Network Optimizations for Large Vocabulary
Speech Recognition

Mehryar Mohri and Michael Riley

{mohri,riley}@research.att.com
ATET Labs — Research
180 Park Avenue, Florham Park, NJ 07932-0971

Abstract

The redundancy and the size of networks in large-vocabulary speech recognition
systems can have a critical effect on their overall performance. We describe the
use of two new algorithms: weighted determinization and minimization [12]. These
algorithms transform recognition labeled networks into equivalent ones that require
much less time and space in large-vocabulary speech recognition. They are both
optimal: weighted determinization eliminates the number of alternatives at each
state to the minimum, and weighted minimization reduces the size of deterministic
networks to the smallest possible number of states and transitions. These algorithms
generalize classical automata determinization and minimization to deal properly
with the probabilities of alternative hypotheses and with the relationships between
units (distributions, phones, words) at different levels in the recognition system. We
illustrate their use in several applications, and report the results of our experiments.

Key words: Large vocabulary speech recognition; search; network optimization;
weighted finite-state transducers; stochastic automata.

1 Introduction

The labeled networks used in the search stage of speech recognition systems
are often highly redundant. Many paths correspond to the same word contents
(word lattices and language models), or to the same phonemes (pronunciation
dictionaries) for instance, with distinct weights or probabilities. More gener-
ally, at a given state of a network there might be several thousand alternative
outgoing arcs, many of them with the same input label. This nondetermin-
ism directly affects the speed of large vocabulary speech recognition systems.
Weighted determinization allows one to address exactly this problem by re-
ducing the alternatives at each state to the minimum. In other words, the

Preprint submitted to Elsevier Preprint February 4, 1998

deterministic result of the algorithm contains at each state at most one out-
going arc labeled with a given element of the alphabet considered (words,
phonemes, etc.).

Other related work has been done to reduce that redundancy using determin-
istic trees in particular lexical trees or the so called tree-based representations
[3,6,18-20]. The weighted determinization algorithm that we present is a very
general algorithm that differs from those approaches by the following: it does
not require that networks be constructed as trees, it applies to all labeled net-
works used in speech processing, and it leads to deterministic networks that
are in general much more compact than trees. ! Weighted determinization is
not an approximation, a pruning or a heuristic. Its result is exact: for each
string, the weight (likelihood) of the best path for that string is the same in
the original and in the determinized network.

The size of the deterministic networks used in speech recognition can also
affect the overall performance of the systems. We briefly describe an algorithm,
weighted minimization, for reducing to the minimum the size of deterministic
networks.

We describe several applications of weighted determinization and weighted
minimization that show the benefits of using these algorithms. They give a
significant increase in the time and space efficiency of large vocabulary speech
recognition systems by optimizing the networks:

e word lattices:
weighted determinization and weighted minimization help to considerably
increase the speed of use of word lattices and to dramatically reduce their
size. We report the results of our experiments with word lattices obtained
in the DARPA North American Business (NAB) task, and in the DARPA
Air Travel Information System (ATIS) task,
e (Context-dependent phone models:
context-dependent phone models are very useful in high-accuracy recogni-
tion [8,22]. Weighted determinization and minimization can be used to give
a very efficient representation of context-dependent models. This is crucial
in real-time large-vocabulary speech recognition systems,
e the NAB task:
by reducing considerably the redundancy of networks, weighted deter-
minization leads to a very substantial increase of speed in large vocabulary
systems used in the NAB task,
e the One Million Names task:
we present a new task that consists of the real-time discrimination among
one million surnames (the One Million Names task). Weighted determiniza-

1 'We use the term network here and in some cases in the following instead of labeled
network, or the more specific terms acceptors or transducers, to shorten sentences.

tion reduces considerably the number of alternatives in the corresponding
networks and weighted minimization their size.

We briefly describe these algorithms, then present their practical use and our
experimental results.

2 Algorithms

Weighted determinization and minimization are very general algorithms that
apply to weighted acceptors and finite-state transducers. Finite-state trans-
ducers are automata in which each transition has an output label in addition
to the more familiar input label [5,4]. Weighted acceptors or transducers are
acceptors or transducers in which each transition has a weight as well as the
input, or input and output labels.

We cannot give a detailed description of these algorithms here. In the following
sections, we briefly illustrate the determinization of weighted acceptors, the
determinization of weighted transducers, and the minimization of weighted
acceptors. We have given elsewhere a full description of these algorithms,
including their mathematical basis and proofs of their soundness [9,10,12,13].

2.1 Determinization of Weighted Acceptors

A weighted acceptor or transducer A is said to be deterministic 2 iff at each
state of A there exists at most one transition labeled with any given element of
the input alphabet. Figure 1 gives an example of a non-deterministic weighted
acceptor: at state 0, for instance, there are several transitions with the same
label a.

We use the same notation for all figures: a bold circle represents an initial
state, a double circle a final state. Labels of the transitions are separated from
the weights by the symbol ’/’. Input and output labels, if any, are separated
by .

Weighted determinization applies to a weighted acceptor and outputs an
equivalent weighted acceptor that is deterministic. The determinization of
weighted acceptors is a generalization of the classical determinization of au-
tomata [2]. Unlike the classical case though, not all weighted automata can

2 The appropriate term used in theoretical computer science is subsequential [11].

Fig. 1. Non-deterministic weighted automaton Aj.

be determinized. > However, most weighted acceptors used in speech process-
ing can be determinized. In particular, any acyclic weighted acceptor admits
determinization.

The advantage of weighted determinization is clear: a deterministic acceptor is
much more efficient to use than an equivalent non-deterministic one because it
allows no alternative at any state. Given an input label a and a state g, there
is at most one transition with an input label matching a in the deterministic
machines. With non-deterministic weighted acceptors, one needs to explore
all the transitions with an input label matching a. For an input string s,
these transitions could lead to many different paths that one would need to
keep track of in order to compute the weight associated to s. In terms of
complexity, the computation of the weight is linear and independent of the
size of the machine |A| in the deterministic case (O(]s|)), quadratic in the non-
deterministic case (O(|4] - [s])). * A deterministic weighted automaton is not
redundant. It contains at most one path labeled with any given input string.
At each state, the choice of the transition to explore is uniquely determined
by the input label to match.

We consider here the common case in speech recognition, where the weights
are interpreted as negative logarithms of probabilities. The weight of a path is
obtained by adding the weights of its transitions. The output associated to an
accepted input string is the minimum of the weights of all paths corresponding
to that string. The case where weights are interpreted as probabilities can be
treated similarly.

Figure 2 gives the result of weighted determinization for the input acceptor A;.
The two acceptors A; and A, realize exactly the same function: they associate

3 We have determined the set of weighted automata that admit determinization
and given characterization theorems for unambiguous weighted acceptors that admit
determinization [12].

4 We denote by |s| the length of a string s, and by |A| the size of an automaton A.

Fig. 2. Equivalent weighted acceptor As obtained by weighted determinization from
Ay,

the same output weight to each input string. As an example, there are two
paths corresponding to the input string ae in A;. The corresponding weights
are: {1 +8 =19,3+ 11 = 14}. The minimum 9 is also the output associated
by A, to the string ae. This is a general characteristic of determinization: the
resultant weighted acceptor is exactly equivalent to the input.

Note that since the two weighted acceptors are equivalent they also have ex-
actly the same n-best list. The list of the best four strings and their weights
is identical for both acceptors A; and A, for instance:

(ae,9), (af,10), (be, 10), (bf, 11).

In general, several successive paths in the enumeration of the best paths might
be labeled with the same string if the acceptor is non-deterministic. But for
a deterministic acceptor, each path is guaranteed to be labeled with a dis-
tinct string. This shows the usefulness of weighted determinization for the
computation of n-best lists [12].

The algorithm is close to the classical powerset construction for unweighted
automata. ° However, since transitions with the same input label can have
different weights, one can only output the minimum of these weights and
needs to keep track of the leftover weight. Therefore, the states of the output
of weighted determinization can be viewed as subsets of the set of pairs (¢, w),
where ¢ is a state of the input acceptor and w the leftover weight.

The initial subset is {(7,0)}, where i is the initial state of the input acceptor.
For example, for the acceptor A; the initial subset is {(0,0)}. Each new subset
S is processed in turn. For each element of the alphabet a labeling at least
one transition leaving a state of S, a new transition ¢ leaving S is constructed
in the output machine. The label of t is a and its weight is the minimum of
the sums [+ w where w is the weight of an a-transition leaving a state p in S
and [is p’s leftover weight. The destination state of ¢ is the subset S’ made of
pairs (q,w), where ¢ is a state reached by a transition labeled with a from a

® The powerset construction is based on the idea that each state of the deterministic
automaton corresponds to a set of states of the original non-deterministic one [2].

state of S, and w is the appropriate leftover weight.

As an example, the state 0 in Ay corresponds to the initial subset {(0,0)}
constructed by the algorithm. The transition leaving 0 in A, labeled with
a is obtained by considering the two transitions labeled with a leaving the
state 0 in A;. Its weight is obtained by taking the minimum of the weight of
these two transitions. Its destination state is the subset S' = {(1,-1+1 =
0),(2,—1 43 = 2)} numbered 1 in As.

Note that the order of expansion of the output acceptor does not affect the
result. Further, the work done for a given subset S depends only on the ele-
ments of S and not on the previous or future work for other subsets. This is
an important feature of weighted determinization because it makes it possible
to give an on-the-fly implementation of the algorithm. Only states and transi-
tions required by the search algorithm are expanded for a given input string.
This plays an important role in the implementation of an efficient n-best de-
coder and in other applications where one does not wish to expand the entire
acceptor.

2.2 Determinization of Weighted Transducers

The determinization of weighted acceptors can be generalized to that of weighted
transducers. Weighted transducer determinization applies to a weighted trans-
ducer and outputs an equivalent weighted transducer that is deterministic.
Here again, unlike the classical case, not all weighted transducers can be de-
terminized. But most weighted transducers found in speech recognition ap-
plications can be determinized. In particular, any acyclic weighted transducer
can be determinized.

As in the case of weighted acceptors, the advantage of weighted transducer
determinization is to make the transducer more efficient to use by reducing
to the minimum the alternatives at each state. Given an input label a and
a state ¢, there is at most one transition with an input label matching a in
the deterministic machines. Note that this is not true in general of the output

labels.

Figure 3 gives an example of a non-deterministic weighted transducer. T} is
not deterministic because at state 0 there are several transitions with the same
input label a, or same input label b, or c. Similarly, at state 1, there are several
transitions with the same input label e, at state 2, several transitions with the
same input label f.

6 We have characterized the class of unambiguous weighted transducers that can
be determinized [12].

ael

Fig. 3. Non-deterministic weighted transducer 77.

aepyl

Fig. 4. Determinized weighted transducer T5.

T can be determinized. Figure 4 shows the result of determinization applied
to Ty. At each state of Ty the choice of the transition to explore is completely
determined by the input label to match.

The two weighted transducers T and T5 represent exactly the same function.
As an example, T} admits three paths with the input label be. The output
string associated to these paths is the same: e - € = ¢-e = e. 7 The weight
associated to be by 77 is obtained by taking the minimum of the weights of
these paths: min{2 + 8,2 + 10,4 + 11} = 10. Thus 7T} associates to be the
pair (e, 10). T» admits a unique path with input label be. The output label
corresponding to that path is also € - e = e, and the weight associated to it:
2+ 8=10.

The algorithm is close to the weighted determinization of acceptors. However,
since transitions with the same input label can have different output labels,
one can only output the longest common prefix of these outputs and needs
to keep track of the leftover strings. Thus here the states of the resultant of
weighted determinization correspond to subsets made of tuples (g, s, w), where
q is a state of the input transducer, s the leftover string, and w the leftover
weight.

7 We denote by € the empty string.

The initial subset is {(4, €,0)}, where 7 is the initial state of the input weighted
transducer. For example, for the transducer T; the initial subset is {(0,¢€,0)}.
Each new subset S is processed in turn as in the case of acceptors. For each
element of the alphabet a labeling the input side of at least one transition
leaving a state of S, a new transition ¢ leaving S is constructed in the output
machine. The input label of ¢ is a and its weight is the minimum of the sums
[+w where w is the weight of an a-transition leaving a state p in S and [is p’s
leftover weight. The output label is the longest common prefix of the strings
r - s where s is the output label of p and r its leftover string.

The destination state of ¢ is the subset S’ made of pairs (g, s, w), where ¢ is a
state reached by a transition labeled with a from a state of p, s the residual
string, and w is the appropriate leftover weight.

As an example, the state 0 in T3 corresponds to the initial subset {(0,¢,0)}
constructed by the algorithm. The transition leaving 0 in 7, labeled with
a is obtained by considering the two transitions with input a leaving the
state 0 in 77. Its output is the longest common prefix of the strings e and
€, that is e. Its weight is obtained by taking the minimum of the weight of
these two transitions min{1,3} = 1. Its destination state is the subset S' =
{(1,e,-14+1=0),(2,¢,—1 4 3 = 2)} numbered 1 in A,.

As in the case of acceptors, the order of expansion of the output weighted
transducer does not affect the result. The work done for a given subset S
depends only on the elements of S and not on the previous or future work for
other subsets. Only states and transitions required by the search algorithm are
expanded for a given input string. We have given an on-the-fly implementation
of weighted transducer determinization.

2.8 Minimization of Weighted Acceptors

Any deterministic finite automaton can be minimized using classical algo-
rithms [1]. In the same way, any deterministic weighted acceptor A can be
minimized using our weighted minimization algorithm [12].

The resulting weighted acceptor B is equivalent to the acceptor A. It has the
minimal number of states and the minimal number of transitions among all
equivalent deterministic weighted acceptors equivalent to A.

Weighted minimization is very efficient. Its time complexity is equivalent to
that of the classical minimization, linear in the acyclic case (O(|Q| + |E|)),
and in O(|E|log |@|) in the general case, where @) is the set of states of A and
E the set of transitions.

Fig. 6. Equivalent weighted acceptor As obtained by weighted minimization from
As.

Consider the deterministic weighted acceptor As. One can view it as an un-
weighted acceptor by considering each pair (a,w), made of a label a and a
weight w, as a single label, and then apply the classical minimization algo-
rithm to it. But, since the pairs are all distinct, classical minimization would
have no effect on the acceptor As.

The size of Ay can still be reduced using (true) weighted minimization. The
algorithm works in two steps: the first pushes weight along paths, and the
second applies the classical minimization algorithm to the result with each
distinct label-weight pair viewed as a distinct symbol, as described above.

The pushing step moves the weights of the input acceptor towards the initial
state as much as possible. This does not change the topology of the input
acceptor and produces an equivalent acceptor. Figure 5 shows the result of
pushing for the input As. Thanks to pushing, the size of the machine can then
be reduced using classical minimization.

Figure 6 illustrates the result of the final step of the algorithm. No approxi-
mation or heuristic is used: the resulting acceptor As is equivalent to A,.

3 Experiments and Results

We have given an efficient implementation of weighted determinization (on-
the-fly) of acceptors and transducers, and of weighted minimization. These
programs are currently used in speech processing projects at AT&T Labs, at
Lucent Bell Laboratories, and at Johns Hopkins University. In the following

sections, we describe their use in several speech recognition tasks and report
the corresponding results of our experiments. The results show their efficiency
and the importance of their use in all these tasks.

3.1 Word Lattices

We applied weighted acceptor determinization to the word lattices obtained
in the ARPA ATIS task. This not only made the use of the word lattices more
efficient by eliminating their redundancy, but also led to an average reduction
of their size by a factor of 9 (table 1).

Table 1
Word lattices in the ATIS task.

Determinization

Determinization

+ Minimization

Objects Reduction factor | Reduction factor
States ~3 ~5

Transitions | ~ 9 ~ 17

Paths > 232 > 232

Figures 7-8 illustrate the weighted determinization in a specific case. Figure
7 corresponds to a word lattice W; obtained in the 1,500-word ATIS task.
It corresponds to the following utterance: Show me the flights from Charlotte
to Minneapolis on Monday. Although it is one of the smallest word lattices
obtained in this task, Wj is very complex. It contains more than 151 million
paths.

10

L Y

""" "Jﬂ‘\{ ‘[ﬂ ‘@"?{ =0 °«,°
BEa= B

=

Iy

TN
iy

L)
| A
(o

NPl

j
T
0]

—

)
i
==

T
T
T
Iyt
o
0

0
~5
<

\{
iy

oy

2N < | ‘lb‘vou |

‘83059 I “wyyg‘ "W ‘‘‘‘‘‘ ©

Wj}'* "%Jw SRS

\;ﬁ:‘gj JE‘J & 5
I

Fig. 7. Word lattice W7, ATIS task, for the utterance Show me the flights from
Charlotte to Minneapolis on Monday.

Weighted determinization of acceptors applies to this lattice. This clearly im-
proves the efficiency of the use of the lattice for search or matching purposes.
It also reduces the size of the original weighted acceptor by reducing its re-
dundancy to the minimum. The resulting deterministic lattice W5 contains
only 18 paths (figure 8). As mentioned previously, the result is exact: the two
lattices realize exactly the same function. The algorithm is very efficient: it
took about .06s real time including I/O’s (reading and writing the acceptors)
to determinize the lattice W7 on an SGI O2 174 MHz IP32.

The minimization of weighted acceptors allowed us to reduce further the size of
the deterministic weighted automata. The total reduction factor corresponding
to the use of determinization and minimization in the ATIS task was about
17 on the average for the word lattices that we used (table 1).

11

Fig. 8. Equivalent word lattice W5 obtained by determinization of W7.

We also applied weighted minimization to deterministic word lattices obtained
in the NAB task. On the average, it reduced by a factor of 3 the size of those
lattices.

Fig. 9. Equivalent word lattice W3 obtained by minimization from Wj.

Figure 9 illustrates the use of weighted minimization applied to the deter-
ministic lattice W5. The resulting machine W3 has the least number of states
and transitions among all equivalent deterministic weighted acceptors. Let us
insist that the minimization algorithm is also an exact algorithm: it is not a
heuristic or an approximation; the minimal lattice contains exactly the same
best paths with exactly the same labels and total weights. The algorithm is
very efficient: it took about .07s to minimize the word lattice W5, including
I/O (which take most of this time) on the same computer.

3.2 Context-dependent Phone Models

Context-dependent phone models can be represented by finite-state transduc-
ers [21]. They can be built directly in many cases. The transducer of figure 10
for instance can be constructed directly to represent the inverse of a context-
dependency model: it maps phone sequences to sequences of names of context-
dependent phone models (HMM’s). It encodes triphonic context dependency
for two hypothetical phones = and y. Each state (a,b) encodes the information
that the previous phone was a and the next phone is b; € represents the start
or end of a phone sequence and % an unspecified next phone. For instance, it
is easy to see that the phone sequence xyx is mapped by the transducer to
x/e_yy/x_x x/y_e via the unique state sequence (e, *)(z,y)(y, z)(z, €).

When the model represents dependencies with contexts of different lengths
and different weights, the direct construction might become tedious. One can
then use a set of (weighted) rewrite rules to describe the possible contexts.
Rewrite rules can be efficiently compiled into finite-state transducers [7,17].

12

Fig. 10. Non-deterministic context-dependency model.

Any context-dependency transducer, whether directly constructed or compiled
from patterns or rules, may benefit from transducer determinization.

The transducer of figure 10 is not deterministic. Many states have multi-
ple transitions with the same input label leaving them. The state (z,x), for
instance, has three transitions with the same input label x. Transducer de-
terminization can be used to eliminate this redundancy. Figure 11 shows the
result of transducer determinization when applied to the transducer of figure
10. ® At each state of the transducer of figure 11, there is a unique transition
labeled with any given phone.

Fig. 11. Deterministic context-dependency model.

The use of a deterministic context-dependency transducer is important when
combining the different component of a speech recognition system — context-
dependency model, pronunciation dictionary, language model. This is because
any non-determinism in the context-dependency can increase considerably the
size of the resultant

8§ is a new end-of-utterance symbol introduced to make the result sequential.

13

3.3 The NAB Task

In most recognition systems, the words in a language model are (in effect) sub-
stituted with their pronunciations to create a large phonemic network. The
phonemic network created in this way can have a high degree of nondeter-
minism in large vocabulary systems. This remains true even when using the
efficient finite-state composition techniques that lead to more compact results
[14,21], rather than simple substitution.

The phonemic network can contain states with as many (or more) outgoing
arcs as the size of the vocabulary. This large number of alternatives can consid-
erably reduce the speed of a recognition system. Determinization of weighted
transducers allows one to improve the recognition time by reducing the number
of alternatives to the minimum. The number of outgoing arcs in the equivalent
deterministic network is at most equal to the number of phones (about 40)
versus the size of the vocabulary (& 20,000) in the original network. °

Table 2
Weighted transducer determinization in the NAB task.
Reduction factor
Size of transducer 3.3
Recognition time 91.7
Error rate 2.0
Memory used 8.8

Our experiments in the DARPA North American Business task (NAB) show
that weighted determinization plays a crucial role in building a real-time large
vocabulary speech recognition system: it reduces recognition time by a factor
of 91.7, reduces the error rate in half, reduces the size of the transducer by a
factor of 3.3 and the memory used by a factor of 8.8 (Table 2).

9 Strictly speaking, the phonemic network based on a n-gram model would have
an inherent non-determinism due to the backoff model, to fact that a word can
be a prefix of another word, and to the presence of homophones. We have solved
this by treating es as regular symbols, using word boundary symbols (a distinct
word boundary for each homophone), and removing the boundary symbols after
determinization.

14

3.4 The One Million Names Task

The determinization of weighted acceptors also allowed us to build a real-time
system for the recognition of the one million most frequent U.S. surnames
found in the Donnelley direct marketing list.

Table 3
Use of determinization and minimization in the One Million Names task.

Reduction factor

Size of network 5.2

Recognition time > 100

We used the frequency of the surnames to assign probabilities to the map-
ping of pronunciations to names. A priori, in some states such as the initial
state of the pronunciation network, one million alternatives were possible and
the recognition would be very slow. The use of weighted determinization sub-
stantially reduced the number of alternatives by limiting it to the number of
phones, and led to a real-time recognition system.

We also used weighted minimization after determinization in this task to re-
duce the size of the networks used by a factor of 5.

The One Million Names task is only an example of the performances that can
be achieved in real-time very large vocabulary speech recognition systems for
isolated words, using weighted determinization and weighted minimization.
We have described elsewhere in great detail a real-time 160,000 word con-
tinuous speech recognition system based on the use of weighted transducer
determinization [15].

4 Conclusion

The use of weighted determinization and minimization in large vocabulary
speech recognition leads to very substantial improvements in performance.
In addition, it shows the true degree of redundancy in speech recognition
networks, which may not have been fully appreciated previously. In our speech
recognition systems we also use another algorithm, local determinization, that
reduces the redundancy of networks only locally. We report elsewhere on the
benefits of local determinization for weighted transducers [16].

The success of these algorithms does not come as a surprise. While most ASR
systems use ad hoc solutions, thereby limiting the possibility of further im-
provement and understanding, we believe that general algorithmic solutions

15

based on a sound theoretical foundation can lead to substantially better re-
sults.

5 Acknowledgments

We thank Fernando Pereira, Enrico Bocchieri, and Giuseppe Riccardi for dis-
cussions, and Andrej Ljolje and Hiyan Alshawi for supplying the ATIS word
lattices we used.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ulman. The design and analysis of
computer algorithms. Addison Wesley: Reading, MA, 1974.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques and
Tools. Addison Wesley: Reading, MA, 1986.

[3] G. Antoniol, F. Brugnara, M. Cettolo, and M. Federico. Language model
representations for beam-search decoding. In Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing (ICASSP ’95), pages
588-591, Detroit, MI, 1995.

[4] J. Berstel. Transductions and Context-Free Languages. Teubner Studienbucher:
Stuttgart, 1979.

[5] S. Eilenberg. Automata, Languages and Machines, volume A-B. Academic
Press, 1974-1976.

[6] P. S. Gopalakrishnan, L. R. Bahl, and R. L. Mercer. A tree search strategy
for large-vocabulary continuous speech recognition. In Proceedings of the

International Conference on Acoustics, Speech, and Signal Processing (ICASSP
’95), pages 572-575, Detroit, MI, 1995.

[7] R. M. Kaplan and M. Kay. Regular models of phonological rule systems.
Computational Linguistics, 20(3), 1994.

[8] K.-F. Lee. Context dependent phonetic hidden Markov models for continuous
speech recognition. IEEE Trans. ASSP, 38(4):599-609, Apr. 1990.

[9] M. Mohri. Minimization of sequential transducers. Lecture Notes in Computer
Science, 807, 1994.

[10] M. Mohri. On some applications of finite-state automata theory to natural
language processing. Journal of Natural Language Engineering, 2:1-20, 1996.

[11] M. Mohri. Finite-State Language Processing, chapter On The Use of Sequential
Transducers in Natural Language Processing. The MIT Press, 1997.

16

[12] M. Mohri. Finite-state transducers in language and speech processing.
Computational Linguistics, 23:2, 1997.

[13] M. Mohri. Minimization algorithms for sequential transducers. Theoretical
Computer Science, To appear, 1998.

[14] M. Mohri, F. C. N. Pereira, and M. Riley. Weighted automata in text and
speech processing. In FCAI-96 Workshop, Budapest, Hungary. ECAI, 1996.

[15] M. Mohri, M. Riley, D. Hindle, A. Ljolje, and F. C. N. Pereira. Full expansion
of context-dependent networks in large vocabulary speech recognition. In
Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’98), Seattle, Washington, 1998, to appear.

[16] M. Mohri, M. Riley, and R. Sproat. Finite-state transducers in language
and speech processing. In Tutorial at the 16th International Conference on
Computational Linguistics (COLING-96), Copenhagen, Denmark. COLING,
1996.

[17] M. Mohri and R. Sproat. An efficient compiler for weighted rewrite rules.
In 34th Meeting of the Association for Computational Linguistics (ACL 96),
Proceedings of the Conference, Santa Cruz, California. ACL, 1996.

[18] J. Odell, V. Valtchev, P. Woodland, and S. Young. A one pass decoder design
for large vocabulary recognition. In Proceedings of the ARPA Human Language
Technology Workshop, March 1994, pages 405—410. Morgan Kaufmann, 1994.

[19] S. Ortmanns, H. Ney, and A. Eiden. Language-model look-ahead for large
vocabulary speech recognition. In Proceedings of the International Conference
on Spoken Language Processing (ICSLP’96), pages 2095-2098. University of
Delaware and Alfred I. duPont Institute, 1996.

[20] S. Ortmanns, H. Ney, F. Seide, and I. Lindam. A comparison of time conditioned
and word conditioned search techniques for large vocabulary speech recognition.
In Proceedings of the International Conference on Spoken Language Processing
(ICSLP’96), pages 2091-2094. University of Delaware and Alfred I. duPont
Institute, 1996.

[21] M. Riley, F. C. N. Pereira, and M. Mohri. Transducer composition for context-
dependent network expansion. In Proceedings of Eurospeech’97. Rhodes, Greece,
1997.

[22] S. Young, J. Odell, and P. Woodland. Tree-based state-tying for high accuracy
acoustic modelling. In ARPA Human Language Technology Workshop, 1994.
Distributed by Morgan Kaufmann, San Francisco.

17

