
2006/09/18 14:55

1 A General Regression Framework for Learning

String-to-String Mappings

Corinna Cortes

Google Research

1440 Broadway, New York, NY 10018

corinna@google.com

Mehryar Mohri

Courant Institute of Mathematical Sciences

251 Mercer Street, New York, NY 10012

mohri@cims.nyu.edu

Jason Weston

NEC Research

4 Independence Way, Princeton, NJ 08540

jasonw@nec-labs.com

1.1 Introduction

The problem of learning a mapping from strings to strings arises in many areas

of text and speech processing. As an example, an important component of speech

recognition or speech synthesis systems is a pronunciation model, which provides the

possible phonemic transcriptions of a word, or a sequence of words. An accurate

pronunciation model is crucial for the overall quality of such systems. Another

typical task in natural language processing is part-of-speech tagging, which consists

of assigning a part-of-speech tag, e.g., noun, verb, preposition, determiner, to each

word of a sentence. Similarly, parsing can be viewed as a string-to-string mapping

where the target alphabet contains additional symbols such as parentheses to

equivalently represent the tree structure.

The problem of learning string-to-string mappings may seem similar to that of

regression estimation where the task consists of learning a real-valued mapping.

But, a key aspect of string-to-string mappings is that the target values, in this

case strings, have some structure that can be exploited in learning. In particular, a

similarity measure between target values can use the decomposition of the strings

2006/09/18 14:55

2 A General Regression Framework for Learning String-to-String Mappings

into their constituent symbols. More generally, since both input and output have

some structure, one might wish to impose some constraints on the mappings based

on prior knowledge about the task. A simple example is that of part-of-speech

tagging where each tag is known to be associated with the word in the same position.

Several techniques have been described for learning string-to-string mappings,

in particular Maximum Margin Markov Networks (M3Ns) (Taskar et al., 2003;

Bartlett et al., 2004) and SVMISOS (Tsochantaridis et al., 2004). These techniques

treat the learning problem just outlined by learning a scoring function defined

over the input-output pairs, imposing that the pair (x, y) with y matching x

obtain a higher score than all other pairs (x, y′). This is done by using a binary

loss function as in classification. This loss function ignores similarities between

the output sequences. To correct for that effect, classification techniques such as

SVMISOS (Tsochantaridis et al., 2004) craft an additional term in the loss function

to help account for the closeness of the outputs y and y′, but the resulting loss

function is different from a regression loss function.

In contrast, this chapter introduces a general framework and algorithms that

treat the problem of learning string-to-string mapping as a true regression problem.

Seeking a regression-type solution is natural since it directly exploits the similarity

measures between two possible target sequences y and y′ associated with an input

sequence x. Such similarity measures are improperly handled by the binary losses

used in previous methods.

Our framework for learning string-to-string mappings can be viewed as a con-

ceptually cleaner generalization of Kernel Dependency Estimation (KDE) (Weston

et al., 2002). It decomposes the learning problem into two parts: a regression prob-

lem with a vector space image to learn a mapping from the input strings to an

explicit or implicit feature space associated to the output strings, and a pre-image

problem which consists of computing the output string from its feature space rep-

resentation. We show that our framework can be generalized naturally to account

for known constraints between the input and output sequences and that, remark-

ably, this generalization also leads to a closed form solution and to an efficient

iterative algorithm, which provides a clean framework for estimating the regression

coefficients. The pre-image is computed from these coefficients using a simple and

efficient algorithm based on classical results from graph theory. A major computa-

tional advantage of our general regression framework over the binary loss learning

techniques mentioned is that it does not require an exhaustive pre-image search of

set of all output strings Y ∗ during training.

This chapter describes in detail our general regression framework and algorithms

for string-to-string mappings and reports the results of experiments showing its

effectiveness. The chapter is organized as follows. Section 1.2 presents a simple for-

mulation of the learning problem and its decomposition into a regression problem

with a vector space image and a pre-image problem. Section 1.3 presents several

algorithmic solutions to the general regression problem, including the case of re-

gression with prior constraints. Section 1.4 describes our pre-image algorithm for

strings. Section 1.5 shows that several heuristic techniques can be used to substan-

2006/09/18 14:55

1.2 General Formulation 3

tially speed-up training. Section 1.6 compares our framework and algorithm with

several other algorithms proposed for learning string-to-string mapping. Section 1.7

reports the results of our experiments in several tasks.

1.2 General Formulation

This section presents a general and simple regression formulation of the problem of

learning string-to-string mappings.

Let X and Y be the alphabets of the input and output strings. Assume that a

training sample of size m drawn according to some distribution D is given:

(x1, y1), . . . , (xm, ym) ∈ X∗ × Y ∗. (1.1)

The learning problem that we consider consists of finding a hypothesis f : X∗ → Y ∗

out of a hypothesis space H that predicts accurately the label y ∈ Y ∗ of a

string x ∈ X∗ drawn randomly according to D. In standard regression estimation

problems, labels are real-valued numbers, or more generally elements of R
N with

N ≥ 1. Our learning problem can be formulated in a similar way after the

introduction of a feature mapping ΦY : Y ∗ → FY = R
N2 . Each string y ∈ Y ∗

is thus mapped to an N2-dimensional feature vector ΦY (y) ∈ FY .

As shown by the diagram of Figure 1.1, our original learning problem is now

decomposed into the following two problems:

Regression problem: The introduction of ΦY leads us to the problem of learning a

hypothesis g : X∗ → FY predicting accurately the feature vector ΦY (y) for a string

x ∈ X∗ with label y ∈ Y ∗, drawn randomly according to D.

Pre-image problem: to predict the output string f(x) ∈ Y ∗ associated to x ∈ X∗,

we must determine the pre-image of g(x) by ΦY . We define f(x) by:

f(x) = argmin
y∈Y ∗

‖g(x)− ΦY (y)‖2, (1.2)

which provides an approximate pre-image when an exact pre-image does not exist

(Φ−1
Y (g(x)) = ∅).

As with all regression problems, input strings in X∗ can also be mapped to a

Hilbert space FX with dim (FX) = N1, via a mapping ΦX : X∗ → FX . Both

mappings ΦX and ΦY can be defined implicitly through the introduction of positive

definite symmetric kernels KX and KY such that for all x, x′ ∈ X∗, KX(x, x′) =

ΦX(x) · ΦX(x′) and for all y, y′ ∈ Y ∗, KY (y, y′) = ΦY (y) · ΦY (y′).

This description of the problem can be viewed as a simpler formulation of the

so-called Kernel Dependency Estimation (KDE) of (Weston et al., 2002). In the

original presentation of KDE, the first step consisted of using KY and Kernel

Principal Components Analysis to reduce the dimension of the feature space FY .

2006/09/18 14:55

4 A General Regression Framework for Learning String-to-String Mappings

X∗

?
FX

-Y ∗

?

6

FX
-

@
@

@
@

@
@

@@R

ΦX ΦY Φ−1
Y

f

g

Figure 1.1 Decomposition of the string-to-string mapping learning problem into a
regression problem (learning g) and a pre-image problem (computing Φ−1

Y and using g

to determine the string-to-string mapping f).

But, that extra step is not necessary and we will not require it, thereby simplifying

that framework.

In the following two sections, we examine in more detail each of the two problems

just mentioned (regression and pre-image problems) and present general algorithms

for both.

1.3 Regression Problems and Algorithms

This section describes general methods for regression estimation when the dimen-

sion of the image vector space is greater than one. The objective functions and

algorithms presented are not specific to the problem of learning string-to-string

mapping and can be used in other contexts, but they constitute a key step in

learning complex string-to-string mappings.

Different regression methods can be used to learn g, including kernel ridge

regression (Saunders et al., 1998), Support Vector Regression (SVR) (Vapnik, 1995),

or Kernel Matching Pursuit (KMP) (Vincent and Bengio, 2000). SVR and KMP

offer the advantage of sparsity and fast training. But, a crucial advantage of kernel

ridge regression in this context is, as we shall see, that it requires a single matrix

inversion, independently of N2, the number of features predicted. Thus, in the

following we will consider a generalization of kernel ridge regression.

The hypothesis space we will assume is the set of all linear functions from FX to

FY . Thus, g is modeled as

∀x ∈ X∗, g(x) = W (ΦX(x)), (1.3)

where W : FX → FY is a linear function admitting an N2 ×N1 real-valued matrix

representation W.

We start with a regression method generalizing kernel ridge regression to the case

of vector space images. We will then further generalize this method to allow for the

encoding of constraints between the input and output vectors.

2006/09/18 14:55

1.3 Regression Problems and Algorithms 5

1.3.1 Kernel Ridge Regression with Vector Space Images

For i = 1, . . . , m, let Mxi
∈ R

N1×1 denote the column matrix representing ΦX(xi)

and Myi
∈ R

N2×1 the column matrix representing ΦY (yi). We will denote by

‖A‖2F =
∑p

i=1

∑q

j=1 A2
ij the Frobenius norm of a matrix A = (Aij) ∈ R

p×q and

by < A,B >F =
∑p

i=1

∑q

j=1 AijBij the Frobenius product of two matrices A and

B in R
p×q. The following minimization problem:

argmin
W∈RN2×N1

F (W) =

m
∑

i=1

‖WMxi
−Myi

‖2 + γ‖W‖2F , (1.4)

where γ ≥ 0 is a regularization scalar coefficient, generalizes ridge regression

to vector space images. The solution W defines the linear hypothesis g. Let

MX ∈ R
N1×m and MY ∈ R

N2×m be the matrices defined by:

MX = [Mx1
. . . Mxm

] MY = [My1
. . . Mym

]. (1.5)

Then, the optimization problem 1.4 can be re-written as:

argmin
W∈RN2×N1

F (W) = ‖WMX −MY ‖2F + γ‖W‖2F . (1.6)

Proposition 1 The solution of the optimization problem 1.6 is unique and is given

by either one of the following identities:

W = MY M>
X(MXM>

X + γI)−1 (primal solution)

W = MY (KX + γI)−1M>
X (dual solution).

(1.7)

where KX ∈ R
m×m is the Gram matrix associated to the kernel KX: Kij =

KX(xi, xj).

Proof The function F is convex and differentiable, thus its solution is unique and

given by ∇WF = 0. Its gradient is given by:

∇WF = 2 (WMX −MY)M>
X + 2γW. (1.8)

Thus,

∇WF = 0 ⇔ 2(WMX −MY)M>
X + 2γW = 0

⇔ W(MXM>
X + γI) = MY M>

X

⇔ W = MY M>
X(MXM>

X + γI)−1,

(1.9)

which gives the primal solution of the optimization problem. To derive the dual

solution, observe that

M>
X(MXM>

X + γI)−1 = (M>
XMX + γI)−1M>

X . (1.10)

2006/09/18 14:55

6 A General Regression Framework for Learning String-to-String Mappings

This can be derived without difficulty from a series expansion of (MXM>
X +γI)−1.

Since KX = M>
XMX ,

W = MY (M>
XMX + γI)−1 M>

X = MY (KX + γI)−1 M>
X , (1.11)

which is the second identity giving W.

For both solutions, a single matrix inversion is needed. In the primal case, the

complexity of that matrix inversion is in O(N3
1), or O(N2+α

1) with α < .376, using

the best known matrix inversion algorithms. When N1, the dimension of the feature

space FX , is not large, this leads to an efficient computation of the solution. For large

N1 and relatively small m, the dual solution is more efficient since the complexity

of the matrix inversion is then in O(m3), or O(m2+α).

Note that in the dual case, predictions can be made using kernel functions alone,

as W does not have to be explicitly computed. For any x ∈ X∗, let Mx ∈ R
N1×1

denote the column matrix representing ΦX(x). Thus, g(x) = WMx. For any

y ∈ Y ∗, let My ∈ R
N2×1 denote the column matrix representing ΦY (y). Then,

f(x) is determined by solving the pre-image problem:

f(x) = argmin
y∈Y ∗

‖WMx −My‖2 (1.12)

= argmin
y∈Y ∗

(

M>
y My − 2M>

y WMx

)

(1.13)

= argmin
y∈Y ∗

(

M>
y My − 2M>

y MY (KX + γI)−1M>
XMx

)

(1.14)

= argmin
y∈Y ∗

(

KY (y, y)− 2(Ky
Y)>(KX + γI)−1Kx

X

)

, (1.15)

where Ky
Y ∈ R

m×1 and Kx
X ∈ R

m×1 are the column matrices defined by:

Ky
Y =









KY (y, y1)

. . .

KY (y, ym)









and Kx
X =









KX(x, x1)

. . .

KX(x, xm)









. (1.16)

1.3.2 Generalization to Regression with Constraints

In many string-to-string mapping learning tasks such as those appearing in natural

language processing, there are some specific constraints relating the input and

output sequences. For example, in part-of-speech tagging, a tag in the output

sequence must match the word in the same position in the input sequence. More

generally, one may wish to exploit the constraints known about the string-to-string

mapping to restrict the hypothesis space and achieve a better result.

This section shows that our regression framework can be generalized in a natural

way to impose some constraints on the regression matrix W. Remarkably, this

generalization also leads to a closed form solution and to an efficient iterative

algorithm. Here again, the algorithm presented is not specific to string-to-string

learning problems and can be used for other regression estimation problems.

2006/09/18 14:55

1.3 Regression Problems and Algorithms 7

Some natural constraints that one may wish to impose on W are linear con-

straints on its coefficients. To take these constraints into account, one can introduce

additional terms in the objective function. For example, to impose that the coeffi-

cients with indices in some subset I0 are null, or that two coefficients with indices

in I1 must be equal, the following terms can be added:

β0

∑

(i,j)∈I0

W 2
ij + β1

∑

(i,j,k,l)∈I1

|Wij −Wkl|2, (1.17)

with large values assigned to the regularization factors β0 and β1. More generally,

a finite set of linear constraints on the coefficients of W can be accounted for in

the objective function by the introduction of a quadratic form defined over Wij ,

(i, j) ∈ N2 ×N1.

Let N = N2N1, and denote by W̄ the N×1 column matrix whose components are

the coefficients of the matrix W. The quadratic form representing the constraints

can be written as < W̄,RW̄ >, where R is a positive semi-definite symmetric

matrix. By Cholesky’s decomposition theorem, there exists a triangular matrix Ā

such that R = Ā>Ā. Denote by Āi the transposition of the ith row of Ā, Āi is an

N × 1 column matrix, then

< W̄,RW̄ >=< W̄, Ā>ĀW̄ >= ||ĀW̄||2 =

N
∑

i=1

< Āi,W̄ >2 . (1.18)

The matrix Āi can be associated to an N2×N1 matrix Ai, just as W̄ is associated

to W, and < Āi,W̄ >2=< Ai,W >2
F . Thus, the quadratic form representing the

linear constraints can be re-written in terms of the Frobenius products of W with

N matrices:

< W̄,RW̄ >=

N
∑

i=1

< Ai,W >2
F , (1.19)

with each Ai, i = 1, . . . , N , being an N2 ×N1 matrix. In practice, the number of

matrices needed to represent the constraints may be far less than N , we will denote

by C the number of constraint-matrices of the type Ai used.

Thus, the general form of the optimization problem including input-output

constraints becomes:

argmin
W∈RN2×N1

F (W) = ‖WMX −MY ‖2F + γ‖W‖2F +
C

∑

i=1

ηi < Ai,W >2
F , (1.20)

where ηi ≥ 0, i = 1, . . . , C, are regularization parameters. Since they can be factored

in the matrices Ai by replacing Ai with
√

ηiAi, in what follows, we will assume

without loss of generality that η1 = . . . = ηC = 1.

2006/09/18 14:55

8 A General Regression Framework for Learning String-to-String Mappings

Proposition 2 The solution of the optimization problem 1.20 is unique and is

given by the following identity:

W = (MY M>
X −

C
∑

i=1

ai Ai)U
−1, (1.21)

with U = MXM>
X + γI and









a1

. . .

aC









=
(

(< Ai,AjU
−1 >)ij + I

)−1









< MY M>
X U−1,A1 >

. . .

< MY M>
X U−1,AC >









. (1.22)

Proof The new objective function F is convex and differentiable, thus, its solution

is unique and given by ∇WF = 0. Its gradient is given by:

∇WF = 2 (WMX −MY)M>
X + 2γW + 2

C
∑

i=1

< Ai,W >F Ai. (1.23)

Thus,

∇WF = 0⇔ 2(WMX −MY)M>
X + 2γW +

C
∑

i=1

< Ai,W >F Ai = 0 (1.24)

⇔W(MXM>
X + γI) = MY M>

X −
C

∑

i=1

< Ai,W >F Ai (1.25)

⇔W = (MY M>
X −

C
∑

i=1

< Ai,W >F Ai)(MXM>
X + γI)−1. (1.26)

To determine the solution W, we need to compute the coefficients < Ai,W >F .

Let M = MY M>
X , ai =< Ai,W >F and U = MXM>

X +γI, then the last equation

can be re-written as:

W = (M−
C

∑

i=1

ai Ai)U
−1. (1.27)

Thus, for j = 1, . . . , C,

aj =< Aj ,W >F =< Aj ,MU−1 >F −
C

∑

i=1

ai < Aj ,AiU
−1 >F , (1.28)

which defines the following system of linear equations with unknowns aj :

∀j, 1 ≤ j ≤ C, aj +

C
∑

i=1

ai < Aj ,AiU
−1 >F =< Aj ,MU−1 >F . (1.29)

Since u is symmetric, for all i, j, 1 ≤ i, j ≤ C,

< Aj ,AiU
−1 >F = tr(A>

j AiU
−1) = tr(U−1A>

j Ai) =< AjU
−1,Ai >F . (1.30)

2006/09/18 14:55

1.3 Regression Problems and Algorithms 9

Thus, the matrix (< Ai,AjU
−1 >F)ij is symmetric and (< Ai,AjU

−1 >F)ij + I

is invertible. The statement of the proposition follows.

Proposition 1.20 shows that, as in the constrained case, the matrix W solution

of the optimization problem is unique and admits a closed form solution. The

computation of the solution requires inverting matrix U, as in the unconstrained

case, which can be done in time O(N3
1). But it also requires, in the general case,

the inversion of matrix (< Ai,AjU
−1 >F)ij + I which can be done in O(C3). For

large C, C close to N , the space and time complexity of this matrix inversion may

become prohibitive.

Instead, one can use an iterative method for computing W, using Equation 1.31:

W = (MY M>
X −

C
∑

i=1

< Ai,W >F Ai)U
−1, (1.31)

and starting with the solution of the unconstrained solution:

W0 = MY M>
XU−1. (1.32)

At iteration k, Wk+1 is determined by interpolating its value at the previous

iteration with the one given by Equation 1.31:

Wk+1 = (1− α)Wk + α (MY M>
X −

C
∑

i=1

< Ai,Wk >F Ai)U
−1, (1.33)

where 0 ≤ α ≤ 1. Let P ∈ R
(N2×N1)×(N2×N1) be the matrix such that

PW =
C

∑

i=1

< Ai,W >F AiU
−1. (1.34)

The following theorem proves the convergence of this iterative method to the

correct result when α is sufficiently small with respect to a quantity depending

on the largest eigenvalue of P. When the matrices Ai are sparse, as in many cases

encountered in practice, the convergence of this method can be very fast.

Theorem 3 Let λmax be the largest eigenvalue of P. Then, λmax ≥ 0 and for

0 < α < min
{

2
λmax+1 , 1

}

, the iterative algorithm just presented converges to the

unique solution of the optimization problem 1.20.

Proof We first show that the eigenvalues of P are all non-negative. Let X be an

eigenvector associated to an eigenvalue λ of P. By definition,

C
∑

i=1

< Ai,X >F AiU
−1 = λX. (1.35)

2006/09/18 14:55

10 A General Regression Framework for Learning String-to-String Mappings

Taking the dot product of each side with XU yields:

C
∑

i=1

< Ai,X >F < AiU
−1,XU >F = λ < X,XU >F . (1.36)

Since U = MXM>
X + γI, it is symmetric and positive and by Cholesky’s decompo-

sition theorem, there exists a matrix V such that U = VV>. Thus,

< X,XU >F =< X,XVV> >F = tr(X>XVV>) = tr(V>X>XV)

= tr((XV)>XV) = ‖XV‖2F ,
(1.37)

where we used the property tr(AB) = tr(BA), which holds for all matrices A and

B. Now, using this same property and the fact that U is symmetric, for i = 1, . . . , C,

< AiU
−1,XU >F = tr(U−1A>

i XU) = tr(A>
i XUU−1) =< Ai,X >F . (1.38)

Thus, Equation 1.36 can be re-written as:

C
∑

i=1

< Ai,X >2
F = λ‖XV‖2F . (1.39)

If ‖XV‖2F = 0, then for i = 1, . . . , C, < Ai,X >F = 0, which implies PX = 0 = λX

and λ = 0. Thus, if λ 6= 0, ‖XV‖2F 6= 0, and in view of Equation 1.39,

λ =

∑C

i=1 < Ai,X >2
F

‖XV‖2F
≥ 0. (1.40)

Thus, all eigenvalues of P are non-negative. This implies in particular that I + P

is invertible.

Equation 1.31 giving W can be rewritten as

W = W0 −PW⇐⇒W = (I + P)−1W0. (1.41)

with W0 = MY M>
XU−1, which gives the unique solution of the optimization

problem 1.20. Using the same notation, the iterative Definition 1.33 can written

for all n ≥ 0 as

Wn+1 = (1 − α)Wn + α (W0 −PWn). (1.42)

For n ≥ 0, define Vn+1 by Vn+1 = Wn+1 −Wn. Then,

∀n ≥ 0, Vn+1 = −α((I + P)Wn −W0). (1.43)

Thus, for all n ≥ 0, Vn+1 −Vn = −α(I + P)Vn. Summing these equalities gives:

∀n ≥ 0, Vn+1 = [I− α(I + P)]nV1. (1.44)

2006/09/18 14:55

1.3 Regression Problems and Algorithms 11

Assume that 0 < α < 1. Let µ be an eigenvalue of I− α(I + P), then, there exists

X 6= 0 such that

I− α(I + P)X = µX ⇐⇒ PX =
(1− α)− µ

α
X. (1.45)

Thus, (1−α)−µ

α
must be an eigenvalue of P. Since the eigenvalues of P are non-

negative,

0 ≤ (1− α)− µ

α
=⇒ µ ≤ 1− α < 1. (1.46)

By definition of λmax,

(1− α)− µ

α
≤ λmax =⇒ µ ≥ (1− α)− αλmax = 1− α(λmax + 1). (1.47)

Thus, for α < 2
λmax+1 ,

µ ≥ 1− α(λmax + 1) > 1− 2 = −1. (1.48)

By Equations 1.46 and 1.48, any eigenvalue µ of I−α(I+P) verifies |µ| < 1. Thus,

in view of Equation 1.48,

lim
n→∞

Vn+1 = lim
n→∞

[I− α(I + P)]nV1 = 0. (1.49)

By Equation 1.43 and the continuity of (I + P)−1, this implies that

lim
n→∞

(I + P)Wn = W0 =⇒ lim
n→∞

Wn = (I + P)−1W0, (1.50)

which proves the convergence of the iterative algorithm to the unique solution of

the optimization problem 1.20.

Corollary 4 Assume that 0 < α < min
{

2
‖P‖+1 , 1

}

, then the iterative algorithm

presented converges to the unique solution of the optimization problem 1.20.

Proof Since λmax ≤ ‖P‖, the results follows directly Theorem 3.

Thus, for smaller values of α, the iterative algorithm converges to the unique

solution of the optimization problem 1.20. In view of the proof of the theorem,

the algorithm converges at least as fast as in

O(max {|1− α|n, |(1− α)− αλmax|n}) = O(|1 − α|n). (1.51)

The extra terms we introduced in the optimization function to account for known

constraints on the coefficients of W (Equation 1.20), together with the existing

term ‖W‖2F , can be viewed as a new and more general regularization term for W.

This idea can be used in other contexts. In particular, in some cases, it could be

beneficial to use more general regularization terms for the weight vector in support

vector machines. We leave the specific analysis of such general regularization terms

to a future study.

2006/09/18 14:55

12 A General Regression Framework for Learning String-to-String Mappings

1.4 Pre-Image Solution for Strings

1.4.1 A General Problem: Finding Pre-Images

A critical component of our general regression framework is the pre-image com-

putation. This consists of determining the predicted output: given z ∈ FY , the

problem consists of finding y ∈ Y ∗ such that ΦY (y) = z, see Figure 1.1. Note that

this is a general problem, common to all kernel-based structured output problems,

including Maximum Margin Markov Networks Taskar et al. (2003) and SVMISOS

Tsochantaridis et al. (2004) although it is not explicitly described and discussed by

the authors (see Section 1.6).

Several instances of the pre-image problem have been studied in the past in cases

where the pre-images are fixed-size vectors Schölkopf and Smola (2002). The pre-

image problem is trivial when the feature mapping ΦY corresponds to polynomial

kernels of odd degree since ΦY is then invertible. There also exists a fixed-point

iteration approach for RBF kernels. In the next section, we describe a new pre-image

technique for strings that works with a rather general class of string kernels.

1.4.2 n-gram Kernels

n-gram kernels form a general family of kernels between strings, or more gener-

ally weighted automata, that measure the similarity between two strings using the

counts of their common n-gram sequences. Let |x|u denote the number of occur-

rences of u in a string x, then, the n-gram kernel kn between two strings y1 and y2

in Y ∗, n ≥ 1, is defined by:

kn(y1, y2) =
∑

|u|=n

|y1|u |y2|u, (1.52)

where the sum runs over all strings u of length n. These kernels are instances of

rational kernels and have been used successfully in a variety of difficult prediction

tasks in text and speech processing (Cortes et al., 2004).

1.4.3 Pre-Image Problem for n-gram Kernels

The pre-image problem for n-gram kernels can be formulated as follows. Let Σ be

the alphabet of the strings considered. Given z = (z1, . . . , zl), where l = |Σ|n and

zk is the count for an n-gram sequence uk, find string y such that for k = 1, . . . , l,

|y|uk
= zk. Several standard problems arise in this context: the existence of y given

z, its uniqueness when it exists, and the need for an efficient algorithm to determine

y when it exists. We will address all these questions in the following sections.

2006/09/18 14:55

1.4 Pre-Image Solution for Strings 13

ab

bc|abc| = 2

bb

|abb| = 3
ab

bc

bb

(a) (b)

Figure 1.2 (a) The De Bruijn graph Gz,3 associated with the vector z in the case of
trigrams (n = 3). The weight carried by the edge from vertex ab to vertex bc is the number
of occurrences of the trigram abc as specified by the vector z. (b) The expanded graph Hz,3

associated with Gz,3. An edge in Gz,3 is repeated as many times as there were occurrences
of the corresponding trigram.

1.4.4 Equivalent Graph-Theoretical Formulation of the Problem

The pre-image problem for n-gram kernels can be formulated as a graph problem by

considering the De Bruijn graph Gz,n associated with n and the vector z (van Lint

and Wilson, 1992). Gz,n is the graph constructed in the following way: associate

a vertex to each (n-1)-gram sequence and add an edge from the vertex identified

with a1a2 . . . an−1 to the vertex identified with a2a3 . . . an weighted with the count

of the n-gram a1a2 . . . an. The De Bruijn graph can be expanded by replacing each

edge carrying weight c with c identical unweighted edges with the same original

and destination vertices. Let Hz,n be the resulting unweighted graph.

The problem of finding the string y is then equivalent to that of finding an Euler

circuit of Hz,n, that is a circuit on the graph in which each edge is traversed exactly

one (van Lint and Wilson, 1992). Each traversal of an edge between a1a2 . . . an−1

and a1a2 . . . an corresponds to the consumption of one instance of the n-gram

a1a2 . . . an. Figure 1.2 illustrates the construction of the graphs Gz,n and Hz,n

in a special case.

1.4.5 Existence

The problem of finding an Eulerian circuit of a graph is a classical problem. Let

in-degree(q) denote the number of incoming edges of vertex q and out-degree(q)

the number of outgoing edges. The following theorem characterizes the cases where

the pre-image y exists.

Theorem 5 The vector z admits a pre-image iff for any vertex q of Hz,n, in-

degree(q) = out-degree(q).

2006/09/18 14:55

14 A General Regression Framework for Learning String-to-String Mappings

a b c

Figure 1.3 Example of a pre-image computation. The graph is associated with the
vector z = (0, 1, 0, 0, 0, 2, 1, 1, 0) whose coordinates indicate the counts of the bigrams
aa, ab, ac, ba, bb, bc, ca, cb, cc. The graph verifies the conditions of theorem 5, thus it admits
an Eulerian circuit, which in this case corresponds to the pre-image y = bcbca if we start
from the vertex a which can serve here as both the start and end symbol.

Proof The proof is a direct consequence of the graph formulation of the problem

and a classical result related to the problem of Euler (1736) Wilson, R. J. (1979).

1.4.6 Compact Algorithm

There exists a linear-time algorithm for determining an Eulerian circuit of a graph

verifying the conditions of theorem 5 Wilson, R. J. (1979). Here, we give a simple,

compact, and recursive algorithm that produces the same result as that algorithm

with the same linear complexity:

O(|Hz,n|) = O(

l
∑

i=1

zi) = O(|y|). (1.53)

Note that the complexity of the algorithm is optimal since writing the output

sequence y takes the same time (O(|y|)). The following is the pseudocode of our

algorithm.

Euler(q)

1 path← ε

2 for each unmarked edge e leaving q do

3 Mark(e)

4 path← e Euler(dest(e)) path

5 return path

A call to the function Euler with argument q returns a path corresponding to

an Eulerian circuit from q. Line 1 initializes the path to the empty path. Then,

each time through the loop of lines 2-4, a new outgoing edge of q is examined. If it

has not been previously marked (line 3), then path is set to the concatenation of

the edge e with the path returned by a call to Euler with the destination vertex

of e and the old value of path.

While this is a very simple algorithm for generating an Eulerian circuit, the proof

of its correctness is in fact not as trivial as that of the standard Euler algorithm.

However, its compact form makes it easy to modify and analyze the effect of the

modifications.

2006/09/18 14:55

1.4 Pre-Image Solution for Strings 15

a b c

Figure 1.4 Case of non-unique pre-images. Both bcbcca and bccbca are possible pre-
images. Our Euler algorithm can produce both solutions, depending on the order in
which outgoing edges of the vertex c are examined. The graph differs from that of Figure
1.3 only by self-loop at the vertex identified with c.

1.4.7 Uniqueness

In general, when it exists, the pre-image sequence is not unique. Figure 1.4 gives a

simple example of a graph with two distinct Eulerian circuits and distinct pre-image

sequences. A recent result of Kontorovich (2004) gives a characterization of the set

of strings that are unique pre-images. Let Φn be the feature mapping corresponding

to n-gram sequences, that is, Φn(y) is the vector whose components are the counts

of the n-grams appearing in y.

Theorem 6 (Kontorovich (2004)) The set of strings y such that Φ(y) admits a

unique pre-image is a regular language.

In all cases, our algorithm can generate all possible pre-images starting from

a given (n-1)-gram. Indeed, different pre-images simply correspond to different

orders of examining outgoing edges. In practice, for a given vector z, the number

of outgoing edges at each vertex is small (often 1, rarely 2). Thus, the extra cost of

generating all possible pre-images is very limited.

1.4.8 Generalized Algorithm

The algorithm we presented can be used to generate efficiently all possible pre-

images corresponding to a vector z when it admits a pre-image. However, due to

regression errors, the vector z might not admit a pre-image. Also, as a result of

regression, the components of z may be non-integer.

One solution to this problem is to round the components to obtain integer counts.

As we shall see, incrementing or decrementing a component by one only leads to

the local insertion or deletion of one symbol.

To deal with regression errors and the fact that y might not admit a pre-image,

we can simply use the same algorithm. To allow for cases where the graph is not

connected, the function Euler is called at each vertex q whose outgoing edges are

not all marked. The resulting path is the concatenation of the paths returned by

different calls to this function.

The algorithm is guaranteed to return a string y whose length is |y| = ∑l
i=1 zi

since each edge of the graph Hz,n is visited exactly once. Clearly, the result is a

pre-image when z admits one. But, how different is the output string y from the

2006/09/18 14:55

16 A General Regression Framework for Learning String-to-String Mappings

a b c

Figure 1.5 Illustration of the application of the generalized algorithm to the case of a
graph that does not admit the Euler property. The graph differs from that of Figure 1.3
by just one edge (edge in red). The possible pre-images returned by the algorithm are
bccbca and bcbcca.

a b c

Figure 1.6 Further illustration of the application of the generalized algorithm to the
case of a graph that does not admit the Euler property. The graph differs from that of
Figure 1.3 by just one edge (the missing edge in red). The pre-image returned by the
algorithm is bcba.

original pre-image when we modify the count of one of the components of z by one,

either by increasing or decreasing it? Figures 1.3 and 1.4 can serve to illustrate that

in a special case since the graph of Figure 1.4 differs from that of Figure 1.3 by

just one edge, which corresponds to the existence or not of the bigram cc.1 The

possible pre-images output by the algorithm given the presence of the bigram cc

only differ from the pre-image in the absence of the bigram cc by one letter, c.

Their edit-distance is one. Furthermore, the additional symbol c cannot appear at

any position in the string, its insertion is only locally possible.

Figure 1.5 illustrates another case where the graph differs from that of Figure 1.3

by one edge corresponding to the bigram bc. As in the case just discussed, the

potential pre-images can only contain one additional symbol, c, which is inserted

locally.

Figure 1.6 illustrates yet another case where the graph differs from that of

Figure 1.3 by one edge missing which corresponds to the bigram bc. The graph

does not have the Euler property. Yet, our algorithm can be applied and outputs

the pre-image bcba.

Thus, in summary, the algorithm we presented provides a simple and efficient

solution to the pre-image problem for strings for the family of n-gram kernels. It

also has the nice property that changing a coordinate in feature space has minimal

impact on the actual pre-image found.

One can use additional information to further enhance the accuracy of the pre-

image algorithm. For example, if a large number of sequences over the target

1. We can impose the same start and stop symbol, a, for all sequences.

2006/09/18 14:55

1.5 Speeding-up Training 17

alphabet is available, we can create a statistical model such as an n-gram model

based on those sequences. When the algorithm generates several pre-images, we can

use that statistical model to rank these different pre-images by exploiting output

symbol correlations. In the case of n-gram models, this can be done in linear time

in the sum of the lengths of the pre-image sequences output by the algorithm.

1.5 Speeding-up Training

This section examines two techniques for speeding up training when using our

general regression framework.

1.5.1 Incomplete Cholesky Decomposition

One solution is to apply incomplete Cholesky decomposition to the kernel matrix

KX ∈ R
m×m (Bach and Jordan, 2002). This consists of finding a matrix L ∈ R

m×n,

with n� m, such that:

KX = LL>. (1.54)

Matrix L can be found in time O(mn2) using an incomplete Cholesky decomposition

which takes O(mn2) operations (see e.g., (Bach and Jordan, 2002), for the use of

this technique in the context of kernel independent component analysis). To invert

KX + γI one can use the so-called inversion lemma or Woodbury formula:

(A + BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1, (1.55)

which here leads to:

(γI + LL>)−1 =
1

γ
[I− L (γI + L>L)−1 L>]. (1.56)

Since (γI+L>L) ∈ R
n×n, the cost of the matrix inversion in the dual computation is

reduced from O(m3) to O(n3). This method can thus be quite effective at reducing

the computational cost. Our experiments (Section 1.7.4) have shown however that

the simple greedy technique described in the next section is often far more effective.

1.5.2 Greedy Technique

This consists, as with Kernel Matching Pursuit (KMP) (Vincent and Bengio, 2000),

of defining a subset n� m of kernel functions in an incremental fashion. This subset

is then used to define the expansion. Consider the case of a finite-dimensional output

space:

g(x) = (
∑

i∈S

αi1KX(xi, x), . . . ,
∑

i∈S

αiN2
KX(xi, x)), (1.57)

2006/09/18 14:55

18 A General Regression Framework for Learning String-to-String Mappings

where S is the set of indices of the kernel functions used in the expansion, initialized

to ∅. The algorithm then consists of repeating the following steps so long as |S| < n:

1. Determine the training point xj with the largest residual:

j = argmax
i∈{1,...,m}\S

||ΦY (yi)− g(xi)||2; (1.58)

2. Add xj to the set of ”support vectors” and update α:

S ← S ∪ {xj};
α← argmin

α̂

∑m
i=1 ||ΦY (yi)− g(xi)||2. (1.59)

The matrix inversion required in step 2 is done with α = KS
−1KS,∗Y where KS

is the kernel matrix between input examples indexed by S only, and KS,∗ is the

kernel matrix between S and all other examples.

In practice, this can be computed incrementally via rank one updates (Smola and

Bartlett, 2001), which results in a running time complexity of O(nm2N2) as with

KMP (Vincent and Bengio, 2000) (but there, N2 = 1). A further linear speed-up

is possible by restricting the subset of the data points in step 1. Note that this

approach differs from KMP in that we select basis functions that approximate all

the output dimensions at once, resulting in faster evaluation times. The union of

the support vectors over all output dimensions is indeed smaller.

One could also apply this procedure to the iterative regression algorithm incor-

porating constraints of Section 1.3.2. One would need to add a ”support vector”

greedily as above, run several iterations of update rule given in equation 1.27, and

then repeat n times.

1.6 Comparison with Other Algorithms

This section compares our regression framework for learning string-to-string map-

pings with other algorithms described in the literature for the same task. It describes

the objective function optimized by these other algorithms, which can all be viewed

as classification-based, and points out important differences in the computational

complexity of these algorithms.

1.6.1 Problem Formulation

Other existing algorithms for learning a string-to-string mapping (Collins and

Duffy, 2001; Tsochantaridis et al., 2004; Taskar et al., 2003) formulate the problem

as that of learning a function f : X×Y → R defined over the pairs of input-output

strings, such that the output ŷ(x) associated to the input x is given by

ŷ(x) = argmax
y∈Y

f(x, y). (1.60)

2006/09/18 14:55

1.6 Comparison with Other Algorithms 19

The hypothesis space considered is typically that of linear functions. Pairs of input-

output strings are mapped to a feature space F via a mapping ΦXY : X × Y → F .

Thus, the function f learned is defined as

∀(x, y) ∈ X × Y, f(x, y) = w ·ΦXY (x, y), (1.61)

where w ∈ F . Thus, a joint embedding ΦXY is used, unlike the separate embeddings

ΦX and ΦY adopted in our framework. The learning problem can be decomposed

into the following two problems, as in our case:

learning the weight vector w to determine the linear function f , which is similar

to our problem of determining W ;

given x, computing ŷ(x) following Equation 1.60, which is also a pre-image

problem. Indeed, let gx be the function defined by gx(y) = f(x, y), then

ŷ(x) = argmax
y∈Y

gx(y). (1.62)

When the joint embedding ΦXY can be decomposed as

ΦXY (x, y) = ΦX(x) ⊗ ΦY (y), (1.63)

where ⊗ indicates the tensor product of the vectors, the hypothesis functions

sought coincide with those assumed in our regression framework. In both cases,

the problem then consists of learning a matrix W between the same two spaces as

in our approach. The only difference lies is the choice of the loss function.

Other joint embeddings ΦXY may help encode conveniently some prior knowledge

about the relationship between input and output sequences (see Weston et al. (2004)

for an empirical analysis of the benefits of joint feature spaces). For example, with

〈ΦXY (x, y), ΦXY (x′, y′)〉 = 〈ΦX(x)⊗ ΦY (y),R (ΦX(x′)⊗ ΦY (y′))〉 (1.64)

the matrix R can be used to favor some terms of W. In our method, such

relationships can also be accounted for by imposing some constraints on the matrix

W and solving the generalized regression problem with constraints described in

Section 1.3.2.

The weight vector w in previous techniques is learned using the kernel perceptron

algorithm (Collins and Duffy, 2001), or a large-margin maximization algorithm

(Tsochantaridis et al., 2004; Taskar et al., 2003). These techniques treat the learning

problem outlined above by imposing that the pair (x, y) with y matching x obtain a

higher score than all other pairs (x, y′). This is done by using a binary loss function

as in classification which ignores the similarities between the output sequences. To

correct for that effect, classification techniques such as SVMISOS (Tsochantaridis

et al., 2004) modify the binary loss function to impose the following condition for

i = 1, . . . , m and any y ∈ Y − {yi}

f(xi, yi) > f(xi, y) + L(yi, y), (1.65)

2006/09/18 14:55

20 A General Regression Framework for Learning String-to-String Mappings

where L is a loss function based on the output strings. This makes the loss function

similar, though not equivalent, to the objective function of a regression problem.

To further point out this similarity, consider the case of the joint embedding (1.63).

The inequality can then be re-written as

ΦY (yi)
>WΦX(xi)− ΦY (y)>WΦX(xi) ≥ L(yi, y). (1.66)

In our general regression framework, using Equation 1.4, a solution with zero

empirical error, i.e., WΦX(xi) = ΦY (yi) for i = 1, . . . , m, verifies the following

equality:

||WΦX(xi)− ΦY (y)||2 = ||WΦX(xi)− ΦY (yi)||2 + L(yi, y), (1.67)

where L(yi, y) = ||ΦY (yi) − ΦY (y)||2. Assuming that the outputs are normalized,

i.e., ||ΦY (y)|| = 1 for all y, this equation is equivalent to:

ΦY (yi)
>WΦX(xi)− ΦY (y)>WΦX(xi) =

1

2
L(yi, y), (1.68)

which is similar to the zero-one loss constraint of Equation 1.66 with the inequality

replaced with an equality here.

We argue that in structured output prediction problems, it is often natural to

introduce a similarity measure capturing the closeness of the outputs. In view of

that, minimizing the corresponding distance is fundamentally a regression problem.

1.6.2 Computational Cost

The computational cost of other techniques for learning string-to-string mapping

significantly differs from that of our general regression framework.

In the case of other techniques, a pre-image computation is required at every it-

eration during training, and the algorithms can be shown to converge in polynomial

time if the pre-image computation itself can be computed in polynomial time. In

our case, pre-image calculations are needed only at testing time, and do not affect

training time. Since the pre-image computation may be often very costly, this can

represent a substantial difference in practice.

The complexity of our Euler circuit string pre-image algorithm is linear in the

length of the pre-image string y it generates. It imposes no restriction on the type

of regression technique used, nor does it constrain the choice of the features over

the input X .

The computation of the pre-image in several of the other techniques consists of

applying the Viterbi algorithm, possibly combined with a heuristic pruning, to a

dynamically expanded graph representing the set of possible candidate pre-images.

The complexity of the algorithm is then O(|y||G|) where y is the string for which

a pre-image is sought and G the graph expanded. The practicality of such pre-

image computations often relies on some rather restrictive constraints on the type

of features used, which may impact the quality of the prediction. As an example,

2006/09/18 14:55

1.7 Experiments 21

in the experiments described by Taskar et al. (2003), a Markovian assumption is

made about the output sequences, and furthermore the dependency between the

input and output symbols is strongly restricted: yi, the output symbol at position

i, depends only on xi, the symbol at the same position in the input.

The two approaches differ significantly in terms of the number of variables to

estimate in the dual case. With the kernel perceptron algorithm (Collins and Duffy,

2001) and the large-margin maximization algorithms of Tsochantaridis et al. (2004)

and Taskar et al. (2003), the number of variables to estimate is at most m|Y |, where

|Y |, the number of possible labels, could be potentially very large. On the positive

side, this problem is partially alleviated thanks to the sparsity of the solution. Note

that the speed of training is also proportional to the number of non-zero coefficients.

In the case of our general regression framework with no constraints, the number

of dual variables is m2, and is therefore independent of the number of output labels.

On the negative side, the solution is in general not sparse. The greedy incremental

technique described in Section 1.5 helps overcome this problem however.

1.7 Experiments

1.7.1 Description of the Dataset

To test the effectiveness of our algorithms, we used exactly the same dataset as the

one used in the experiments reported by Taskar et al. (2003) with the same specific

cross-validation process and the same folds: the data is partitioned into ten folds,

and ten times one fold is used for training, and the remaining nine are used for

testing.

The dataset, including the partitioning, is available for download from http:

//ai.stanford.edu/∼btaskar/ocr/. It is a subset of the handwritten words

collected by Rob Kassel at the MIT Spoken Language Systems Group for an optical

character recognition (OCR) task. It contains 6,877 word instances with a total of

52,152 characters. The first character of each word has been removed to keep only

lowercase characters (this decision was not made by us. We simply kept the dataset

unchanged to make the experiments comparable). The image of each character has

been rasterized and normalized into a 16× 8 = 128 binary-pixel representation.

The general handwriting recognition problem associated with this dataset is to

determine a word y given the sequence of pixel-based images of its handwritten

segmented characters x = x1 · · ·xk. We report our experimental results in this task

with two different settings.

1.7.2 Perfect Segmentation

Our first experimental setting matches exactly that of Taskar et al. (2003), where

a perfect image segmentation is given with a one-to-one mapping of images to

2006/09/18 14:55

22 A General Regression Framework for Learning String-to-String Mappings

characters. Image segment xi corresponds exactly to one word character, the

character, yi, of y in position i.

To exploit these conditions in learning, we will use the general regression frame-

work with constraints described in Section 1.3.2. The input and output feature

mappings ΦX and ΦY are defined as follows.

Let vi, i = 1, . . . , N1, denote all the image segments in our training set and let

kX be a positive definite symmetric kernel defined over such image segments. We

denote by l the maximum length of a sequence of images in the training sample.

The feature vector ΦX(x) associated to an input sequence of images x = x1 · · ·xq,

q ≤ l, is defined by:

ΦX(x) = [k′
X(v1, xp(v1)), . . . , k

′
X(vN1

, xp(vN1
))]

>. (1.69)

where for i = 1, . . . , N1, k′
X(vi, xp(vi)) = kX(vi, xp(vi)) if p(vi) ≤ q, k′

X(vi, xp(vi)) =

0 otherwise. Thus, we use a so-called empirical kernel map to embed the input

strings in the feature space FX of dimension N1.

The feature vector ΦY (y) associated to the output string y = y1 · · · yq, q ≤ l, is

a 26l-dimensional vector defined by

ΦY (y) = [φY (y1), . . . , φY (yq), 0, . . . , 0]>, (1.70)

where φY (yi), 1 ≤ i ≤ q, is a 26-dimensional vector whose components are all

zero except from the entry of index yi, which is equal to one. With this feature

mapping, the pre-image problem is straightforward since each position can be

treated separately. For each position i, 1 ≤ i ≤ l, the alphabet symbol with the

largest weight is selected.

Given the embeddings ΦX and ΦY , the matrix W learned by our algorithm

is in R
N2×N1 , with N1 ≈ 5, 000 and N2 = 26l. Since the problem setting is

very restricted, we can impose some constraints on W. For a given position i,

1 ≤ i ≤ l, we can assume that input features corresponding to other positions,

that is input features vj for which p(vj) 6= i, are (somewhat) irrelevant for

predicting the character in position i. This translates into imposing that the

coefficients of W corresponding to such pairs be small. For each position i, there

are 26(N1 − | {vj : p(vj) = i} |) such constraints, resulting in a total of

C =

l
∑

i=1

26(N1 − |{vj : p(vj) = i}|) = 26N1(l − 1) (1.71)

constraints. These constraints can be easily encoded following the scheme outlined

in Section 1.3.2. To impose a constraint on the coefficient Wrs of W, it suffices

to introduce a matrix A whose entries are all zero except from the coefficient of

row index r and column index s, which is set to one. Thus, < W,A >= Wrs. To

impose all C constraints, C matrices Ai, i = 1, . . . , C, of this type can be defined.

In our experiments, we used the same regularization parameter η for all of these

constraints.

2006/09/18 14:55

1.7 Experiments 23

Technique Accuracy

REG-constraints η = 0 84.1% ±.8%

REG-constraints η = 1 88.5% ±.9%

REG 79.5% ±.4%

REG-Viterbi (n = 2) 86.1% ±.7%

REG-Viterbi (n = 3) 98.2% ±.3%

SVMS (cubic kernel) 80.9% ±.5%

M3Ns (cubic kernel) 87.0% ±.4%

Table 1.1 Experimental results with the perfect segmentation setting. The M3N and
SVM results are read from the graph in Taskar et al. (2003)

In our experiments, we used the efficient iterative method outlined in Sec-

tion 1.3.2 to compute W. However, it is not hard to see that in this case, thanks

to the simplicity of the constraint matrices Ai, i = 1, . . . , C, the resulting matrix

(< Ai,AjU
−1 >F)ij +I can be given a simple block structure that makes it easier

to invert. Indeed, it can be decomposed into l blocks in R
N1×N1 that can be inverted

independently. Thus, the overall complexity of matrix inversion, which dominates

the cost of the algorithm, is only O(lN3
1) here.

Table 1.1 reports the results of our experiments using a polynomial kernel of

third degree for kX , and the best empirical value for the ridge regression coefficient

γ which was γ = 0.01. The accuracy is measured as the percentage of the total

number of word characters correctly predicted. REG refers to our general regression

technique, REG-constraints to our general regression with constraints. The results

obtained with the regularization parameter η set to 1 are compared to those with

no constraint, i.e., η = 0. When η = 1, the constraints are active and we observe a

significant improvement of the generalization performance.

For comparison, we also trained a single predictor over all images of our training

sample, regardless of their positions. This resulted in a regression problem with a

26-dimensional output space, and m ≈ 5, 000 examples in each training set. This

effectively corresponds to a hard weight-sharing of the coefficients corresponding to

different positions within matrix W, as described in Section 1.3.2. The first 26 lines

of W are repeated (l − 1) times. That predictor can be applied independently to

each image segment xi of a sequence x = x1 · · ·xq . Here too, we used a polynomial

kernel of third degree and γ = 0.01 for the ridge regression parameter. We also

experimented with the use of an n-gram statistical model based on the words of

the training data to help discriminate between different word sequence hypotheses,

as mentioned in Section 1.4.8.

Table 1.1 reports the results of our experiments within this setting. REG refers to

the hard weight-sharing regression without using a statistical language model and is

directly comparable to the results obtained using Support Vector Machines (SVMs).

REG-Viterbi with n = 2 or n = 3 corresponds to the results obtained within this

setting using different n-gram order statistical language models. In this case, we

2006/09/18 14:55

24 A General Regression Framework for Learning String-to-String Mappings

used the Viterbi algorithm to compute the pre-image solution, as in M3Ns. The

results shows that coupling a simple predictor with a more sophisticated pre-image

algorithm can significantly improve the performance. The high accuracy achieved

in this setting can be viewed as reflecting the simplicity of this task. The dataset

contains only 55 unique words, and the same words appear in both the training

and the test set.

We also compared all these results with the best result reported by Taskar et al.

(2003) for the same problem and dataset. The experiment allowed us to compare

these results with those obtained using M3Ns. But, we are interested in more

complex string-to-string prediction problems where restrictive prior knowledge such

as a one-to-one mapping is not available. Our second set of experiments corresponds

to a more realistic and challenging setting.

1.7.3 String-to-String Prediction

Our method generalizes indeed to the much harder and more realistic problem

where the input and output strings may be of different length and where no prior

segmentation or one-to-one mapping is given. For this setting, we directly estimate

the counts of all the n-grams of the output sequence from one set of input features

and use our pre-image algorithm to predict the output sequence.

In our experiment, we chose the following polynomial kernel KX between two

image sequences:

KX(x1, x2) =
∑

x1,i,x2,j

(1 + x1,i x2,j)
d
, (1.72)

where the sum runs over all n-grams x1,i and x2,j of input sequences x1 and x2. The

n-gram order and the degree d are both parameters of the kernel. For the kernel

KY we used n-gram kernels.

As a result of the regression, the output values, that is the estimated counts

of the individual n-grams in an output string are non-integers and need to be

discretized for the Euler circuit computation, see Section 1.4.8. The output words

are in general short, so we did not anticipate counts higher than one. Thus, for each

output feature, we determined just one threshold above which we set the count to

one. Otherwise, we set the count to zero. These thresholds were determined by

examining each feature at a time and imposing that averaged over all the strings

in the training set, the correct count of the n-gram be predicted.

Note that, as a consequence of this thresholding, the predicted strings do not

always have the same length as the target strings. Extra and missing characters are

counted as errors in our evaluation of the accuracy.

We obtained the best results using unigrams and second-degree polynomials in

the input space and bigrams in the output space. For this setting, we obtained an

accuracy of 65.3± 2.3.

A significant higher accuracy can be obtained by combining the predicted integer

counts from several different input and output kernel regressors, and computing an

2006/09/18 14:55

1.7 Experiments 25

100 316 1000 3162 10000
0.2

0.3

0.4

0.5

0.6

0.7

T
es

t E
rr

or

n

RANDOM
CHOLESKY
GREEDY

Figure 1.7 Comparison of random sub-sampling of n points from the OCR dataset,
incomplete Cholesky decomposition after n iterations and greedy incremental learning
with n basis functions. The main bottleneck for all of these algorithms is the matrix
inversion where the size of the matrix is n× n, we therefore plot test error against n. The
furthest right point is the test error rate of training on the full training set of n = 4, 617
examples.

Euler circuit using only the n-grams predicted by the majority of the regressors.

Combining 5 such regressors, we obtained a test accuracy of 75.6± 1.5.

A performance degradation for this setting was naturally expected, but we view it

as relatively minor given the increased difficulty of the task. Furthermore, our results

can be improved by combining a statistical model with our pre-image algorithm.

1.7.4 Faster Training

As pointed out in Section 1.5, faster training is needed when the size of the training

data increases significantly. This section compares the greedy incremental technique

described in that section with the partial Cholesky decomposition technique and

the baseline of randomly sub-sampling n points from the data, which of course also

results in reduced complexity, giving only a n × n matrix to invert. The different

techniques are compared in the perfect segmentation setting on the first fold of the

data. The results should be indicative of the performance gain in other folds.

In both partial Cholesky decomposition and greedy incremental learning, n

iterations are run and then an n × n matrix is inverted, which may be viewed

as the bottleneck. Thus, to determine the learning speed we plot the test error

for the regressions problem versus n. The results are shown in Figure 1.7. The

greedy learning technique leads to a considerable reduction in the number of kernel

computations required and the matrix inversion size for the same error rate as

2006/09/18 14:55

26 A General Regression Framework for Learning String-to-String Mappings

the full dataset. Furthermore, in greedy incremental learning we are left with

only n kernels to compute for a given test point, independently of the number of

outputs. These reasons combined make the greedy incremental method an attractive

approximation technique for our regression framework.

1.8 Conclusion

We presented a general regression framework for learning string-to-string mappings

and illustrated its use in several experiments. Several paths remained to be explored

to further extend the applicability of this framework.

The pre-image algorithm for strings that we described is general and can be used

in other contexts. But, the problem of pre-image algorithms for strings may have

other efficient solutions that need to be examined.

Efficiency of training is another key aspect of all string-to-string mapping algo-

rithms. We presented several heuristics and approximations that can be used to

substantially speed up training in practice. Other techniques could be studied to

further increase speed and extend the application of our framework to very large

tasks without sacrificing accuracy.

Much of the framework and algorithms presented can be used in a similar way

for other prediction problems with structured outputs. A new pre-image algorithm

needs to be introduced however for other learning problems with structured outputs.

2006/09/18 14:55

References

Francis R. Bach and Michael I. Jordan. Kernel independent component analysis.

Journal of Machine Learning Research (JMLR), 3:1–48, 2002.

Peter L. Bartlett, Michael Collins, Ben Taskar, and David McAllester. Exponen-

tiated Gradient Algorithms for Large-margin Structured Classification. Neural

Information Processing Systems 17, 2004.

Michael Collins and Nigel Duffy. Convolution kernels for natural language. Neural

Processing Information Systems 14, 2001.

Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational Kernels: Theory

and Algorithms. Journal of Machine Learning Research (JMLR), 5:1035–1062,

2004.

Leo Kontorovich. Uniquely Decodable n-gram Embeddings. Theoretical Computer

Science, 329/1-3:271–284, 2004.

Craig Saunders, Alexander Gammerman, and Volodya Vovk. Ridge Regression

Learning Algorithm in Dual Variables. In Proceedings of the Fifteenth Inter-

national Conference on Machine Learning, pages 515–521. Morgan Kaufmann

Publishers Inc., 1998. ISBN 1-55860-556-8.

Bernhard Schölkopf and Alex Smola. Learning with Kernels. MIT Press: Cam-

bridge, MA, 2002.

Alex J. Smola and Peter L. Bartlett. Sparse greedy Gaussian process regression.

Neural Processing Information Systems 13, pages 619–625, 2001.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-Margin Markov Networks.

Neural Information Processing Systems 16, 2003.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun.

Support Vector Machine Learning for Interdependent and Structured Output

Spaces. ICML, 2004.

Jacobus H. van Lint and Richard M. Wilson. A Course in Combinatorics. Cam-

bridge University Press, 1992.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag,

New York, 1995.

Pascal Vincent and Yoshua Bengio. Kernel Matching Pursuit. Technical Report

1179, Département d’Informatique et Recherche Opérationnelle, Université de

Montréal, 2000.

2006/09/18 14:55

28 References

Jason Weston, Olivier Chapelle, André Elisseeff, Bernhard Schölkopf, and Vladimir

Vapnik. Kernel Dependency Estimation. Neural Processing Information Systems

15, 2002.

Jason Weston, Bernhard Schölkopf, Olivier Bousquet, Tobias Mann, and

William Stafford Noble. Joint kernel maps. Technical report, Max Planck Insti-

tute for Biological Cybernetics, 2004.

Wilson, R. J. Introduction to Graph Theory. Longman, 1979.

