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Abstract

We introduce a broad family of decision trees, Com-
posite Trees, whose leaf classifiers are selected out of
a hypothesis set composed of p subfamilies with differ-
ent complexities. We prove new data-dependent learn-
ing guarantees for this family in the multi-class setting.
These learning bounds provide a quantitative guidance
for the choice of the hypotheses at each leaf. Remark-
ably, they depend on the Rademacher complexities of
the sub-families of the predictors and the fraction of
sample points correctly classified at each leaf. We fur-
ther introduce random composite trees and derive learn-
ing guarantees for random composite trees which also
apply to Random Forests. Using our theoretical anal-
ysis, we devise a new algorithm, RANDOMCOMPOS-
ITEFOREST (RCF), that is based on forming an ensem-
ble of random composite trees. We report the results of
experiments demonstrating that RCF yields significant
performance improvements over both Random Forests
and a variant of RCF in several tasks.

Introduction
Random Forests (RFs) are ensemble learning models intro-
duced by Breiman (2001) combining the bagging approach
(Breiman 1996) and the random subspace method (Ho 1995;
Amit and Geman 1997). They are used in a variety of appli-
cations for classification and regression tasks ranging from
computer vision and medical imaging to finance (Crimin-
isi, Shotton, and Konukoglu 2012), often outperforming ex-
isting methods (Schroff, Criminisi, and Zisserman 2008;
Shotton et al. 2011; Montillo et al. 2011; Xiong et al. 2012).

In contrast with their empirical success, the theoreti-
cal analysis of RFs is still subject to several questions, as
pointed out by Denil, Matheson, and de Freitas (2014).
There has been considerable work seeking to prove con-
sistency results for RFs under some simplifying assump-
tions (Biau, Devroye, and Lugosi 2008; Biau 2012) includ-
ing more recent work presenting a finer analysis (Denil,
Matheson, and de Freitas 2014), but few theoretical publi-
cations have focused on deriving finite-sample generaliza-
tion bounds for these models. It is worth mentioning that a
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by-product of our analysis is a new data-dependent finite-
sample learning guarantee for RFs using the random sub-
space method.

To achieve a higher accuracy in some difficult tasks, more
complex decision trees are needed, with leaf classifiers (or
node questions) selected out of richer hypothesis sets than
those commonly used by RFs. We will consider a broad
family of decision trees, Composite Trees, whose leaf classi-
fiers are selected out of a hypothesis set composed of p sub-
families with different complexities. Of course, trees with
leaf classifiers consistently picked from a rich hypothesis set
would be prone to overfitting. However, when the leaf clas-
sifiers are selected more rarely from more complex subfam-
ilies and more frequently from the less complex ones, then
learning can be successful, while providing the flexibility of
using richer hypotheses when needed. We will present new
data-dependent learning guarantees in the multi-class setting
that provide a quantitative guidance for the choice of the hy-
potheses at each leaf of a composite tree. Our bounds are
given in terms of the Rademacher complexities of the p sub-
families and, remarkably, depend on the fraction of correctly
classified points at each leaf.

Previous empirical papers have examined the perfor-
mance of decision trees whose leaves have a specific clas-
sifier, but little theoretical analysis of this problem has been
developed. The classifiers used at the leaves have been
generated from various algorithms: neural nets (Zhou and
Chen 2002), linear regression and nearest neighbor algo-
rithm (Seewald, Petrak, and Widmer 2001), and Gaussian
processes (Kohavi 1996; Frohlich et al. 2013; Seewald, Pe-
trak, and Widmer 2001). Moreover, several papers com-
bine decision trees with the SVM algorithm, but none pro-
vide generalization bounds or any other strong theoretical
justification (Chang et al. 2010; Bennet and Blue 1998;
Takahashi and Abe 2002; Dong and Chen 2008; Madjarov
and Gjorgjevikj 2012; Arreola, Fehr, and Burkhardt 2006;
2007; Rodriguez-Lujan, Cruz, and Huerta 2012; Kumar and
Gopal 2010; Wang and Saligrama 2012). One paper that is
close to our theoretical analysis is by Golea et al. (1997).
They provide generalization bounds for decision trees in
terms of the VC dimension, but they assume boolean leaf
functions under the setting of binary classification.

We also define randomized versions of composite trees.
As already mentioned, randomization appears in the defi-



nition of RFs in two principle ways: through bagging and
randomized node optimization (RNO) (Ho 1995; Amit and
Geman 1997; Ho 1998; Dietterich et al. 2000). Bagging gen-
erates several samples of the same size from the training set
by sampling uniformly and with replacement in order to then
independently train a decision tree for each sample. RNO
selects a random subset of the features at each node of the
decision tree and optimizes the information gain over this
subset of features to choose the best splitting criteria. Ran-
dom forests may use either RNO, bagging, or both when
generating the decision trees in a forest. We define Random
Composite Trees as composite trees where the same tech-
nique as RNO is used to randomly sample features for each
node question of the tree.

We further extend our analysis of composite trees to RFs
and also derive learning guarantees for random composite
trees. The main contribution of our paper is the theoretical
analysis of generalized decision trees and random forests,
but we further supplement the theory with an algorithm and
preliminary experimental results. Using our theoretical anal-
ysis, we derive and implement an algorithm, named RAN-
DOMCOMPOSITEFOREST (RCF), that is based on forming
an ensemble of random composite trees. We report the re-
sults of experiments demonstrating that RCF yields signif-
icant performance improvements over RFs in several tasks.
Moreover, we provide results for a variant of RCF showing
that the theoretical bound used to derived the RCF is a key
factor in the algorithm.

The rest of this paper is organized as follows. In the Pre-
liminaries, we introduce some initial concepts and notation.
In the Composite Trees Section, we give a formal defini-
tion of composite trees. Next, in the Learning Guarantee
Section, we derive data-dependent learning bounds for com-
posite trees and random composite trees. In the Algorithm
Section, we describe our RCF algorithm, including its pseu-
docode. Finally, we report the results of a series of experi-
ments with RCF in the Experiments Section.

Preliminaries
We consider the familiar set-up of supervised learning in
a multi-class setting. Let X denote the input space and
Y = {1, . . . , c} a set of c classes indexed by integers.
We assume that training and test points are drawn i.i.d. ac-
cording to some distribution D over X × Y and denote by
S = ((x1, y1), . . . , (xm, ym)) a training sample of size m
drawn according to Dm.

The label associated by a hypothesis f : X × Y → R to
x ∈ X is given by argmaxy∈Y f(x, y). The margin ρf (x, y)
of the function f for a labeled example (x, y) ∈ X × Y is
defined by ρf (x, y) = f(x, y)−maxy′ 6=y f(x, y′). Thus, f
misclassifies (x, y) iff ρf (x, y) ≤ 0. Let ρ > 0. The general-
ization error R(f) of f , its empirical margin error R̂S,ρ(f),
and its empirical error R̂S(f) for a sample S are defined as
follows:

R(f) = E
(x,y)∼D

[1ρf (x,y)≤0], R̂S,ρ(f) = E
(x,y)∼S

[1ρf (x,y)≤ρ],

and R̂S(f) = E
(x,y)∼S

[1ρf (x,y)≤0],

where the notation (x, y) ∼ S indicates that (x, y) is drawn
according to the empirical distribution defined by S. For any
family of hypotheses G mapping X ×Y to R, we denote by
G̃ the family of functions that G defines based on its first
argument:

G̃ = {x 7→ g(x, y) : y ∈ Y, g ∈ G}.

Composite Trees
Let H denote a family of p distinct hypothesis sets of func-
tions mapping X × Y to [0, 1]. For any k ∈ {1, . . . , l} with
l ≥ 1, let Sk denote a family of functions mapping X to
{0, 1}. A Composite Tree with l ≥ 1 leaves is a tree of clas-
sifiers which, in the most generic view, can be defined by a
triplet (H, s,h) where
• H = (H1, . . . ,Hl) is an element of Hl; the hypothesis

used at leaf k ∈ {1, . . . , l} is selected from Hk ∈ H;
• s : X × [1, l] → {0, 1} is a leaf selector, that is s(x, k) =

1 if x is assigned to leaf k, s(x, k) = 0 otherwise. The
function s(·, k) is an element of Sk for each leaf k;

• h = (hk)k∈[1,l] is a leaf classifier such that hk : X ×
Y → [0, 1] and

∑
y∈Y hk(x, y) = 1. The function hk is

an element of Hk for each leaf k.
We define Hk = {x 7→ s(x, k)hk(x, y) : s(·, k) ∈ Sk, hk ∈
Hk} to be the family made of the products of a k-leaf selec-
tor and a k-leaf classifier.

In standard decision trees, the leaf selector s can be de-
composed into node questions (or their complements) and
we will later assume this decomposition: for any x ∈ X and
k ∈ [1, l], s(x, k) =

∏dk
j=1 qj(x), where dk is the depth of

leaf k and where each function qj : X → {0, 1} is an ele-
ment of a family Qj .1 However, the first part of our analysis
does not require that assumption.

Each triplet (H, s,h) defines a Composite Tree Function
f : X × Y → [0, 1] as follows:

f(x, y) =

l∑
k=1

s(x, k)hk(x, y).

We denote by Tl the family of all composite tree functions
with l leaves thereby defined.

Learning Guarantees
In this section, we first present new learning guarantees for
composite trees. Next, we define random composite trees
and further derive learning bounds for this family.

Generalization bounds for composite trees
Let mk be the number of points at leaf k and let m+

k be
the number of sample points at leaf k that are classified cor-
rectly, m+

k = |{i : ρhk(xi, yi) > 0, s(xi, k) = 1}|. Simi-
larly, letm−k be the number of sample points at leaf k that are
misclassified, m−k = |{i : ρhk(xi, yi) ≤ 0, s(xi, k) = 1}|.

1Each qj is either a node question q or its complement q̄ defined
by q̄(x) = 1 iff q(x) = 0. The family Qj is assumed symmetric: it
contains q̄ when it contains q.



The main result of this section is Theorem 1, which gives
data-dependent learning bounds for multi-class composite
trees in terms of the quantity m+

k and the Rademacher com-
plexities of the families H̃k made of products of a leaf selec-
tor and a leaf classifier (see Preliminaries). The following is
a simpler form of our learning bound; with high probability,
for all f ∈ Tl, the following inequality holds:

R(f) ≤ R̂S(f) +

l∑
k=1

min
(

8cRm(H̃k),
m+
k

m

)

+ Õ

(
1

ρ

√
log pl

m

)
+

√
log 2

δ

2m
. (1)

Remarkably, the bound suggests that a composite tree using
a very complex hypothesis set Hk can nevertheless bene-
fit from favorable learning guarantees when the fraction of
correctly classified points at the leaves labeled with func-
tions from Hk is relatively small. Note further that, in this
comparison, the complexity term Rm(H̃k) is scaled by the
number of distinct classes c, which, in some applications
could be relatively large. Even in the simple case of p = 1
where there is only one hypothesis class H1 for leaf classi-
fiers, the result is striking: in the worst case, the complexity
term could be in O(lRm(H̃1)); however, this result shows
that it could be substantially less for some composite trees
since it may be that for many leaves m+

k /m � cRm(H̃1).
The fraction of points m+

k /m at each leaf k depends on the
choice of the composite tree. Thus, the bound can guide
the design of different algorithms by selecting composite
trees benefitting from better guarantees. Finally, note that the
bound admits only a logarithmic dependency on the number
of distinct hypothesis sets p.

In the following, we assume that the leaves are numbered
in order of increasing depth and at times use the shorthand
rk = Rm(H̃k). Let K denote the set of leaves whose frac-
tion of correctly classified points at leaf k are greater than

8crk: K = {k ∈ [1, l] :
m+
k

m > 8crk} . The following learn-
ing bound holds in the case of leaf predictors taking values
in {0, 1}. We have also extended our analysis to the case of
leaf predictors taking values in [0, 1] (see Appendix).
Theorem 1. Fix ρ > 0. Assume that for all k ∈ [1, l], the
functions in Hk take values in {0, 1}. Then, for any δ > 0,
with probability at least 1 − δ over the choice of a sample
S of size m ≥ 1, the following holds for all l ≥ 1 and all
f ∈ Tl defined by (H, s,h):

R(f) ≤ R̂S(f) +

l∑
k=1

min
(

8cRm(H̃k),
m+
k

m

)

+ min
L⊆K

|L|≥|K|− 1
ρ

∑
k∈L

(m+
k

m
−8cRm(H̃k)

)
+C(m, p, ρ)+

√
log 2

δ

2m

where C(m, p, ρ) = 2
cρ

√
log pl
m +

√⌈
4
ρ2 log

(
c2ρ2m
4 log pl

)⌉
log pl
m

= Õ

(
1
ρ

√
log pl
m

)
.

Proof. Let ∆ denote the simplex in Rl and int(∆) its inte-
rior. For any α ∈ int(∆), let gα be the function defined for
all (x, y) ∈ X × Y by

gα(x, y) =

l∑
k=1

αks(x, k)hk(x, y).

Observe that gα generates the same classifications as f since
for any x ∈ X , s(x, k) = 1 for only one leaf k and since
αk ≥ 0. Thus, we can equivalently analyze R(gα) instead
of R(f), for any α ∈ int(∆).

Since gαs are convex combinations of the functions x 7→
s(x, k)hk(x, y), we can apply to the set of functions gα the
learning guarantees for convex ensembles with multiple hy-
pothesis sets given by Kuznetsov, Mohri, and Syed (2014),
which show that, for any δ > 0, with probability at least
1 − δ, the following holds for any α ∈ int(∆) and any
f ∈ Tl defined by (H, s,h):

R(f)≤R̂S,ρ(gα)+
8c

ρ

l∑
k=1

αkRm(H̃k)+C(m, p, ρ)+

√
log 2

δ

2m

where Hk = {(x, y) 7→ s(x, k)hk(x, y) : hk ∈
Hk, s(·, k) ∈ Sk}. Since the inequality holds for any α ∈
int(∆), it implies that with probability at least 1 − δ, the
following holds any f ∈ Tl defined by (H, s,h):

R(f) ≤ inf
α∈int(∆)

[
R̂S,ρ(gα) +

8c

ρ

l∑
k=1

αkRm(H̃k)

]

+ C(m, p, ρ) +

√
log 2

δ

2m
. (2)

This bound depends on the choice of α ∈ int(∆). The crux
of our proof consists now of removing α to derive an ex-
plicit bound. The first terms of the right-hand side can be
re-written as

B(α) =
1

m

l∑
k=1

∑
s(xi,k)=1

1αkρhk (xi,yi)<ρ+
8c

ρ

l∑
k=1

αkRm(H̃k)

(3)
by definition of the empirical margin error R̂S,ρ(gα) =
1
m

∑l
k=1

∑
s(xi,k)=1 1αkρhk (xi,yi)<ρ and that of ρhk(xi, yi)

given in the Preliminaries Section. Observe that function B
can be decoupled as a sum, B(α) =

∑l
k=1Bk(αk), where

Bk(αk) =
1

m

∑
s(xi,k)=1

1αkρhk (xi,yi)<ρ +
8c

ρ
αkrk.

For any k ∈ [1, l], Bk(αk) can be rewritten as fol-

lows in terms of m−k and m+
k : Bk(αk) =

m−k
m +

m+
k

m 1αk<ρ+ 8c
ρ αkrk. This implies infαk>0Bk(αk) =

m−k
m +

min
(
m+
k

m , 8crk

)
. However, we need to ensure the global



condition
∑l
k=1 αk ≤ 1. First, let l′ = min(|K|, 1

ρ ). For
any J ⊆ K with |J| ≤ l′, we choose αk = ρ for k ∈ J,
αk → 0 otherwise, which guarantees

∑l
k=1 αk = ρl′ ≤ 1

and implies that infα∈int(∆)B(α) is equal to

min
J

(
8c
∑
k∈J

rk+
∑

k∈K−J

m+
k

m

)
+

l∑
k=1

m−k
m

+
∑
k 6∈K

m+
k

m
.

Moreover, to simplify the bound, observe that

min
J

(
8c
∑
k∈J

rk +
∑

k∈K−J

m+
k

m

)
= min

J

(
8c
∑
k∈J

rk +
∑

k∈K−J

m+
k

m
+
∑

k∈K−J

8crk −
∑

k∈K−J

8crk

)
= 8c

∑
k∈K

rk + min
J

( ∑
k∈K−J

m+
k

m
− 8crk

)
.

Also, by definition, we can write:
∑
k∈K 8crk +∑

k 6∈K
m+
k

m =
∑l
k=1 min

(
8crk,

m+
k

m

)
. Now, define

L = K − J. Since |J| ≤ l′, |L| = |K| − |J| ≥ |K| − l′ =
|K|−min(|K|, 1

ρ ) = max(0, |K|− 1
ρ ), hence |L| ≥ |K|− 1

ρ .
Finally, this allows us to write the bound in a simpler form:

inf
α∈int(∆)

A(α) =

l∑
k=1

min
(

8crk,
m+
k

m

)
+ min

L⊆K
|L|≥|K|− 1

ρ

(∑
k∈L

m+
k

m
− 8crk

)
+

l∑
k=1

m−k
m

.

Since R̂S(f) =
∑l
k=1

m−k
m , this coincides with the bound in

the statement of the theorem.

Let dk be the VC-dimension of H̃k. We can replace
Rm(H̃k) in the bound by an upper bound in terms of the
VC-dimension (Mohri, Rostamizadeh, and Talwalkar 2012):

Rm(H̃k) ≤
√

2dk log(m+1)
m . When m+

k , the number of cor-
rectly classified points at each leaf k, is sufficiently small,
the contribution of leaf k to the complexity term of the bound
only depends on m+

k . This is likely since it suffices that the
following inequality holds: m+

k ≤ 8c
√

2dkm log(m+ 1).
At a fundamental level, the crucial measure appears to be
a balance of the Rademacher complexities and the fractions
m+
k /m. This bound directly applies to standard multi-class

decision trees, which could lead to many different applica-
tion in this setting. We will later apply it to the random com-
posite trees.

The bound of Theorem 1 can be generalized to hold
uniformly for all ρ > 0 at the price of an additional

term in O
(

log log2
1
ρ

m

)
using standard techniques for mar-

gin bounds (see for example (Mohri, Rostamizadeh, and Tal-
walkar 2012)). Note that for |K| ≤ 1

ρ , choosing L = ∅ gives

the following simpler bound:

R(f) ≤ R̂S(f) +

l∑
k=1

min
(

8cRm(H̃k),
m+
k

m

)

+ Õ

(
1

ρ

√
log pl

m

)
+

√
log 2

δ

2m
.

Thus, we can choose ρ = 1
|K| at an additional price only

in O
(

log log2 |K|
m

)
≤ O

(
log log2 l

m

)
. This gives the simpler

form (1) of the bound of Theorem 1, with C(m, p, ρ) =
C(m, p, 1

|K| ) ≤ C(m, p, 1
l ).

The learning bounds just discussed are given in terms
of the complexity terms Rm(H̃k). To derive more explicit
guarantees, we need to express them instead in terms of
the Rademacher complexities Rm(H̃k). The following re-
sult will provide us the tool to do so.
Lemma 1. LetH1 andH2 be two families of functions map-
ping X to {0, 1} and let H = {h1h2 : h1 ∈ H1, h2 ∈ H2}.
Then, the empirical Rademacher complexity of H for any
sample S of size m can be bounded as follows:

Rm(H) ≤ Rm(H1) + Rm(H2).

Proof. Observe that for any h1 ∈ H1 and h2 ∈ H2, we can
write h1h2 = (h1 +h2− 1)1h1+h2−1≥0 = (h1 +h2− 1)+.
Since x 7→ (x−1)+ is 1-Lipschitz over [0, 2], by Talagrand’s
contraction in (Ledoux and Talagrand 1991), the following
holds: Rm(H) ≤ Rm(H1 + H2) ≤ Rm(H1) + Rm(H2).

We now assume, as previously discussed, that leaf selec-
tors are defined via node questions qj : X → {0, 1}, with
qj ∈ Qj . Then, by Lemma 1, we can write Rm(H̃k) ≤(∑dk

j=1 Rm(Q̃j) + Rm(H̃k)
)

. If we use the same hypoth-
esis at each node, Qj = Q for all j for some Q, then
the bound simply becomes: Rm(H̃k) ≤

(
dkRm(Q̃) +

Rm(H̃k)
)
.

Generalization bounds for random composite trees
Consider composite trees with leaf selectors that are com-
posed of node questions. Here, we assume that the node
questions are defined as threshold functions based on a fam-
ily of features F . As in RNO, a random composite tree is a
composite tree where at each node n, the node question is
based a random subset Fn ⊆ F of size r. More precisely,
the node question of a random composite tree is

qn(x) = 1Φ(x)·θn≤0 s.t. θn = argmax
θ∈Fn

In (4)

where Φ is the feature mapping and In is the information
gain of node n. For simplicity, let η = r

|F | .
Let ΠG(m) denote the growth function of a family of

functionsG. Then, the following learning bound for random
composite trees can be derived using our analysis of com-
posite trees, which inherently also provides a generalization
guarantee for RNO.



Proposition 2. Fix ρ > 0. Assume that for all k ∈ [1, l], the
functions in Hk take values in {0, 1}. Then, for any δ > 0,
with probability at least 1 − δ over the choice of a sample
S of size m ≥ 1, the following holds for all l ≥ 1 and all
random composite tree function f :

R(f) ≤ R̂S(f) +

l∑
k=1

min
(

8cDHk
,
m+
k

m

)

+min
L⊆K

|L|≥|K|− 1
ρ

∑
k∈L

(m+
k

m
− 8cDHk

)
+C(m, p, ρ) +

√
log 2

δ

2m
,

where DHk
=

√
2 log Π

H̃k
(m)

m +

√
2dk(r log e

η+log 2mr)

m , and
dk is depth of leaf k for a given tree.

Proof. By Lemma 1, the following inequality holds:
Rm(H̃k) ≤

∑dk
j=1 Rm(Q̃j) + Rm(H̃k). By Mas-

sart’s lemma, the Rademacher complexities can be
bounded as follows in terms of the growth function:∑dk
j=1 Rm(Q̃j) + Rm(H̃k) ≤

√
(2 log ΠH̃k

(m))/m +√
(2
∑dk
j=1 log ΠQ̃j

(m))/m. Now, using the fact that there

are
(|F |
r

)
ways of choosing r features out of |F | and the up-

per bound
(|F |
r

)
≤ ( |F |er )r for 1 ≤ r ≤ |F |, we can write

log ΠQ̃j
(m) ≤ log

(|F |
r

)
(2mr) ≤ r log e

η +log(2mr), since
there are 2m distinct threshold functions for each dimension
with m points and there are r dimensions. Using this upper
bound on Rm(H̃k) in Theorem 1 concludes the proof.

As indicated before, the bound of this proposition can be
generalized to hold uniformly for all ρ > 0 at the price of

an additional term O
(

log log2
1
ρ

m

)
. For |K| ≤ 1

ρ , choosing
L = ∅ gives the following simpler bound:

R(f)≤ R̂S(f)+

l∑
k=1

min
(
8cDHk

,
m+
k

m

)
+Õ

(
1

ρ

√
log pl

m

)
.

(5)

Algorithm
In this section, we derive an algorithm, RANDOMCOM-

POSITEFOREST, which is based on averaging an ensemble
of random composite trees and which directly benefits from
the bound (5). Thus, we define a Random Composite Forest
function f as the uniform average of B composite tree func-
tions f : f(x, y) = 1

B

∑B
b=1 fb(x, y). The label returned by f

for each input point x ∈ X is given by argmaxy∈Y f(x, y).
Algorithm 1 gives the pseudocode of our algorithm. RCF

generates several random composite trees independently and
then returns the uniform average of the scoring functions de-
fined by these trees. For any random composite tree, the pre-
vious section described how the node questions are chosen.
Yet, the type of leaf classifiers still needs to be determined:
let the leaf hypothesis sets Hk at leaf k be decision surfaces
defined by a polynomial kernel. We choose the hypothesis

Algorithm 1 RANDOMCOMPOSITEFOREST(B, r, γ)
for b = 1 to B do

for n = 1 to d(M) do
qn ← RNO(r)

end for
for (δk)1≤k≤l ⊆ G do

for k = 1 to l do
hk ← SVM(δk)

end for
fb(·) =

∑l
k=1

∏dk
j=1 qj(·)hk(·, y).

Fb ← Fb ∪ {fb}
end for

f∗b ← argmin
f∈Fb

R̂S(f) +

l∑
k=1

min

(
8cγA,

m+
k

m

)
end for
return f = 1

B

∑B
b=1 f

∗
b

hk that minimizes a surrogate loss (hinge loss) of the em-
pirical error by using the multi-class SVM algorithm via the
one-versus-one technique on the sample points that reached
leaf k. In the pseudocode, we denote by SVM(δk) the multi-
class SVM algorithm at leaf k with polynomial kernels of
degree δk. Only relatively short trees are formed since the
depth M of the tree scales with the bound and since enough
sample points need to reach each leaf to learn via SVM.

The first step of the algorithm is to learn the node ques-
tions qn of a random composite tree via RNO for a given
size, r, of the randomly chosen subset of features and it
thereby forms a tree with l leaves. In the pseudocode, we de-
note this step by qn(·)← RNO(r) where d(M) is the num-
ber of nodes for a tree with maximum depth M . Then, the
algorithm generates p different sequences of degree values
(δk)1≤k≤l ⊆ G. For each sequence, the algorithm learns the
leaf classifiers as described above and defines a new random
composite tree function fb. We denote by Hfb,k the hypoth-
esis set at leaf k that served to define fb and denote by Fb
the set containing all fbs. The algorithm then chooses the
best fb ∈ Fb that minimizes the generalization bound (5).
More precisely, we first upper bound the growth function of
the leaf classifier hypothesis set Hf,k in terms of the VC-
dimension of the hypothesis set:

√
(2 log ΠH̃f,k

(m))/m ≤√
(2df,k log( emdf,k ))/m, where df,k is the VC-dimension of

Hf,k. Then, we rescale the complexity term by a parameter
γ, which we will determine by cross-validation. For a given
γ, the algorithm chooses f∗b , the composite tree f ∈ Fb with
the smallest value of the generalization bound:

R(f) ≤ R̂S(f) +

l∑
k=1

min

(
8cγA,

m+
k

m

)
, (6)

where A =

√
2dk(r log e

η+log 2mr)

m +

√
2df,k log( emdf,k

)

m . The
algorithm then repeats the process above for each value of
b = 1, ..., B and returns the random composite forest func-
tion f that is the uniform average of f∗b s: f = 1

B

∑B
b=1 f

∗
b .

The step of using bound 6 is at the heart of our algorithm



Table 1: The table reports the average test error (%) and standard deviation for RCF, RFs, and RF-SVM algorithm. For each
dataset, the table also indicates the sample size, the number of features and number of classes.

Dataset Examples Features RFs Error RCF Error RF+SVM Error Classes
vowel 528 10 5.28 ± 0.46 3.77 ± 0.45 4.5 ± 1.38 11
vehicle 846 18 28.4 ± 0.53 27.9 ± 1.10 31.2 ± 2.19 4
dna 2000 180 3.55 ± 0.10 3.30 ± 0.10 6.3 ± 1.79 3
pendigits 7494 16 1.25 ± 0.14 0.29 ± 0.03 0.31±0.08 10
german 1000 24 26.6 ± 0.37 24.2 ± 0.60 23.0 ± 0.63 2
iris 150 4 13.3 ± 1.10 10.0 ± 1.50 12.0 ± 1.6 3
abalone 4177 8 75.3 ± 1.15 71.7 ± 0.66 75.1 ± 0.24 29
a2a 2265 123 18.1 ± 0.49 17.5 ± 0.18 19.47 ± 0.21 2
australian 690 14 19.4 ± 0.85 17.4 ± 0.98 17.4 ± 0.55 2
usps 2007 256 9.80 ± 0.30 7.48 ± 0.16 7.7 ± 0.15 10
sonar 208 60 21.9 ± 4.85 16.2 ± 3.80 28.09 ± 2.3 2

since it enables us to select the random composite tree that
admits the best generalization guarantee. By generating dif-
ferent random composite trees and minimizing this bound,
the algorithm is directly exploiting the key theoretical result
of balancing the complexity of the families of predictors and
the fraction of correctly classified points.

Experiments
This section reports the results of the experiments with the
RCF algorithm. We tested RCF on eleven datasets from
UCI’s data repository: german, vehicle, vowel, dna,
pendigits, iris, abalone, and a2a. Table 1 gives the
sample size, the number of features, and the number of
classes of each datasets. For each dataset, we randomly di-
vided the data into training, validation, and test sets in order
to run the RCF algorithm. We repeated the experiment five
times where each time we used a different random partition
of the set. We compare our results to the Random Forests al-
gorithm that uses bagging and RNO. The trees of RFs were
grown without pruning and the leaf classifiers were averaged
over the labels of the training points that reached the leaf. We
also tested a variant of RCF, named RF-SVM, which sim-
ply places classifiers generated by the SVM algorithm at the
leaves without using the bound 6. We implemented RCF,
RFs, and RF-SVM by using scikit-learn, (Pedregosa et al.).

For the SVM algorithm at the leaves of each compos-
ite tree, we allowed the set of polynomial degrees G =
{1, . . . , 9}. The number of different sequences of degree val-
ues was p = 10. For each polynomial degree δ ∈ G, the reg-
ularization parameter Cδ ∈ {10i : i = −3, . . . , 2} of SVMs
was selected via cross-validation and at each leaf k, it was
simply scaled by

√
mk
m Cδ . The r parameter which deter-

mined the size of the subset of features was in the follow-
ing range: r ∈ {1,

√
|F |/2,

√
|F |, 2

√
|F |, . . . , |F |}. The

γ parameter that rescales the bound was γ ∈ {10i : i =
−3, . . . , 0} and the maximum depth of each tree varied
within M ∈ {2, . . . , 8}. The number of trees averaged in
the random forest function f was B ∈ {100, . . . , 900}. For
each of these parameter settings, we ran the experiments as
described above and then picked the parameters with the
smallest validation error and reported the test error of RCF
in Table 1. The range of all the parameter values for the RF-
SVM algorithm are the same as the RCF and the RFs were

tested using the same range of values for r and B as in the
RCF. The test errors of the parameters with the smallest val-
idation error for RFs and RF-SVM are also given in Table 1.

The results of Table 1 show that RCF yields a significant
improvement in accuracy compared with that of RFs. The
results are statistically significant at the 0.5% level for all
datasets except for a2a, sonar, and vehicle when using
a one-sided paired t-test. The datasets a2a and sonar are
significant at the 2.5% level and 5% level respectively while
the dataset vehicle is not statistically significant. The fact
that RCF substantially outperforms the RF-SVM algorithm
on almost all the data sets directly shows both the usefulness
and the effectiveness of the bound 6 in practice.

For the RCF algorithm, we have chosen to use SVMs with
polynomial kernels, but we could instead employ different
hypothesis sets for the leaf classifiers and replace SVMs
with another algorithm. Moreover, there are several compo-
nents that could be easily optimized over to further improve
performance such as optimizing over the regularization pa-
rameter Cδ at each leaf and testing a wider range of values
for all the parameters. Lastly, we would like to emphasize
that RCF is one of several algorithms that could be derived
from the generalization bounds since we exploited only the
simpler form of Theorem 1 and since this simpler form could
guide on its own the design of various algorithms.

Conclusion
We introduced a broad learning model, Composite Trees,
structured as decision trees with leaf selectors and node
questions that can be chosen from complex hypothesis sets.
For multi-class classification, we derived novel theoretical
guarantees which suggest that generalization depends on a
balance between the Rademacher complexities of the sub-
families of classifiers and the fraction of sample points cor-
rectly classified at each leaf. We further derived learning
guarantees for Random Composite Trees which we used to
devise and implement a new algorithm, RCF. The algorithm
benefits from the theoretical guarantees derived since it per-
forms better than RF-SVM and it significantly outperforms
RFs in experiments with several datasets.
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Generalization bounds for composite trees
with leaf classifiers taking values in [0, 1]

Here, we derive generalization bounds for composite trees
with leaf classifiers in Hk that take values in [0, 1]. First, for
each leaf k ∈ {1, . . . , l}, define Pk,j = ρhk(xj , yj) for j ∈
{1 . . .m+

k }, and order them such that Pk,1 ≥ Pk,2 ≥ . . . ≥
Pk,m+

k
. Let ek = min

(
m+
k

m , ...,
m+
k−j
m + 8crk

Pk,j
, ..., 8crk

P
k,m

+
k

)
,

which reveals the best trade-off between m+
k−j
m and 8crk

Pk,j
.

Then, we define some partitioning of the leaves depend-

ing on the value ek. Let K = {k ∈ [1, l] : ek 6=
m+
k

m }
and partition any subset L ⊆ K into sections Lj = {k ∈
[1, l] : ek =

m+
k−j
m + 8crk

Pk,j
} for each j ∈ {1 . . . n} where

n = maxkm
+
k . We define a weighted cardinality of L as

|L|w =
∑n
j=1

∑
k∈Lj

1
Pk,j

.

Theorem 3. Fix ρ > 0. Assume for all k ∈ [1, l] that the
functions in Hk take values in [0, 1]. Then, for any δ > 0,
with probability at least 1 − δ over the choice of a sample
S of size m ≥ 1, the following holds for all l ≥ 1 and all
composite tree functions f ∈ Tl defined by (H, s,h):

R(f) ≤ R̂S(f)+ min
L⊆K

|L|w≥|K|w− 1
ρ

( n∑
j=1

∑
k∈Lj

(
j

m
−8cRm(H̃k)

Pk,j
)
)

+

l∑
k=1

min
(m+

k

m
, ...,

m+
k− j
m

+
8cRm(H̃k)

Pk,j
, ...,

8cRm(H̃k)

Pk,m+
k

)

+ C(m, p, ρ) +

√
log 2

δ

2m
.

Proof. As in the proof of Theorem 1, using functions gα and
the multi-class classification bound of (Kuznetsov, Mohri,
and Syed 2014), we obtain the bound (2) which depends on
α. Next, we can re-write part of this bound by using B as
defined in (3). Now, B can be decoupled as a sum, B(α) =∑l
k=1Bk(αk), and each Bk(αk) can be rewritten as

Bk(αk) =
m−k
m

+
1

m

m+
k∑

j=1

1αk< ρ
Pk,j

+
8c

ρ
αkrk,

and hence

inf
αk>0

Bk(αk) =
m−k
m

+ min
(m+

k

m
, ...,

m+
k − j
m

+
8crk
Pk,j

, ...,
8crk
Pk,m+

k

)
.

Next, we ensure the global condition
∑l
k=1 αk ≤ 1 in a

way similar to the proof of Theorem 1. More precisely, let
l′ = min(|K|w, 1

ρ ). Choose αk = ρ
Pk,j

for k ∈ K ′j ⊂ K′

with |K′|w ≤ l′, αk → 0 otherwise, in order to guarantee

∑l
k=1 αk = ρl′ ≤ 1 and it implies that

inf
α∈int(∆)

A(α) =

l∑
k=1

m−k
m

+
∑
k 6∈K

m+
k

m

+ min
K′

( n∑
j=1

∑
k∈K′j

(
8crk
Pk,j

+
m+
k − j
m

) +
∑

k∈K−K′

m+
k

m

)
.

Next, we define K−K′ = ∪nj=1Lj and

min
K′

( n′∑
j=1

∑
k∈K′j

(
8crk
Pk,j

+
m+
k − j
m

) +
∑

k∈K−K′

m+
k

m

)

=

l∑
j=1

∑
k∈Kj

(
8crk
Pk,j

+
m+
k − j
m

)+min
K′

( n∑
j=1

∑
k∈Lj

(
j

m
−8crk
Pk,j

)
)
,

where we used the fact that ∪nj=1Lj + ∪n′j=1K
′
j = K =

∪lj=1Kj . By definition,

l∑
j=1

∑
k∈Kj

(
8crk
Pk,j

+
m+
k − j
m

) +
∑
k 6∈K

m+
k

m

= min
(m+

k

m
, ...,

m+
k − j
m

+
8crk
Pk,j

, ...,
8crk
Pk,m+

k

)
,

Now, define L = K − K′. Since |K′|w ≤ l′, then |L|w ≥
|K|w − 1

ρ as in Theorem 1. Finally, this helps us write the
bound in the following simpler form:

inf
α∈int(∆)

A(α) = min
L⊆K

|L|w≥|K|w− 1
ρ

( n∑
j=1

∑
k∈Lj

(
j

m
− 8crk
Pk,j

)
)

+

l∑
k=1

m−k
m

+

l∑
k=1

min
(m+

k

m
, ...,

8crk
Pk,m+

k

)
.

Since R̂S(f) =
∑l
k=1

m−k
m , this coincides with the bound in

the statement of the theorem.

Lastly, to derive more explicit guarantees, we bound the
empirical Rademacher complexity of H̃k in terms of the
Rademacher complexities Rm(H̃k). To that end, we will use
the following technical tool.

Lemma 2. LetH1 andH2 be two families of functions map-
ping X to [0, 1] and let F1 and F2 be two family of functions
mapping X to [−1,+1]. Let H = {h1h2 : h1 ∈ H1, h2 ∈
H2} and let F = {f1f2 : f1 ∈ F1, f2 ∈ F2}. Then, the em-
pirical Rademacher complexities ofH and F for any sample
S of size m are bounded as follows:

Rm(H) ≤ 3

2

(
Rm(H1) + Rm(H2)

)
Rm(F ) ≤ 2

(
Rm(F1) + Rm(F2)

)
.



Proof. Observe that for any h1 ∈ H1 and h2 ∈ H2, we can
write

h1h2 =
1

4
[(h1 + h2)2 − (h1 − h2)2]. (7)

For bounding the term (h1 + h2)2, note that the func-
tion x 7→ 1

4x
2 is 1-Lipschitz over [0, 2]. For the term

(h1 − h2)2, observe that the function x 7→ 1
4x

2 is 1/2-
Lipschitz over [−1, 1]. Thus, by Talagrand’s contraction
lemma (Ledoux and Talagrand 1991), Rm(H) ≤ Rm(H1 +
H2) + 1

2Rm(H1 − H2) ≤ 3
2

(
Rm(H1) + Rm(H2)

)
. Sim-

ilarly, Equation 7 holds for f1 ∈ F1 and f2 ∈ F2, but now
the function x 7→ 1

4x
2 is 1-Lipschitz over [−2, 2]. Thus, by

Talagrand’s lemma (Ledoux and Talagrand 1991), the fol-
lowing holds: Rm(F ) ≤ Rm(F1 + F2) + Rm(F1 − F2) ≤
2
(
Rm(F1) + Rm(F2)

)
, which completes the proof.

By Lemma 2, since hk : X × Y → [0, 1] and
s : X → {0, 1} ⊂ [0, 1], then Rm(H̃k) ≤ 3

2

(
Rm(̃s) +

Rm(H̃k)
)
. By repeated application of Lemma 1, Rm(̃s) ≤∑dk

j=1 Rm(Q̃j), which shows the following inequality:

Rm(H̃k) ≤ 3

2

( dk∑
j=1

Rm(Q̃j) + Rm(H̃k)
)
. (8)


