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Abstract

Many structured prediction problems admit a natural loss function for evaluation
such as the edit-distance or n-gram loss. However, existing learning algorithms
are typically designed to optimize alternative objectives such as the cross-entropy.
This is because a naïve implementation of the natural loss functions often results in
intractable gradient computations. In this paper, we design efficient gradient com-
putation algorithms for two broad families of structured prediction loss functions:
rational and tropical losses. These families include as special cases the n-gram loss,
the edit-distance loss, and many other loss functions commonly used in natural
language processing and computational biology tasks that are based on sequence
similarity measures. Our algorithms make use of weighted automata and graph
operations over appropriate semirings to design efficient solutions. They facilitate
efficient gradient computation and hence enable one to train learning models such
as neural networks with complex structured losses.

1 Introduction

Many important machine learning tasks are instances of structured prediction problems. These are
learning problems where the output labels admit some structure that is important to take into account
both for statistical and computational reasons. Structured prediction problems include most natural
language processing tasks, such as pronunciation modeling, part-of-speech tagging, context-free
parsing, dependency parsing, machine translation, speech recognition, where the output labels are
sequences of phonemes, part-of-speech tags, words, parse trees, or acyclic graphs, as well as other
sequence modeling tasks in computational biology. They also include a variety of problems in
computer vision such as image segmentation, feature detection, object recognition, motion estimation,
computational photography and many others.

Several algorithms have been designed in the past for structured prediction tasks, including Con-
ditional Random Fields (CRFs) (Lafferty et al., 2001; Gimpel and Smith, 2010), StructSVMs
(Tsochantaridis et al., 2005), Maximum-Margin Markov Networks (M3N) (Taskar et al., 2003),
kernel-regression-based algorithms (Cortes et al., 2007), and search-based methods (Daumé III et al.,
2009; Doppa et al., 2014; Lam et al., 2015; Chang et al., 2015; Ross et al., 2011). More recently, deep
learning techniques have been designed for many structured prediction tasks, including part-of-speech
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tagging (Jurafsky and Martin, 2009; Vinyals et al., 2015a), named-entity recognition (Nadeau and
Sekine, 2007), machine translation (Zhang et al., 2008; Wu et al., 2016), image segmentation (Lucchi
et al., 2013), and image annotation (Vinyals et al., 2015b).

Many of these algorithms have been successfully used with specific loss functions such as the
Hamming loss. Their use has been also extended to multivariate performance measures such as
Precision/Recall or F1-score (Joachims, 2005), which depend on predictions on all training points.
However, the natural loss function relevant to a structured prediction task, which may be the n-gram
loss, the edit-distance loss, or some sequence similarity-based loss, is otherwise often ignored. Instead,
an alternative measure such as the cross-entropy is used. This is typically due to computational
efficiency reasons: a key subroutine within the main optimization such as one requiring to determine
the most violating constraint may be computationally intractable, the gradient may not admit a closed-
form or may seem difficult to compute, as it may involve sums over a number of terms exponential in
the size of the input alphabet, with each term in itself being a large non-trivial computational task.

Several techniques have been suggested in the past to address this issue. They include Minimum
Risk Training (MRT) (Och, 2003; Shen et al., 2016), which seeks to optimize the natural objective
directly but relies on sampling or focusing on only the top-n structured outputs to make the problem
computationally tractable. REINFORCE-based methods (Ranzato et al., 2015; Wu et al., 2016)
also seek to optimize the natural loss function by defining an unbiased stochastic estimate of the
objective, thereby making the problem computationally tractable. While these publications have
demonstrated that training directly with the natural loss function yields better results than using a
naïve loss function, their solutions naturally suffer from issues such as high variance in the gradient
estimate, in the case of sampling, or bias in the case of top-n.

Another technique has consisted of designing computationally more tractable surrogate loss functions
closer to the natural loss function (Ranjbar et al., 2013; Eban et al., 2017). These publications
also report improved performance using an objective closer to the natural loss, while admitting the
inherent issue of not optimizing the desired metric. McAllester et al. (2010) propose a perceptron-like
update in the special case of linear models in structured prediction problems, which avoids the use of
surrogate losses. However, while they show that direct loss minimization admits some asymptotic
statistical benefits, each update in their work requires solving an argmax problem for which the
authors do not give an algorithm and that is known to be computationally hard in general, particularly
for non-additive losses.

This paper is strongly motivated by much of this previous work, which reports empirical benefits for
using the natural loss associated to the task. We present efficient gradient computation algorithms
for two broad families of structured prediction loss functions: rational and tropical losses. These
families include as special cases the n-gram loss, the edit-distance loss, and many other loss functions
commonly used in natural language processing and computational biology tasks that are based on
sequence similarity measures. Our algorithms make use of weighted automata and graph operations
over appropriate semirings to design efficient solutions that circumvent the naïve computation of
exponentially sized sums in gradient formula.

Our algorithms enable one to train learning models such as neural networks with complex structured
losses. When combined with the recent developments in automatic differentiation, e.g. CNTK (Seide
and Agarwal, 2016), MXNet (Chen et al., 2015), PyTorch (Paszke et al., 2017), and TensorFlow
(Abadi et al., 2016), they can be used to train structured prediction models such as neural networks
with the natural loss of the task. In particular, the use of our techniques for the top layer of neural
network models can further accelerate progress in end-to-end training (Amodei et al., 2016; Graves
and Jaitly, 2014; Wu et al., 2016).

For problems with limited data, e.g. uncommon languages or some biological problems, our work
overcomes the computational bottleneck, uses the exact loss function, and renders the amount of data
available the next hurdle for improved performance. For extremely large-scale problems with more
data than can be processed, we further present an approximate truncated shortest-path algorithm that
can be used for fast approximate gradient computations of the edit-distance.

The rest of the paper is organized as follows. In Section 2, we briefly describe structured prediction
problems and algorithms, discuss their learning objectives, and point out the challenge of gradient
computation. Section 3 defines several weighted automata and transducer operations that we use to
design efficient algorithms for gradient-based learning. In Sections 4 and 5, we give general algorithms
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for computing the gradient of rational and tropical loss functions, respectively. In Section 6, we report
the results of experiments verifying the improvement due to using our efficient methods compared to
a naïve implementation. Further details regarding weighted automata and transducer operations and
training recurrent neural network training with the structured objective are presented in Appendix A
and Appendix B.

2 Gradient computation in structured prediction

In this section, we introduce the structured prediction learning problem. We start by defining the
learning scenario, including the relevant loss functions and features. We then move on to discussing
the hypothesis sets and forms of the objection function that are used by many structured prediction
algorithms, which leads us to describe the problem of computing their gradients.

2.1 Structured prediction learning scenario

We consider the supervised learning setting, in which the learner receives a labeled sample S =
{(x1, y1), . . . , (xm, ym)} drawn i.i.d. from some unknown distribution over X ×Y , where X denotes
the input space and Y the output space. In structured prediction, we assume that elements of the
output space Y can be decomposed into possibly overlapping substructures y = (y1, . . . , yl). We
further assume that the loss function L : Y × Y → R+ can similarly be decomposed along these
substructures. Some key examples of loss functions that are relevant to our work are the Hamming
loss, the n-gram loss and the edit-distance loss.

The Hamming loss is defined for all y = (y1, . . . , yl) and y′ = (y′1, . . . , y′l) by L(y, y′) =
1
l

∑l
k=1 1yk 6=y′k , with yk, y′k ∈ Yk. The edit-distance loss is commonly used in natural language

processing (NLP) applications where Y is a set of sequences defined over a finite alphabet, and the
loss function between two sequences y and y′ is defined as the minimum cost of a sequence of edit
operations, typically insertions, deletions, and substitutions, that transform y into y′. The n-gram
loss is defined as the negative inner product (or its logarithm) of the vectors of n-gram counts of
two sequences. This can serve as an approximation to the BLEU score, which is commonly used in
machine translation.

We assume that the learner has access to a feature mapping Ψ : X × Y → RN . This mapping can
be either a vector of manually designed features, as in the application of the CRF algorithm, or the
differentiable output of the penultimate layer of an artificial neural network. In practice, feature
mappings that correspond to the inherent structure of the input space X combined with the structure
of Y can be exploited to derive effective and efficient algorithms. As mentioned previously, a common
case in structured prediction is when Y is a set of sequences of length l over a finite alphabet ∆.
This is the setting that we will consider, as other structured prediction problems can often be treated
similarly.

We further assume that Ψ admits a Markovian property of order q, that is, for any (x, y) ∈ X × Y ,
Ψ(x, y) can be decomposed as Ψ(x, y) =

∑l
s=1ψ(x, ys−q+1:s, s), for some position-dependent

feature vector functionψ defined over X ×∆q× [l], where the shorthand ys:s′ = (ys, . . . , ys
′
) stands

for the substring of y starting at index s and ending at s′. For convenience, for s ≤ 0, we define ys
to be the empty string ε. This Markovian assumption is commonly adopted in structured prediction
problems such as NLP (Manning and Schütze, 1999). In particular, it holds for feature mappings that
are frequently used in conjunction with the CRF, as well as outputs of a recurrent neural network,
reset at the begining of each new input (see Appendix B).

2.2 Objective function and gradient computation

The hypothesis set we consider is that of linear functions h : (x, y) 7→ w ·Ψ(x, y) based on the
feature mapping Ψ. The empirical loss R̂S(h) = 1

m

∑m
i=1 L(h(xi), yi) associated to a hypothesis

h is often not differentiable in structured prediction since the loss function admits discrete values.
Taking the expectation over the distribution induced by the log-linear model, as in (Gimpel and Smith,
2010)[Equation 5], does not help resolve this issue, since the method does not result in an upper
bound on the empirical loss and does not admit favorable generalization guarantees. Instead, as in the
familiar binary classification scenario, one can resort to upper-bounding the loss with a differentiable
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(convex) surrogate. For instance, by (Cortes et al., 2016)[Lemma 4], R̂S(h) can be upper-bounded
by the following objective function:

F (w) =
1

m

m∑
i=1

log

[∑
y∈Y

eL(y,yi)−w·(Ψ(xi,yi)−Ψ(xi,y))

]
, (1)

which, modulo a regularization term, coincides with the objective function of CRF. Note that this
expression has also been presented as the softmax margin (Gimpel and Smith, 2010) and the reward-
augmented maximum likelihood (Norouzi et al., 2016). Both of these references demonstrate strong
empirical evidence for this choice of objective function (in addition to the theoretical results presented
in (Cortes et al., 2016)).

Our focus in this work is on an efficient computation of the gradient of this objective function. Since
the computation of the subgradient of the regularization term often does not pose any issues, we will
only consider the unregularized part of the objective. For any w and i ∈ [m], let Fi(w) denote the
contribution of the i-th training point to the objective function F . A standard gradient descent-based
method would sum up all or a subset (mini-batch) of the gradients ∇Fi(w). As illustrated in (Cortes
et al., 2016)[Lemma 15], the gradient∇Fi(w) can be expressed as follows at any w:

∇Fi(w) =
1

m

l∑
s=1

∑
z∈∆q

Qw(z, s)ψ(xi, z, s)−
Ψ(xi, yi)

m
,

where, for all z ∈ ∆q and s ∈ [l], Qw(z, s) is defined by

Qw(z, s) =
∑

y : ys−q+1:s=z

eL(y,yi)+w·Ψ(xi,y)

Zw
and Zw =

∑
y∈Y

eL(y,yi)+w·Ψ(xi,y).

The bottleneck in the gradient computation is the evaluation of Qw(z, s), for all z ∈ ∆q and s ∈ [l].
There are l|∆|q such terms and each term Qw(z, s) is defined by a sum over the |∆|l−q sequences y of
length l with a fixed substring z of length q. A straightforward computation of these terms following
their definition would therefore be computationally expensive. To avoid that computational cost,
many existing learning algorithms for structured prediction, including most of those mentioned in the
introduction, resort to further approximations and omit the loss L from the definition of Qw(z, s).
Combining that with the Markovian structure of Ψ can then lead to efficient gradient computations.
Of course, the caveat of this approach is that it ignores the key component of the learning problem,
namely the loss function.

In what follows, we will present efficient algorithms for the exact computation of the terms Qw(z, s),
with their full definition, including the loss function. This leads to an efficient computation of the
gradients∇Fi, which can be used as input to back-propagation algorithms that would enable us to
train neural network models with structured prediction losses.

The gradient computation methods we present apply to the Hamming loss, n-gram loss, and edit-
distance loss, and more generally to two broad families of losses that can be represented by weighted
finite-state transducers (WFSTs). This covers many losses based on sequence similarity measures
that are used in NLP and computational biology applications (Cortes et al., 2004; Schölkopf et al.,
2004).

We briefly describe the WFST operations relevant to our solutions in the following section and
provide an example of how the edit-distance loss can be represented with a WFST in Section 5.

3 Weighted automata and transducers

Weighted finite automata (WFA) and weighted finite-state transducers (WFST) are fundamental
concepts and representations widely used in computer science (Mohri, 2009). We will use WFAs and
WFSTs to devise algorithms that efficiently compute gradients of structured prediction objectives.
This section introduces some standard concepts and notation for WFAs and WFSTs. We provide
additional details in Appendix A. For a more comprehensive treatment of these topics, we refer the
reader to (Mohri, 2009).

Definition. A weighted finite-state transducer T over a semiring (S,⊕,⊗, 0, 1) is an 8-tuple
(Σ,∆, Q, I, F,E, λ, ρ) where Σ is a finite input alphabet, ∆ is a finite output alphabet, Q is a
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0

  a:ε/1

b:ε/1   

1

a:a/1

b:b/1
2/1

a:a/1

b:b/1

  a:ε/1

b:ε/1    

Figure 1: Bigram transducer Tbigram over the semiring (R+ ∪ {+∞},+,×, 0, 1) for the alphabet ∆ = {a, b}.
The weight of each transition (or that of a final state) is indicated after the slash separator. For example, for any
string y and bigram u, Tbigram(y,u) is equal to the number of occurrences of u in y (Cortes et al., 2015).

finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, E is a finite
multiset of transitions, which are elements of Q× (Σ ∪ {ε})× (∆ ∪ {ε})× S×Q, λ : I → S is an
initial weight function, and ρ : F → S is a final weight function. A weighted finite automaton is a
weighted finite-state transducer where the input and output labels are the same. See Figures 1 and 3
for some examples.

For many operations to be well defined, the weights of a WFST must belong to a semiring
(S,⊕,⊗, 0, 1). We provide a formal definition of a semiring in Appendix A. In this work, we
consider two semirings: the probability semiring (R+ ∪ {+∞},+,×, 0, 1) and the tropical semiring
(R ∪ {−∞,+∞},min,+,+∞, 0). The ⊗-operation is used to compute the weight of a path by
⊗-multiplying the weights of the transitions along that path. The ⊕-operation is used to compute the
weight of a pair of input and output strings (x, y) by ⊕-summing the weights of the paths labeled
with (x, y). We denote this weight by T(x, y).

As shown in Sections 4 and 5, in many useful cases, we can reduce the computation of the loss
function L(y, y′) between two strings y and y′, along with the gradient of the corresponding objective
described in (1), to that of the ⊕-sum of the weights of all paths labeled by y:y′ in a suitably defined
transducer over either the probability or tropical semiring. We will use the following standard WFST
operations to construct these transducers: inverse (T−1), projection (Π(T)), composition (T1 ◦ T2),
and determinization (Det(A)). The definitions of these operations are given in Appendix A.

4 An efficient algorithm for the gradient computation of rational losses

As discussed in Section 2, computing Qw(z, s) is the main bottleneck in the gradient computation.
In this section, we give an efficient algorithm for computing Qw(z, s) that works for an arbitrary
rational loss, which includes as a special case the n-gram loss and other sequence similarity-based
losses. We first present the definition of a rational loss and show how the n-gram loss can be encoded
as a specific rational loss. Then, we present our gradient computation algorithm.

Let (R+ ∪ {+∞},+,×, 0, 1) be the probability semiring and let U be a WFST over the probability
semiring admitting ∆ as both the input and output alphabet. Then, following (Cortes et al., 2015),
the rational loss associated to U is the function LU : ∆∗ ×∆∗ → R ∪ {−∞,+∞} defined for all
y, y′ ∈ ∆∗ by LU(y, y′) = − log

(
U(y, y′)

)
. As an example, the n-gram loss of y and y′ is the

negative logarithm of the inner product of the vectors of n-gram counts of y and y′. The WFST
Un-gram of an n-gram loss is obtained by composing a weighted transducer Tn-gram giving the n-gram
counts with its inverse T−1

n-gram, that is the transducer derived from Tn-gram by swapping input and
output labels for each transition. As an example, Figure 1 shows the WFST Tbigram for bigrams.

To compute Qw(z, s) for a rational loss, recall that

Qw(z, s) ∝
∑

y : ys−q+1:s=z

eLU(y,yi)+w·Ψ(xi,y).

Thus, we will design two WFAs, A and B, such that A(y) = ew·Ψ(xi,y), B(y) = eLU(y,yi), and their
composition C(y) = (A ◦ B)(y) = eLU(y,yi)+w·Ψ(xi,y). To compute Qw from C, we will need to
sum up the weights of all paths labeled with some substring z, which we will achieve by treating this
as a flow computation problem.

The pseudocode of our algorithm for computing the key terms Qw(z, s) for a rational loss is given in
Figure 2(a).
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GRAD-RATIONAL(xi, yi,w)

1 Y←WFA accepting any y ∈ ∆l.
2 Yi ←WFA accepting yi.
3 M← Π1(Y ◦ U ◦ Yi)
4 M← Det(M)
5 B← INVERSEWEIGHTS(M)
6 C← A ◦B
7 α← DISTFROMINITIAL(C, (+,×))
8 β ← DISTTOFINAL(C, (+,×))
9 Zw ← β(IC) . IC initial state of C

10 for (z, s) ∈ ∆q × [l] do
11 Qw(z, s)←

∑
e∈Ez,s

α(e)× ω(e)× β(e)

12 Qw(z, s)← Qw(z, s)/Zw

(b)

(c)

(d)
(a)

Figure 2: (a) Efficient computation of the key terms of the structured gradient for the rational loss. For each
transition e ∈ Ez,s, we denote its origin by e, destination by e and weight by ω(e). (b) Illustration of the WFA
Y for ∆ = {a, b} and l = 3. (c) Illustration of the WFA Yi representing string dac. (d) Illustration of WFA A
for q = 2, alphabet ∆ = (a, b) and string length l = 2. For example, the transition from state (a, 1) to state
(b, 2) has the label b and weight ω(ab, 2) = ew·ψ(xi,ab,2).

Design of A. We want to design a determnistic WFA A such that

A(y) = ew·Ψ(xi,y) =

l∏
t=1

ew·ψ(xi,y
t−q+1:t,t).

To accomplish this task, let A be a WFA with the following set of states QA =
{

(yt−q+1:t, t) : y ∈

∆l, t = 0, . . . , l
}
, with IA = (ε, 0) its single initial state, FA = {(yl−q+1:l, l) : y ∈ ∆l} its set of

final states, and with a transition from state (yt−q+1:t−1, t− 1) to state (yt−q+2:t−1 b, t) with label b
and weight ω(yt−q+1:t−1 b, t) = ew·ψ(xi,y

t−q+1:t−1b,t), that is, the following set of transitions:

EA =
{(

(yt−q+1:t−1, t− 1), b, ω(yt−q+1:t−1 b, t), (yt−q+2:t−1 b, t)
)

: y ∈ ∆l, b ∈ ∆, t ∈ [l]
}
.

Figure 2(d) illustrates this construction in the case q = 2. Note that the WFA A is deterministic by
construction. Since the weight of a path in A is obtained by multiplying the transition weights along
the path, A(y) computes the desired quantity.

Design of B. We now design a deterministic WFA B which associates to each sequence y ∈ ∆l the
exponential of the loss eLU(y,yi) = 1/U(y, yi). Let Y denote a WFA over the probability semiring
accepting the set of all strings of length l with weight one and let Yi denote the WFA accepting only
yi with weight one. Figures 2(b) and 2(c) illustrate the constructions of Y and Yi in some simple
cases.2 We first use the composition operation for weighted automata and transducers. Then, we
use the projection operation on the input, which we denote by Π1, to compute the following WFA:
M = Π1(Y ◦ U ◦ Yi). Recalling that Y(y) = Yi(yi) = 1 by construction and applying the definition
of WFST composition, we observe that for any y ∈ ∆l

M(y) = (Y ◦U ◦Yi)(y, yi) =
∑

z=y,z′=yi

Y(z)U(z, z′)Yi(z
′) = Y(y)U(y, yi)Yi(yi) = U(y, yi). (2)

2Note that we do not need to explicitly construct Y, which could be costly when the alphabet size ∆ is large.
Instead, we can create its transitions on-the-fly as demanded by the composition operation. Thus, for the rational
kernels commonly used, at most the transitions labeled with the alphabet symbols appearing in Yi need to be
created.
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(a) (b)

Figure 3: (a) Edit-distance transducer Uedit over the tropical semiring, in the case where the substitution cost
is 1, the deletion cost 2, the insertion cost 3, and the alphabet ∆ = {a, b}. (b) Smith-Waterman transducer
USmith-Waterman over the tropical semiring, in the case where the substitution, deletion and insertion costs are 1,
and where the matching cost is −2, for the alphabet ∆ = {a, b}.

Next, we can apply weighted determinization (Mohri, 1997) to compute a deterministic WFA
equivalent to M, denoted by Det(M). By (Cortes et al., 2015)[Theorem 3], Det(M) can be computed
in polynomial time. Since Det(M) is deterministic and by construction accepts precisely the set
of strings y ∈ ∆l, it admits a unique accepting path labeled with y whose weight is Det(M)(y) =
M(y) = U(y, yi). The weight of that accepting path is obtained by multiplying the weights of its
transitions and that of the final state. Let B be the WFA derived from Det(M) by replacing each
transition weight or final weight u by its inverse 1

u . Then, by construction, for any y ∈ ∆l, we have
B(y) = 1

U(y,yi)
.

Combining A and B. Now consider the WFA C = A ◦ B, the composition of A and B. C is
deterministic since both A and B are deterministic. Moreover, C can be computed in time O(|A||B|).
By definition, for all y ∈ ∆l,

C(y) = A(y)×B(y) =

l∏
t=1

ew·ψ(xi,y
t−q+1:t,t) × 1

U(y, yi)
= eL(y,yi)

l∏
t=1

ew·ψ(xi,y
t−q+1:t,t). (3)

To see how C can be used to compute Qw(z, s), we note first that the states of C can be identified
with pairs (qA, qB) where qA is a state of A, qB is a state of B, and the transitions are obtained by
matching a transition in A with one in B. Thus, for any z ∈ ∆q and s ∈ [l], let Ez,s be the set of
transitions of C constructed by pairing the transition in A ((z1:q−1, s− 1), zq, ω(z, s), (z2:q, s)) with
a transition in B:

Ez,s =
{(

(qA, qB), zq, ω, (q′A, q
′
B)
)
∈ EC : qA = (z1:q−1, s− 1)

}
. (4)

Note that, since C is deterministic, there can be only one transition leaving a state labeled with zq.
Thus, to define Ez,s, we only needed to specify the origin state of the transitions.

For each transition e ∈ Ez,s, we denote its origin by e, destination by e and weight by ω(e). Then,
Qw(z, s) can be computed as

∑
e∈Ez,s

α(e)× ω(e)× β(e), where α(e) is the sum of the weights
of all paths from an initial state of C to e, and β(e) is the sum of the weights of all paths from e to
a final state of C. Since C is acyclic, α and β can be computed for all states in linear time in the
size of C using a single-source shortest-distance algorithm over the (+,×) semiring (Mohri, 2002)
or the so-called forward-backward algorithm. We denote these subroutines by DistFromInitial and
DistToFinal respectively in the pseudocode. Since C admits O(l|∆|q) transitions, we can compute all
of the quantities Qw(z, s), s ∈ [l] and z ∈ ∆q and Z ′w, in time O(l|∆|q).

Note that a natural alternative to the weighted transducer methods presented in this work is to consider
junction tree type methods for graphical methods. However, weighted transducer techniques typically
result in more “compact” representations than graphical model methods, and the computational cost
of the former can even be exponentially faster than the best one could achieve using the latter (Poon
and Domingos, 2011).
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GRAD-TROPICAL(xi, yi,w)

1 Y←WFA accepting any y ∈ ∆l.
2 Yi ←WFA accepting yi.
3 M← Π1(Y ◦ U ◦ Yi)
4 M← Det(M)
5 B← EXPONENTIATEWEIGHTS(M)
6 C← A ◦B
7 α← DISTFROMINITIAL(C, (+,×))
8 β ← DISTTOFINAL(C, (+,×))
9 Zw ← β(IC) . IC initial state of C

10 for (z, s) ∈ ∆q × [l] do
11 Qw(z, s)←

∑
e∈Ez,s

α(e)× ω(e)× β(e)

12 Qw(z, s)← Qw(z, s)/Zw

0/0

a:a/0
b:b/0
a:b/1
b:a/1
ε:a/1
ε:b/1
a:ε/1
b:ε/1

0/0

a:a/0
b:b/0
a:s/1
b:s/1
ε:i/1

0/0

a:a/0
b:b/0
s:a/0
s:b/0
s:ε/0
i:a/0
i:b/0

(a) (b)
Figure 4: (a) Efficient computation of the key terms of the structured gradient for the tropical loss. (b) Factoring
of the edit-distance transducer. The leftmost figure is the edit-distance weighted transducer Uedit over alphabet
Σ = {a, b}, the center figure is a weighted transducer T1, and the rightmost figure is a weighted transducer T2

such that Uedit = T1 ◦ T2.

5 An efficient algorithm for the gradient computation of tropical losses

Following the treatment in (Cortes et al., 2015), the tropical loss associated to a weighted transducer
U over the tropical semiring is defined as the function LU : ∆∗ ×∆∗ → R coinciding with U; thus,
for all y, y′ ∈ ∆∗, LU(y, y′) = U(y, y′).

For examples of weighted transducers over the tropical semiring, see Figures 3(a) and (b).

Our algorithm for computing Qw(z, s) for a tropical loss, illustrated in Figure 4(a), is similar to
our algorithm for a rational loss, with the primary difference being that we exponentiate weights
instead of invert them in the WFA B. Specifically, we design A just as in Section 4, and we design a
deterministic WFA B by first designing Det(M) as in Section 4 and then deriving B from Det(M)
by replacing each transition weight or final weight u in Det(M) by eu. Then by construction, for any
y ∈ ∆l, B(y) = eU(y,yi). Moreover, composition of A with B yields a WFA C = A ◦B such that
for all y ∈ ∆l,

C(y) = A(y)×B(y) =

l∏
t=1

ew·ψ(xi,y
t−q+1:t,t) × eU(y,yi) = eL(y,yi)

l∏
t=1

ew·ψ(xi,y
t−q+1:t,t). (5)

As an example, the general edit-distance of two sequences y and y′ can, as already described,
be computed using Uedit in time O(|y||y′|) (Mohri, 2003). Note that for further computational
optimization, Uedit and USmith-Waterman can be computed on-the-fly as demanded by the composition
operation, thereby creating only transitions with alphabet symbols appearing in the strings compared.

In order to achieve optimal dependence on the size of the input alphabet, we can also apply factoring
to the edit-distance transducer. Figure 4(b) illustrates factoring of the edit-distance transducer over
the alphabet Σ = {a, b}, where s is the substitution and deletion symbol and i is the insertion symbol.
Note that both T1 and T2 are linear in the size of Σ, while Uedit is quadratic in |Σ|. Furthermore,
using on-the-fly composition, for any Y1 and Y2, we can first compute Y1 ◦ T1 and T2 ◦ Y2 and then
compose the result achieving time and space complexity in O(|Y1||Y2|).

6 Experiments

In this section, we present experiments validating both the computational efficiency of our gradient
computation methods as well as the learning benefits of training with natural loss functions. The
experiments in this section should be treated as a proof of concept. We defer an extensive study of
training structured prediction models on large-scale datasets for future work.
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Figure 5: Runtime comparison of efficient versus naïve gradient computation methods for edit-distance (a),
Smith-Waterman (b) and bigram (c) loss functions. The naïve line refers to the average runtime of Grad-Naïve,
the efficient line refers to Grad-Tropical for edit-distance (a) and Smith-Waterman (b) and Grad-Rational for
bigram (c) loss. Naïve computations are shown only up to string length l = 8.

For the runtime comparison, we randomly generate an input and output data pair (xi, yi), both
of a given fixed length, as well as a weight vector w, and we compute ∇Fi(w) using both the
naïve and the outlined efficient methods. As shown in Section 2, the computationally demanding
part in the ∇Fi(w) calculation is evaluating Qw(z, s) for all s ∈ [l] and z ∈ ∆q, while the other
terms are generally not problematic to compute. We define a procedure Grad-Naïve (see Figure 6
in the appendix) and compare the average runtimes of Grad-Naïve with that of Grad-Efficient for
both rational and tropical losses. The efficient algorithms suggested in this work improve upon the
Grad-Naïve runtime by eliminating the explicit loop over y ∈ Y and using the weighted automata
and transducer operations instead. All the weighted automata and transducer computations required
for Grad-Rational and Grad-Tropical are implemented using OpenFST (Allauzen et al., 2007).

More specifically, we define an alphabet |∆| = 10 and features Ψ(x, y) as vectors of counts of all
100 possible bigrams. For each string length l from 2 to 30, we draw input pairs (xi, yi) ∈ ∆l ×∆l

uniformly at random and w ∈ R100 according to a standard normal distribution. The average runtimes
over 125 random trials are presented in Figure 5 for three loss functions: the edit-distance, the Smith-
Waterman distance and the bigram loss. The experiments demonstrate a number of crucial benefits of
our efficient gradient computation framework. Note that the Grad-Naïve procedure runtime grows
exponentially in l, while Grad-Tropical and Grad-Rational exhibit linear dependency on the length
of the input strings. In fact, using the threshold pruning as part of determinization can allow one to
compute approximate gradient for arbitrarily long input strings. The computational improvement
is even more evident for rational losses, in which case the determinization of M can be achieved in
polynomial time (Cortes et al., 2015), thus pruning is not required.

We also provide preliminary learning experiments that illustrate the benefit of learning with a
structured loss for a sequence alignment task, compared to training with the cross-entropy loss. The
sequence alignment experiment replicates the artificial genome sequence data in (Joachims et al.,
2006), where each example consists of native, homolog, and decoy sequences of length 50 and the
task is to predict a sequence that is the closest to native in terms of the Smith-Waterman alignment
score. The experiment confirms that a model trained with Smith-Waterman distance as the objective
shows significantly higher average Smith-Waterman alignment score (and higher accuracy) on a test
set compared to a model trained with cross-entropy objective. The cross-entropy model achieved a
Smith-Waterman score of 42.73, while the augmented model achieved a score of 44.65 on a test set
with a standard deviation of 0.35 averaged over 10 random folds.

7 Conclusion

We presented efficient algorithms for computing the gradients of structured prediction models with
rational and tropical losses, reporting experimental results confirming both runtime improvement
compared to naïve implementations and learning improvement compared to standard methods that
settle for using easier-to-optimize losses. We also showed how our approach can be incorporated
into the top layer of a neural network, so that it can be used to train end-to-end models in domains
including speech recognition, machine translation, and natural language processing. For future work,
we plan to run large-scale experiments with neural networks to further demonstrate the benefit of
working directly with rational or tropical losses using our efficient computational methods.
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A Weighted automata and transducers operations

This section provides further details on the concepts of weighted automata and transducers that were
introduced in Section 3.

Recall that we have defined a weighted finite-state transducer T over a semiring (S,⊕,⊗, 0, 1) as an
8-tuple (Σ,∆, Q, I, F,E, λ, ρ), where Σ is a finite input alphabet, ∆ is a finite output alphabet, Q is
a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, E is a finite
multiset of transitions, which are elements of Q× (Σ ∪ {ε})× (∆ ∪ {ε})× S×Q, λ : I → S is an
initial weight function, and ρ : F → S is a final weight function. Moreover, we defined a weighted
finite automaton to be a weighted finite-state transducer where the input and output labels are the
same.

A tuple (S,⊕,⊗, 0, 1) is a semiring if (S,⊕, 0) is a commutative monoid with identity element 0,
(S,⊗, 1) is a monoid with identity element 1, ⊗ distributes over ⊕, and 0 is an annihilator for ⊗. In
other words, a semiring is a ring that may lack negation.

The construction of weighted transducers and automata used in Sections 4 and 5 required the following
operations: inverse (T−1), projection (Π(T)), composition (T1 ◦ T2), and determinization (Det(A)).
We provide precise definitions of these operations below.

The inverse of a WFST T is denoted by T−1 and defined as the transducer obtained by swapping the
input and output labels of every transition of T, that is, T−1(x, y) = T(y, x) for all (x, y).

The projection of a WFST T is the weighted automaton denoted by Π(T) obtained from T by omitting
the input label of each transition and keeping only the output label.

The composition of two WFSTs T1 with output alphabet ∆ and T2 with a matching input alphabet ∆
is a weighted transducer defined for all x, y by:

(T1 ◦ T2)(x, y) =
⊕
z∈∆∗

(
T1(x, z)⊗ T2(z, y)

)
, (6)

where the sum runs over all strings z labeling a path of T1 on the output side and a path of T2 on
the input side. The worst case complexity of computing (T1 ◦ T2) is quadratic, that is O(|T1||T2|),
assuming that the ⊗-operation can be computed in constant time. The composition operation
can also be used with WFAs by viewing a WFA as a WFST with equal input and output labels
at every transition. Thus, for two WFAs A1 and A2, (A1 ◦ A2) is a WFA defined for all x by
(A1 ◦A2)(x) = A1(x)⊗A2(x).

A weighted automaton is said to be deterministic iff it has a unique initial state and if no two
transitions leaving any state share the same input label. As for (unweighted) finite automata, there
exists a determinization algorithm for WFAs. The algorithm returns a deterministic WFA equivalent
to its input WFA (Mohri, 1997). Unlike the unweighted case, weighted determinization is not defined
for all input WFAs but it can be applied to any acyclic WFA, which is the case of interest for us. When
it can be applied to A, we will denote by Det(A) the deterministic WFA returned by determinization.

B Sequence-to-sequence model training with rational and tropical losses

In this section, we describe how our algorithms can be incorporated into standard procedures for
training modern neural network architectures for structured prediction tasks, particularly sequence-to-
sequence models (Sutskever et al., 2014). Sequence-to-sequence models for structured prediction,
such as RNNs and LSTMs, typically consist of an encoder network, which maps input data from X
to abstract representations and a decoder network, which models a conditional distribution over the
output space Y . The decoder returns a l|∆|-dimensional vector of scores or logits w(x) = (wy,s(x)).
We define ψ(x, ys, s) to be a vector of dimension l|∆| such that the coordinate corresponding
to (ys, s) is equal to one and zero otherwise. Then, setting Ψ(x, y) =

∑l
s=1ψ(x, ys, s) defines

Markovian features of order q = 0 as in Section 2. This allows us to use w and Ψ to compute F (w)
in (1) along wtih its gradient ∇wF (w) in both the forward and backward pass, using techniques
presented in Sections 4 and 5. In particular,∇F (w) can be propagated down to lower layers of the
neural network model using the chain rule.
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Note that, in practice, the generation of scores from the decoder to construct these features for each
y ∈ Y is expensive, and the common solution (Ranzato et al., 2015; Prabhavalkar et al., 2017) is
to restrict the output vocabulary of ∆ to a subset ∆s of size k at each position s. This is often
accomplished via the beam search algorithm. In our framework, we run the beam search to construct
the features automata A, the topology of which is equal to the topology of the beam search tree.

C Pseudocode for Grad-Naïve

GRAD-NAÏVE(xi, yi,w)

1 Zw ←
∑

y∈Y e
L(y,yi)+w·Ψ(xi,y)

2 for (z, s) ∈ ∆q × [l] do
3 Qw(z, s)←

∑
y : ys−q+1:s=z e

L(y,yi)+w·Ψ(xi,y)

4 Qw(z, s)← Qw(z, s)/Zw

Figure 6: Computation of the key term of the gradient using the naïve direct method.
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