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Abstract

We present a revenue optimization algorithm for posted-price auctions when fac-
ing a buyer with random valuations who seeks to optimize his γ-discounted sur-
plus. In order to analyze this problem we introduce the notion of ε-strategic buyer,
a more natural notion of strategic behavior than what has been considered in the
past. We improve upon the previous state-of-the-art and achieve an optimal regret
bound in O(log T + 1/ log(1/γ)) when the seller selects prices from a finite set
and provide a regret bound in Õ(

√
T + T 1/4/ log(1/γ)) when the prices offered

are selected out of the interval [0, 1].

1 Introduction

Online advertisement is currently the fastest growing form of advertising. This growth has been
motivated, among other reasons, by the existence of well defined metrics of effectiveness such as
click-through-rate and conversion rates. Moreover, online advertisement enables the design of better
targeted campaigns by allowing advertisers to decide which type of consumers should see their
advertisement. These advantages have promoted the fast pace development of a large number of
advertising platforms. Among them, AdExchanges have increased in popularity in recent years. In
contrast to traditional advertising, AdExchanges do not involve contracts between publishers and
advertisers. Instead, advertisers are allowed to bid in real-time for the right to display their ad.

An AdExchange works as follows: when a user visits a publisher’s website, the publisher sends
this information to the AdExchange which runs a second-price auction with reserve (Vickrey, 1961;
Milgrom, 2004) among all interested advertisers. Finally, the winner of the auction gets the right
to display his ad on the publisher’s website and pays the maximum of the second highest bid and
the reserve price. In practice, this process is performed in milliseconds, resulting in millions of
transactions recorded daily by the AdExchange. Thus, one might expect that the AdExchange could
benefit from this information by learning how much an advertiser values the right to display his ad
and setting an optimal reserve price. This idea has recently motivated research in the learning com-
munity on revenue optimization in second-price auctions with reserve (Mohri and Medina, 2014a;
Cui et al., 2011; Cesa-Bianchi et al., 2015).

The algorithms proposed by these authors heavily rely on the assumption that the advertisers’ bids
are drawn i.i.d. from some underlying distribution. However, if an advertiser is aware of the fact that
the AdExchange or publisher are using a revenue optimization algorithm, then, most likely, he would
adjust his behavior to trick the publisher into offering a more beneficial price in the future. Under
this scenario, the assumptions of (Mohri and Medina, 2014a) and (Cesa-Bianchi et al., 2015) would
be violated. In fact, empirical evidence of strategic behavior by advertisers has been documented by
Edelman and Ostrovsky (2007). It is therefore critical to analyze the interactions between publishers
and strategic advertisers.

∗This work was partially done at the Courant Institute of Mathematical Sciences.
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In this paper, we consider the simpler scenario of revenue optimization in posted-price auctions with
strategic buyers, first analyzed by Amin et al. (2013). As pointed out by Amin et al. (2013), the study
of this simplified problem is truly relevant since a large number of auctions run by AdExchanges
consist of only one buyer (or one buyer with a large bid and several buyers with negligible bids). In
this scenario, a second-price auction in fact reduces to a posted-price auction where the seller sets a
reserve price and the buyer decides to accept it (bid above it) or reject it (bid below).

To analyze the sequential nature of this problem, we can cast it as a repeated game between a buyer
and a seller where a strategic buyer seeks to optimize his surplus while the seller seeks to collect
the largest possible revenue from the buyer. This can be viewed as an instance of a repeated non-
zero sum game with incomplete information, which is a problem that has been well studied in the
Economics and Game Theory community (Nachbar, 1997, 2001). However, such previous work has
mostly concentrated on the characterization of different types of achievable equilibria as opposed to
the design of an algorithm for the seller. Furthermore, the problem we consider admits a particular
structure that can be exploited to derive learning algorithms with more favorable guarantees for the
specific task of revenue optimization.

The problem can also be viewed as an instance of a multi-armed bandit problem (Auer et al., 2002;
Lai and Robbins, 1985), more specifically, a particular type of continuous bandit problem previously
studied by Kleinberg and Leighton (2003). Indeed, at every time t the buyer can only observe the
revenue of the price he offered and his goal is to find, as fast as possible, the price that would yield the
largest expected revenue. Unlike a bandit problem, however, here, the performance of an algorithm
cannot be measured in terms of the external regret. Indeed, as observed by Bubeck and Cesa-Bianchi
(2012) and Arora et al. (2012), the notion of external regret becomes meaningless when facing an
adversary that reacts to the learner’s actions. In short, instead of comparing to the best achievable
revenue by a fixed price over the sequence of rewards seen, one should compare against the simulated
sequence of rewards that would have been seen had the seller played a fixed price. This notion of
regret is known as strategic regret and regret minimization algorithms have been proposed before
under different scenarios (Amin et al., 2013, 2014; Mohri and Medina, 2014a). In this paper we
provide a regret minimization algorithm for the stochastic scenario, where, at each round, the buyer
receives an i.i.d. valuation from an underlying distribution. While this random valuation might seems
surprising, it is in fact a standard assumption in the study of auctions (Milgrom and Weber, 1982;
Milgrom, 2004; Cole and Roughgarden, 2014). Moreover, in practice, advertisers rarely interact
directly with an AdExchange. Instead, several advertisers are part of an ad network and it is that ad
network that bids on their behalf. Therefore, the valuation of the ad network is not likely to remain
fixed. Our model is also motivated by the fact that the valuation of an advertiser depends on the
user visiting the publisher’s website. Since these visits can be considered random, it follows that the
buyer’s valuation is in fact a random variable.

A crucial component of our analysis is the definition of a strategic buyer. We consider a buyer who
seeks to optimize his cumulative discounted surplus. However, we show that a buyer who exactly
maximizes his surplus must have unlimited computational power, which is not a realistic assumption
in practice. Instead, we define the notion of an ε-strategic buyer who seeks only to approximately
optimize his surplus. Our main contribution is to show that, when facing an ε-strategic buyer, a seller
can achieve O(log T ) regret when the set of possible prices to offer is finite, and an O(

√
T ) regret

bound when the set of prices is [0, 1]. Remarkably, these bounds on the regret match those given by
Kleinberg and Leighton (2003) in a truthful scenario where the buyer does not behave strategically.

The rest of this paper is organized as follows. In Section 2, we discuss in more detail related previous
work. Next, we define more formally the problem setup (Section 3). In particular, we give a precise
definition of the notion of ε-strategic buyer (Section 3.2). Our main algorithm for a finite set of
prices is described in Section 4, where we also provide a regret analysis. In Section 5, we extend
our algorithm to the continuous case where we show that a regret in O(

√
T ) can be achieved.

2 Previous work
The problem of revenue optimization in auctions goes back to the seminal work of Myerson (1981),
who showed that under some regularity assumptions over the distribution D, the revenue optimal,
incentive-compatible mechanism is a second-price auction with reserve. This result applies to single-
shot auctions where buyers and the seller interact only once and the underlying value distribution is
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known to the seller. In practice, however it is not realistic to assume that the seller has access to this
distribution. Instead, in cases such as on-line advertisement, the seller interacts with the buyer a large
number of times and can therefore infer his behavior from historical data. This fact has motivated
the design of several learning algorithms such as that of (Cesa-Bianchi et al., 2015) who proposed
a bandit algorithm for revenue optimization in second-price auctions; and the work of (Mohri and
Medina, 2014a), who provided learning guarantees and an algorithm for revenue optimization where
each auction is associated with a feature vector.

The aforementioned algorithms are formulated under the assumption of buyers bidding in an i.i.d.
fashion and do not take into account the fact that buyers can in fact react to the use of revenue
optimization algorithms by the seller. This has motivated a series of publications focusing on this
particular problem. Bikhchandani and McCardle (2012) analyzed the same problem proposed here
when the buyer and seller interact for only two rounds. Kanoria and Nazerzadeh (2014) consid-
ered a repeated game of second-price auctions where the seller knows that the value distribution
can be either high, meaning it is concentrated around high values, or low; and his goal is to find
out from which distribution the valuations are drawn under the assumption that buyers can behave
strategically.

Finally, the scenario considered here was first introduced by Amin et al. (2013) where the authors
solve the problem of optimizing revenue against a strategic buyer with a fixed valuation and showed
that a buyer can achieve regret in O

( √
T

1−γ
)
. Mohri and Medina (2014b) later showed that one can

in fact achieve a regret in O( log T
1−γ ) closing the gap with the lower bound to a factor of log T . The

scenario of random valuations we consider here was also analyzed by Amin et al. (2013) where an
algorithm achieving regret in O

(
|P|Tα + 1

(1−γ)1/α + 1
∆1/α

)
was proposed when prices are offered

from a finite set P , with ∆ = minp∈P p
∗D(v > p∗)− pD(v > p) and α a free parameter. Finally,

an extension of this algorithm to the contextual setting was presented by the same authors in (Amin
et al., 2014) where they provide an algorithm achieving O

(
T 2/3

1−γ
)

regret.

The algorithms proposed by Amin et al. (2013, 2014) consist of alternating exploration and exploita-
tion. That is, there exist rounds where the seller only tries to estimate the value of the buyer and
other rounds where he uses this information to try to extract the largest possible revenue. It is well
known in the bandit literature (Dani and Hayes, 2006; Abernethy et al., 2008) that algorithms that
ignore information obtained on exploitation rounds tend to be sub-optimal. Indeed, even in a truthful
scenario where the UCB algorithm (Auer et al., 2002) achieves regret inO( log T

∆ ), the algorithm pro-

posed by Amin et al. (2013) achieves sub-optimal regret in O
(
e
√

log T log 1
∆

)
for the optimal choice

of α which, incidentally, requires also access to the unknown value ∆.

We propose instead an algorithm inspired by the UCB strategy using exploration and exploitation
simultaneously. We show that our algorithm admits a regret that is in O

(
log T

∆ + |P|
log(1/γ)

)
, which

matches the UCB bound in the truthful scenario and which depends on γ only through the additive
term 1

log(1/γ) ≈
1

1−γ known to be unavoidable (Amin et al., 2013). Our results cannot be directly
compared with those of Amin et al. (2013) since they consider a fully strategic adversary whereas
we consider an ε-strategic adversary. As we will see in the next section, however, the notion of ε-
strategic adversary is in fact more natural than that of a buyer who exactly optimizes his discounted
surplus. Moreover, it is not hard to show that, when applied to our scenario, perhaps modulo a
constant, the algorithm of Amin et al. (2013) cannot achieve a better regret than in the fully strategic
adversary.

3 Setup

We consider the following scenario, similar to the one introduced by Amin et al. (2013).

3.1 Scenario

A buyer and a seller interact for T rounds. At each round t ∈ {1, . . . , T}, the seller attempts to sell
some good to the buyer, such as the right to display an ad. The buyer receives a valuation vt ∈ [0, 1]
which is unknown to the seller and is sampled from a distribution D. The seller offers a price pt,
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in response to which the buyer selects an action at ∈ {0, 1}, with at = 1 indicating that he accepts
the price and at = 0 otherwise. We will say the buyer lies if he accepts the price at time t (at = 1)
while the price offered is above his valuation (vt ≤ pt), or when he rejects the price (at = 0) while
his valuation is above the price offered (vt > pt).

The seller seeks to optimize his expected revenue over the T rounds of interaction, that is,

Rev = E
[ T∑
t=1

atpt

]
.

Notice that, when facing a truthful buyer, for any price p, the expected revenue of the seller is given
by pD(v > p). Therefore, with knowledge of D, the seller could set all prices pt to p∗, where
p∗ ∈ argmaxp∈[0,1] pD(v > p). Since the actions of the buyer do not affect the choice of future
prices by the seller, the buyer has no incentive to lie and the seller will obtain an expected revenue
of Tp∗D(v > p∗). It is therefore natural to measure the performance of any revenue optimization
algorithm in terms of the following notion of strategic regret:

RegT = Tp∗D(v > p∗)− Rev = max
p∈[0,1]

TpD(v > p)− E
[ T∑
t=1

atpt

]
.

The objective of the seller coincides with the one assumed by Kleinberg and Leighton (2003) in the
study of repeated interactions with buyers with a random valuation. However, here, we will allow
the buyer to behave strategically, which results in a harder problem. Nevertheless, the buyer is not
assumed to be fully adversarial as in (Kleinberg and Leighton, 2003). Instead, we will assume, as
discussed in detail in the next section, that the buyer seeks to approximately optimize his surplus,
which can be viewed as a more natural assumption.

3.2 ε-strategic Buyers

Here, we define the family of buyers considered throughout this paper. We denote by x1:t ∈ Rt
the vector (x1, . . . , xt) and define the history of the game up to time t by Ht :=

(
p1:t, v1:t, a1:t

)
.

Before the first round, the seller decides on an algorithm A for setting prices and this algorithm is
announced to the buyer. The buyer then selects a strategy B : (Ht−1, vt, pt) 7→ at. For any value
γ ∈ (0, 1) and strategy B, we define the buyer’s discounted expected surplus by

Surγ(B) = E
[ T∑
t=1

γt−1at(vt − pt)
]
.

A buyer minimizing this discounted surplus wishes to acquire the item as inexpensively as possible,
but does not wish to wait too long to obtain a favorable price.

In order to optimize his surplus, a buyer must then solve a non-homogeneous Markov decision pro-
cess (MDP). Indeed, consider the scenario where at time t the seller offers prices from a distribution
Dt ∈ D, where D is a family of probability distributions over the interval [0, 1]. The seller up-
dates his beliefs as follows: the current distribution Dt is selected as a function of the distribution
at the previous round as well as the history Ht−1 (which is all the information available to the
seller). More formally, we let ft : (Dt, Ht) 7→ Dt+1 be a transition function for the seller. Let
st = (Dt, Ht−1, vt, pt) denote the state of the environment at time t, that is, all the information
available at time t to the buyer. Finally, let St(st) denote the maximum attainable expected surplus
of a buyer that is in state st at time t. It is clear that St will satisfy the following Bellman equations:
St(st) = max

at∈{0,1}
γt−1at(vt − pt) + E(vt+1,pt+1)∼D×ft(Dt,Ht)

[
St+1(ft(Dt, Ht), Ht, vt+1, pt+1

)]
,

(1)
with the boundary condition ST (sT ) = γT−1(vT − pT )1pT≤vT .
Definition 1. A buyer is said to be strategic if his action at time t is a solution of the Bellman
equation (1).

Notice that, depending on the choice of the family D, the number of states of the MDP solved by
a strategic buyer may be infinite. Even for a deterministic algorithm that offers prices from a finite
set P , the number of states of this MDP would be in Ω(T |P|), which quickly becomes intractable.
Thus, in view of the prohibitive cost of computing his actions, the model of a fully strategic buyer
does not seem to be realistic. We introduce instead the concept of ε-strategic buyers.
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Definition 2. A buyer is said to be ε-strategic if he behaves strategically, except when no sequence
of actions can improve upon the future surplus of the truthful sequence by more than γt0ε, or except
for the first 0 < t < t0 rounds, for some t0 ≥ 0 depending only on the seller’s algorithm, in which
cases he acts truthfully.

We show in Section 4 that this definition implies the existence of t1 > t0 such that an ε-strategic
buyer only solves an MDP over the interval [t0, t1] which becomes a tractable problem for t1 � T .
The parameter t0 used in the definition is introduced to consider the unlikely scenario where a
buyer’s algorithm deliberately ignores all information observed during the rounds 0 < t < t0, in
which case it is optimal for the buyer to behave truthfully.

Our definition is motivated by the fact that, for a buyer with bounded computational power, there is
no incentive in acting non-truthfully if the gain in surplus over a truthful behavior is negligible.

4 Regret Analysis

We now turn our attention to the problem faced by the seller. The seller’s goal is to maximize his
revenue. When the buyer is truthful, Kleinberg and Leighton (2003) have shown that this problem
can be cast as a continuous bandit problem. In that scenario, the strategic regret in fact coincides
with the pseudo-regret, which is the quantity commonly minimized in a stochastic bandit setting
(Auer et al., 2002; Bubeck and Cesa-Bianchi, 2012). Thus, if the set of possible prices P is finite,
the seller can use the UCB algorithm Auer et al. (2002) to minimize his pseudo-regret.

In the presence of an ε-strategic buyer, the rewards are no longer stochastic. Therefore, we need to
analyze the regret of a seller in the presence of lies. Let P denote a finite set of prices offered by
the seller. Define µp = pD(v > p) and ∆p = µp∗ − µp. For every price p ∈ P , define also Tp(t)
to be the number of times price p has been offered up to time t. We will denote by T ∗ and µ∗ the
corresponding quantities associated with the optimal price p∗.
Lemma 1. Let L denote the number of times a buyer lies. For any δ > 0, the strategic regret of a
seller can be bounded as follows:

RegT ≤ E[L] +
∑

p : ∆p>δ

E[Tp(t)]∆p + Tδ.

Proof. Let Lt denote the event that the buyer lies at round t, then the expected revenue of a seller is
given by

E
[ T∑
t=1

∑
p∈P

atpt1pt=p(1Lt + 1Lct )

]
≥ E

[ T∑
t=1

∑
p∈P

atpt1pt=p1Lct

]
= E

[∑
p∈P

T∑
t=1

1vt>pp1pt=p1Lct

]
,

where the last equality follows from the fact that when the buyer is truthful at = 1vt>p. Moreover,
using the fact that

∑T
t=1 1Lt = L, we have

E
[∑
p∈P

T∑
t=1

1vt>pp1pt=p1Lct

]
= E

[∑
p∈P

T∑
t=1

1vt>pp1pt=p

]
− E

[∑
p∈P

T∑
t=1

1vt>pp1pt=p1Lt

]

=
∑
p∈P

µp E[Tp(T )]− E
[ T∑
t=1

1vt>ptpt1Lt

]
≥
∑
p∈P

µp E[Tp(T )]− E[L].

Since the regret of offering prices for which ∆p ≤ δ is bounded by Tδ, it follows that the regret of
the seller is bounded by E[L] +

∑
p : ∆p>δ

∆p E[Tp(T )] + Tδ.

We now define a robust UCB (R-UCBL) algorithm for which we can bound the expectations
E[Tp(T )]. For every price p ∈ P , define

µ̂p(t) =
1

Tp(t)

t∑
i=1

pt1pt=p1vt>pt
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to be the true empirical mean of the reward that a seller would obtain when facing a truthful buyer.
Let Lt(p) =

∑t
i=1

(
at − 1vt>p

)
1pt=pp denote the revenue obtained by the seller in rounds where

the buyer lied. Notice that Lt(p) can be positive or negative. Finally, let

µp(t) = µ̂p(t) +
Lt(p)

Tp(t)

be the empirical mean obtained when offering price p that is observed by the seller. For the definition
of our algorithm, we will make use of the following upper confidence bound:

Bp(t, L) =
Lp

Tp(t)
+

√
2 log t

Tp(t)
.

We will use B∗ as a shorthand for Bp∗ . Our R-UCBL algorithm selects the price pt that maximizes
the quantity

max
p∈P

µp(t) +Bp(t, L).

We proceed to bound the expected number of times a sub-optimal price p is offered.

Proposition 1. Let Pt(p, L) := P
(∣∣Lt(p)
Tp(t)

∣∣ + |Lt(p
∗)

T∗(t)

∣∣ ≥ L
(

p
Tp(t) + p∗

T∗(t)

))
. Then, the following

inequality holds:

E[Tp(t)] ≤
4Lp

∆p
+

32 log T

∆2
p

+ 2 +

T∑
t=1

Pt(p, L).

Proof. For any p and t define ηp(t) =
√

2 log t
Tp(t) and let η∗ = ηp∗ . If at time t price p 6= p∗ is offered

then

µp(t) +Bp(t, L)− µ∗(t)−B∗(t, L) ≥ 0

⇔ µ̂p(t) +Bp(t, L) +
Lt(p)

Tp(t)
− µ̂∗(t)−B∗(t, L)− Lt(p

∗)

T ∗(t)
≥ 0

⇔
[
µ̂p(t)− µp − ηp(t)

]
+
[
2Bp(t, L)−∆p

]
+
[Lt(p)
Tp(t)

− Lt(p
∗)

T ∗(t)
− Lp

Tp(t)
− Lp∗

T ∗(t)

]
+
[
µ∗ − µ̂∗(t)− η∗(t)

]
≥ 0. (2)

Therefore, if price p is selected, then at least one of the four terms in inequality (2) must be positive.
Let u = 4Lp

∆p + 32 log T
∆2
p

. Notice that if Tp(t) > u then 2Bp(t, L)−∆p < 0. Thus, we can write

E[Tp(T )] = E
[ T∑
t=1

1pt=p(1Tp(t)≤u + 1Tp(t)>u)
]

= u+

T∑
t=u

Pr(pt = p, Tp(t) > u).

This combined with the positivity of at least one of the four terms in (2) yields:

E[Tp(T )] ≤ u+

T∑
t=u

Pr
(
µ̂p(t)− µp ≥ ηp(t)

)
+ Pr

(Lt(p∗)
T ∗(t)

− Lt(p)

Tp(t)
≥ Lp

Tp(t)
+

Lp∗

T ∗(t)

)
+ Pr

(
µ∗ − µ̂∗(t) > η∗(t)

)
≤ u+

T∑
t=u

Pr
(
µ̂p(t)− µp ≥ ηp(t)

)
+ Pr

(
µ∗ − µ̂∗(t) > η∗(t)

)
+ Pt(p, L). (3)

We can now bound the probabilities appearing in (3) as follows:

Pr

(
µ̂p(t)− µp ≥

√
2 log t

Tp(t)

)
≤ Pr

(
∃s ∈ [0, t] :

1

s

s∑
i=1

p1vi>p − µp ≥
√

2 log t

s

)

≤
t∑

s=1

t−4 = t−3,
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where the last inequality follows from an application of Hoeffding’s inequality as well as the union
bound. A similar argument can be made to bound the other term in (3). Using the definition of u we
then have

E[Tp(T )] ≤ 4Lp

∆p
+

32 log T

∆2
p

+

T∑
t=u

2t−3 +

T∑
t=1

Pt(p, L) ≤ 4Lp

∆p
+

32 log T

∆2
p

+ 2 +

T∑
t=1

Pt(p, L),

which completes the proof.

Corollary 1. Let L denote the number of times a buyer lies. Then, the strategic regret of R-UCBL
can be bounded as follows:

RegT ≤ L
(

4
∑
p∈P

p
)

+ E[L] +
∑

p : ∆p>δ

(
32 log T

∆p
+ 2∆p +

T∑
t=1

Pt(p, L)

)
+ Tδ.

Notice that the choice of parameter L of R-UCBL is subject to a trade-off: on the one hand, L
should be small to minimize the first term of this regret bound; on the other hand, function Pt(p, L)

is decreasing in T , therefore the term
∑T
t=1 Pt(p, L) is beneficial for larger values of L.

We now show that an ε-strategic buyer can only lie a finite number of times, which will imply
the existence of an appropriate choice of L for which we can ensure that Pt(p, L) = 0, thereby
recovering the standard logarithmic regret of UCB.
Proposition 2. If the discounting factor γ satisfies γ ≤ γ0 < 1, an ε-strategic buyer stops lying
after S =

⌈
log(1/ε(1−γ0))

log(1/γ0)

⌉
rounds.

Proof. After S rounds, for any sequence of actions at the surplus that can be achieved by the buyer
in the remaining rounds is bounded by

T∑
t=t0+S

E[at(vt − pt)] ≤
γS+t0 − γT

1− γ
≤ γS+t0

1− γ
≤ ε,

for any sequence of actions. Thus, by definition, an ε-strategic buyer does not lie after S rounds.

Corollary 2. If the discounting factor γ satisfies γ ≤ γ0 < 1 and the seller uses the R-UCBL
algorithm with L =

⌈
log(1/ε(1−γ0))

log(1/γ0)

⌉
, then the strategic regret of the seller is bounded by⌈

log 1
ε(1−γ0)

log 1
γ0

⌉(
4
∑
p∈P

p+ 1
)

+
∑

p:∆p>δ

32 log T

∆p
+ 2∆p + Tδ. (4)

Proof. Follows trivially from Corollary 1 and the previous proposition, which implies that
Pt(p, L) ≡ 0.

Let us compare our results with those of Amin et al. (2013). The regret bound given in (Amin et al.,
2013) is in O

(
|P|Tα + |P|2

∆2/α + |P|2(
∆(1−γ0)

)1/α

)
, where α is a parameter controlling the fraction of

rounds used for exploration and ∆ = minp∈P ∆p. In particular, notice that the dependency of this
bound on the cardinality of P is quadratic instead of linear as in our case. Moreover, the dependency
on γ0 is in O( 1

1−γ
1/α

). Therefore, even in a truthful scenario where γ � 1. The dependency on T
remains polynomial whereas we recover the standard logarithmic regret. Only when the seller has
access to ∆, which is a strong requirement, can he set the optimal value of α to achieve regret in
O
(
e
√

log T log 1
∆

)
.

Of course, the algorithm proposed by Amin et al. (2013) assumes that the buyer is fully strategic
whereas we only require the buyer to be ε-strategic. However, the authors assume that the distribu-
tion satisfies a Lipchitz condition which technically allows them to bound the number of lies in the
same way as in Proposition 2. Therefore, the regret bound achieved by their algorithm remains the
same in our scenario.
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5 Continuous pricing strategy

Thus far, we have assumed that the prices offered by the buyer are selected out of a discrete set P .
In practice, however, the optimal price may not be within P and therefore the algorithm described in
the previous section might accumulate a large regret when compared against the best price in [0, 1].
In order to solve this problem, we propose to discretize the interval [0, 1] and run our R-UCBL algo-
rithm on the resulting discretization. This induces a trade-off since a better discretization implies a
larger regret term in (4). To find the optimal size of the discretization we follow the ideas of Klein-
berg and Leighton (2003) and consider distributions D that satisfy the condition that the function
f : p 7→ pD(v > p) admits a unique maximizer p∗ such that f ′′(p) < 0.

Throughout this section, we let K ∈ N and we consider the following finite set of prices
PK =

{
i
K |1 ≤ i ≤ K

}
⊂ [0, 1]. We also let pK be an optimal price in PK , that is pK ∈

argmaxp∈PK f(p) and we let p∗ = argmaxp∈[0,1] f(p). Finally, we denote by ∆p = f(pK)− f(p)

the sub-optimality gap with respect to price pK and by ∆p = f(p∗) − f(p) the corresponding
gap with respect to p∗. The following theorem can be proven following similar ideas to those of
Kleinberg and Leighton (2003). We defer its proof to the appendix.

Theorem 1. Let K =
(

T
log T

)1/4
, if the discounting factor γ satisfies γ ≤ γ0 < 1 and the seller

uses the R-UCBL algorithm with the set of prices PK and L =
⌈

log(1/ε(1−γ0))
log(1/γ0)

⌉
, then the strategic

regret of the seller can be bounded as follows:

max
p∈[0,1]

f(p)− E
[ T∑
t=1

atpt

]
≤ C

√
T log T +

⌈
log 1

ε(1−γ0)

log 1
γ0

⌉[( T

log T

)1/4

+ 1

]
.

6 Conclusion

We introduced a revenue optimization algorithm for posted-price auctions that is robust against ε-
strategic buyers. Moreover, we showed that our notion of strategic behavior is more natural than
what has been previously studied. Our algorithm benefits from the optimal O

(
log T + 1

1−γ
)

regret

bound for a finite set of prices and admits regret in O
(
T 1/2 + T 1/4

1−γ
)

when the buyer is offered prices
in [0, 1], a scenario that had not been considered previously in the literature of revenue optimization
against strategic buyers. It is known that a regret in o(T 1/2) is unattainable even in a truthful set-
ting, but it remains an open problem to verify that the dependency on γ cannot be improved. Our
algorithm admits a simple analysis and we believe that the idea of making truthful algorithms robust
is general and can be extended to more complex auction mechanisms such as second-price auctions
with reserve.
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A Proof of Theorem 1

Proposition 3. There exist constants C1, C2 > 0 such that C1(p∗−p)2 < f(p∗)−f(p) < C2(p∗−
p)2 for all p ∈ [0, 1].

Proof. Since the second derivative f ′′(p∗) exists, it follows that

lim
p→p∗

f(p∗)− f(p)

(p∗ − p)2
→ f ′′(p∗)

2
.

It then follows by definition that there exists δ such that 0 < |p−p∗| < δ implies 0 < − f
′′(p∗)

4 (p∗−
p)2 ≤ f(p∗)− f(p) ≤ − 3f ′′(p∗)

4 (p∗ − p)2. On the other hand, the continuity of g : p→ f(p∗)−f(p)
p∗−p

on the set X = {p ∈ [0, 1]||p∗ − p| ≥ δ}, as well as the compactness of X implies

0 < min
p∈X

g(p) ≤ g(p) ≤ max
p∈X

g(p),

where we have used the fact that g(p) > 0 for all p ∈ X . The result of the proposition straightfor-
wardly follows from these observations.

Proposition 4. Let pi = i
K ∈ PK and define ∆i = ∆pi . Then, ∆i > C1

(
p∗ − i

K

)2
for all i.

Moreover, there exists a reordering i0, . . . , iK−1 such that ∆ij ≥ C1

(
j

2K

)2
.

Proof. From Proposition 3 it follows that ∆i > C1

(
p∗− i

K

)2
. The reordering is defined recursively

as follows i0 = argmini
(
p∗ − i

K

)2
and ij = argmini/∈{i0,...,ij−1}

(
p∗ − i

K

)2
. Since there are

at most j − 1 elements in thes set PK at distance at most j−1
K from p∗, it follows that ∆ij ≥

(p∗ − ij
K

)2 ≥ ( j
2K

)2
.

Proposition 5. The optimal price pK satisfies, f(pK) ≥ f(p∗)− C2

K2 .

Proof. Let p̂ be the element in PK closer to p∗, then (p̂− p∗)2 ≤ 1
K

2 and by Proposition 3 we have

C2

K2
≥ f(p∗)− f(p̂) ≥ f(p∗)− f(pK).

Theorem 1. LetK =
(

T
log T

)1/4
, if the discounting factor γ satisfies γ ≤ γ0 < 1 and the seller uses

the R-UCBL algorithm with set of prices PK and L = d log(1/ε(1−γ0))
log(1/γ0)

⌉
, then the strategic regret of

the seller can be bounded as follows:

max
p∈[0,1]

f(p)− E
[ T∑
t=1

atpt

]
≤ C

√
T log T +

⌈
log 1

ε(1−γ0)

log 1
γ0

⌉(( T

log T

)1/4

+ 1

)
.

Proof. If pK = argmaxp∈PK f(p) , then by Proposition 5 we have:

max
p∈[0,1]

Tf(p)− E
[ T∑
t=1

atpt

]
= max
p∈[0,1]

Tf(p)− Tf(pK) + Tf(pK)− E
[ T∑
t=1

atpt

]

≤ TC2

K2
+ Tf(pK)− E

[ T∑
t=1

atpt

]

= C2

√
T log T + Tf(pK)− E

[ T∑
t=1

atpt

]
. (5)
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The last term in the previous expression corresponds to the regret of the buyer when using a discrete
set of prices. By Corollary 2 this term can be bounded by⌈

log 1
ε(1−γ0)

log 1
γ0

⌉(
4
∑

p : ∆p>δ

p+ 1
)

+
∑

p : ∆p>δ

32 log T

∆p
+ 2∆p + Tδ.

Letting ij be as in Proposition 4, we have

∆pij
= ∆ij + f(pK)− f(p∗) ≥ C1

( j

2K

)2

− C2

K2
.

Letting δ =
√

log T
T and j0 =

√
8C2

C1
we have ∆pij

≥ C1j
2

8K2 for j ≥ j0. Therefore

∑
p : ∆p>δ

32 log T

∆p
+ 2∆p + Tδ ≤ 32 log T

(j0
δ

+
8K2

C1

K∑
j=j0

1

j2

)
+ 2K +

T
√

log T√
T

≤ 32 log T

(√
8C2T

C1 log T
+

4π2

3C1

√
T√

log T

)
+ 2
( T

log T

)1/4

+
√
T log T

=
(

32
(√8C2

C1
+

4π2

3C1

)
+ 1
)√

T log T + 2
( T

log T

)1/4

.

Finally, we have
∑
p : ∆p>δ

p ≤ K + 1 =
(

T
log T

)1/4
+ 1. Substituting these bounds into (5) gives

the desired result.
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