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Abstract

We study a scenario of active learning where the
input space is partitioned into different regions
and where a distinct hypothesis is learned for each
region. We first introduce a new active learning
algorithm (EIWAL), which is an enhanced version
of the IWAL algorithm, based on a finer analysis
that results in more favorable learning guarantees.
Then, we present a new learning algorithm for
region-based active learning, ORIWAL, in which
either IWAL or EIWAL serve as a subroutine. ORI-
WAL optimally allocates points to the subroutine
algorithm for each region. We give a detailed
theoretical analysis of ORIWAL, including gen-
eralization error guarantees and bounds on the
number of points labeled, in terms of both the
hypothesis set used in each region and the prob-
ability mass of that region. We also report the
results of several experiments for our algorithm
which demonstrate substantial benefits over exist-
ing non-region-based active learning algorithms,
such as IWAL, and over passive learning.

1 Introduction

Standard supervised learning algorithms often rely on large
amounts of labeled samples to achieve a high performance.
But labeling samples is often very costly since it typically
requires human inspection and in some cases high human
expertise. Can we learn with a limited labeling budget?
This is the challenge of active learning, which remains an
active area of research in machine learning, with substantial
applications and benefits.

Active learning algorithms seek to request as few labels
as possible to learn an accurate predictor. There are two
standard settings of active learning: the so-called pool set-
ting where the algorithm receives as input an i.i.d. pool of
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unlabeled points and where it incrementally requests the
label of a number of points; and the on-line setting where
the algorithm receives one i.i.d. point at each round and
must decide on whether to request its label. In both cases,
after making a number of label requests within a budget,
the algorithm returns a predictor chosen out of a hypothesis
set, which is hoped to admit a small generalization error.
Observe that an active learning algorithm for the on-line
setting can also be applied to the pool setting.

In the last few decades, a number of active learning algo-
rithms have been designed, some for specific tasks and re-
quiring strong assumptions. When the problem is separable,
Cohn et al. [1994] proposed an algorithm with logarithmic
label complexity. A line of work [Dasgupta et al., 2005,
Balcan et al., 2007, Balcan and Long, 2013, Awasthi et al.,
2014, 2015, Zhang, 2018] studied learning linear separa-
tors by labeling samples close to the current estimate of
decision boundary. This type of algorithms admits favor-
able label complexity on the uniform distribution over the
unit sphere or on the log-concave distribution. In the pool
setting, Dasgupta and Hsu [2008] proposed a hierarchical
sampling approach which selectively queries labels from the
pool of data and moves down the hierarchies until relatively
pure clusters are uncovered. For this type of cluster-based
active learning, Urner et al. [2013], Kpotufe et al. [2015]
provided a label complexity analysis, but only under various
conditions on the data distribution. In the on-line setting,
general active learning algorithms [Balcan et al., 2006, Das-
gupta et al., 2008, Beygelzimer et al., 2009, 2010, Huang
et al., 2015, Zhang and Chaudhuri, 2014] with favorable
guarantees both in terms of generalization and label com-
plexity have been devised. These algorithms rely on efficient
searching in the concept class, and request labels based on
the “disagreement” among hypotheses in the current version
space. Their label complexities are bounded in terms of an
important quantity known as the disagreement coefficient
[Hanneke, 2007]. Among these algorithms, some are com-
putationally inefficient, however, for keeping track of the
version space explicitly [Balcan et al., 2006], or for solving
expensive optimization problems such as empirical risk min-
imization with 0-1 loss [Dasgupta et al., 2008, Zhang and
Chaudhuri, 2014]. The issue of computational efficiency is
one of the key research questions in this area.
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This paper considers the on-line active learning in a novel
scenario where the input space is partitioned into a finite
number of regions. The problem then consists of requesting
labels as in the standard case to learn one predictor for each
region. This problem naturally arises in a number of appli-
cations, such as speech recognition where the regions are
data sources (e.g. broadcast news, conversational speech,
email, or dictation), and problems in recommendation sys-
tems, where the regions are general categories of an item
(e.g., film genres). In all these cases, the regions of the input
space are suggested by the application at hand. In other
tasks, there may be a natural partitioning into regions based
on the features used. Nevertheless, simple partitions of the
input space, such as random partitions, are often convenient
in the absence of prior knowledge about the nature of the in-
put features, and still provide significant benefit in learning,
as empirically shown by our experiments.

In all cases, a different hypothesis set can be used for each
region and the hope is that often, but not always, the best-
in-class predictor at each region will be very accurate, in
fact achieving a loss of almost zero on its region. This is
the main motivation for our study of region-based active
learning. As we shall see, in many applications one can
indeed achieve a substantially better performance via this
formulation of the problem.

The idea of separating the input space in on-line active
learning is novel, as all on-line active learning algorithms
available in the literature focus on the standard single region
input space. A related area in the pool active learning setting
is hierarchical sampling (e.g., [Dasgupta and Hsu, 2008]),
where the input space admits a hierarchical clustering struc-
ture. This scenario of disjoint input space is partially re-
lated to stratified sampling techniques in statistics [Neyman,
1934], where a statistical population is divided into disjoint
and homogeneous subgroups. Each subgroup is sampled in-
dependently, and different criteria can be used to determine
an optimal sample size for each group [Rossi et al., 1983].
One such criterion is the sample variance from an existing
sample. While such a strategy will help minimize the overall
variance, the technique does not address generalization and
comes with no learning guarantees.

In this work, we first introduce a new active learning algo-
rithm (EIWAL), which is an enhanced version of the IWAL
algorithm from Beygelzimer et al. [2009], based on a finer
analysis that results in more favorable learning guarantees.
Then, we present a new learning algorithm for region-based
active learning, ORIWAL, in which either IWAL or EIWAL
serve as a subroutine. ORIWAL optimally allocates points
to the subroutine algorithm for each region. We give a
detailed theoretical analysis of ORIWAL, including general-
ization error guarantees and bounds on the number of points
labeled, in terms of both the hypothesis set used in each
region and the probability mass of that region. We also
report the results of several experiments for our algorithm

which demonstrate substantial benefits over existing non-
region-based active learning algorithms, such as IWAL, and
over passive learning.

The rest of this paper is organized as follows. Section 2
introduces the definitions and notation needed for our anal-
ysis and specifies the learning scenario we consider. In
Section 3, we introduce the EIWAL algorithm, and prove the
associated theoretical guarantees. Section 4 presents our
novel region-based active learning algorithm ORIWAL and
its learning guarantees. In Section 5, we report the results
of our experiments in several datasets. Section 6 concludes
the paper with a discussion of future work.

2 Preliminaries

In this section, we first introduce the definitions and notation
relevant to our analysis and next describe the active learning
scenario we consider.

Definitions. We denote by X ⊆ Rd the input space and by
Y = {−1,+1} the binary output space. We assume given
a partitioning of X into n disjoint regions: X =

⋃n
k=1 Xk,

with Xk ∩ Xk′ = ∅ for k 6= k′. This partitioning may have
been generated at random or selected in some other way
based on some prior knowledge about the task. In all cases,
it is assumed to be fixed before receiving sample points.

As in standard supervised learning, we assume that train-
ing and test points are drawn i.i.d. according to some un-
known distribution D over X × Y. We will denote by
pk = P(Xk) the probability mass of region Xk with respect
to the marginal distribution induced by D over X. For each
k ∈ [n], we denote by Hk the hypothesis set used for region
Xk, which consists of functions mapping from X to some
prediction space Z ⊆ R. In the simplest case, the same
hypothesis set is chosen for all regions: H1 = · · · = Hn.

We denote by ` : Z × Y → [0, 1] the loss function. The
loss function we adopt in the implementations run in our
experiments is the standard logistic loss, defined for all
(x, y) ∈ X × Y and hypothesis h by log(1 + e−yh(x)),
which we then normalize to be in [0, 1]. We will denote by
R(h) the generalization error or expected loss of a hypoth-
esis h: R(h) = E[`(h(x), y)]. Similarly, for any k ∈ [n],
we denote by Rk(h) the expected loss of h on region Xk:
Rk(h) = E(x,y)∼D[`(h(x), y) | x ∈ Xk]. Thus, for any
hypothesis h, we have R(h) =

∑n
k=1 pkRk(h).

We will denote by H[n] be the set of aggregate region-based
hypotheses:

H[n] =
{ n∑
k=1

1x∈Xkhk(x) : hk ∈ Hk

}
,

whose size |H[n]| equals
∏n
k=1 |Hk|. We denote by

h∗ the best-in-class hypothesis in H[n], that is, h∗ =
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argminh∈H[n]
R(h), and similarly denote by h∗k the best-in-

class hypothesis in region Xk: h∗k = argminh∈Hk
Rk(h).

For simplicity, we denote by R∗ = R(h∗) and R∗k =
Rk(h∗k) the error of overall and region-specific best-in-class,
respectively. The best-in-class hypothesis h∗ ∈ H[n] can be
expressed as follows in terms of the h∗ks:

h∗(x) = argmin
h∈H[n]

n∑
k=1

pkRk(h) (1)

=

n∑
k=1

1x∈Xk

[
argmin
h∈Hk

Rk(h)
]

=

n∑
k=1

1x∈Xkh
∗
k(x) .

Observe, however, that the risk minimization over each
region individually is always more advantageous than the
risk minimization over the entire space, for the minimal
error within the aggregate region-based hypothesis set H[n]

is always less than or equal to the minimal error achieved
by selecting each single hypothesis for all regions. Too see
this, consider the simplest case where H1 = · · · = Hn =
H. Then, by the super-additivity of the min operator, the
following holds:

R(h∗) =

n∑
k=1

pk

[
min
h∈H

Rk(h)
]

≤ min
h∈H

[ n∑
k=1

pkRk(h)
]

= min
h∈H

R(h) .

In other words, the approximation error of H[n] is always
less than or equal to that of H, implying that H[n] is always
significantly richer than any individual hypothesis set H.

Learning scenario. We consider active learning in the
on-line setting. Unlike the pool-based setting where the
learner receives the full set of unlabeled points beforehand,
in the on-line setting, at each round t ∈ [T ] = {1, . . . , T},
the learner receives a point xt drawn i.i.d. according to the
marginal distribution induced by D on X. She then either
selects to request the label of xt, in which case she receives
its label yt, or chooses not to solicit xt’s label.

The quality of an active learning algorithm is measured by
two quantities in this setting: the generalization error of the
hypothesis h ∈ H[n] it returns after the T rounds, and the
number of labels it requests after T rounds.

3 Enhanced-IWAL Algorithm

In this section, we present an enhanced version of the
IWAL (Importance Weighted Active Learning) algorithm
of Beygelzimer et al. [2009], called EIWAL.

Algorithms such as IWAL use importance weights to address
key the issue of sampling bias in active learning. Beygelz-
imer et al. [2009] gave theoretical guarantees both for the
generalization error and the label complexity of IWAL.

Our enhanced version of IWAL admits improved confidence
intervals, and thus sharper performance guarantees than
the original IWAL, especially in the case where the best-
in-class error R(h∗) is small. In that small error regime,
EIWAL also improves upon a more recent and more refined
importance-weighted active learning algorithm discussed
in Beygelzimer et al. [2010] (Theorem 3 therein). This
advantage is particularly significant in the scenario of region-
based active learning that we are interested in where, often
with a large number of regions, the region-based best-in-
class errors Rk(h∗k) are small.

Given a finite hypothesis set H, EIWAL operates on an i.i.d.
sample (x1, y1), (x2, y2), . . . , (xT , yT ) drawn according to
D. The algorithm maintains at any time t a version space
Ht, with H1 = H. At time t, the algorithm flips a coin
Qt ∈ {0, 1} with bias pt = pt(xt) defined by

pt = max
f,g∈Ht y∈Y

`(f(xt), y)− `(g(xt), y) .

IfQt = 1, then the label yt is requested and Ht is trimmed to
Ht+1 via an importance-weighted empirical risk minimiza-
tion:

Ht+1 =

{
h ∈ Ht :

1

t

t∑
s=1

Qs
ps
`(h(xs), ys) ≤ L∗t + ∆t

}
,

where L∗t is given by

L∗t = min
h∈Ht

1

t

t∑
s=1

Qs
ps

`(h(xs), ys) ,

and where the slack term ∆t is of the form1

1

t

[√√√√[ t∑
s=1

ps

]
log

[
t|H|
δ

]
+ log

[
t|H|
δ

]]
.

The definition of the slack term ∆t is the main significant
difference between EIWAL and the original IWAL. In the
latter, (

∑t
s=1 ps) is replaced by the crude upper bound t:

∆t = 1
t

√
t log(t|H|/δ). The final hypothesis hT returned

by EIWAL is defined as in IWAL:

hT = argmin
h∈HT

1

T

T∑
t=1

Qt
pt
`(h(xt), yt) .

For our theoretical analysis of EIWAL, we will adopt the def-
initions and concepts in Beygelzimer et al. [2009]. Define
the distance between two hypotheses f, g ∈ H as

ρ(f, g) = E
x∼D

max
y
|`(f(x), y)− `(g(x), y)| .

1See the exact expression in the proof of Theorem 1 in Ap-
pendix A.
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Given r > 0, let B(f, r) denote the ball of radius r centered
in f ∈ H: B(f, r) = {g ∈ H : ρ(f, g) ≤ r}. The general-
ized disagreement coefficient θ(D,H) can then be defined
as follows:

θ(D,H) = inf
θ

{
∀r ≥ 0,

E
x∼D

sup
h∈B(h∗,r)

sup
y
|`(h(x), y)− `(h∗(x), y)| ≤ θr

}
,

where h∗ = argminh∈HR(h). The disagreement coeffi-
cient θ is a complexity measure widely used in disagreement-
based active learning problems. In particular, Hanneke
[2007] proved upper and lower bounds for the label com-
plexity for the A2 algorithm in terms of the disagreement
coefficient θ. Dasgupta et al. [2008] also gave an upper
bound for the DHM algorithm using θ. See [Hanneke, 2014]
for a more extensive analysis of the disagreement coefficient
and active learning.

Using the definitions and concepts just introduced, the fol-
lowing theoretical guarantees can be proven for EIWAL.2

Theorem 1 (EIWAL). Let hT denote the hypothesis returned
by EIWAL after T rounds and τT the total number of re-
quested labels. Then, for all δ > 0, with probability at least
1− δ, for any T > 0 the following inequality holds:

R(hT ) ≤ R(h∗) +
2

T

[√∑T
t=1 pt + 6

√
log

[
2(3 + T )T 2

δ

]]

×

√
log

[
16T 2|H|2 log(T )

δ

]
.

Moreover, with probability at least 1− δ, for any T > 0, the
following inequality holds:

τT ≤ 8θKl

(
R(h∗)T +O(

√
R(h∗)T log(T |H|/δ))

)
+O(log3(T |H|/δ)) ,

where K` is a constant that depends on the loss function `.

For reference, the generalization bound given in [Beygelz-
imer et al., 2009] for IWAL admits the following form:

R(hT ) ≤ R(h∗) +

√
1

T
log

[
T 2|H|2
δ

]
, (2)

and the bound on the number of labels is given by

τT = O
(
θKl

(
R(h∗)T +

√
T log(T |H|/δ)

))
. (3)

The comparison of Theorem 1 with (2) and (3), as well as
with Beygelzimer et al. [2010] (Theorem 3 therein) shows
the following: the bound on the generalization error R(hT )

2Due to space limitations, the proofs of all our main results are
given in the appendix.

Algorithm 1 ORIWAL((Hk)k∈[n], (pk)k∈[n], δ, T )

for k ∈ [n] do
ck ← log

[
16T 2|Hk|2 log(T )n

δ

]
αk ← (ck/pk)

1
3

maxk∈[n](ck/pk)
1
3

end for
for t ∈ [T ] do

RECEIVE(xt)
kt ← k such that xt ∈ Xk
B ∼ Bernoulli(αkt)
if B = 1 then

hk,t ← EIWALkt(xt)
Request yt according to EIWALkt on input xt
Update (if any) internal state of EIWALkt

end if
end for
Return hT ←

[
x 7→

∑n
k=1 1x∈Xkhk,T (x)

]
in Theorem 1 is at least as favorable as the 1/

√
T rate

of these previous results, since
∑T
t=1 pt ≤ T . Further-

more, the bound on the number of labels τT is better than
both (3) and the results in Beygelzimer et al. [2010] when
R(h∗) is small, since we have an extra R(h∗) inside the
square root. In fact, in the separable case where R(h∗) = 0,
our label complexity bound is log3(T ), which is only poly-
logarithmic in T , as opposed to the

√
T guarantee of both (3)

and Beygelzimer et al. [2010]. Similarly, when R(h∗) = 0,
one can see that the generalization error bound of EIWAL has
the form log2(T )/T , rather than 1/

√
T of (2) and Beygelz-

imer et al. [2010]. This is because
∑T
t=1 pt concentrates

fast around τT which, as we just said, is only O(log3(T ))
when R(h∗) = 0.

4 Region-Based Active Learning

In this section, we describe an active learning algorithm,
ORIWAL (Optimal Region-based IWAL), under the region-
based setting. The algorithm works by running a separate
subroutine EIWAL on each of the n regions, while carefully
allocating labeling resources across the regions.

4.1 The ORIWAL Algorithm

At each time t, ORIWAL receives an unlabeled point xt that
belongs to region Xkt , for some kt ∈ [n]. Then, with some
probability αk, ORIWAL decides whether to send xt to sub-
routine EIWALkt , the EIWAL algorithm running on region
Xkt . If xt is sent to EIWALkt , then it is EIWALkt that deter-
mines whether to request the associated label yt. Thus, yt is
requested only if xt is passed to EIWALkt (probability αk)
and EIWALkt happens to ask for this label (probability pt de-
pending on the current state of EIWALkt). The pseudocode
of ORIWAL is given in Algorithm 1.
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In what follows, when ORIWAL passes xt to EIWALkt , we
say that ORIWAL queries EIWALkt . Notice that querying
EIWALk to determine whether to ask for a label is compu-
tationally much more expensive than determining whether
or not to pass a point to EIWALk. Thus, we will discuss the
learning guarantees and label complexity bounds of ORIWAL
in terms of the number of queries to the EIWAL subroutines.

The crux of the ORIWAL algorithm rests on finding the
probabilities αk, which determine how many points in ex-
pectation are passed to the k-th region, so as to optimize
learning guarantees. Ideally, the algorithm should not pass
points to a region where the subroutine has already found a
good hypothesis. Regions in need for labels are those where
the corresponding subroutines have received few points or
where a larger number of points is needed to identify an
accurate hypothesis.

To determine the probabilities αk, we first use the theo-
retical guarantees derived for EIWAL to determine Tk, the
number of queries made to EIWALk operating in region Xk.
At a high level, the optimal setting of Tks, which translates
into an optimal setting of αks, is one that admits the best
trade-off between generalization guarantee and label com-
plexity bound. By Theorem 1, the generalization bound
of EIWALk is proportional to a complexity term ck of the
form 3 ck = log

[ 16T 2|Hk|2 log(T )n
δ

]
, where we upper bound

log Tk by log T , and further upper bound all label request-
ing probabilities pt by 1. 4 Hence, to determine the optimal
setting of Tks, we need to find T1, T2, . . . , Tn satisfying:

min
T1,··· ,Tn

n∑
k=1

pk

√
ck
Tk
, s.t.

n∑
k=1

Tk ≤ T ,

where pk = P(Xk). It is straightforward to show that the
optimal solution T ∗k admits the following form:

T ∗k =

[
p

2
3

k c
1
3

k∑n
k′=1 p

2
3

k′c
1
3

k′

]
T.

We then choose the probabilities αks such that, given the
total number T of possible queries, the expected number of
queries to EIWALk matches T ∗k . That is, αk should satisfy

pkαk∑n
k′=1 pk′αk′

=
T ∗k
T

=
p

2
3

k c
1
3

k∑n
k′=1 p

2
3

k′c
1
3

k′

, (4)

where the left-most side is the conditional probability of
querying EIWALk, conditioning on a total number T of
queries, and the right-most side is the optimal allocation
proportion determined by T ∗k . It is straightforward to show
that for any λ > 0, αk = λ(ck/pk)

1
3 would satisfy (4).

3 The extra factor n is due to a union bound over the n regions,
so as to make Theorem 1 hold for all regions simultaneously.

4 In Section 4.4, we will present the version of ORIWAL derived
from using the original requesting probabilities pt.

Finally, to determine the optimal setting of αks, we need to
determine the last parameter λ. Observe that, for a given
λ and its corresponding αks, a total of

∑n
k=1 pk

(
1 − αk

)
unlabeled points will be discarded due to the “ifB = 1 then
...” step of ORIWAL (Algorithm 1). Thus, we choose λ that
minimizes the number of discarded unlabeled points:

min
λ≥0

n∑
k=1

pk
(
1−λ(ck/pk)

1
3

)
, s.t.λ

(
ck/pk

) 1
3 ≤ 1,∀k ∈ [n].

The constraint on λ ensures that αks are valid probabilities:
αk ≤ 1, ∀k ∈ [n]. Solving the above problem yields the
optimal setting of αks:

λ =
1

maxk∈[n](ck/pk)
1
3

, αk =
(ck/pk)

1
3

maxk∈[n](ck/pk)
1
3

.

(5)
Observe that in the expression of αks, we assumed access
to the probability mass pk of each region. This is a rea-
sonable assumption in many applications of active learning,
since accurately estimating pk only requires unlabeled data.
Hence, we can conceive a preprocessing stage where the
probabilities pk are accurately estimated from large amounts
of unlabeled data. Alternatively, these probabilities can be
estimated incrementally, and our analysis can be extended
to cover that way of proceeding as well.

4.2 Theoretical Analysis

For αks defined as in (5), the following theoretical guaran-
tees hold for the returned hypothesis and label complexity.
The guarantees of ORIWAL depend on region-based dis-
agreement coefficient θk = θ(Dk,Hk), where Dk = D|Xk
is defined as the conditional distribution of x on region k.

Theorem 2. For any δ > 0, with probability at least 1 −
δ, for any T > 0, the following inequality holds for the
hypothesis returned by ORIWAL (Algorithm 1) at time T :

R(hT ) ≤ R(h∗)

+

n∑
k=1

2pk

√
4θkK`R∗k

Tk
log

[
16T 2

k |Hk|2 log(Tk)n

δ

]

+
( n∑
k=1

pk

Tk

)
O
(

log2
(

max
k∈[n]

Tk|Hk|n/δ
))
,

where Tk is number of queries made to IWALk. Moreover,
with probability at least 1− δ, for any T > 0, the following
inequality holds for the number of requested labels τT :

τT ≤
n∑
k=1

(
8θkKl

[
R∗kTk +O

(√
R∗kTk log(Tk|Hk|n/δ)

)]
+O(log3(Tk|Hk|n/δ))

)
.

The generalization bound is the sum of the generalization
error of the best in class h∗ ∈ H[n] and the sum of the
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complexity terms of the hypothesis sets Hk. In particu-
lar, if the probability mass pk of region Xk is small, then
the corresponding complexity term of set Hk is given less
weight. Moreover, as one could expect, the overall bound
becomes tighter as the number of queries Tk made to EI-
WALk increases. For the label complexity bound of τT , the
term inside the bracket is of the same form as the term in
the label complexity bound of EIWAL for a single region. In
this case, the region-specific disagreement coefficients θk,
best-in-class error R∗k, and complexity terms log |Hk|, scale
the contribution of each region accordingly.

We can also derive guarantees that do not depend on the
empirical quantities Tk, but only on T . When the expected
number of passed samples per region is at least O(log n),
we have the following result. For sake of brevity, we denote
by qk the optimal allocation proportion in Equation (4):

qk =
p
2/3
k c

1/3
k∑n

k′=1 p
2/3
k′ c

1/3
k′

, k ∈ [n] .

Corollary 3. For all δ > 0, with probability at least 1− δ,
for any T ≥ 4 log(2n/δ)

mink∈[n] qk
the following inequality holds:

R(hT )

≤ R(h∗) + 2

n∑
k=1

pk

√
4θkKlR∗k
Tqk

log

[
32T 2|Hk|2 log(T )n

δ

]

+
( n∑
k=1

pk

Tqk

)
O
(

log2
(

max
k∈[n]

T |Hk|n/δ
))
.

Moreover, with probability at least 1 − 2δ, for all T > 0,
the following inequality holds:

τT ≤ 8K`

[ n∑
k=1

θkR
∗
kTqk

]

+

n∑
k=1

O

(√
R∗kTqk log

[T |Hk|n
δ

])
+O

(
n log3

(
T max
k∈[n]

|Hk|n/δ
)))

.

We have been discussing the learning guarantees in terms
of the number of queries to the EIWAL subroutines, and we
do not take into account the number of rounds in which the
ORIWAL decides not to query EIWAL. This is because, as
we have mentioned earlier, querying the EIWAL subroutine
consumes a significantly larger amount of computational
resources than determining whether to make a query. This
view of the learning problem naturally arises in applications
where the unlabeled samples are inexpensive and are pro-
cessed beforehand, so it takes no time to determine their
regions and to sample a Bernoulli random variable to decide
whether to query. In other words, given a limited amount of
resources, we are more interested in the performance of the

algorithm in terms of the number of expensive operations,
i.e., queries to the subroutines, than in terms of the number
of rounds where no expensive operations are made.

4.3 Discussion

The advantage of ORIWAL over non-region-based algorithms
is twofold: it seeks region-specific best-in-class hypotheses,
and it controls the number of queries on each region in
an optimal way. If ORIWAL does not optimize for query
allocations but instead sets αk = 1 for all k ∈ [n], ORIWAL
reduces to a special region-based algorithm we call RIWAL
(Region-based IWAL). RIWAL still enjoys the advantage
of region-based hypotheses, but it simply passes on all the
points to the subroutines. The only algorithmic difference
between ORIWAL and RIWAL is that the former generates a
Bernoulli random variable for each incoming sample point,
which only consumes a negligible amount of time compared
to querying subroutine EIWAL. Given the same number
of queries to EIWAL, the two algorithms therefore have
comparable computational cost.

Yet, the learning guarantee of ORIWAL is potentially more
favorable than that of RIWAL, since ORIWAL explicitly op-
timizes for the allocations Tk among a fixed budget of T
queries to EIWAL. Given a total of T queries, Corollary 3
provides the generalization error of the hypothesis returned
after T rounds, in terms of qk = pkαk/(

∑n
k′ pk′αk′), the

probability of querying EIWALk, conditioned on a query
being made. Upper bounding the constants 4θkK`R

∗
k by 1

gives the following:

R(hRIWAL
T )≤R(h∗)+2

n∑
k=1

pk

√
ck

TqRIWAL
k

+O
( pk

TqRIWAL
k

)
,

R(hORIWAL
T )≤R(h∗)+2

n∑
k=1

pk

√
ck

TqORIWAL
k

+O
( pk

TqORIWAL
k

)
.

RIWAL sets αk = 1 and thus qRIWAL
k = pk. Meanwhile, by

definition, qORIWAL
k = p

2/3
k c

1/3
k /

(∑n
k′=1 p

2/3
k′ c

1/3
k′

)
. Disre-

garding lower order terms, i.e., the third term in the two
upper bounds above, the application of Jensen’s inequality
to the convex function x 7→ x

3
2 yields

n∑
k=1

pk

√
ck

TqORIWAL
k

=

√
1

T

[ n∑
k=1

pk

[
ck
pk

] 1
3
] 3

2

(6)

≤
√

1

T

[ n∑
k=1

pk

[
ck
pk

] 1
2
]

=

n∑
k=1

pk

√
ck

TqRIWAL
k

. (7)

Thus ORIWAL yields a potentially more favorable learning
guarantee than RIWAL given the same number of T queries
to subroutines. Note that the potential improvement of ORI-
WAL over RIWAL, that is the difference between (6) and (7),
depends on how the ratios ck/pk vary across regions. Un-
balanced ratio values across regions make (6) significantly
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smaller than (7), while in the case where ck/pk coincide for
all k ∈ [n], there is no improvement.

4.4 ORIWALwith time-varying αk

When deriving the optimal value of αks, we upper bounded∑T
t=1 pt by T in order to simplify the discussion, but there

is a finer analysis based on a tighter bound on the complex-
ity term, which results in finding an optimal time-varying
αk(t). Without upper bounding this sum of probabilities,
the complexity term of Theorem 1 is Ck(Tk) = ckβk(Tk),
where βk(Tk) =

(∑
t pt1xt∈Xk

)
/Tk is the label request-

ing probability on region k, averaged over the Tk queries.
Note that Ck(Tk) ≤ ck. Now, since Ck(Tk) depends on Tk
which is an unknown quantity at any given round t ∈ [T ],
we cannot directly use it to solve the optimization problem:

min
T1,··· ,Tn

n∑
k=1

pk

√
Ck(Tk)

Tk
, s.t.

n∑
k=1

Tk ≤ T .

However, by definition, the label requesting probabilities
of EIWAL are non-increasing, which implies that βk(Tk) as
well as Ck(Tk) are also non-increasing. Thus, at a given
current round t ∈ [T ], we can upper bound the above opti-
mization problem by

min
Tk≥tk,k∈[n]

n∑
k=1

pk

√
Ck(tk)

Tk
, s.t.

n∑
k=1

Tk ≤ T ,

where tk denotes the number of queries made for region
k at a time t. Via a similar reasoning as before, the solu-
tion of this optimization problem leads to setting αk(tk) =

(Ck(tk)/pk)
1
3

maxk∈[n](Ck(tk)/pk)
1
3

. ORIWAL therefore uses these time-

varying quantities αk(tk) at each time t instead of αk in
Algorithm 1 to determine whether to query EIWALk.

By using the time-varying and algorithm-dependent quan-
tities Ck(tk), ORIWAL gains more information about the
current state of each region, and uses it to more efficiently
allocate labeling resources. More concretely, according to
Lemma 6 in Appendix A, βk(tk) = 4θKlR

∗
k+O(

√
R∗k/tk).

Thus, when Ck(tk)/pk is relatively large for region k
(which implies that αk(tk) is relatively large), then either
tk is small and O(

√
R∗k/tk) is large, so that EIWALk is still

learning, or tk is large but the best-in-class error scaled by
the probability of that region, R∗k/pk, is large. In both cases,
ORIWAL allocates more weight to this region, which needs
more labeling resources to learn. In the experiments, we ran
ORIWAL with the time-varying αk(tk)s.

Finally, in Appendix C, we present another extension of
IWAL to the region-based setting, called NAIVE-IWAL,
which simply runs IWAL with the composite hypothesis
set H[n]. We show that NAIVE-IWAL is less favorable in
terms of theoretical guarantees than RIWAL, thus is less
favorable than ORIWAL as well.

Table 1: Binary classification dataset summary: number
of observations (N ), number of features (d), proportion
of minority class (r) . Datasets are ordered by number of
observations.

Dataset N d r
magic04 19,020 10 0.352
nomao 34,465 118 0.286
shuttle 43,500 9 0.216
a9a 48,842 123 0.239
ijcnn1 49,990 22 0.097
codrna 59,535 8 0.333
skin 245,057 3 0.208
covtype 581,012 54 0.488

5 Experiments

In this section, we report the results of experiments com-
paring the ORIWAL, RIWAL, and IWAL algorithms. We also
compared these active learning algorithms with two passive
learning algorithms: PASSIVE, which simply requests the
label for all points and finds the hypothesis with the smallest
empirical logistic loss, and RPASSIVE, which runs PASSIVE
on each region separately.

We experimented with the algorithms just mentioned in
8 binary classification datasets from the UCI repository:
magic04, nomao, shuttle, a9a, ijcnn1, codrna, skin,
covtype. Table 1 gives summary statistics for these 8
datasets. Note that, for each dataset, we kept the first 10
principal components of the original features. For each
dataset, we randomly shuffled the data and ran the algo-
rithms on the first 50% of the data, and tested the learned
classifier on the remaining 50%. This was repeated 50 times
on each dataset, and the results were averaged.

We randomly drew 3,000 hyperplanes with bounded norms
as our base hypothesis set, which we call H, and used these
3,000 hyperplanes as Hk for all regions Xk, thus, we chose
Hk = H for all k ∈ [n]. To generate disjoint regions,
for each dataset we constructed random binary trees, i.e.,
binary trees with random splitting criteria, and used the
resulting terminal nodes as the disjoint regions. Note that
these regions are generated without using any labels.

Below, we present these results for four datasets with 10
disjoint regions. The results for the remaining datasets,
as well as for the case where we instead have 20 disjoint
regions are provided in Appendix D. In Appendix D, we
also contrast the performance of ORIWAL with 10 regions
vs. ORIWAL with 20 regions.

We first compared the two region-based active learning algo-
rithms, RIWAL and ORIWAL, and the region-based passive
learning algorithm RPASSIVE. Both RIWAL and RPASSIVE
were run with the same regions and hypothesis sets as ORI-
WAL, thus all three algorithms have the same model com-
plexity. Figure 1 plots the misclassification loss on held-out



Region-Based Active Learning

0.21

0.22

0.23

0.24

0.25

0.26

0.27

2.0 2.4 2.8
log10(Number of Labels)

M
is

cl
as

si
fic

at
io

n 
Lo

ss
ORIWAL RIWAL RPASSIVE

magic04

0.12

0.13

0.14

0.15

0.16

0.17

2.0 2.5 3.0
log10(Number of Labels)

M
is

cl
as

si
fic

at
io

n 
Lo

ss

ORIWAL RIWAL RPASSIVE

nomao

0.11

0.12

0.13

0.14

0.15

2.0 2.5 3.0 3.5
log10(Number of Labels)

M
is

cl
as

si
fic

at
io

n 
Lo

ss

ORIWAL RIWAL RPASSIVE

ijcnn1

0.34

0.36

0.38

0.40

2.0 2.5 3.0 3.5
log10(Number of Labels)

M
is

cl
as

si
fic

at
io

n 
Lo

ss

ORIWAL RIWAL RPASSIVE

covtype

Figure 1: Misclassification loss of ORIWAL, RIWAL, and RPASSIVE on hold out test data versus number of labels re-
quested (log10 scale). The input space was divided into 10 regions. The figures show that ORIWAL typically has a lower
misclassification loss than RIWAL and RPASSIVE.
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Figure 2: Misclassification loss of ORIWAL (our algorithm), non-region-based IWAL, and non-region-based passive learning
PASSIVE on held-out test data, plotted as a function of the number of labels requested (log10 scale). The input space was
divided into 10 regions. The curves for ORIWAL are repetitions from Figure 1. The figures show that, given a fixed number
of labels, ORIWAL achieves a substantially smaller misclassification loss than IWAL and PASSIVE.

test data against the number of labels requested (on log10

scale), averaged over 50 runs. The error bars indicate± stan-
dard error. ORIWAL shows consistent advantage over RIWAL
and RPASSIVE on most datasets, such as magic04, nomao,
and ijcnn1, and matches the performance of RIWAL or
RPASSIVE on a few others. Since ORIWAL is significantly
outperforming the other two region-based algorithms RIWAL
and RPASSIVE, for the rest of our experiments we focused
on ORIWAL.

We then compared our proposed algorithm ORIWAL with
two baselines: the non-region-based IWAL, and the non-
region-based passive learning algorithm, PASSIVE. Both
IWAL and PASSIVE were run using the hypothesis set H,
which is the hypothesis set used in each region of ORIWAL.
Figure 2 plots the misclassification error rate achieved by
the three algorithms. The optimal region-based algorithm
ORIWAL achieves from the beginning a significantly su-
perior prediction accuracy than the two non region-based
algorithms, IWAL and PASSIVE. Given the limited space
for improvement when working with the single hypothesis
set H, IWAL shows no significant improvement over PAS-
SIVE, and stops improving early on. On the other hand,
while the learning curve of non region-based algorithms
has plateaued, ORIWAL continues to improve in accuracy
by leveraging more labels, and manages to significantly
outperform PASSIVE and IWAL.

6 Conclusion

We presented a detailed analysis of the scenario of region-
based active learning for which we gave a new algorithm,
ORIWAL. This algorithm is based on an optimal allocation
of points to the underlying region-dependent active learning
algorithms. We showed that ORIWAL admits favorable theo-
retical guarantees, and further demonstrated empirically its
substantial improvement over non-region-based algorithms
such as IWAL or passive learning in a series of experiments.

Along the way, we also introduced a new active learning
algorithm, EIWAL, that benefits from more favorable guar-
antees than the original IWAL algorithm, and that can be
used as a subroutine in our region-based ORIWAL. More
generally, other subroutine active learning algorithms can
be used with our algorithm, which could lead to further
performance improvements in some cases.

We hope to have shown the benefits of region-based ac-
tive learning and prompted interest in research questions
related to this problem. Several crucial questions arise, in-
cluding the following: How should the regions be chosen?
Which hypothesis set should be selected for each? Can we
adaptively modify the original partitioning by merging or
splitting regions? We have already initiated the study of all
of these questions with some preliminary theoretical results.
A more complete answer to these and other related questions
could lead to significant improvements in active learning.



Corinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, Ningshan Zhang

References
P. Awasthi, M. F. Balcan, and P. M. Long. The power of

localization for efficiently learning linear separators with
noise. In Proceedings of the forty-sixth annual ACM sym-
posium on Theory of computing, pages 449–458. ACM,
2014.

P. Awasthi, M.-F. Balcan, N. Haghtalab, and R. Urner. Effi-
cient learning of linear separators under bounded noise.
In Conference on Learning Theory, pages 167–190, 2015.

M.-F. Balcan and P. Long. Active and passive learning
of linear separators under log-concave distributions. In
Conference on Learning Theory, pages 288–316, 2013.

M.-F. Balcan, A. Beygelzimer, and J. Langford. Agnostic
active learning. In ICML, 2006.

M.-F. Balcan, A. Broder, and T. Zhang. Margin based active
learning. In International Conference on Computational
Learning Theory, pages 35–50. Springer, 2007.

A. Beygelzimer, S. Dasgupta, and J. Langford. Importance
weighted active learning. In Proceedings of the 26th
annual international conference on machine learning,
pages 49–56. ACM, 2009.

A. Beygelzimer, D. J. Hsu, J. Langford, and T. Zhang. Ag-
nostic active learning without constraints. In Advances in
Neural Information Processing Systems, pages 199–207,
2010.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifi-
cation and regression trees. CRC Press, 1984.

N. Cesa-Bianchi and C. Gentile. Improved risk tail bounds
for on-line algorithms. IEEE Transactions on Information
Theory, 54(1):386–390, 2008.

D. Cohn, L. Atlas, and R. Ladner. Improving generalization
with active learning. Machine learning, 15(2):201–221,
1994.

S. Dasgupta and D. Hsu. Hierarchical sampling for ac-
tive learning. In Proceedings of the 25th international
conference on Machine learning, pages 208–215. ACM,
2008.

S. Dasgupta, A. T. Kalai, and C. Monteleoni. Analysis
of perceptron-based active learning. In International
Conference on Computational Learning Theory, pages
249–263. Springer, 2005.

S. Dasgupta, D. J. Hsu, and C. Monteleoni. A general
agnostic active learning algorithm. In Advances in neural
information processing systems, pages 353–360, 2008.

D. A. Freedman. On tail probabilities for martingales. the
Annals of Probability, pages 100–118, 1975.

S. Hanneke. A bound on the label complexity of agnostic
active learning. In Proceedings of the 24th international
conference on Machine learning, pages 353–360. ACM,
2007.

S. Hanneke. Theory of disagreement-based active learning.
Foundations and Trends in Machine Learning, 7(2-3):
131–309, 2014.

T.-K. Huang, A. Agarwal, D. Hsu, J. Langford, and
R. E. Schapire. Efficient and parsimonious agnostic active
learning. In Advances in Neural Information Processing
Systems 28, 2015.

S. M. Kakade and A. Tewari. On the generalization abil-
ity of online strongly convex programming algorithms.
In Advances in Neural Information Processing Systems,
pages 801–808, 2009.

S. Kpotufe, R. Urner, and S. Ben-David. Hierarchical label
queries with data-dependent partitions. In Conference on
Learning Theory, pages 1176–1189, 2015.

J. Neyman. On the two different aspects of the representative
method: the method of stratified sampling and the method
of purposive selection. Journal of the Royal Statistical
Society, 97(4):558–625, 1934.

P. H. Rossi, J. D. Wright, and A. B. Anderson. Handbook
of Survey Research. Academic Press, 1983.

R. Urner, S. Wulff, and S. Ben-David. Plal: Cluster-based
active learning. In Conference on Learning Theory, pages
376–397, 2013.

C. Zhang. Efficient active learning of sparse halfspaces. In
COLT, 2018.

C. Zhang and K. Chaudhuri. Beyond disagreement-based
agnostic active learning. In Advances in Neural Informa-
tion Processing Systems, pages 442–450, 2014.



Region-Based Active Learning

A Proof of EIWAL

The key step in proving Theorem 1 for EIWAL is using a
martingale concentration bound for

Zt =
Qt
pt

(
`(f(xt), yt)− `(g(xt), yt)

)
−
(
R(f)−R(g)

)
,

where Z1, Z2, · · · is a martingale difference sequence for
any pair f, g ∈ HT . Instead of using Azuma’s inequality
as in [Beygelzimer et al., 2009], we rely on a Berstein-like
inequality for martingales Freedman [1975]).

The following result is adapted from Lemma 3 of Kakade
and Tewari [2009], which is derived from Freedman [1975]).
We denote by Ft = {(x1, y1, Q1), · · · , (xt, yt, Qt} the ob-
servations up to time t.

Lemma 4. For any 0 < δ < 1, and T ≥ 3, with probability
at least 1− δ,∣∣∣∣∣
T∑
t=1

Zt

∣∣∣∣∣ ≤max

{
2

√√√√ T∑
t=1

E
xt

[pt|Ft−1], 6

√
log
(8 log(T )

δ

)}

×
√

log
(8 log(T )

δ

)
.

Proof. We use Lemma 3 in Kakade and Tewari [2009]. First,
observe that variables Zt are bounded, in particular, |Zt| ≤
2. Furthermore,

var[Zt|Ft−1]

= var
[Qt
pt

(
`(f(xt), yt)− `(g(xt), yt)

)
|Ft−1

]
≤ E
xt,Qt

[Q2
t

p2t

(
`(f(xt), yt)− `(g(xt), yt)

)2|Ft−1]
≤ E
xt,Qt

[Qt p2t
p2t
|Ft−1

]
= E
xt,Qt

[
Qt|Ft−1

]
= E
xt

[
pt|Ft−1

]
.

A union bound over Zt and −Zt concludes the proof.

Given Lemma 4 above, we can adapt Lemma 3 of [Beygelz-
imer et al., 2009] to using the Berstein-like inequality.
Specifically, let us define

∆T =
2

T


√√√√ T∑

t=1

pt + 6

√
log

(
(3 + T )T 2

δ

)
×
√

log
(8T 2|H|2 log(T )

δ

)
.

Then we have the following high-probability statement for
the risk of the hypothesis hT returned by EIWAL after T
rounds.

Lemma 5. Given any hypothesis class H, for all δ > 0,
for all T ≥ 3 and all f, g ∈ HT , with probability at least
1− 2δ,

|R̂T (f)− R̂T (g)−R(f) +R(g)| ≤ ∆T .

In particular, if we let f = h∗ and g = hT , it follows that

R(hT ) ≤ R(h∗) + ∆T .

Proof. Apply Lemma 4 to time T ≥ 3 and any pair f, g ∈
HT , with error probability δ/(T 2|H|2) for round T . A union
bound over T ≥ 3 and (f, g) gives, with probability at least
1− δ,

|R̂T (f)− R̂T (g)−R(f) +R(g)|

≤ 1

T
max

{
2

√√√√ T∑
t=1

E
xt

[pt|Ft−1], 6

√
log
(8T 2|H|2 log(T )

δ

)}

×
√

log
(8T 2|H|2 log(T )

δ

)
. (8)

Next, according to Proposition 2 of Cesa-Bianchi and Gen-
tile [2008], with probability at least 1− δ, for all T ≥ 3,

T∑
t=1

E
xt

[
pt|Ft−1

]
≤
( T∑
t=1

pt

)
+ 36 log

(
(3 +

∑T
t=1 pt)T

2

δ

)

+ 2

√√√√( T∑
t=1

pt

)
log

(
(3 +

∑T
t=1 pt)T

2)

δ

)

≤
(√√√√ T∑

t=1

pt + 6

√
log

(
(3 + T )T 2

δ

))2

. (9)

Combining (8) and (9), we get with probability at least
1− 2δ, for all T ≥ 3,

|R̂T (f)− R̂T (g)−R(f) +R(g)|

≤ 2

T

(√√√√ T∑
t=1

pt + 6

√
log

(
(3 + T )T 2

δ

))

×
√

log
(8T 2|H|2 log(T )

δ

)
,

as claimed.

The next lemma gives a label complexity bound for EIWAL.
Lemma 6. Given any hypothesis class H, and distribution
D, with θ(D,H) = θ, for all δ > 0, for all T ≥ 3, with
probably at least 1− δ, we have

T∑
t=1

E
xt,Qt

[Qt|Ft−1]

≤ 4θKl

(
R(h∗)T +O(

√
R(h∗)T log(T |H|/δ))

)
+O(log3(T |H|/δ)) ,
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where K` is a constant that depends on `.

Proof. From Theorem 11 of Beygelzimer et al. [2009], for
t ≥ 3,

E
xt

[
pt
∣∣Ft−1] ≤ 4θKl(R

∗ + ∆t−1), (10)

where R∗ = R(h∗) is the risk of best-in-class. Plugging
in the expression for ∆t−1, and applying again a simi-
lar concentration inequality as before to relate

∑T
t=1 pt

to
∑T
t=1 Ext

[
pt
∣∣Ft−1], we end up with a recursion on

Ext
[
pt|Ft−1

]
:

E
xt

[
pt
∣∣Ft−1] ≤ 4θKlR

∗ +
4θKlc1
t− 1

√√√√t−1∑
s=1

E
xt

[
ps
∣∣Fs−1]

+ c2

(
log
[
(t− 1)|H|/δ

]
t− 1

)
, (11)

where c1 = 2
√

log
( 8T 2|H|2 log(T )

δ

)
= O

(√
log
(T |H|

δ

))
,

and c2 is a constant.

For simplicity, denote by 4θKl = c0. We show by induction
that for all t ≥ 3,

E
xt

[
pt|Ft−1

]
≤ c0R∗ + c4

√
R∗

t− 1
+

c5

t− 1
, (12)

for some constants c4, c5. Assume by induction that (12)
holds for all s ≤ t− 1. Thus, from (11), we have

E
xt

[
pt
∣∣Ft−1] ≤ c0R∗

+
c0c1
t− 1

√
c0R∗(t− 1) + 2c4

√
R∗(t− 1) + c5 log(t− 1)

+ c2
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t− 1
,

where we use the fact that
√
a+ b ≤

√
a+ b

2
√
a

for a, b > 0.

To complete the induction, we need to show that

c0c1
√
c0

√
R∗

t− 1

+

√
c0c1c4 + c0c1

√
c5 log(t− 1) + c2 log[(t− 1)|H|/δ]

t− 1

≤ c4
√

R∗

t− 1
+

c5

t− 1
.

Thus, c4 = c0c1
√
c0 = O(

√
log(T |H|/δ)), and

c5 ≥ c20c21 + c0c1
√
c5 log(t− 1) + c2 log[(t− 1)|H|/δ]

⇒
√
c5 = O(c0c1

√
log T )

⇒ c5 = O(c20c
2
1 log T ) = O(log2(T |H|/δ)).

Thus,

E
xt

[
pt|Ft−1

]
≤ c0R∗ +O(

√
log(T |H|/δ))

√
R∗

(t− 1)

+
O(log2(T |H|/δ))

t− 1
.

Finally,
T∑
t=1

E
xt,Qt

[Qt|Ft−1] =

T∑
t=1

E
xt

[pt|Ft−1]

≤ 4θKl[R(h∗)T +O(
√
R(h∗)T log(T |H|/δ))]

+O(log3(T |H|/δ)). (13)

Proof of Theorem 1. The bound of generalization error
R(hT ) follows from Lemma 5. To get the bound on the
number of labels τT , we relate

∑T
t=1 Ext,Qt [Qt|Ft−1] in

Lemma 6 to τT =
∑T
t=1Qt through a Bernstein-like in-

equality for martingales. Again, from Lemma 3 of Kakade
and Tewari [2009], we see that with probability at least 1−δ
we have

T∑
t=1

Qt −
T∑
t=1

E
xt,Qt

[Qt|Ft−1]

≤ 2

√√√√( T∑
t=1

var[Qt|Ft−1]

)
log

(
4 log T

δ

)

+ 6 log

(
4 log T

δ

)

≤ 2

√√√√( T∑
t=1

E
xt,Qt

[Qt|Ft−1]

)
log

(
4 log T

δ

)

+ 6 log

(
4 log T

δ

)
≤

T∑
t=1

E
xt,Qt

[Qt|Ft−1] + 7 log

(
4 log T

δ

)
.
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Combining with (13) completes the proof.

B Proofs of ORIWAL

Proof of Theorem 2. We first expand the bound in Theo-
rem 1 and get rid of

∑T
t=1 pt. Lemma 6 states that with

probability at least 1− δ,
T∑
t=1

E
xt,Qt

[Qt|Ft−1]

≤ 4θKl

(
R(h∗)T +O(

√
R(h∗)T log(T |H|/δ))

)
+O(log3(T |H|/δ)) ,

which implies that√√√√ T∑
t=1

E
xt,Qt

[Qt|Ft−1]

≤
√

4θKl

(
R(h∗)T +O(

√
R(h∗)T log(T |H|/δ))

)
+O(log

3
2 (T |H|/δ))

≤
√

4θKlR(h∗)T +O(log
1
2 (T |H|/δ))

+O(log
3
2 (T |H|/δ))

≤
√

4θKlR(h∗)T +O(log
3
2 (T |H|/δ)).

Thus, by Theorem 1, with probability at least 1− 2δ,

R(hT )

≤ R(h∗) +
2

T

[√∑T
t=1 pt + 6

√
log

[
(3 + T )T 2

δ

]]

×

√
log

[
8T 2|H|2 log(T )

δ

]
≤ R(h∗) +

2

T

[√
4θKlR(h∗)T +O(log

3
2 (T |H|/δ))

+ 6

√
log

[
(3 + T )T 2

δ

]]
×

√
log

[
8T 2|H|2 log(T )

δ

]

= R(h∗) + 2

√
4θKlR(h∗)

T
log

[
8T 2|H|2 log(T )

δ

]
+
O(log2(T |H|/δ))

T
.

Thus, for each region Xk, with probability at least 1 − δ
n ,

for any Tk > 0 the following holds:

R(hk,T )

≤ R∗k + 2

√
4θkKlR∗k

Tk
log

[
8T 2

k |Hk|2 log(Tk)2n

δ

]
+
O(log2(Tk|Hk|n/δ))

Tk
.

Recall that

R(hT ) =

n∑
k=1

pkRk(hk,T ), R(h∗) =

n∑
k=1

pkR
∗
k .

A union bound over the n regions gives the result forR(hT ):

R(hT ) ≤ R(h∗)

+

n∑
k=1

2pk

√
4θkKlR∗k

Tk
log

[
8T 2

k |Hk|2 log(Tk)2n

δ

]

+
( n∑
k=1

pk

Tk

)
O
(

log2
(

max
k∈[n]

Tk|Hk|n/δ
))
.

Furthermore, from Theorem 1 we have for each region Xk,
with probability at least 1− δ

n , for any Tk > 0:

τk,T ≤ 8θkKl

(
R∗kTk +O(

√
R∗kTk log(Tk|Hk|n/δ))

)
+O

(
log3

(
Tk|Hk|n/δ

))
,

where τk,T denotes the number of labels requested in region
k up to time T . Again, a union bound over the n regions
gives the result for τT =

∑T
k=1 τk,T .

In order to prove Corollary 3 we need the following standard
multiplicative Chernoff bounds.

Theorem 7 (Chernoff). Let X1, · · · , Xm be independent
random variables drawn according to some distribution D

with mean p and support included in [0, 1]. Then, for any
γ ∈ [0, 1p − 1], the following holds for p̂ = 1

m

∑m
i=1Xi:

P[p̂ ≥ (1 + γ)p] ≤ e−
mpγ2

3 ,

P[p̂ ≤ (1− γ)p] ≤ e−
mpγ2

2 .

Proof of Corollary 3. Given a total of T queries over all
regions, we have E[Tk] = Tqk, where

qk =
pkαk∑n
k′ pk′αk′

is the probability of querying IWALk, conditioned on a query
being made. By Theorem 7, with probability at least 1− δ

2 ,
for all k ∈ [n],

Tk
T
≥ qk

(
1−

√
2 log(2n/δ)

Tqk

)
.

It follows that with probability at least 1− δ
2 , for all k ∈ [n],

qk√
Tk

=

√
qk

T

√
qk

(Tk/T )
≤
√

qk

T

1√
1−

√
2 log(2n/δ)

Tqk

.
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When T ≥ 4 log(2n/δ)
mink∈[n] qk

, we have 2 log(2n/δ)
Tqk

< 1
2 . Since

1√
1−
√
x
≤ 1 + 2

√
x for any x ≤ 1

2 , we can write

qk√
Tk
≤
√

qk

T

(
1 + 2

√
2 log(2n/δ)

Tqk

)
=

√
qk

T
+

2
√

2 log(2n/δ)

T
.

Plugging into Theorem 2, a union bound implies that with
probability at least 1− δ,

R(hT ) ≤ R(h∗)

+ 2

n∑
k=1

pk

√
4θkKlR∗k

Tk
log

[
8T 2|Hk|2 log(T )4n

δ

]

+
( n∑
k=1

pk

Tk

)
O
(

log2
(

max
k∈[n]

T |Hk|n/δ
))

≤ R(h∗) + 2

n∑
k=1

pk

√
4θkKlR∗k
Tqk

log

[
8T 2|Hk|2 log(T )4n

δ

]

+
( n∑
k=1

pk

Tqk

)
O
(

log2
(

max
k∈[n]

T |Hk|n/δ
))
.

Furthermore, by Chernoff bound, with probability at least
1− δ, for all k ∈ [n],

Tk ≤ Tqk +
√

3Tqk log(n/δ)

⇒
√
Tk ≤

√
Tqk +

√
3Tqk log(n/δ)

2
√
Tqk

( using the inequality
√
a+ b ≤

√
a+ b/(2

√
a) )

≤
√
Tqk +

√
log(n/δ) .

Plugging into Theorem 2, with probability at least 1− 2δ,
for any T > 0,

τT ≤
n∑
k=1

(
8θkKl

[
R∗kTk +O

(√
R∗kTk log(Tk|Hk|n/δ)

)]
+O

(
log3

(
Tk|Hk|n/δ

)))
≤ 8K`

[ n∑
k=1

θkR
∗
kTqk

]

+

n∑
k=1

O

(√
R∗kTqk log

[T |Hk|n
δ

])
+O

(
n log3

(
T max
k∈[n]

|Hk|n/δ
)))

.

This concludes the proof.

C Two Natural Baselines for Region-Based
Active Learning

In Section C.1 and Section C.2 below, we analyze two natu-
ral extensions of the IWAL algorithm to the region-based set-
ting, called NAIVE-IWAL and RIWAL, that use the composite
hypothesis set H[n] in two different ways. In Section C.3,
we then discuss the advantage of RIWAL over NAIVE-IWAL.

The two region-based baselines NAIVE-IWAL and RIWAL
can use either IWAL or EIWAL as their underlying subrou-
tines. To avoid clutter in the notation and to simplify the
presentation, we proceed with the original version of IWAL,
but a similar (though more involved) analysis can be carried
out for the enhanced version EIWAL.

C.1 NAIVE-IWAL

NAIVE-IWAL consists of simply running the IWAL algorithm
with the composite hypothesis set H[n]. This algorithm will
find a model in this set without explicitly taking into account
the structure of the set. Despite its simplicity, NAIVE-IWAL
admits theoretical guarantees, since the guarantees from
the classical IWAL (see Equation (2) and Equation (3)) di-
rectly apply. In particular, when Hks have the same num-
ber of hypotheses across k, the complexity terms in these
bounds are multiplied by a factor of

√
n. This is because

|H[n]| =
∏n
k=1 |Hk| = |H1|n. Thus, as the number of re-

gions increases, the complexity term in the bound increases,
while the generalization error of the best in class R(h∗)
decreases.

C.2 RIWAL

RIWAL consists of running n separate IWAL algorithms in-
dependently for each region. It works exactly in the same
way as ORIWAL, except that it simply passes on all points
to the subroutines, that is αk = 1 for all k ∈ [n]. Given
Tk, which is the number of samples falling into region Xk,
RIWAL admits the same generalization error guarantees as
that of ORIWAL (Theorem 2). Both results are derived from
IWAL for a single region, along with a union bound over n
regions. We can also apply a multiplicative Chernoff bound
to the empirical quantities Tk to obtain a learning guarantee
that only depends on T . The result is in fact a special case
of Corollary 3, and is obtained by simply replacing therein
qk with pk.

C.3 Comparing NAIVE-IWAL and RIWAL

Even though NAIVE-IWAL and RIWAL learn from the same
hypothesis set H[n], and essentially use the same policy
(the disagreement-based policy of IWAL) for requesting la-
bels, the two algorithms are not equivalent. In fact, the
two algorithms deliver final hypotheses with comparable
generalization error after T rounds but, as we will show
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momentarily, NAIVE-IWAL request more labels than RIWAL
in expectation.

The following definitions will be useful. Let R̂k,t(h) and
R̂t(h) denote the importance weighted empirical error of
any hypothesis h after t rounds on region Xk and over all
regions, respectively:

R̂k,t(h) =

∑t
s=1 1xs∈Xk

Qs
ps
`(h(xs), ys)∑t

s=1 1xs∈Xk
,

R̂t(h) =

∑t
s=1

Qs
ps
`(h(xs), ys)

t
.

Let ĥk,t and ĥt be the respective weighted empirical risk
minimizers:

ĥk,t = argmin
h∈Hk

R̂k,t(h), ĥt = argmin
h∈H[n]

R̂t(h) .

Similar to Equation (1), we have ĥt =
∑n
k=1 1x∈Xk ĥk,t.

Recall that for NAIVE-IWAL and RIWAL, the probability of
requesting label yt depends on the “disagreement” among
their version spaces on xt. A larger version space implies a
larger disagreement value, and therefore a larger probability
of requesting the label. Thus, at a high level, NAIVE-IWAL
requests more labels than RIWAL because the version space
of NAIVE-IWAL is larger than that of RIWAL. More precisely,
assume for now that NAIVE-IWAL and RIWAL have been
requesting the same labels up to time t− 1, thus for any h
and k, R̂k,t(h) has the same value under either algorithm,
and the region-specific empirical risk minimizer is ĥk,t. At
time t, assume without loss of generality, that the unlabeled
xt lies in region X1. Given a slack term ∆, the version
space is defined as the set of hypotheses whose importance
weighted empirical error is ∆-close to the minimal empirical
error. Assume there exists a hypothesis h1 ∈ H1 such that

∆ ≤ R̂1,t(h1)− R̂1,t(ĥ1,t) ≤

[
t∑t

s=1 1xs∈X1

]
∆.

Since ∆ ≤ R̂1,t(h1)−R̂1,t(ĥ1,t), h1 will not be included in
the current version space of IWAL1, which is the subroutine
associated with X1 under the RIWAL algorithm. However,
the version space of NAIVE-IWAL will include the hypoth-
esis that takes the value of h1 on region X1. To see why,
let

h′ =
∑

k∈[n],k 6=1

1x∈Xk ĥkt + 1x∈X1
h1 ,

that is, the hypothesis that takes the value of the region-
specific weighted empirical risk minimizers (ĥk,t) on region
Xk, and takes the value of h1 on region X1. Since

R̂(h′)− R̂(ĥt)

=

[∑t
s=1 1xs∈X1

t

](
R̂1,t(h1)− R̂1,t(ĥ1,t)

)
≤ ∆,

h′ will be included in the version space of NAIVE-IWAL
under the slack term ∆, even though h1 is not included in
the version space of RIWAL on region X1 under the same
slack term. This suggests that NAIVE-IWAL is less efficient
at shrinking the version space, and as a result it requests
more labels.

We formalize this idea with Lemma 8 and Theorem 9.
Lemma 8 relates the region-specific disagreement coeffi-
cients θ(Dk,Hk) to the overall disagreement coefficient
θ(D,H[n]). Theorem 9 compares the learning guarantees
of NAIVE-IWAL and RIWAL under certain assumptions.

Lemma 8. The generalized disagreement coefficient
θ(D,H[n]) satisfies θ(D,H[n]) ≤

∑n
k=1 θ(Dk,Hk).

Proof. Denote h∗ = argminh∈H[n]
R(h), and h∗k =

argminh∈Hk
Rk(h). For simplicity, we denote by Dk =

D|Xk the conditional distribution of x on Xk. Recall that
h∗ =

∑n
k=1 1x∈Xkh

∗
k. Extending the definitions in Sec-

tion 3, we define

ρk(f, g) = E
x∼Dk

max
y
|`(f(x), y)− `(g(x), y)|.

Given the hypothesis set Hk and any real r > 0, define

Bk(f, r) =
{
g ∈ Hk : ρk(f, g) ≤ r

}
.

For a set of non-negative values λ = {λ1, . . . , λn} , let

Gλ(h∗, r) =
{ n∑
k=1

1x∈Xkgk : gk ∈ Bk(h∗k, λkr)
}
.

We first show that, for any λ satisfying
∑n
k=1 pkλk ≤ 1,

Gλ(h∗, r) ⊆ B(h∗, r). Let g =
∑n
k=1 1x∈Xkgk, where

gk ∈ Bk(h∗k, λkr). Then,

ρ (h∗, g)

= E
x∼D

max
y
|`(h∗(x), y)− `(g(x), y)|

=

n∑
k=1

pk E
x∼Dk

max
y
|`(h∗k(x), y)− `(gk(x), y)|

≤
n∑
k=1

pkλkr ≤ r.

Thus,

{
∪λ : ∑n

k=1 pkλk≤1 Gλ(h∗, r)

}
⊆ B(h∗, r). On the

other hand, if there exits a hypothesis h such that

h ∈ B(h∗, r)
∖{
∪λ : ∑n

k=1 pkλk≤1 Gλ(h∗, r)

}
,

let h =
∑n
k=1 1x∈Xkhk. Then,

ρ(h∗, h) =

n∑
k=1

pkρk(h∗k, hk) ≤ r ⇒
n∑
k=1

pk
ρk(h∗k, hk)

r
≤ 1.
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Obviously, hk ∈ Bk(h∗k, ρk(h∗k, hk)). Thus, let λ =

{ρ1(h
∗
1 ,h1)
r , . . . ,

ρp(h
∗
n,hn)
r }, then

∑n
k=1 pkλk ≤ 1, and

h ∈ Gλ(h∗, r) by definition. We have a contradiction.
Therefore,{

∪λ : ∑n
k=1 pkλk≤1 Gλ(h∗, r)

}
= B(h∗, r) .

Given the equivalence above, for any k ∈ [n],

Hk ∩B(h∗, r) = Hk ∩ {∪λ : ∑n
k=1 pkλk≤1Gλ(h∗, r)}

= Hk ∩ {∪λk≤1/pkBk(h∗k, λkr)} (14)
= Bk(h∗k, r/pk) . (15)

Equation (14) holds by the definition of Gλ(h∗, r). Putting
everything together, we have for any r ≥ 0,

E
x∼D

sup
h∈B(h∗,r)

sup
y
|`(h(x), y)− `(h∗(x), y)|

=

n∑
k=1

pk E
x∼Dk

sup
h∈B(h∗,r)

sup
y
|`(h(x), y)− `(h∗(x), y)|

=

n∑
k=1

pk E
x∼Dk

sup
y,hk∈Bk(h∗k,

r
pk

)

|`(hk(x), y)− `(h∗k(x), y)|

(16)

≤
n∑
k=1

pkθ(Dk,Hk)r/pk (17)

=
( n∑
k=1

θ(D|Xk,Hk)
)
r.

Equation (16) holds due to the equivalence in (15), and
inequality (17) holds by the definition of θ(Dk,Hk).

Finally, recall the definition of θ(D,H[n]):

θ(D,H) = inf
{
θ : ∀r ≥ 0,

E
x∼D

sup
h∈B(h∗,r)

sup
y
|`(h(x), y)− `(h∗(x), y)| ≤ θr

}
.

Therefore θ(D,H[n]) ≤
∑n
k=1 θ(Dk,Hk), which conclues

the proof.

In fact, one can show that there exist r, D and Hk such that
equality is achieved in Lemma 8, thus the upper bound is
tight.

Combining Lemma 8 with the learning guarantee of IWAL,
we obtain the following result for the case when |Hk| is the
same across all regions Xk.

Theorem 9. Assume |Hk| is the same across all regions
Xk, k ∈ [n], and assume the same holds for θ(Dk,Hk).
Then, the hypothesis returned by NAIVE-IWAL and RIWAL
admit comparable generalization error guarantees, but on
average NAIVE-IWAL would request up to n times more
labels than RIWAL.

Proof. Let N = |H1|, and θ1 = θ(D1,H1), so that
|H[n]| = Nn and, from Lemma 8, θ(D,H[n]) ≤ nθ1. Ac-
cording to the learning guarantee of IWAL, with probability
at least 1− δ, NAIVE-IWAL satisfies

R(hNAIVE-IWAL
T ) ≤ R(h∗) +O

(√ ln(TN2n/δ)

T

)
, (18)

τ NAIVE-IWAL
T ≤ 4nθ1K`

[
R(h∗)T +O(

√
T ln(TN2n/δ))

]
.

(19)

Meanwhile according to Theorem 2, with probability at least
1− δ, RIWAL satisfies

R(hRIWAL
T )

≤ R(h∗) +

n∑
k=1

pkO
(√ ln(T |N |2n/δ)

Tk

)
, (20)

τ RIWAL
T

≤
n∑
k=1

4θ1K`

[
Rk(h∗)Tpk +O(

√
2Tpk ln(2TN2n/δ)

]
= 4θ1K`

[
R(h∗)T +

n∑
k=1

O(
√

2Tpk ln(2TN2n/δ)
]
.

(21)

Replacing Tk with Tpk + O(
√
T ) in the RHS of (20) we

obtain

R(hRIWAL
T ) ≤ R(h∗) +O

(√n ln(T |N |2n/δ)
T

)
. (22)

Comparing the upper bound on the generalization error of
RIWAL (22) to that of NAIVE-IWAL (18), we conclude that
the two algorithms admit comparable learning guarantees.

On the other hand, comparing the proportion of labels re-
quested per round, we have

τ NAIVE-IWAL
T /T ≤ 4nθ1K`R(h∗) +O

(
1√
T

)
,

τ RIWAL
T /T ≤ 4θ1K`R(h∗) +O

(
1√
T

)
.

Thus, NAIVE-IWAL may request up to n times more labels
than RIWAL.

D More Experimental Results

In this section, we provide results for all the datasets de-
scribed in Table 1 in the main body of the paper.

Figures 3 show for 10 disjoint regions the misclassification
error rate by three region-based algorithms, ORIWAL, RI-
WAL, and RPASSIVE, against number of labels requested (on
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log10 scale), for all datasets. ORIWAL displays a consistent
advantage over RIWAL and RPASSIVE.

Figures 4 and Figure 5 compares, for 10 and 20 disjoint
regions respectively, the misclassification error rate of our
algorithm, ORIWAL, to that of non region-based IWAL, and
to non region-based passive learning PASSIVE. IWAL per-
forms comparably to PASSIVE and stops improving early
on, while ORIWAL significantly outperforms PASSIVE and
continues to reduce the error rate while requesting more
labels.

Figures 6 show the misclassification error rate by ORIWAL
using 10 regions and 20 regions, respectively, against num-
ber of labels requested (on log10 scale), for all datasets.
With randomly generated regions, it is unclear whether more
regions would be helpful, as sometimes 20 regions admit
higher misclassification error compared to 10 regions, given
the same amount of requested labels. This observation
leads to the following questions: How should the regions
be chosen? How would the partitioning method affect the
performance of ORIWAL? These are interesting directions
for future work.
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Figure 3: Misclassification loss of ORIWAL, RIWAL, and RPASSIVE on hold out test data vs. number of labels requested
(log10 scale). The input space has 10 regions.
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Figure 4: Misclassification loss of non region-based IWAL, non region-based passive learning PASSIVE, and ORIWAL (ours)
on hold out test data vs. number of labels requested (log10 scale). The input space has 10 regions.
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Figure 5: Misclassification loss of non region-based IWAL, non region-based passive learning PASSIVE, and ORIWAL (ours)
on hold out test data vs. number of labels requested (log10 scale). The input space has 20 regions.
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Figure 6: Misclassification loss of ORIWAL, using 10 regions, vs. 20 regions, on hold out test data vs. number of labels
requested (log10 scale).
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