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Abstract
We consider the scenario of online learning with
sleeping experts, where not all experts are avail-
able at each round, and analyze the general frame-
work of learning with feedback graphs, where the
loss observations associated with each expert are
characterized by a graph. A critical assumption in
this framework is that the loss observations and
the set of sleeping experts at each round are in-
dependent. We first extend the classical sleeping
experts algorithm of Kleinberg et al. (2008) to
the feedback graphs scenario, and prove matching
upper and lower bounds for the sleeping regret of
the resulting algorithm under the independence
assumption. Our main contribution is then to re-
lax this assumption, present a more general notion
of sleeping regret, and derive a general algorithm
with strong theoretical guarantees. We apply this
new framework to the important scenario of on-
line learning with abstention, where a learner can
elect to abstain from making a prediction at the
price of a certain cost. We empirically validate
our algorithm against multiple online abstention
algorithms on several real-world datasets, show-
ing substantial performance improvements.

1. Introduction
Sequential decision making under uncertainty is an impor-
tant and widely studied area of machine learning. In the
standard online learning framework (Cesa-Bianchi & Lu-
gosi, 2006), at each round, the learner selects an action out
of a finite set and incurs some loss associated with that ac-
tion. The learner’s goal is to minimize her regret over a
finite number of rounds, that is the difference between her
cumulative loss and that of the best static action in hindsight.

Online learning with feedback graphs is a general frame-
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work for online learning where the action losses that are
observable to the learner are modelled by graphs. This
framework was first introduced by Mannor & Shamir (2011)
and later analyzed by several other authors (Caron et al.
(2012); Buccapatnam et al. (2014); Wu et al. (2015)Alon
et al. (2013); Kocák et al. (2014) Alon et al. (2015); Co-
hen et al. (2016); Kocák et al. (2016); Tossou et al. (2017);
Liu et al. (2018); Yun et al. (2018)). Given a directed feed-
back graph, an edge from i to j indicates that the loss of j
is observed if expert i is selected by the algorithm. Such
partial observability setups cover a variety of applications
(e.g. in web advertising, a user who clicks on an ad reveals
information about related ads). The classical settings of
full information (Littlestone & Warmuth, 1994) and bandit
(Auer et al., 2002) online learning are special instances cor-
responding to a fully connected graph and a graph admitting
only self-loops, respectively. In general, these graphs can
be either fixed or time-varying, and they can also even be
stochastic.

Distinct from the feedback graph framework, online learn-
ing has also been studied in a setting in which the actions
available to the learner can change at different rounds. This
scenario is called the sleeping experts setting. It was an-
alyzed first by (Kleinberg et al., 2008) and subsequently
by (Kanade et al., 2009; Kanade & Steinke, 2014). In this
framework, at each round the environment determines a set
of available actions either stochastically or adversarially.
This model of online learning can arise, e.g., in routing net-
work problems, where some routes may be unavailable due
to either random router crashes (stochastic case) or an illicit
agent (adversarial case).

Restricted feedback and restricted action sets are two closely
related ideas, and many applications can actually be formal-
ized as a combination of both sleeping experts and feedback
graphs. For instance, consider again the scenario of web
advertising described above, where a learner has to decide
which ads to display. Some ads may not be available at each
round, implying that the experts are sleeping, and at the
same time, related ads may have similar rewards, so that the
feedback between some of the ads should be shared. Sim-
ilarly, in e-commerce from the seller’s perspective, some
items may be out of stock (sleeping experts), and the re-
wards for one item may be similar to the rewards of others
(feedback graph). As a third example, sensor networks are
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a common motivation for feedback graphs (e.g. (Mannor &
Shamir, 2011)), where a centralized controller must activate
a sensor to receive input from it and where the area covered
by sensors tend to overlap. In this problem, some of the
routes or links are down due to mechanical issues, which
can be modelled using the sleeping experts framework.

It is natural in many problems for a restricted action set to
also considerably impact a learner’s feedback graph. At the
same time, these two concepts are distinct, and neither one
of the frameworks alone can capture the interplay between
action set availability and feedback between actions. More-
over, these two concepts have heretofore been studied in
isolation from one another. Online learning with feedback
graphs has been studied only in the classical setting where
the learner always has access to every action, and online
learning with sleeping experts has only been studied in the
full information and bandit settings.

In this work, we introduce and analyze an online learning
setting admitting both feedback graphs and sleeping experts.
We first consider a simpler scenario in which the losses and
the awake sets are statistically independent, which, with
either full information or bandit feedback, is the case of
sleeping experts studied in prior work. We then move on
to a more complicated setting in which the losses and the
awake sets are dependent. As an application, we apply
our ideas to the scenario of online learning with abstention
recently introduced by Cortes et al. (2018). This is a setting,
relevant in practice, where a learner can decide to abstain
from making predictions at the price of a known cost and
restricted feedback.

The paper is organized as follows. In Section 2, we define
relevant notation and formally introduce the setting. In Sec-
tion 3, we analyze the setting in which losses and awake
sets are statistically independent. We extend the AUER algo-
rithm, a standard sleeping experts algorithm, to incorporate
the loss observations encoded by feedback graphs. We de-
rive sleeping regret guarantees based on the expected loss
gaps and feedback graph structure. In Section 4, we analyze
the more complex scenario in which the loss observations
and awake sets are not statistically independent. We first
highlight deficiencies with the classical notion of sleeping
regret, and we then propose a new and more informative
quantity, which we call generalized sleeping regret. We then
introduce a novel algorithm that uses both the awake sets
and loss observations to estimate unbiased empirical losses.
We present guarantees for our new notion of regret that is
logarithmic in the number of rounds and that depends on
conditional expected loss gaps. In Section 5, we show how
our algorithms can be adapted to the abstention setting to
yield more compelling theoretical guarantees than those in
previous works. In Section 6, we corroborate our theoretical
results for the abstention setting with extensive experiments

against multiple online abstention algorithms on several
real-world datasets, showing that substantial improvements
are also achieved empirically.

2. Preliminaries
We denote by X the input space, by Y the output space, and
by D a probability distribution over X×Y. Let E denote the
family of experts (or actions): E = {ξj : j ∈ [K]}, where
[K] = {1, . . . ,K}, and let L : E × (X × Y) → [0, 1] be a
loss function.

We consider the scenario of online learning with side-
information modeled by feedback graphs introduced by
Mannor & Shamir (2011). For any t ∈ [T ], a feedback
graph Gt = (V t, Et) is a directed graph over the set of ex-
perts with indices i ∈ [K], which admits an edge from i to j
if the loss of j is observed by the algorithm when it selects
expert i at round t. Let N t

i denote the out-neighborhood of
i at time t, that is the set of vertices j ∈ [K] for which Gt

admits an edge from i to j. We will specify our assumptions
behind how the graphs Gt are generated in future sections.

We consider a stochastic setting of online learning with feed-
back graphs, which admits the following learning protocol.
At each round t ∈ [T ], a pair (xt, yt) = zt ∈ X × Y is
drawn i.i.d. from D. The learner receives the input xt ∈ X

drawn i.i.d. according to the marginal distribution associ-
ated with D, selects an index It ∈ [K] corresponding to
an expert ξIt ∈ E, incurs the loss L(ξIt , zt), and observes
the loss of every expert in the out-neighborhood of It, that
is, L(ξj , zt), with j ∈ N t

It
. Note that the full information

setting corresponds to the case where, for all t, Gt is the
fully-connected graph, while the multi-armed bandit model
matches the case whereGt only contains self-loops. In what
follows, we assume that the loss of the expert selected is al-
ways observed. Thus, for all t ∈ [T ], Gt contains self-loops
at all nodes: i ∈ N t

i , for all i ∈ [K].

We also adopt the sleeping experts framework introduced
by Kleinberg et al. (2008). In this setting, at each round t,
the environment also generates a set At ⊆ [K] of available
(or awake) experts. We denote by A the set of all awake
sets that can be possibly generated, which is a subset of the
power set of [K].

Note that, while the sleeping expert and feedback graph
frameworks are related, one does not subsume the other.
Awake sets determine which experts can be chosen by the
learner, while feedback graphs determine which losses can
be observed by the learner. Thus, there is no distribution
over awake sets that can mimic a feedback graph scenario,
and there is no set of feedback graphs that can lead to a
sleeping experts setting.

Since not all experts or actions are available at each round
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in the sleeping experts setting, the best expert in hindsight,
used in the standard notion of regret, is not a realistic bench-
mark in this setting. Instead, the notion of sleeping regret
was introduced by Kleinberg et al. (2008).1 This notion of
regret considers the difference between the cumulative loss
of the algorithm and that of the best ordering of the experts,
where, at each round, the expert with the most favorable
rank among those awake is selected.

In our setting, the sleeping regret of an algorithm ALG can
be defined as follows:

rSLEEP
T (ALG) =

T∑
t=1

E[L(ξIt , zt)]−
T∑
t=1

E[L(ξσ(At), zt)],

where It is the index of the expert selected by ALG at round t,
and σ(At) the index of the expert with the smallest expected
loss among those in At. Here, the expectations are taken
over the algorithm’s actions It (for a randomized algorithm),
over the choice of zt ∼ D, and over the generation of the
awake sets At, when they are generated stochastically.

We restrict our study to the case where the awake sets are
generated stochastically, possibly based on xt, and focus on
two separate scenarios, each requiring a different approach:

1. one where the awake sets are statistically independent
of the losses, such that At is independent from zt (Sec-
tion 3);

2. one where the awake sets and the losses are statistically
dependent (Section 4).

The notion of sleeping regret previously described was intro-
duced by Kleinberg et al. (2008) for the first scenario, where
the awake sets are independent of the losses. As we shall
see, in the dependent case, this notion is no longer pertinent.
Thus, we will generalize that expression and define a new
notion of sleeping regret suitable for the dependent case.

3. Independent losses and awake sets
The independence between awake sets and losses is a cru-
cial assumption in the study of online learning with sleeping
experts by Kleinberg et al. (2008). Under this assumption,
the authors presented an algorithm, called AUER, with tight
theoretical guarantees. The algorithm is based on the classi-
cal Upper Confidence Bound (UCB) approach (Auer et al.,
2002). It maintains a set of lower confidence bounds on the
expected loss of each expert and, at each round, chooses
the expert with the lowest confidence bound from the set of
available experts. AUER is designed for the bandit setting,
that is, when only the loss of the chosen expert is observed.

In this section, we present an extension of AUER to the feed-
back graph scenario, while assuming that the losses and

1An alternative benchmark for the sleeping experts setting, not
considered here, is the specialist framework of Freund et al. (1997).

ALGORITHM 1: AUER-N

Init: Qi(0) = 1 for all i ∈ [K].
for t ≥ 1 do
Si(t− 1)←

√
5 log(t)
Qi(t−1) ,∀i ∈ [K];

Receive awake set At ⊆ E;
Receive graph Gt with out-neighbors N t

i , i ∈ [K];

It ← argminj∈At

{
µ̂j(t− 1)− Sj(t− 1)

}
;

for j ∈ N t
It

do
Qj(t)← Qj(t− 1) + 1;

µ̂j,t ← L(ξj ,zt)
Qj(t) +

(
1− 1

Qj(t)

)
µ̂j(t− 1).

end for
end for

awake sets are statistically independent. In this section, we
also assume that the feedback graph Gt depends only on in-
formation up to time t−1; in particular, Gt does not depend
on the losses L(ξj , zt) generated at time t. To be consistent
with the notion of sleeping experts, we further assume that
the graph Gt contains only vertices in At, although this
does not affect the proofs. The pseudocode of our algorithm,
AUER-N, which stands for AUER with Neighbors, is given in
Algorithm 1.

The idea behind the design of AUER-N is to update the time-t
estimate µ̂j(t) of the expected loss of all experts with index
j in the out-neighborhood N t

It
of the chosen expert It at

every round. These out-neighborhoods are determined by
the time-t feedback graph Gt. As with AUER, the algorithm
selects the awake expert with the smallest confidence bound.

We denote by µj = E[L(ξj , z)] the expected loss of expert
ξj , and assume an indexing consistent with the ranking of
these losses: µ1 < µ2 < · · · < µK . For any i < j, we
denote by ∆i,j = µj−µi the decrease in expected loss from
ξj to ξi and use the convention ∆j,j = 0 for any j ∈ [K].
We also denote by Tj(t) the number of times expert ξj is
selected by the algorithm up to time t, and by Qj(t) the
number of times the loss of expert with index j is observed.
The theorem below gives a bound on the sleeping regret of
AUER-N in terms of Tj(t) and Qj(t). These quantities are
both algorithm-dependent, but, by definition, the ratio Tj(t)

Qj(t)

is bounded by one and can be far smaller for dense graphs.

Theorem 1 Assume that, for any t ∈ [T ], the feedback
graph Gt depends only on information up to time t− 1, and
that the awake sets At are generated i.i.d., independently of
the loss values L(ξj , zt), j ∈ [K]. Then, the sleeping regret
of AUER-N after T rounds is upper bounded as follows:

rSLEEP
T (AUER-N)≤

K∑
j=2

40 log T

∆j−1,j
E
[
max
t∈[T ]

Tj(t)
Qj(t)

]
+4

K∑
j=2

∆1,j .

The proof of this theorem and that of all other results are
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given in the appendix. Since maxt
Tj(t)
Qj(t) is upper-bounded

by one for all j ∈ [K], the sleeping regret bound of AUER-N
is always more favorable than that of AUER. In particular, if
the number of times a learner choses an expert is equal to the
number of times that expert was observed, that is, Tj(t) =
Qj(t), for all j (as in the standard bandit setting), then
we recover the sleeping regret bound of AUER (Kleinberg
et al., 2008). On the other hand, in the full information
setting, when At = E we have Qj(t) = t for all j and t,
and

∑
j∈[K] Tj(t) = t. Thus, when the gap terms ∆j−1,j

are all comparable, the algorithm achieves an improvement
in the regret bound by a factor of 1

K , which, naturally, is a
consequence of the K times more feedback received at each
round, compared to the bandit setting.

We complement Theorem 1 by proving lower bounds show-
ing that the regret of AUER-N is information-theoretically
optimal, at least in the bandit scenario where the feedback
graphs Gt only contain self-loops. In particular, we extend
the lower bound of Kleinberg et al. (2008), which holds
in the case of adversarially chosen awake sets, to the case
where they are generated stochastically.

Theorem 2 Under the assumptions of Theorem 1, assume
that the graphs Gt only contain self-loops (bandit setting),
and let φ be an online algorithm for the multi-armed bandit
problem that never picks a suboptimal expert more than
o(Tα) times over the course of T rounds for every α > 0.
Then, there exists a distribution according to which awake
sets At are drawn i.i.d. and for which the sleeping regret of
algorithm φ is at least Ω

(∑K
j=2

1
∆j−1,j

log(T )
)

for large

enough T depending on (µi)i∈[K].

4. Dependent losses and awake sets
In this section, we relax the assumption that the awake sets
and losses are independent. We introduce a more general
notion of sleeping regret, called generalized sleeping regret
and argue that it is a more relevant notion of regret in the de-
pendent setting than the standard sleeping regret defined in
Kleinberg et al. (2008). We then present a sleeping experts
algorithm based on the UCB algorithm of Auer et al. (2002),
which we call UCB-SLG (UCB with SLeeping Graphs), that
exploits feedback graphs and admits a favorable bound for
the generalized sleeping regret. This will in turn pave the
way for the application to the scenario of online abstention
covered in Section 5, where the losses and awake sets are
dependent and, where a natural notion of feedback graph
over experts can be exploited.

4.1. Generalized sleeping regret

To see why the dependence between losses and awake sets
invalidates the classical notion of sleeping regret, recall that
the standard definition of sleeping regret (see Section 2)

uses E[L(ξ, z)] to compare the expected loss of the chosen
expert against the awake expert with the smallest expected
loss. Then, consider the natural scenario where the input
space X is the real line, and where an expert is awake only
when x > 0, thereby making losses and awake sets both
depend on x. Notice that the loss of this expert can only be
(potentially) observed when x > 0. On the region of the
space where x < 0, this loss might be arbitrarily large, but
this has no effect on the loss incurred by any strategy that
chooses this expert. Thus, the unconditional expectation,
E[L(ξ, z)], used in Section 2 to define the notion of sleeping
regret and adopted in Section 3 for the independent case,
is no longer relevant. In the dependent setting, only the
conditional expectation of the loss given that the expert is
awake should be considered when defining regret.

Formally, let A = {A1, . . . , Ap} be the set of all possible
awake sets, and let A be the random variable that generates
the i.i.d. sequence of awake sets {At}Tt=1 defined in Sec-
tion 2. Then, the generalized sleeping regret RSLEEP

T (B) of
an algorithm B is defined as follows:

RSLEEP
T (B)

=

T∑
t=1

p∑
k=1

pk E[L(ξIt , zt)− L(ξi∗(k), zt)|At = Ak],

where pk = P[At = Ak] is the probability of the awake set
Ak, and i∗(k) = argmini∈Ak E[L(ξi, z)|A = Ak].

When awake sets and losses are independent, the generalized
sleeping regret coincides with the notion of sleeping regret
of Section 2 since, for any t, the following holds:

E[L(ξσ(At), zt)]

=

p∑
k=1

pk E[L(ξσ(At), zt)|At = Ak]

=

p∑
k=1

pk E[L(ξσ(Ak), zt)] =

p∑
k=1

pk min
i∈Ak

E[L(ξi, zt)].

When all experts are awake at each round, the generalized
sleeping regret matches the standard definition of regret.

4.2. The UCB-SLG algorithm

In view of the discussion above, the simple strategy adopted
in AUER-N, that is, averaging over the time steps where an
expert was awake and where its loss was observed, cannot
work here, since this would lead to arbitrarily biased em-
pirical estimates. This is typically the case where experts
can be awake only for certain regions of the input space X.
Thus, our main idea for tackling the dependency between
losses and awake sets is to use empirical estimates condi-
tioned on the awake sets and decompose the problem into p
subproblems, one per awake set Ak, k ∈ [p]. Our UCB-SLG
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ALGORITHM 2: The UCB-SLG algorithm.

Init: Ok,j(0) = 1 for all j ∈ [K], and k ∈ [p];
for t ≥ 1 do
Sk,j(t− 1)←

√
5 log(t)
Ok,j(t−1) for all k ∈ [p];

Receive awake set At ⊆ E;
Let k ∈ [p] be such that At = Ak;
Receive graph Gk with out-neighbors Nk,i, i ∈ Ak;
It ← argmini∈Ak ν̂k,i(t− 1)− Sk,i(t− 1);
for j ∈ Nk,It do
Ok,j(t)← Ok,j(t− 1) + 1;

ν̂k,j(t)← L(ξj ,zt)
Ok,j(t) +

(
1− 1

Ok,j(t)

)
ν̂k,j(t− 1) .

end for
end for

algorithm is based on this strategy. The algorithm estimates
νi,k = E[L(ξi, z)|A = Ak] for each expert ξi ∈ E and each
awake set Ak ∈ A. If the awake set at time t equals the
awake set with index k, that is At = Ak, then the algorithm
chooses the expert with index i ∈ Ak with the lowest con-
fidence bound of the empirical estimate of the conditional
loss:

It ← argmin
i∈Ak

ν̂k,i(t− 1)− Sk,i(t− 1),

where ν̂k,i(t − 1) is the empirical estimate of νk,i, and
Sk,i(t− 1) is the corresponding slack (or confidence) term.

For simplicity, we present the algorithm and analysis under
the assumption that each awake set admits a fixed feedback
graph. Specifically, for each awake set Ak, we define a fixed
feedback graph Gk = (Ak, Ek), whose set of vertices is
Ak, the set of awake experts at that round, and whose set
of edges Ek characterize the observability of the awake
experts. Then, we assume that the graph at time t equalsGk,
that is Gt = Gk, whenever At = Ak. As a consequence,
conditioned on At = Ak, the graph Gt is independent of the
losses at time t. We denote by Nk,i the out-neighborhood
of expert ξi on graph Gk. Given the above definitions, if at
round t we have At = Ak, then, UCB-SLG uses the losses of
the experts in the out-neighborhood of Nk,It of graph Gk to
update its empirical estimates. The pseudocode of UCB-SLG
is given in Algorithm 2.

Our algorithm and analysis can be extended to the set-
ting where the feedback graphs are not fixed per awake
set and where instead we consider a sequence of time-
varying graphs Gtk per awake set Ak such that, conditioned
on At = Ak, the graphs Gtk are independent of the losses at
time t. We can extend the UCB-SLG algorithm in a natural
way by updating all observed actions in the graph at each
round. Moreover, the same analysis follows by considering
the intersection over time of all the graphs in each region.

The regret guarantee of UCB-SLG depends on ∆k,i =
νk,i − νk,i∗(k), the difference of the conditional losses for

each awake set k ∈ [p], as well as Bk = {i ∈ Ak : νk,i =
νk,i∗(k)}, the set of arms whose conditional losses are equal
to the optimal arm for the given awake set. Note that the
learner incurs zero instantaneous regret when she chooses
an expert with zero loss gap.

Our regret guarantee characterizes the benefit from the addi-
tional loss observations by partitioning the feedback graph
Gk into cliques for each k ∈ [p] and taking the minimum
over all such possible clique coverings. Specifically, we
define a clique of a directed graph Gk as a set of vertices
C ⊂ Ak that are all neighbors with each other, that is such
that, for all i, j ∈ C, we have i ∈ Nk,j and j ∈ Nk,i. A
clique covering Ck of graph Gk is defined as a set of cliques
that satisfy ∪C∈Ck

= Ak. In the following theorem, the
minimum is over all sets of all clique coverings Ck for each
graph Gk with k ∈ [p].

Theorem 3 Assume that the sequence of awake setsAt and
loss values L(ξj , zt), j ∈ [K], are generated jointly at time
t, but i.i.d. over time. Assume further that each awake set
Ak admits a fixed feedback graph Gk. Then, the generalized
sleeping regret of the UCB-SLG algorithm after T rounds is
bounded as follows:

RSLEEP
T (UCB-SLG)

= O

( p∑
k=1

pk min
Ck

∑
C∈Ck

maxj∈C\Bk ∆k,j

minj∈C\Bk(∆k,j)2
log(T )

)
.

The generalized sleeping regret is decomposed into a sum
over the regret for each awake set Ak times the probability
of that awake set. If the probability pk of an awake set Ak
is very small, then the bound on the regret for this awake
set is given less weight. As one would expect for UCB-type
algorithms, the regret is logarithmic in T for each awake
set Ak but, unlike standard bounds, the loss gap is based on
conditional expectations. This makes this bound not readily
comparable to that of Theorem 1, where awake sets and
losses are independent, even in the bandit setting.

Our regret bound shows the benefit of using feedback graphs.
In particular, if the graphs are denser, then there are more
ways to partition the graphs. Thus, the minCk

is over a
larger set, thereby potentially decreasing the overall bound.
In other words, if more losses are revealed at each round,
the bound on the regret decreases accordingly. In the case
where there is a single region, p = 1, with one fixed graph
G1, the bound reduces to the setting analyzed in Caron et al.
(2012), and our regret bound for UCB-SLG matches that of
the UCB-N algorithm therein.

5. Online learning with abstention
In this section, we apply the ideas introduced in Section 4
to the setting of online learning with abstention.
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Online learning with abstention is a scenario recently intro-
duced by Cortes et al. (2018), where a learner can elect to
abstain from making a prediction at the price of a certain
cost c > 0. When the learner abstains, she does not receive
the label of the current input. The benefit of abstaining is
that the loss incurred, c, is typically lower than the loss of
incorrectly predicting a label.

While Cortes et al. (2018) cast the online abstention setting
as an instance of online learning with feedback graphs, in
this section, we cast the problem as an instance of online
learning with both feedback graphs and sleeping experts.
As we shall see, this choice provides us with a more mean-
ingful and challenging benchmark for the learner, as well
as an algorithm that achieves sublinear regret with respect
to this benchmark. As a result, the algorithms we present
achieve a more favorable empirical performance than those
presented in Cortes et al. (2018), outperforming even an
unrealistic full information algorithm designed only for the
online abstention (but not feedback graph) setting.

We will adopt the notation of Cortes et al. (2018): let
r : X→ R denote an abstention function that dictates which
examples to abstain on, and let h : X 7→ R denote a pre-
diction function that determines the predicted labels of the
examples. Let E = {ξj = (hj , rj) : j ∈ [K]} ⊆ H × R

denote a family of experts made up of pairs of a prediction
function in H and an abstention function in R.

The online abstention protocol is as follows. At each round
t ∈ [T ], the learner receives an input point xt ∈ X drawn
i.i.d. according to the marginal distribution associated with
D, and chooses an index It ∈ [K] corresponding to a pair
ξIt = (hIt , rIt). The learner determines whether to make
a prediction based on the value of the abstention function,
rIt(xt). If rIt(xt) ≤ 0, the learner abstains and incurs a
fixed loss c ∈ R+. If rIt(xt) > 0, the learner predicts,
her prediction being hIt(xt). In this case (and only in this
case), she receives a label yt ∈ {±1}, and incurs the predic-
tion loss `(yt, hIt(xt)). One natural choice for an absten-
tion function r associated with a prediction function h is a
confidence-based function measuring the magnitude of h,
that is r(x) = |h(x)| − γ for some threshold, γ ≥ 0 (e.g.,
(Bartlett & Wegkamp, 2008)). In the sequel, we focus on
the binary classification problem where `(y, h(x)) ∈ [0, 1]
can be the 0/1 loss, I{yh(x) ≤ 0},2 or any of its bounded
surrogates. The abstention loss of the pair ξ = (h, r) on
example (x, y) ∈ X× {±1} is defined as

L(ξ, z) = `(y, h(x))I{r(x) > 0}+ c I{r(x) ≤ 0}.

At first glance, the online abstention and sleeping expert set-
tings appear to be different frameworks. Yet, we can cast the
online abstention setting as a variant of the sleeping experts
one by carefully defining an awake set that captures the loss

2Here, I{·} denotes the indicator function.
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Figure 1: An online abstention scenario with K = 3 ex-
perts (excluding the all-abstain one). The input space X

is partitioned into five regions X1, . . . ,X5, each one corre-
sponding to a given combination of predicting experts on
the inputs x belonging to that region. The set of predicting
experts is indicated within each region. For instance, in
region X2 we have, for all x ∈ X2, r1(x) > 0, r2(x) ≤ 0,
and r3(x) > 0, while the prediction region of expert ξ1, that
is {x ∈ X : r1(x) > 0}, is X1 ∪ X2 ∪ X4 ∪ X5. The above
gives rise to the p = 5 awake sets A1 = {0, 1, 2, 3}, A2 =
{0, 1, 3}, A3 = {0, 2, 3}, A4 = {0, 1}, and A5 = {0, 1, 2}.

incurred by any choice of arm. Naı̈vely, we can define an
awake set to contain all the experts that are committed to
a prediction. That is, if expert i is such that ri(xt) > 0,
then we say that this expert is awake at time t, and if the
expert is abstaining (ri(xt) ≤ 0), then we say that this ex-
pert is asleep. However, we need to refine this definition
of awake set, since we need to allow the algorithm to po-
tentially abstain and incur a loss of c. Thus, we introduce
an extra all-abstain expert, ξ0 = (h0, r0), whose abstention
function r0 is such that r0(x) ≤ 0 for all x ∈ X, and define
the awake set at time t to be made up of all the experts that
are committed to a prediction, plus the all-abstain expert:
At = {i ∈ [K] : ri(xt) > 0} ∪ {0}.
This definition in turn implies that Ak ∈ A in the abstention
setting is defined as the set of experts that are always awake
together, plus the all-abstain expert. In other words, the in-
put space X is partitioned into (disjoint) regions X1, . . . ,Xp
each one corresponding to a given combination of predicting
experts on that region. See Figure 1 for an illustration.

Without loss of generality, we assume that |Ak \ {0}| ≥ 1.
If the labeled points (x1, y1), . . . , (xT , yT ) are drawn i.i.d.
according to some distribution D over X × {±1}, then
pk = P(At = Ak) = P(xt ∈ Xk). Moreover, the se-
quence of awake sets A1, . . . , AT is an i.i.d. sequence
and so is, for each i ∈ [K], the sequence of losses
L(ξi, (x1, y1)), . . . , L(ξi, (xT , yT )). Yet, the random vari-
ables At and L(ξi, (xt, yt)) are not independent since they
both depend on xt.

Given the above connection between online abstention and
sleeping experts, we can directly use the UCB-SLG algorithm
presented in the previous section to obtain an algorithm for
online learning with abstention. However, since we know
that the loss of the all-abstain expert is always c, there is
no need for a confidence interval for this expert. Thus,
we present an algorithm called UCB-ABS, for UCB with
ABStention, which is based on UCB-SLG, but also uses this
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ALGORITHM 3: UCB-ABS.
Init: Ok(0) = 1 for all k ∈ [p];
for t ≥ 1 do
Sk(t)←

√
5 log(t)
Ok(t−1) for all k ∈ [p];

Receive xt ∈ X, and awake set At ⊆ E;
Let k ∈ [p] be such that At = Ak;
Receive graph Gk with out-neighbors Nk,i, i ∈ Ak;
if mini∈Ak\{0} ν̂k,i(t− 1)− Sk(t− 1) < c then
It ← argmini∈Ak\{0} ν̂k,i(t− 1);
Reveal yt;
Ok(t)← Ok(t− 1) + 1;
for j ∈ Ak \ {0} do
ν̂k,j(t)← `(yt,hj(xt))

Ok(t) +
(

1− 1
Ok(t)

)
ν̂k,j(t−1);

end for
else
It ← 0;

end if
end for

special property of the all-abstain expert.

Given the event At = Ak, the UCB-ABS algorithm chooses
the all-abstain expert if c is less than the smallest lowest
confidence bound of νk,i over the experts ξi 6= ξ0 in the
awake set (i.e., all i ∈ Ak \ {0}). If this is not the case, then
it chooses the expert with index i ∈ Ak \ {0} having the
smallest estimated conditional loss. In short, if At = Ak,
the UCB-ABS algorithm picks the expert with index:

It=

 0 if c < mini∈Ak\{0} ν̂k,i(t− 1)− Sk(t− 1)

argmin
i∈Ak\{0}

ν̂k,i(t− 1) otherwise.

Algorithm 3 shows the pseudocode. Notice that, unlike the
previous section, there is no need to maintain individual
statistics for each expert here. In particular, the quantities
Sk(t) and Ok(t) now refer to Ak. This is due to the specific
structure of the feedback graphs Gk, as explained below.

The losses revealed at each round depend on whether the
chosen expert is the all-abstain expert. For each awake
set Ak, suppose that expert ξi is not the all-abstain expert.
Then if this expert is chosen at time t, the true label yt is
revealed, so the loss of all experts is observed. On the other
hand, if the all-abstain expert is chosen, then only the loss
of the all-abstain expert is revealed. Thus, for each awake
set Ak, there is one fixed graph Gk = (Ak, Ek) whose out-
neighborhoods are defined as follows: Nk,i = Ak if i 6= 0
and Nk,i = {0} if i = 0. See Figure 2 for an illustration of
the graph Gk. This feedback graph Gk is, in fact, the largest
feedback graph per awake set that can be constructed in the
abstention setting. Notice that after we condition over each
set At = Ak, this algorithm is almost running Follow-The-
Leader in the full information setting on the experts of the
awake set (excluding the all-abstain expert).

All-abstain
 expert

Predicting experts
i ∈ Ak − {0}

Figure 2: Illustration of graph Gk for the abstention setting.
Here Ak contains four experts, including the all-abstain one.

The bound on the regret of UCB-ABS is again based on the
conditional loss gaps ∆k,i, clique coverings Ck and optimal
arm sets Bk defined in the previous section.

Theorem 4 The generalized sleeping standard regret of the
UCB-ABS algorithm after T rounds is bounded as follows:

RSLEEP
T (UCB-ABS) =

O

( p∑
k=1

pk min
Ck

∑
C∈Ck

maxj∈C\({0}∪Bk) ∆k,j

minj∈C\({0}∪Bk)(∆k,j)2
log(T )

)
.

Unlike the bound for UCB-SLG in Theorem 3, the maximum
and minimum are not over all experts j ∈ C \ Bk. Instead,
they exclude the all-abstain expert. The proof of this theo-
rem is similar to that of UCB-SLG except that it exploits the
fact that no confidence interval is needed for the estimate of
the all-abstain expert.

The regret bound above implies that the average cumula-
tive loss of UCB-ABS will converge in O((log T )/T ) to∑p
k=1 pk mini∈Ak νk,i. In contrast, previous algorithms for

the abstention framework introduced in (Cortes et al., 2018)
only prove bounds on the standard regret, which admit
as benchmark mini∈[K] µi. Observe that, by the super-
additivity of the min operator and our treatment of the all-
abstain expert, the following inequality holds:

p∑
k=1

pk min
i∈Ak

νk,i≤ min
i∈[K]

p∑
k=1

pkνk,i= min
i∈[K]

µi .

Thus, we expect UCB-ABS to outperform other abstention
algorithms, which is corroborated in our experiments in
Section 6.

The computational complexity of the algorithm depends on
p since it keeps estimates of the conditional losses for each
awake set in Ak, k ∈ [p]. Since the awake sets are the inter-
sections of the accepting regions, one can define abstention
functions ri such that the resulting number of awake sets
p is not too large. For example, in the scenario where the
hypothesis functions hi perform well in complementary re-
gions of the input space, we can define abstention functions
whose non-abstention regions do not overlap in such a way
that p = K. This is conceivable, for example, in a rec-
ommendation system setting, where regions correspond to
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Figure 3: A graph of the averaged loss with standard deviations as a function of t (log scale). The algorithms we tested are
UCB-ABS, UCB-GT, UCB-NT, UCB, and FS. Starting from the left, the datasets are: eye, HIGGS , skin, and covtype.

general categories of an item and some hypothesis functions
might be better at making recommendations within a certain
category and hence should only be awake for that category.

6. Experiments
In this section, we present the results of several experiments
for the online learning with abstention setting described in
Section 5. These experiments demonstrate that UCB-ABS
admits a strong empirical performance.

We compare UCB-ABS to several baselines, including the
algorithms UCB-GT, UCB-NT, and FS of Cortes et al. (2018),
as well as standard UCB (Auer et al., 2002). FS is the ideal
comparator that picks the expert with the smallest empirical
mean, but has the advantage that the losses of all the experts
are revealed at each round. Thus FS and UCB lie at the two
ends of a spectrum. On one end, the FS algorithm has access
to the full loss information at each round, at the other end,
the UCB algorithm only sees the loss of the expert chosen.
In between these two extremes, the losses revealed to UCB-
GT, UCB-NT, and UCB-ABS depend on whether the chosen
expert for each algorithm abstains or predicts. That is, if the
chosen expert predicts at time t, the true label yt is revealed
and hence the losses of all the experts are observed, while if
it abstains at time t, only the loss of the abstaining experts,
which is simply equal to the abstention cost c, is revealed.
It is important to note that UCB-ABS uses all the revealed
expert losses to update its empirical estimates at each round,
while UCB-GT and UCB-NT only use a subset of the revealed
losses at each round, since these latter algorithms can only
make updates based on information up to time t − 1. On
the other hand, FS relies on full information no matter what,
and is therefore relying on informational assumptions which
are clearly outside the abstention setting.

For ease of comparison, in our experiments, we adopted
the same setup and used the same datasets as Cortes et al.
(2018). That is, the predictions functions h are random
hyperplanes centered at the origin with normal vectors
drawn randomly from the Gaussian distribution N(0, 1)d

where d is the feature dimension, and the abstention func-
tions r are concentric annuli centered at the origin with

radii in (0,
√
d

20 ,
2
√
d

20 , . . . ,
√
d). We tested abstention costs c

in {0.05, 0.1, 0.15, . . . , 0.9}. We used the CIFAR dataset
from Krizhevsky et al. (2009), where we extracted the
first twenty-five principal components, and used eight UCI
datasets: HIGGS, phishing, ijcnn, covtype, eye, skin,
cod-rna, and guide. The loss of each algorithm was cal-
culated as follows: First we fixed the set of experts and
averaged the results over five random draws of the data, and
then let the experts vary and averaged the results over five
random draws of the experts.

Figure 3 shows the averaged abstention loss L(·)/t with
standard deviations for the different abstention costs. In
Appendix E, we show the plots of all the datasets we tested,
where the same patterns recur. These experiments show
that UCB-ABS outperforms UCB-NT and UCB on all datasets
and it attains a better averaged loss than that of UCB-GT
on most datasets. Remarkably, on some datasets UCB-ABS
even outperforms FS, which is an unrealistic baseline that
clearly violates the rules of the abstention setup in that this
algorithm receives all loss information at each round. This
algorithm was used for its ideal performance in Cortes et al.
(2018). Thus, thanks to a generalized notion of sleeping
regret and casting the abstention problem as an instance of
the sleeping experts framework, we obtain both theoretical
and empirical improvements. In addition to the experiments
above, we tested the effects of increasing the number of
abstention and prediction functions. We also present plots
for the fraction of points each algorithm abstains on – see
Appendix E.

7. Conclusion
We presented a comprehensive analysis of online learning
with sleeping experts and feedback graphs, combining two
lines of existing work that are closely related but have so far
not been considered together. We presented both algorith-
mic solutions and theoretical analysis, and we also adapted
our ideas to the online abstention problem, with extensive
experiments showing that our adaptation outperforms ex-
isting solutions. While our experiments focused on binary
classification, they can be directly extended to multiclass
classification and regression problems.
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learning with erdős-rényi side-observation graphs. In Pro-
ceedings of the Thirty-Second Conference on Uncertainty
in Artificial Intelligence, pp. 339–346. AUAI Press, 2016.

Krizhevsky, Alex, Nair, Vinod, and Hinton, Geof-
frey. Cifar-10 (canadian institute for advanced re-
search), 2009. URL http://www.cs.toronto.
edu/˜kriz/cifar.html.

Littlestone, Nick and Warmuth, Manfred K. The weighted
majority algorithm. Information and computation, 108
(2):212–261, 1994.

Liu, Fang, Buccapatnam, Swapna, and Shroff, Ness. In-
formation directed sampling for stochastic bandits with
graph feedback. In 32nd AAAI Conference on Artificial
Intelligence, 2018.

Mannor, Shie and Shamir, Ohad. From bandits to experts:
On the value of side-observations. In NIPS, pp. 291–307,
2011.

Tossou, Aristide, Dimitrakakis, Christos, and Dubhashi,
Devdatt. Thompson sampling for stochastic bandits with
graph feedback. In 31st AAAI Conference on Artificial
Intelligence, 2017.

Wu, Yifan, György, András, and Szepesvari, Csaba. Online
learning with gaussian payoffs and side observations. In
Advances in Neural Information Processing Systems 28,
pp. 1360–1368. Curran Associates, Inc., 2015.

Yun, Donggyu, Proutiere, Alexandre, Ahn, Sumyeong, Shin,
Jinwoo, and Yi, Yung. Multi-armed bandit with additional
observations. Proc. ACM Meas. Anal. Comput. Syst., 2
(1):13:1–13:22, 2018.

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html


Online Learning with Sleeping Experts and Feedback Graphs

A. AUER-N

In this section, we present the proof of the regret guarantee for AUER-N. For the sake of this analysis, we are in fact assuming
that the awake sets At are generated arbitrarily before learning starts. This implies the claimed result when the At’s are
generated i.i.d. according to an arbitrary distribution over A, independent of the losses. We use I{·} to denote the indicator
function.

We start off with the following technical lemma.

Lemma 1 Assume the following ordering for µj , j ∈ [K]: µ1 < µ2 < · · · < µK and, for i < j, let ∆i,j = µj − µi. Then,
for any Fj > 0, j ∈ [K], the following inequality holds:

∑
1≤i<j≤K

Fj
∆i,i+1

∆2
i,j

≤ 2

K∑
j=2

Fj
∆j−1,j

.

Proof. The result and the proof are extensions of Lemma 3 of Kleinberg et al. (2008) to inequalities augmented with factors
Fj . We will use the following equality which, by definition of the Lebesgue integral, holds for any non-negative function f :
E[f(X)] =

∫ +∞
0

P[f(x) ≥ t] dt. Thus, considering, in particular, the uniform probability over {2, . . . ,K}, we can write:

1

K − 1

K∑
j=2

I{j > i}Fj
∆2
i,j

=

∫ +∞

0

P
[
I{j > i}Fj

∆2
i,j

≥ t
]
dt =

∫ +∞

0

P
[ I{j > i}F

1
2
j

∆i,j
≥
√
t

]
dt

= 2

∫ +∞

0

P
[ I{j > i}F

1
2
j

∆i,j
≥ u

]
u du (u =

√
t)

=
2

K − 1

∫ +∞

0

K∑
j=2

I{
I{j > i}F

1
2
j

∆i,j
≥ t} t dt.

In view of the above, we have

∑
1≤i<j≤K

Fj
∆i,i+1

∆2
i,j

=

K−1∑
i=1

∆i,i+1

∑
j: j>i

Fj
∆2
i,j

= 2

K−1∑
i=1

∆i,i+1

∫ +∞

0

K∑
j=2

I{
I{j > i}F

1
2
j

∆i,j
≥ t} t dt

= 2

∫ +∞

0

K−1∑
i=1

∆i,i+1

K∑
j=2

I{
I{j > i}F

1
2
j

∆i,j
≥ t} t dt

= 2

∫ +∞

0

∑
1≤i<j≤K

∆i,i+1 I{
F

1
2
j

∆i,j
≥ t}t dt.

Now, for any j ∈ {2, . . . ,K} and t > 0, define it(j) by

it(j) = argmin

{
i ∈ [K] : i ≤ j,∆i,j ≤

F
1
2
j

t

}
.
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The index it(j) is well defined since for i = j, ∆j,j = 0 is upper bounded by
F

1
2
j

t . By definition of it(j), we can write

∑
1≤i<j≤K

Fj
∆i,i+1

∆2
i,j

= 2

∫ +∞

0

K∑
j=2

j−1∑
i=it(j)

∆i,i+1 t dt = 2

∫ +∞

0

K∑
j=2

∆it(j),j t dt

= 2

K∑
j=2

∫ +∞

0

∆it(j),j t dt

= 2

K∑
j=2

∫ F

1
2
j

∆j−1,j

0

∆it(j),j t dt

(
for t ≥

F
1
2
j

∆j−1,j
, it(j) = j

)

≤ 2

K∑
j=2

∫ F

1
2
j

∆j−1,j

0

F
1
2
j dt

= 2

K∑
j=2

Fj
∆j−1,j

(
by def. ∆it(j),j ≤

F
1
2
j

t

)
,

which completes the proof. �

With the above lemma handy, we are ready to prove Theorem 1.

Proof. [Theorem 1] For any i, j ∈ [K], i < j, let Mi,j denote the number of times expert ξj is selected by the algorithm,
while some expert ξk with k ∈ [i] could have been selected (because it was awake), where [i] = {1, . . . , i}. By definition,
(Mi,j −Mi−1,j) is then the number of times expert ξj ,is selected by the algorithm, while expert ξi, i < j, could have been
selected. Then, using the convention ∆j,j = 0 and M0,j = 0 for any j ∈ [K], the sleeping regret of the algorithm can be
expressed as follows:

rSLEEP
T (AUER-N) = E

[ ∑
1≤i<j≤K

(Mi,j −Mi−1,j)∆i,j

]
=

K∑
j=2

j−1∑
i=1

E[Mi,j ][∆i,j −∆i+1,j ] . (1)

Thus, to bound the sleeping regret, it suffices to bound E[Mi,j ] for 1 ≤ i < j ≤ K. This expectation can be rewritten as
follows

E[Mi,j ] =

T∑
t=1

E
[
I{It = j} I{At ∩ [i] 6= ∅}

]
, (2)

where At denotes set of experts awake at time t. For any random variable σi,j ∈ [T ], the above expression can be split into
two sums:

(2) =

T∑
t=1

E
[
I{It = j} I{At ∩ [i] 6= ∅} I{Tj(t− 1) < σi,j}

]
+

T∑
t=1

E
[
I{It = j} I{At ∩ [i] 6= ∅} I{Tj(t− 1) ≥ σi,j}

]
.

Now, define T ∗ = max
{
t ∈ [T ] : I{Tj(t− 1) < σi,j} 6= 0

}
. Then, by definition, we have

T∑
t=1

I{It = j}I{At ∩ [i] 6= ∅}I{Tj(t− 1) < σi,j} =

T∗∑
t=1

I{It = j}I{At ∩ [i] 6= ∅}I{Tj(t− 1) < σi,j}

≤
T∗∑
t=1

I{It = j}

= Tj(T
∗) ≤ Tj(T ∗ − 1) + 1 ≤ σi,j .

This shows that, for any σi,j ∈ [T ],

(2) ≤ E

σi,j +

T∑
t=σi,j+1

I{It = j}I{At ∩ [i] 6= ∅}I{Tj(t− 1) ≥ σi,j}

 .
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If expert j is selected at time t, that is It = j, then it must have the lowest confidence bound: µ̂j(t − 1) − Sj(t − 1) ≤
µ̂k(t− 1)− Sk(t− 1) for all k ∈ At. Let k∗ = argmink∈At∩[i] µ̂k(t− 1)− Sk(t− 1), then

E[I{It = j}I{At ∩ [i] 6= ∅}I{Tj(t− 1) ≥ σi,j}] (3)

≤ P
(
µ̂j(t− 1)− Sj(t− 1) ≤ µ̂k∗(t− 1)− Sk∗(t− 1), At ∩ [i] 6= ∅, Tj(t− 1) ≥ σi,j

)
,

Next, the first event in the probability can be expressed as follows:

µ̂k∗(t− 1)− Sk∗(t− 1)− µ̂j(t− 1) + Sj(t− 1) ≥ 0

⇔ µ̂k∗(t− 1)− Sk∗(t− 1)− µ̂j(t− 1) + Sj(t− 1)− Sj(t− 1)− µk∗ + µk∗ − µj + µj − µi + µi + Sj(t− 1) ≥ 0

⇔
[
− µk∗ + µ̂k∗(t− 1)− Sk∗(t− 1)

]
+
[
µj − µ̂j(t− 1)− Sj(t− 1)

]
+
[
(µk∗ − µi)− (µj − µi) + 2Sj(t− 1)

]
≥ 0 .

Thus, for that event to hold, at least one of these three terms must be non-negative. Moreover, if one is non-positive, at least
one of the other two is non-negative.

Choose random variable σi,j as follows: σi,j = 20 log T
(µj−µi)2 maxt∈[T ]

Tj(t−1)
Qj(t−1) . Then, the second event in the probability,

Tj(t− 1) ≥ σi,j , implies

Tj(t− 1) ≥ 20 log T

(µj − µi)2

Tj(t− 1)

Qj(t− 1)
⇒ (µj − µi)2 ≥ 20 log t

Qj(t− 1)
⇔ µj − µi ≥

√
20 log t

Qj(t− 1)
.

In view of that, when the second event Tj(t− 1) ≥ σi,j holds, we have

(µk∗ − µi)− (µj − µi) + 2Sj(t− 1) ≤ −(µj − µi) + 2Sj,t−1 (def. of µk∗)

= −(µj − µi) +

√
20 log t

Qj(t− 1)
≤ 0 .

This shows that the third term above is then non-positive and that at least one of the first two is non-negative. Thus, under
the above choice of σi,j , the following inequality holds:

P
(
µ̂j(t− 1)− Sj(t− 1) ≤ µ̂k∗(t− 1)− Sk∗(t− 1), At ∩ [i] 6= ∅, Tj(t− 1) ≥ σi,j

)
≤ P

(
− µk∗ + µ̂k∗(t− 1)− Sk∗(t− 1) ≥ 0

)
+ P

(
µj − µ̂j(t− 1)− Sj(t− 1) ≥ 0

)
. (4)

Now, since both the feedback graph Gt and the algorithm’s action It only depend on information up to time (t − 1), it
is straightforward to see that, for any j ∈ [K], the sequence of random variables L(ξj , zs1), L(ξj , zs2), . . ., are i.i.d., and
distributed as L(ξj , z1), where sk is the stopping time sk = min{t : Qj(t) = k}. Using a standard Hoeffding bound, this
allows us to bound the second probability in (4) as follows:

P
(
µj − µ̂j(t− 1)− Sj(t− 1) ≥ 0

)
= P

(
µj −

1

Q(t)

t∑
s=1

L(ξj , zs)I{j ∈ Ns
Is} −

√
5 log t

Qj(t)
≥ 0

)

≤
t∑

n=1

P

(
µj −

1

n

t∑
s=1

L(ξj , zs)I{j ∈ N t
Is} −

√
5 log t

n
≥ 0 ∧Qj(t) = n

)

=

t∑
n=1

P

(
µj −

1

n

n∑
i=1

L(ξj , zs)−
√

5 log t

n
≥ 0

)

≤
t∑

n=1

1

t5
=

1

t4
.



Online Learning with Sleeping Experts and Feedback Graphs

The other probability in (4), i.e., P(−µk∗ + µ̂k∗(t−1)−Sk∗(t−1) ≥ 0), can be bounded in a similar way, thereby resulting
in the following upper bound:

E[Mi,j ] ≤
20 log T

(µj − µi)2
E
[
max
t∈[T ]

Tj(t− 1)

Qj(t− 1)

]
+ 2

T∑
t=1

1

t4
≤ 20 log T

(µj − µi)2
E
[
max
t∈[T ]

Tj(t)

Qj(t)

]
+ 4 .

Plugging in the right-hand side of this inequality in (1) to upper-bound E[Mi,j ], and using Lemma 1 with Fj =

E
[
maxt∈[T ]

Tj(t)
Qj(t)

]
completes the proof. �
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B. Lower bound on sleeping regret
This section provides a proof of the lower bound in Theorem 2. The proof of this result follows from extending the arguments
in Kleinberg et al. (2008).

Proof. [Theorem 2] We first restate Lemma 11 in Kleinberg et al. (2008).

Lemma 2 (Lemma 11, Kleinberg et al. (2008)) Suppose we are given two numbers µ1 > µ2, both lying in an interval
[a, b] such that 0 < a < b < 1, and suppose we are given any online algorithm φ for the multi-armed bandit problem with
two experts which never picks the worse expert more than o(Tα) times for every α > 0. Then there is an input instance in
the stochastic rewards model, with two experts L and R whose payoff distributions are Bernoulli random variables with
means µ1 and µ2 or vice-versa, such that for large enough T depending on a, b, µ1, and µ2, the regret of algorithm φ is
Ω
(

log(T )(µ1−µ2)
KL(µ2||µ1)

)
, where the constant inside the Ω(·) is at least 1

2 .

Assume that the losses are Bernoulli random variables and that the means {µj}Kj=1 are bounded away from 0 and 1. Let

At ⊂ [K] be the awake set at time t, and suppose that At ∼ U({2j − 1, 2j}K/2j=1 ) independent of the distribution of the
losses. For each awake set A and t ∈ [T ], let s(A, t) ∈ [T ] be the time step in which the awake set A occurred for the t-th
time. Then we can write for the expected sleeping regret of any algorithm:

E

[
T∑
t=1

µIt − µσ(At)

]
= E

 T∑
t=1

K/2∑
j=1

I{At = {2j − 1, 2j}}(µIt − µσ(At))


=

K/2∑
j=1

E

[
T∑
t=1

I{At = {2j − 1, 2j}}(µIt − µσ(At))

]

=

K/2∑
j=1

E

E[
∑T

t=1 I{At={2j−1,2j}}]∑
t=1

(µIs({2j−1,2j},t) − µσ(At))


=

K/2∑
j=1

E

 2T
K∑
t=1

(µIs({2j−1,2j},t) − µσ(At))


≥
K/2∑
j=1

Ω

(
log(2T/K)(µ2j−1 − µ2j)

KL(µ2j−1||µ2j)

)
,

where the second to last equality follows from Wald’s equation, and the inequality follows from applying Lemma 2 to each
awake set which is effectively a separate two-armed bandit problem.

Now, since we assume that the means are bounded between a and b, we can upper bound the KL divergence terms as follows:

KL(µ2j−1||µ2j) ≤
(µ2j−1 − µ2j)

2

µ2j(1− µ2j)
≤ (µ2j−1 − µ2j)

2

minKi=1 µi(1− µi)
.

Thus, we can write

K/2∑
j=1

Ω

(
log(2T/K)(µ2j−1 − µ2j)

KL(µ2j−1||µ2j)

)
≥
K/2∑
j=1

Ω

(
log(2T/K)

µ2j−1 − µ2j

)
.

Similarly, if we consider At ∼ U({2j, 2j + 1}K/2−1
j=1 ), then the expected sleeping regret of any algorithm is lower bounded

by:

E

[
T∑
t=1

µIt − µσ(At)

]
≥
K/2−1∑
j=1

Ω

(
log(2T/K)

µ2j − µ2j+1

)
.
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Thus, if consider an awake set distributionAt ∼ U({2j−1, 2j}K/2j=1 ) andAt ∼ U({2j, 2j+1}K/2−1
j=1 ) each with probability

1/2, then the expected sleeping regret of any algorithm is lower bounded by:

E

[
T∑
t=1

µIt − µσ(At)

]
≥

K∑
j=2

Ω

(
log(2T/K)

µj−1 − µj

)
.

�
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C. UCB-SLG

In this section, we prove Theorem 3.

Proof. [Theorem 3] To simplify the notation, throughout this proof, we replace L(·, zt) by Lt(·), E[·|At = Ak] by E[·|Ak]
and νk,i∗(k) by νi∗(k). We first decompose the regret in terms of the awake sets A1, . . . , Ap :

RSLEEP
T (UCB-SLG) =

T∑
t=1

p∑
k=1

pk E
[
(Lt(ξIt)− Lt(ξi∗(k)))|Ak

]
=

p∑
k=1

pkRT,k ,

where RT,k =
∑T
t=1 E[(Lt(ξIt) − Lt(ξi∗(k)))|Ak] can be interpreted as the regret for region k at time T . Thus, we can

focus on bounding RT,k for each k ∈ [p].

Fix k ∈ [p]. Observe that we can disregard any term in RT,k where the conditional expectation of the chosen expert is less
than that of the best expert, νk,It ≤ νi∗(k), and bound that by zero:

T∑
t=1

E
[
I{νk,It ≤ νi∗(k)}(Lt(ξIt)− Lt(ξi∗(k)))|Ak

]
≤

T∑
t=1

K∑
i=1

E
[
I{It = i}I{νk,i ≤ νi∗(k)}(Lt(ξi)− Lt(ξi∗(k)))|Ak

]
≤

T∑
t=1

K∑
i=1

E
[
I{It = i}I{νk,i ≤ νi∗(k)}|Ak

]
(νk,i − νi∗(k)) ≤ 0 ,

where in the second to last inequality, we used the fact that (Lt(ξi)−Lt(ξi∗(k))) and I{It = i} are conditionally independent
given Ak. Thus, RT,k can be upper bounded by terms where the conditional expectation of the chosen expert is greater than
that of the best expert, νk,It > νi∗(k):

RT,k ≤
T∑
t=1

E
[
I{νk,It > νi∗(k)}(Lt(ξIt)− Lt(ξi∗(k)))|Ak

]
=

T∑
t=1

∑
i∈Ak

E
[
I{It = i}I{νk,i > νi∗(k)}(Lt(ξi)− Lt(ξi∗(k)))|Ak

]
(It must be in Ak)

=

T∑
t=1

∑
i∈Ak

E
[
I{It = i}I{νk,i > νi∗(k)}|Ak

]
(νk,i − νi∗(k)), (cond. indep.)

=

T∑
t=1

∑
i∈Ak\Bk

E
[
I{It = i}I{νk,i > νi∗(k)}|Ak

]
∆k,i (def. of Bk and ∆k,i)

=
∑

i∈Ak\Bk

∆k,i(r
1
T,k,i + r2

T,k,i) ,

with r1
T,k,i and r2

T,k,i defined by

r1
T,k,i =

T∑
t=1

E
[
I{It = i}I{νk,i > νi∗(k)}I{Ok,i(t− 1) < si}|Ak

]
r2
T,k,i =

T∑
t=1

E
[
I{It = i}I{νk,i > νi∗(k)}I{Ok,i(t− 1) ≥ si}|Ak

]
,

where si is a parameter whose value will be selected later. Since the event It = i implies in particular the inequality
ν̂k,i(t− 1)− Sk,i(t− 1) ≤ ν̂k,i∗(k)(t− 1)− Sk,i∗(k)(t− 1), we have

r2
T,k,i ≤

T∑
t=1

P
[
ν̂k,i(t− 1)− Sk,i(t− 1) ≤ ν̂k,i∗(k)(t− 1)− Sk,i∗(k)(t− 1) ∧ νk,i > νi∗(k) ∧Ok,i(t− 1) ≥ si

∣∣∣Ak] .
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The inequality defining the first event in this probability can be decomposed as follows:

ν̂k,i(t− 1)− Sk,i(t− 1) ≤ ν̂k,i∗(k)(t− 1)− Sk,i∗(k)(t− 1)

⇔ 0 ≤
[
− νi∗(k) + ν̂k,i∗(k)(t− 1)− Sk,i∗(k)(t− 1)

]
+
[
νk,i − ν̂k,i(t− 1)− Sk,i(t− 1)

]
+
[
νi∗(k) − νk,i + 2Sk,i(t− 1)

]
.

Thus, if we choose si such that the third term be non-positive, this will imply that one of the first two terms at least is
non-negative.

Let si be defined by si = 20 log(T )

∆
2
k,i

. Then, Ok,i(t−1) ≥ si implies νi∗(k)−νk,i+2Sk,i(t−1) ≤ 0, that is the non-positivity

of the third term. Thus, with this choice of si, if the inequality defining the first event in the probability holds, at least one of
the first two terms above must be non-negative. In view of that, by the union bound and Hoeffding’s inequality applied to
the probability of each event, the following holds:

r2
T,k,i ≤

T∑
t=1

P
[
0 ≤ −νi∗(k) + ν̂k,i∗(k)(t− 1)− Sk,i∗(k)(t− 1)|Ak

]
+

T∑
t=1

P
[
0 ≤ νk,i − ν̂k,i(t− 1)− Sk,i(t− 1)

∣∣∣Ak]
≤ 2

T∑
t=1

1

t4
≤ 4.

Thus, this implies the inequality
∑
i∈Ak\Bk r

2
T,k,i ≤ 4

∣∣Ak \ Bk∣∣. To bound
∑
i∈Ak\Bk r

1
T,k,i, we will use the clique covering

Ck defined in Section 4. Since Ck is a cover of the graph Gk, we can decompose the expression involving r1
T,k,i in terms of

the components of the clique cover and write

∑
i∈Ak\Bk

∆k,i r
1
T,k,i ≤

T∑
t=1

∑
C∈Ck

∑
i∈C\Bk

E[∆k,iI{It = i}I{νk,i > νi∗(k)}I{Ok,i(t− 1) < si}|Ak].

Let Ok,C(t− 1) denote the number of times any expert in clique C has been played up to time t− 1. Since experts in the
same clique are observed together, Ok,C(t− 1) is less than or equal to the number of times an expert i ∈ C is observed:
Ok,C(t− 1) ≤ Ok,i(t− 1). Thus, we can upper bound the expression above by replacing Ok,i(t− 1) with Ok,C(t− 1) as
follows:

∑
i∈Ak\Bk

∆k,i r
1
T,k,i ≤

T∑
t=1

∑
C∈Ck

∑
i∈C\Bk

E
[
∆k,iI{It = i}I{νk,i > νi∗(k)}I

{
Ok,C(t− 1) < si

}∣∣∣∣Ak]

≤
T∑
t=1

∑
C∈Ck

∑
i∈C\Bk

E
[
∆k,iI{It = i}I{νk,i > νi∗(k)}I

{
Ok,C(t− 1) < max

i∈C\Bk
si

}∣∣∣∣Ak]

≤
∑
C∈Ck

(
max
i∈C\Bk

∆k,i

) T∑
t=1

∑
i∈C\Bk

E
[
I{It = i}I

{
νk,i > νi∗(k)

}
I
{
Ok,C(t− 1) < max

i∈C\Bk
si

}∣∣∣∣Ak]

≤
∑
C∈Ck

(
max
i∈C\Bk

∆k,i

) T∑
t=1

∑
i∈C\Bk

E
[
I{It = i}I

{
Ok,C(t− 1) < max

i∈C\Bk
si

}∣∣∣∣Ak]

≤
∑
C∈Ck

(
max
i∈C\Bk

∆k,i

) T∑
t=1

E
[
I{It ∈ C}I

{
Ok,C(t− 1) < max

i∈C\Bk
si

}∣∣∣∣Ak].
Define s and t∗ by s = maxi∈C\Bk si and t∗ = max

{
t ≤ T : I{Ok,C(t− 1) < s} 6= 0

}
. Then, we have

T∑
t=1

I{It ∈ C}I
{
Ok,C(t− 1) < s

}
=

t∗∑
t=1

I{It ∈ C}I
{
Ok,C(t− 1) < s

}
≤ s,
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where the last inequality holds since, by definition of t∗, the number of non-zero terms in the last sum it at most s. Thus, we
have

∑T
t=1 E[I{It ∈ C}I{Ok,C(t− 1) < s}|Ak] ≤ s and

∑
i∈Ak\Bk

∆k,i r
1
T,k,i ≤

∑
C∈Ck

(
max
i∈C\Bk

∆k,i

)(
max
i∈C\Bk

si

)
= 20

∑
C∈Ck

maxi∈C\Bk ∆k,i

mini∈C\Bk ∆
2

k,i

log(T ),

for any clique covering Ck. Combining this inequality with the one for r2
T,k,i gives:

RSLEEP
T (UCB-SLG) =

p∑
k=1

pkRT,k ≤
p∑
k=1

pk
∑

i∈Ak\Bk

∆k,i(r
1
T,k,i + r2

T,k,i)

≤
p∑
k=1

pk

(
20
∑
C∈Ck

maxi∈C\Bk ∆k,i

mini∈C\Bk ∆
2

k,i

log(T ) + 4|Ak \ Bk|
)
.

Taking the minimum of the right-hand side over all possible clique covering Ck completes the proof. �
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D. UCB-ABS

In this section, we prove Theorem 4.

Proof. [Theorem 4] To alleviate notation, throughout this proof we replace L(·, zt) by Lt(·), E[·|At = Ak] by E[·|Ak], and
νk,i∗(k) by νi∗(k). By the same reasoning as in the proof of Theorem 3, for each k ∈ [p] the following holds:

RT,k ≤
T∑
t=1

E[I{νk,It > νi∗(k)}(Lt(ξIt)− Lt(ξi∗(k)))|Ak] , (5)

where RT,k is defined as in that proof.

Next, in order to bound (5), we split the rounds t ∈ [T ] into three cases that need to be dealt with separately:

1. νi∗(k) 6= c and round t is such that It 6= 0 ;

2. νi∗(k) = c and round t is such that It 6= 0 ;

3. Round t is such that It = 0.

In Case 1, the algorithm will pick an expert that is not i∗(k) if there exists an expert i 6= 0 that satisfies ν̂k,i(t − 1) ≤
ν̂i∗(k)(t−1). We will use a Follow-The-Leader type argument based on Lemma 1 of Caron et al. (2012). On the other hand, in
Case 2, the algorithm will pick an expert that is not i∗(k) if there exists an expert i 6= 0 that satisfies ν̂k,i(t−1)−Sk(t−1) ≤ c.
We will use a UCB-type argument. Finally, for Case 3, it must be that c ≤ ν̂i∗(k)(t− 1)− Sk(t− 1), and we will show that
the overall contribution to the regret can be upper bounded by a constant, independent of time horizon T .

Case 1. Since Lt(ξi)−Lt(ξi∗(k)) and I{It = i} are conditionally independent given3 Ak, we can decompose the expectation
in (5):

T∑
t=1

∑
i∈[K]\({0}∪Bk)

E
[
I{It = i}I{νk,i > νi∗(k)}|Ak

]
(νk,i − νi∗(k))

and focus on bounding the number of times each arm i ∈ [K] \ ({0} ∪ Bk) was pulled. Similarly to the proof of Theorem 3,
we introduce the conditions Ok(t− 1) > si and Ok(t− 1) < si for some si to be chosen later:

T∑
t=1

E
[
I{It = i}I{i 6= {0}}I{νk,i > νi∗(k)}|Ak

]
=

T∑
t=1

E
[
I{It = i}I{i 6= {0}}I{Ok(t− 1) < si}I{νk,i > νi∗(k)}|Ak

]
(6)

+

T∑
t=1

E
[
I{It = i}I{i 6= {0}}I{Ok(t− 1) > si}I{νk,i > νi∗(k)}|Ak

]
(7)

and we bound (7) by a constant that is independent of T . If expert It = i where i 6= {0} is chosen, then it must be that
ν̂k,i(t− 1) ≤ ν̂i∗(k)(t− 1). Hence,

(7) ≤
T∑
t=1

P[ν̂k,i(t− 1) ≤ ν̂i∗(k)(t− 1), i 6= {0}, Ok(t− 1) > si, νk,i > νi∗(k)|Ak
]
.

We then use Lemma 1 of Caron et al. (2012) to show that the empirical mean of the chosen expert cannot be less than that of
the best expert i∗(k) too often. This gives us

(7) ≤
T∑
t=1

2e−si(νk,i−νi∗(k))
2/2 .

3 Recall that Ak is determined by xt.
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Note that this lemma applies here because the loss observations are i.i.d. given At = Ak and since Ok(t− 1) > si, we saw

at least si observations of the losses. We then choose si =
2 log(T∆2

k,i)

∆2
k,i

, so that
∑T
t=1 2e−si(νk,i−νi∗(k))

2/2 = O(1). Lastly,
the bound on (6) follows by the same covering argument as in the proof of Theorem 3.

Case 2. By a similar reasoning as in Case 1, the regret is bounded as follows :

T∑
t=1

∑
i∈[K]\({0}∪Bk)

E
[
I{It = i}I{νk,i > c}|Ak

]
(νk,i − c) .

Again, for each expert i ∈ [K]\({0}∪Bk), we split this sum according to the conditionsOk(t−1) > si andOk(t−1) < si
for some si to be chosen later. That is,

T∑
t=1

E
[
I{It = i}I{i 6= {0}}I{νk,i > c}|Ak

]
=

T∑
t=1

E
[
I{It = i}I{i 6= {0}}I{Ok(t− 1) < si}I{νk,i > c}|Ak

]
(8)

+

T∑
t=1

E
[
I{It = i}I{i 6= {0}}I{Ok(t− 1) > si}I{νk,i > c}|Ak

]
. (9)

To bound term (9), since νi∗(k) = c, if It = i was the chosen expert, then it must be that ν̂k,i(t− 1)− Sk(t− 1) ≤ c. Thus,

(9) ≤
T∑
t=1

P
(
ν̂k,i(t− 1)− Sk(t− 1) ≤ c, c < νk,i, Ok(t− 1) > si

∣∣∣Ak)
=

T∑
t=1

P
(

0 < −ν̂k,i(t− 1) + Sk(t− 1) + c+ νk,i − νk,i + 2Sk(t− 1)− 2Sk(t− 1), c < νk,i, Ok(t− 1) > si

∣∣∣Ak)
=

T∑
t=1

P
(

0 < νk,i − ν̂k,i(t− 1)− Sk(t− 1) + c− νk,i + 2Sk(t− 1), c < νk,i, Ok(t− 1) > si

∣∣∣Ak) ,

where as in the proof of Theorem 3, we introduced the terms νk,i and Sk(t − 1). By choosing si = 20 log T
(νk,i−c)2 , then the

condition Ok(t−1) > si implies that c−νk,i+2Sk(t−1) ≤ 0. This in turn implies that 0 < νk,i− ν̂k,i(t−1)−Sk(t−1),
and we bound the probability of this latter event by using a union bound and Hoeffding’s inequality:

T∑
t=1

P[0 < νk,i − ν̂k,i(t− 1)− Sk(t− 1)] ≤
T∑
t=1

t∑
s=1

1

t5
≤

T∑
t=1

1

t4
≤ 2 .

Again, the bound on (8) follows directly by the covering argument in the proof of Theorem 3.

Case 3. Consider the rounds t where the chosen expert is the all-abstain expert, (It = 0) (and where It /∈ Bk). By the same
reasoning as in the previous two cases, the regret in this case can be bounded as follows:

(5) ≤
T∑
t=1

E[I{νk,It > νi∗(k)}I{It = 0}|Ak](c− νi∗(k)) .

If the all-abstain expert is chosen at time t, then it must be that c ≤ ν̂i∗(k)(t− 1)− Sk(t− 1). Hence,

T∑
t=1

E
[
I{νk,It > νi∗(k)}I{It = 0}|Ak

]
≤

T∑
t=1

P
(
c ≤ ν̂k,i∗(k)(t− 1)− Sk(t− 1), c > νi∗(k)

∣∣∣Ak) . (10)
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By following a similar logic as in proof of Theorem 3, we then introduce νi∗(k) and use the fact that c > νi∗(k):

(10) ≤
T∑
t=1

P
(

0 ≤ −νi∗(k) + ν̂k,i∗(k)(t− 1)− Sk(t− 1) + νi∗(k) − c, c > νi∗(k)

∣∣∣Ak)
≤

T∑
t=1

P
(

0 ≤ −νi∗(k) + ν̂k,i∗(k)(t− 1)− Sk(t− 1)
∣∣∣Ak)

≤
T∑
t=1

t∑
s=1

1

t5
≤

T∑
t=1

1

t4
≤ 2 ,

where in the third-last inequality we used a union bound in conjunction with Hoeffding’s inequality.

Combining the inequalities corresponding to three cases above completes the proof. �
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E. Further Experimental Results
In this section, we present further experimental results testing different aspects of our problem. The first set of figures present
the experimental results of all datasets using the same experimental setup as Cortes et al. (2018). Figure 4 and Figure 5 show
the results for all abstention costs for two datasets eye and HIGGS. These results show that UCB-ABS outperform UCB,
UCB-NT, and UCB-GT on most datasets, and approaches the performance of FS. Even though the experiments were carried
out for all abstention costs, to simplify exposition, we show the results for the rest of the datasets for abstention costs in
{0.05, 0.5, 0.95} in Figure 6 and Figure 7. Figure 8, Figure 9, and Figure 10 show the fraction of abstained points for each
algorithm for different abstention costs. As expected, all algorithms tend to abstain more often when the cost of abstention
is smaller. Lastly, we increased the number of predictions functions from 100 to 200 hyperplanes and increased the number
of abstention regions from 21 to 41. We find that the performance of all algorithms improves slightly on some datasets.
Figure 11 shows the results of these new experiments for the same set of datasets and abstention costs as in the main part of
the paper.
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Figure 4: A graph of the averaged loss with standard deviations as a function of t (log scale) for UCB-ABS, UCB-GT, UCB-NT,
UCB, and FS. The results are for the eye dataset.
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Figure 5: A graph of the averaged loss with standard deviations as a function of t (log scale) for UCB-ABS, UCB-GT, UCB-NT,
UCB, and FS. The results are for the HIGGS dataset.
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Figure 6: A graph of the averaged loss with standard deviations as a function of t (log scale) for UCB-ABS, UCB-GT, UCB-NT,
UCB, and FS. The results are for the skin, cod-rna, guide, ijcnn dataset.
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Figure 7: A graph of the averaged loss with standard deviations as a function of t (log scale) for UCB-ABS, UCB-GT, UCB-NT,
UCB, and FS. The results are for the CIFAR, covtype, and phish dataset.
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Figure 8: A graph of the fraction abstained with standard deviations as a function of t (log scale) for UCB-ABS, UCB-GT,
UCB-NT, UCB, and FS. The results are for the eye dataset.
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Figure 9: A graph of the fraction abstained with standard deviations as a function of t (log scale) for UCB-ABS, UCB-GT,
UCB-NT, UCB, and FS. The results are for the HIGGS dataset.
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Figure 10: A graph of the fraction abstained with standard deviations as a function of t (log scale) for UCB-ABS, UCB-GT,
UCB-NT, UCB, and FS. We show the results for two abstention costs for each dataset. Starting from the top left, the plots are
for the skin , cod-rna, guide, ijcnn, CIFAR, covtype and phish datasets.
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Figure 11: In this set of experiments, we increased the number of abstention functions from 21 to 41 and the number of
hyperplanes from 100 to 200. The figures shows a graph of the averaged loss with standard deviations as a function of t (log
scale). The algorithms we tested include UCB-ABS, UCB-GT, UCB-NT, UCB, and FS. Starting from the left, the datasets are
as follows: eye, HIGGS , skin, and covtype.


