] = E[M] and similarly 1

|I|
∑
i∈I Ei[Ni] ≤ E[N]. The proof of

Theorem 5.2 can now be completed by following the proof of Theorem H.4. We note that bounding
Mi by M is in general tight for disjoint union of star graphs and equality occurs for all strategies
which switch only between revealing vertices. For general graphs this upper bound can become very
loose and we should exercise caution when constructing an upper bound. In particular we should
carefully count how many distributions are covered by a single switch.

H Lower Bound for Arbitrary Graphs

In this section we propose a construction leading to a non-tight lower bound for general graphs. We
choose to present this construction due to it developing tools which can be useful for a tight generic
bound. In particular the way we use Lemma H.1 in the proof of Lemma G.2 can be mimicked for
general graphs when coupled with a careful counting argument.

Let G = (V,E) be a feedback graph with vertex set V and edge set E. Let I denote the set of all
maximal independent sets I of G. For any I we say that I is dominated by S ⊆ V if for every v ∈ I ,
there exists a neighbor of v in S. For any I let SI be a minimal set of vertices which dominates I and
let SI be the set of all such SI . Let δ(SI) equal the maximum number of neighbors in I , which a
vertex in SI can have. Let δ(SI) be the maximum over all δ(SI) and let φ(G) = minI∈I

δ(SI)
|I| . Let

I∗ be a maximal independent set for which |SI∗ | = φ(G). To construct our adversarial loss sequence
we begin by uniformly sampling an action i from I∗ and setting it to be the action with smallest
loss. Let Qi denote the conditional probability measure given the sampled best action was i and let
Q0 be the probability distribution when all of the actions in I∗ are equal i.e. there is no best action.
Let Wt be the stochastic process as defined in Section F. We set the losses for actions in I∗ to be
clip(Wt + 1/2) for v ∈ I∗ \ {i} and the loss of i to be clip(Wt + 1/2 − ε). The loss of all other
actions is set to be 1. We let Yt denote the loss vector of observed losses only on I∗. WLOG we
can disregard other losses, since they will not let us distinguish between Qi and Q0. We denote by
Yt(j) the loss of action j ∈ I∗ if that loss was observed at time t. Let F be the σ-field generated by
(Yt)

T
t=1.

Our intuition behind the definition of φ(G) and the above construction is the following. First
we require that the losses based on the stochastic process (Wt)

T
t=1 be assigned to vertices in an

independent set. Otherwise, there would exist a setting in which the best action would be adjacent
to another action with losses generated from (Wt)

T
t=1 and in this case it is information theoretically

possible to obtain O(
√
T) regret by playing the best action or its adjacent action enough times,

without switching. For every independent set, once a best action is fixed, from the lower bound in

29

· · ·

Figure 4: Example of feedback graphs with different φ(G).

Section F we know two ways to distinguish it. First we switch between the best action and some
other action in the independent set (or more generally switch between actions giving information
about the best action and another action in the independent set), or play an action which is adjacent to
the best action and another action in the independent set. In the general setting there might be an
action which is adjacent to multiple actions in the independent set and not adjacent to the best action.
In such cases switching between the best action and said action, reveals information proportional to
the degree of said action. Similarly if there is an action adjacent to the best action and multiple other
actions, selecting it again reveals information proportional to its degree. Since we do not want to
assume anything about the strategy of the player, it is natural to select an independent set, such that
minimum amount of vertices have a common neighbor. Because the size of the independent set also
gives freedom to hide information from the player, we would simultaneously like to maximize its
size. This suggests that we search for and independent set which minimizes the ratio in the definition
of φ(G). In Figure 4 we give three examples of graphs with different φ(G). For the first example the
independent set |I∗| is the set of all vertices. The set SI∗ is also the set of all vertices and δ(SI∗) = 1
thus φ(G) = 1/|V | and this is exactly equal to γ(G)−1. For the second example I∗ is the set of
leafs of the star graph and SI∗ is the vertex adjacent to all other vertices. In this case δ(SI∗) = |I∗|
and φ(G) = 1 which again equals the inverse of the dominating number of G. Our final example
shows that φ(G) can be arbitrary close to 1 even though γ(G)−1 < 1. In particular SI∗ consists of
the bottom 4 vertices and this is also the minimum dominating set of G. However, there exists a
vertex (the first vertex of the bottom four) of arbitrary large degree so that δ(SI∗)|I∗| can be arbitrary
close to 1. The problem with our lower bound construction becomes clear from this example. The
player has a strategy in which too much information is revealed by playing the action of arbitrary
large degree. To try and fix this problem we could set only one of the vertices adjacent to the action
of large degree according to (Wt)

T
t=1 and the rest of the adjacent actions are set to have loss equal to

1. This construction can fail for general graphs, as it might happen that there exists another action
which is adjacent to exactly the four actions whose losses were chosen according to (Wt)

T
t=1 in the

right most graph of Figure 4.

Lemma H.1. Let Mi be the number of times the player’s strategy switched between action adjacent
only to i and another action not adjacent to i but adjacent to at least one other action in I∗. Let Ni
be the number of times the player chose to play an action adjacent to i and another action in I∗.
Then dFTV (Q0,Qi) ≤ ε

2σ

√
ω(ρ)EQ0

[|I∗|φ(G)Mi +Ni].

Proof. Using Yao’s minimax principle we can assume the player is deterministic and thus their t-th
action at is a deterministic function of Y0:t−1.Using the chain rule for relative entropy and by the
construction of Wt, we have:

DKL (Q0(Y0:T)||Qi(Y0:T)) = DKL (Q0(Y0)||Qi(Y1)) +

T∑
t=1

DKL
(
Q0(Yt|Yρ∗(t))||Qi(Yt|Yρ∗(t))

)
.

Let us consider the term DKL
(
Q0(Yt|Yρ∗(t))||Qi(Yt|Yρ∗(t))

)
. First assume that at = aρ(t) is not an

action adjacent to i or at = aρ(t) = i. Then for any observed j ∈ I∗ we have Yt(j) = N (Yρ(t), σ
2)

under both Q0 and Qi. Next consider the case when at = aρ(t) is an action adjacent to i and some
other j ∈ I∗. In this case Yt(j) = Yt(i) = N (Yρ(t)(j), σ

2) under Q0 and Yt(i) = N (Yρ(t)(j) −
ε, σ2), Yt(j) = N (Yρ(t)(j), σ

2) under Qi for all observed j ∈ I∗ \ {i}. If at 6= aρ(t) we have 6
options:

1. aρ(t) is an action adjacent to i and another action j ∈ I∗ \ {i}

30

(a) at is an action adjacent to i, in this case Yt(j) = Yt(i) = N (Yρ(t)(j
′), σ2) under Q0

for all observed j′ ∈ I∗ and Yt(i) = N (Yρ(t)(j) − ε, σ2), Yt(j′) = N (Yρ(t)(j), σ
2)

under Qi for all observed j′ ∈ I∗;
(b) at is an action not adjacent to i in this case Yt(j′) = N (Yρ(t)(j), σ

2) under Q0 and
Yt(j

′) = N (Yρ(t)(j), σ
2) under Qi for all observed j′ in I∗;

2. aρ(t) is an action not adjacent to i but adjacent to j

(a) at is an action adjacent to i, in this case Yt(j′) = Yt(i) = N (Yt(j), σ
2) under Q0 and

Yt(i) = N (Yρ(t)(j)− ε, σ2), Yt(j′) = N (Yρ(t)(j), σ
2) under Qi for all observed j′;

(b) at is an action not adjacent to i, in this case Yt(j′) = N (Yρ(t)(j), σ
2) under Q0 and

Yt(j
′) = N (Yρ(t)(j), σ

2) under Qi for all observed j′;

3. aρ(t) is an action only adjacent to i and no other j ∈ I∗

(a) at is an action adjacent to i, in this case Yt(j′) = Yt(i) = N (Yρ(t)(i), σ
2) under Q0

and Yt(i) = N (Yρ(t)(i), σ
2), Yt(j′) = N (Yρ(t)(j

′) + ε, σ2) underQi for all observed
j′;

(b) at is an action not adjacent to i, in this case Yt(j′) = N (Yρ(t)(i), σ
2) under Q0 and

Yt(j
′) = N (Yρ(t)(i) + ε, σ2) under Qi for all observed j′.

Thus we have

DKL
(
Q0(Yt|Yρ∗(t))||Qi(Yt|Yρ∗(t))

)
≤ ε2

2σ2
Q0(At) + |I∗|φ(G)

ε2

2σ2
Qi(Bt)

where At is the event that aρ(t) was adjacent to at least one action in I∗ \ {i} and at time t action i
was observed and Bt is the event that aρ(t) was adjacent only to i and the player switched at time t to
an action which is adjacent to an action in I∗ \ {i}. Let Ni denote the random number of times an
action adjacent to i was played and let Mi denote the random number of switches between an action
adjacent to i and an action not adjacent to i. Let S1:M denote the random sequence of times during
which there was a switch. Then we have

T∑
t=1

1At + 1Bt ≤
M∑
r=1

∑
t∈cut(Sr)

1At +Ni ≤ ω(ρ)(Mi +Ni),

where cut(t) and ω(ρ) are defined in Dekel et al. [2014]. Thus

DKL
(
Q0(Yt|Yρ∗(t))||Qi(Yt|Yρ∗(t))

)
≤ ε2ω(ρ)

2σ2
EQ0

[|I∗|φ(G)Mi +Ni].

Pinsker’s inequality that dFTV (Q0,Qi) ≤ ε
2σ

√
ω(ρ)EQ0

[|I∗|φ(G)Mi +Ni].

Let M denote the total number of switches and N the total number of times an action revealing
adjacent to at least two vertices in I∗ is played.

Lemma H.2. It holds that 1
|I∗|

∑
i∈I∗ dFTV (Q0,Qi) ≤ ε

σ

√
ω(ρ)φ(G)

2

√
EQ0

[M +N].

Proof. From concavity of square root and Lemma H.1 we have

1

|I∗|
∑
i∈I∗

dFTV (Q0,Qi) ≤
ε
√
ω(ρ)

2σ

√√√√ 1

|I∗|
EQ0

[∑
i∈I∗
|I∗|φ(G)Mi +Ni

]
.

Now
∑
i∈I∗Mi = 2M since we count each switch twice, once from i and once to i. On the

other hand each action which is adjacent to n actions in I∗ has been overcounted n times. Since
n ≤ |I∗|φ(G) we have

∑
i∈I∗ Ni ≤ |I∗|φ(G)N .

Lemma H.3. It holds that

E[R′] ≥ εT

2
− εT 1

|I∗|
∑
i∈I∗

dFTV (Q0,Qi) + E
[
M +

N

7

]
.

31

Proof. First let us consider the amount of regret the player incurs for picking action adjacent to two
actions in I∗ N times. To do this we consider the number of times 1/2 +Wt > 5/6. The expected
number of times this occurs is

E
T∑
t=1

11/2+Wt>5/6 ≤
T∑
t=1

P
(
|Wt|+

1

2
≥ 5

6

)
≤

T∑
t=1

e
− 1
d(ρ)σ2 ≤

T∑
t=1

e−
9 log(T)

2 ≤ 1.

Thus in expectation the regret for picking an action adjacent to actions in I∗ N times is at least
(1/6 + ε)(N − 1). Let χ denote the uniform random variable over actions in I∗, which picks the best
action in the beginning of the game. Denote by Bi the number of times action i ∈ I∗ was played.
Then E[R′] ≥ E[ε(T −N −Bχ) +M +N/6]. Thus we have

E[R′] =

∑
i∈I∗ E[ε(T −N −Bi) +M + (N − 1)/6|χ = i]

|I∗|

= εT − ε

|I∗|
∑
i∈I∗

EQi [Bi] + E
[
M +

N − 1

6
− εN

]
.

Consider EQi [Bi], we have

EQi [Bi]− EQ0
[Bi] =

T∑
t=1

(Qi(at = i)−Q0(at = i)) ≤ TdFTV (Q0,Qi) .

Thus we get ∑
i∈I∗

EQi [Bi] ≤ T
∑
i∈I∗

dFTV (Q0,Qi) +
∑
i∈I∗

EQ0
[Bi]

≤ T
∑
i∈I∗

dFTV (Q0,Qi) + T − EQ0
[N].

Using the assumption that |I∗| ≥ 2, the above implies

E[R′] ≥ εT

2
− εT

|I∗|
∑
i∈I∗

dFTV (Q0,Qi) + E
[
M +

N − 1

6
− εN

]
+
ε

2
EQ0 [N].

Since ε = Θ̃(T−1/3) we have E
[
M + N−1

6 − εN
]

+ ε
2EQ0

[N] ≥ E
[
M + N

7

]
Theorem H.4. The expected regret of a deterministic player is at least

E[R] ≥ 4
T 2/3

log (T)φ(G)1/3

Proof. First assume that the event M +N/7 > εT does not occur on losses generated fromQ0 orQi
for a deterministic player strategy. This implies Q0(M +N/7 > εT) = Qi(M +N/7 > εT) = 0.
Then

EQ0
[M +N/7]− E[M +N/7] =

1

|I∗|
∑
i∈I∗

(EQ0
[M +N/7]− EQi [M +N/7])

≤ εT

|I∗|
∑
i∈I∗

dFTV (Q0,Qi) .

The above, together with Lemma H.3 implies

E[R′] ≥ εT

2
− 2εT

|I∗|
∑
i∈I∗

dFTV (Q0,Qi) + EQ0

[
M +

1

7
N

]
.

Applying Lemma F.2 now gives

E[R] ≥ εT

3
− 2εT

|I∗|
∑
i∈I∗

dFTV (Q0,Qi) + EQ0

[
M +

1

7
N

]
.

32

On the other hand we can bound 1
|I∗|

∑
i∈I∗ dFTV (Q0,Qi) by Lemma H.2 as

1

|I∗|
∑
i∈I∗

dFTV (Q0,Qi) ≤
ε

σ

√
log (T)φ(G)

2

√
EQ0 [M +N].

This implies

E[R] ≥ εT

3
−
√

2ε2T

σ

√
φ(G) log (T)EQ0

[M +N] + EQ0

[
M +

1

7
N

]
.

Let x =
√
EQ0 [M +N]. Then we have

E[R] ≥ εT

3
−
√

2ε2T
√

log (T)φ(G)

σ
x+

x2

7
.

The quadratic x2

7 −
ε2T
√

2 log(T)φ(G)

σ x has global minimum− ε
4T 2 log(T)φ(G)

14 We set ε = c 1
T 1/3 log(T)

for a constant c to be determined later. We then have

E[R] ≥ cT 2/3

3 log (T)
− c4

14

T 2/3φ(G)

log (T)
3
σ2
.

Set σ = 1
log(T) . The above implies

E[R] ≥ T 2/3

log (T)

(
c

3
− c4φ(G)

14

)
.

Choosing c =
(

7
6φ(G)

)1/3
guarantees E[R] ≥ T 2/3

16 log(T)φ(G)1/3
.

The case when M +N/7 > εT is treated in the same way as in the proof of Theorem 5.1

I Lower bound for a sequence of feedback graphs in the uninformed setting.

rt

Figure 5: Gt

As we already mentioned, the statement of Theorem
1 of Rangi and Franceschetti [2019] does not hold,
at least in the informed setting for a fixed feedback
graph sequence, where Gt = G,∀t ∈ [T]. We will
show that in the uninformed setting, when we allow
the graphs to be chosen by the adversary, there ex-
ists a sequence (Gt)

T
t=1 such that for all t ∈ [T],

γ(Gt) = 1, α(Gt) � 1 and α(G1:t) = Θ(α(Gt)),
for which any player’s strategy will incur regret of
the order Ω̃(α(G1:t)

1/3T 2/3). In particular, there is
a non-trivial example of a sequence of graphs for
which the independence number is arbitrarily larger
than the domination number and every strategy has to
incur regret depending on the independence number.

We now present our construction. Fix α� 1 and let
|V | = 2α. Let I be a subset of V of size α and let R = V \ I . Set the losses of actions in I according
to the construction of Dekel et al. [2014], as described in Section G. Set the losses of actions in R
equal to one. The edges of the graph Gt = (V,Et) at round t are defined as follows. The vertices in
R form a clique. A vertex r is sampled uniformly at random from R to be the revealing action and all
edges (r, vi), vi ∈ I are also added to Et. We note that α(Gt) = α + 1, γ(Gt) = 1 for all t ∈ [T]
and α(G1:T) = α. We present an illustration for our construction in Figure 5. Here α = 6, the set I
are the vertices in red, the set R are the vertices in blue.

The intuition behind our construction is that the player needs on average α rounds to observe the
losses of all actions, due to the randomization over the revealing vertex r. The switching cost again
contributes to the T 2/3 time-horizon regret.

33

Again assume that the strategy of the player is deterministic. As in Section H, we let Qi denote the
conditional distribution generated by the observed losses, when the best action was sampled to be
vi ∈ I andQ0 denotes the distribution over observed losses when there is no best action in I . Let Mi

be the number of times the player’s strategy switched between an action in I \ {i} and i. Let M ′i be
the number of times that the player switched between i and the revealing action. Let N be the total
number of times a vertex in R was played and let N ′ be the total number of times a revealing vertex
was played. We have the following.
Lemma I.1. For all i ∈ [|I|]

⋃
{0}

1

α
EQi [N] = EQi [N ′].

Proof. Let rt denote the revealing action at time t.

EQi [N ′] =

T∑
t=1

EQi [I(at = rt)] =

T∑
t=1

Qi(at ∈ R)EQi [I(at = rt)|at ∈ R]

+

T∑
t=1

Qi(at 6∈ R)EQi [I(at = rt)|at 6∈ R]

=

T∑
t=1

Qi(at ∈ R)EQi [I(at = rt)|at ∈ R]

=

T∑
t=1

Qi(at ∈ R)
1

α
=

1

α

T∑
t=1

EQi [I(at ∈ R)] =
1

α
EQi [N].

This completes the proof.

Let M denote the random variable counting the total number of switches.

Lemma I.2. The following inequality holds: 1
α

∑
vi∈I dFTV (Q0,Qi) ≤ ε

σ

√
ω(ρ)
2α

√
EQ0

[M +N].

Proof. The proof of Lemma H.1 implies that for any Qi we have

dFTV (Q0,Qi) ≤
ε

2σ

√
ω(ρ)EQ0

[αM ′i +Mi +N ′],

since the amount of information that can be revealed by a switch is at most α and this precisely happens
when the player switches from i to the revealing action. Notice that

∑
vi∈IM

′
i ≤ N ′, because the

number of switches between any i and a revealing action is bounded by the number of times a
revealing action is played. Lemma I.1 implies that EQ0

[αM ′i +Mi+N ′] ≤ EQ0
[N/α+Mi+αM ′i].

Next, we note that
∑
i∈[|I|]Mi ≤ 2M as each switch is counted at most twice by Mi. Thus we have

1

α

∑
vi∈I

dFTV (Q0,Qi) ≤
1

α

ε

2σ

∑
vi∈I

√
ω(ρ)EQ0

[N/α+Mi + αM ′i]

≤ ε

2σ

√√√√ω(ρ)

α
EQ0

[∑
vi∈I

N/α+Mi + αM ′i

]

≤ ε

σ

√
ω(ρ)

2α

√
EQ0

[M +N],

where the second to last inequality follows again from Lemma I.1.

Repeating the rest of the arguments in Section H with φ(G) replaced by 1
α shows the following

theorem.
Theorem I.3. For any α > 1, α ∈ N, there exists an adversarially generated sequence of feedback
graphs (Gt)

T
t=1, with α(Gt) = α+1, γ(Gt) = 1,∀t ∈ [T] and α(G1:T) = α, such that the expected

regret of any strategy in the uninformed setting is at least

E[R] ≥ α1/3T 2/3

16 log (T)
.

34

	Introduction
	Problem Setup and Notation
	An Adaptive Mini-batch Algorithm
	Algorithm for Star Graphs
	Algorithm for General Feedback Graphs
	Corralling Star Graph Algorithms

	Policy Regret with Partial Counterfactual Feedback
	Lower Bound
	Lower Bound for Non-complete Graphs
	Lower Bound for Disjoint Union of Star Graphs

	Conclusion
	Related Work
	Motivating Examples
	Lower Bound of rangi2018online
	Proofs from Section 3
	Approximation to Minimum Dominating Set
	Adaptive Mini-batching for Star Graphs

	Corralling the Star-graph Algorithms
	Improving the Domination Number Dependence for General Feedback Graphs

	Policy Regret Bounds
	Lower Bound for Non-complete Graphs
	Lower Bound for Disjoint Union of Star Graphs
	Counting Argument for Theorem 5.2

	Lower Bound for Arbitrary Graphs
	Lower bound for a sequence of feedback graphs in the uninformed setting.

