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Abstract

The notion of policy regret in online learning is a well defined performance measure
for the common scenario of adaptive adversaries, which more traditional quantities
such as external regret do not take into account. We revisit the notion of policy
regret and first show that there are online learning settings in which policy regret
and external regret are incompatible: any sequence of play that achieves a favorable
regret with respect to one definition must do poorly with respect to the other. We
then focus on the game-theoretic setting where the adversary is a self-interested
agent. In that setting, we show that external regret and policy regret are not in
conflict and, in fact, that a wide class of algorithms can ensure a favorable regret
with respect to both definitions, so long as the adversary is also using such an
algorithm. We also show that the sequence of play of no-policy regret algorithms
converges to a policy equilibrium, a new notion of equilibrium that we introduce.
Relating this back to external regret, we show that coarse correlated equilibria,
which no-external regret players converge to, are a strict subset of policy equilibria.
Thus, in game-theoretic settings, every sequence of play with no external regret
also admits no policy regret, but the converse does not hold.

1 Introduction

Learning in dynamically evolving environments can be described as a repeated game between a
player, an online learning algorithm, and an adversary. At each round of the game, the player selects
an action, e.g. invests in a specific stock, the adversary, which may be the stock market, chooses a
utility function, and the player gains the utility value of its action. The player observes the utility
value and uses it to update its strategy for subsequent rounds. The player’s goal is to accumulate the
largest possible utility over a finite number of rounds of play.1

The standard measure of the performance of a player is its regret, that is the difference between the
utility achieved by the best offline solution from some restricted class and the utility obtained by
the online player, when utilities are revealed incrementally. Formally, we can model learning as the
following problem. Consider an action setA. The player selects an action at at round t, the adversary
picks a utility function ut, and the player gains the utility value ut(at). While in a full observation
setting the player observes the entire utility function ut, in a bandit setting the player only observes

1Such games can be equivalently described in terms of minimizing losses rather than maximizing utilities.
All our results can be equivalently expressed in terms of losses instead of utilities.
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the utility value of its own action, ut(at). We use the shorthand a1∶t to denote the player’s sequence
of actions (a1, . . . , at) and denote by Ut = {u∶At → R} the family of utility functions ut. The
objective of the player is to maximize its expected cumulative utility over T rounds, i.e. maximize
E[∑Tt=1 ft(a1∶t)], where the expectation is over the player’s (possible) internal randomization. Since
this is clearly impossible to maximize without knowledge of the future, the algorithm instead seeks to
achieve a performance comparable to that of the best fixed action in hindsight. Formally, external
regret is defined as

R(T ) = E [max
a∈A

T

∑
t=1

ut(a1∶t−1, a) −
T

∑
t=1

ut(a1∶t)] . (1)

A player is said to admit no external regret if the external regret is sublinear, that is R(T ) = o(T ). In
contrast to statistical learning, online learning algorithms do not need to make stochastic assumptions
about data generation: strong regret bounds are possible even if the utility functions are adversarial.

There are two main adversarial settings in online learning: the oblivious setting where the adversary
ignores the player’s actions and where the utility functions can be thought of as determined before the
game starts (for instance, in weather prediction); and the adaptive setting where the adversary can react
to the player’s actions, thus seeking to throw the player off track (e.g., competing with other agents in
the stock market). More generally, we define anm-memory bounded adversary as one that at any time
t selects a utility function based on the player’s past m actions: ut(a′1, . . . , a′t−m−1, at−m, . . . at) =
ut(a1, . . . , at−m−1, at−m, . . . at), for all a′1, . . . , a

′
t−m−1 and all a1, . . . , at. An oblivious adversary

can therefore be equivalently viewed as a 0-memory bounded adversary and an adaptive adversary as
an 8-memory bounded adversary. For an oblivious adversary, external regret in Equation 1 reduces to
R(T ) = E[maxa∈A∑Tt=1 ut(a) −ut(at)], since the utility functions do not depend upon past actions.
Thus, external regret is meaningful when the adversary is oblivious, but it does not admit any natural
interpretation when the adversary is adaptive. The problem stems from the fact that in the definition
of external regret, the benchmark is a function of the player’s actions. Thus, if the adversary is
adaptive, or even memory-bounded for some m > 0, then, external regret does not take into account
how the adversary would react had the player selected some other action.

To resolve this critical issue, Arora et al. (2012b) introduced an alternative measure of performance
called policy regret for which the benchmark does not depend on the player’s actions. Policy regret is
defined as follows

P (T ) = max
a∈A

T

∑
t=1

ut(a, . . . , a) −E [
T

∑
t=1

ut(a1∶t)] . (2)

Arora et al. (2012b) further gave a reduction, using a mini-batch technique where the minibatch size
is larger than the memory m of adversary, that turns any algorithm with a sublinear external regret
against an oblivious adversary into an algorithm with a sublinear policy regret against an m-memory
bounded adversary, albeit at the price of a somewhat worse regret bound, which is still sublinear.

In this paper, we revisit the problem of online learning against adaptive adversaries. Since Arora et al.
(2012b) showed that there exists an adaptive adversary against which any online learning algorithm
admits linear policy regret, even when the external regret may be sublinear, we ask if no policy regret
implies no external regret. One could expect this to be the case since policy regret seems to be a
stronger notion than external regret. However, our first main result (Theorem 3.2) shows that this in
fact is not the case and that the two notions of regret are incompatible: there exist adversaries (or
sequence of utilities) on which action sequences with sublinear external regret admit linear policy
regret and action sequences with sublinear policy regret incur linear external regret.

We argue, however, that such sequences may not arise in practical settings, that is in settings where
the adversary is a self-interested entity. In such settings, rather than considering a malicious opponent
whose goal is to hurt the player by inflicting large regret, it seems more reasonable to consider an
opponent whose goal is to maximize his own utility. In zero-sum games, maximizing one’s utility
comes at the expense of the other player’s, but there is a subtle difference between an adversary who
is seeking to maximize the player’s regret and an adversary who is seeking to minimize the player’s
utility (or maximize his own utility). We show that in such strategic game settings there is indeed a
strong relationship between external regret and policy regret. In particular, we show in Theorem 3.4
that a large class of stable online learning algorithms with sublinear external regret also benefit from
sublinear policy regret.
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Further, we consider a two-player game where each player is playing a no policy regret algorithm. It is
known that no external regret play converges to a coarse correlated equilibrium (CCE) in such a game,
but what happens when players are using no policy regret algorithms? We show in Theorem 4.8
that the average play in repeated games between no policy regret players converges to a policy
equilibrium, a new notion of equilibrium that we introduce. Policy equilibria differ from more
traditional notions of equilibria such as Nash or CCEs in a crucial way. Recall that a CCE is defined
to be a recommended joint strategy for players in a game such that there is no incentive for any player
to deviate unilaterally from the recommended strategy if other players do not deviate.

What happens if the other players react to one player’s deviation by deviating themselves? This
type of reasoning is not captured by external regret, but is essentially what is captured by policy
regret. Thus, our notion of policy equilibrium must take into account these counterfactuals, and so
the definition is significantly more complex. But, by considering functions rather than just actions,
we can define such equilibria and prove that they exactly characterize no policy regret play.

Finally, it becomes natural to determine the relationship between policy equilibria (which charac-
terize no policy regret play) and CCEs (which characterize no external regret play). We show in
Theorems 4.9 and 4.10 that the set of CCEs is a strict subset of policy equilibria. In other words,
every CCE can be thought of as a policy regret equilibrium, but no policy regret play might not
converge to a CCE.

2 Related work

The problem of minimizing policy regret in a fully adversarial setting was first studied by Merhav et al.
(2002). Their work dealt specifically with the full observation setting and assumed that the utility (or
loss) functions were m-memory bounded. They gave regret bounds in O(T 2/3). The follow-up work
by Farias and Megiddo (2006) designed algorithms in a reactive bandit setting. However, their results
were not in the form of regret bounds but rather introduced a new way to compare against acting
according to a fixed expert strategy. Arora et al. (2012b) studied m-memory bounded adversaries
both in the bandit and full information settings and provided extensions to more powerful competitor
classes considered in swap regret and more general Φ-regret. Dekel et al. (2014) provided a lower
bound in the bandit setting for switching cost adversaries, which also leads to a tight lower bound
for policy regret in the order Ω(T 2/3). Their results were later extended by Koren et al. (2017a) and
Koren et al. (2017b). More recently, Heidari et al. (2016) considered the multi-armed bandit problem
where each arm’s loss evolves with consecutive pulls. The process according to which the loss evolves
was not assumed to be stochastic but it was not arbitrary either – in particular, the authors required
either the losses to be concave, increasing and to satisfy a decreasing marginal returns property, or
decreasing. The regret bounds given are in terms of the time required to distinguish the optimal arm
from all others.

A large part of reinforcement learning is also aimed at studying sequential decision making problems.
In particular, one can define a Markov Decision Process (MDP) by a set of states equipped with
transition distributions, a set of actions and a set of reward or loss distributions associated with each
state action pair. The transition and reward distributions are assumed unknown and the goal is to
play according to a strategy that minimizes loss or maximizes reward. We refer the reader to (Sutton
and Barto, 1998; Kakade et al., 2003; Szepesvári, 2010) for general results in RL. MDPs in the
online setting with bandit feedback or arbitrary payoff processes have been studied by Even-Dar et al.
(2009a); Yu et al. (2009); Neu et al. (2010) and Arora et al. (2012a).

The tight connection between no-regret algorithms and correlated equilibria was established and
studied by Foster and Vohra (1997); Fudenberg and Levine (1999); Hart and Mas-Colell (2000); Blum
and Mansour (2007). A general extension to games with compact, convex strategy sets was given
by Stoltz and Lugosi (2007). No external regret dynamics were studied in the context of socially
concave games (Even-Dar et al., 2009b). More recently, Hazan and Kale (2008) considered more
general notions of regret and established an equivalence result between fixed-point computation, the
existence of certain no-regret algorithms, and the convergence to the corresponding equilibria. In a
follow-up work by Mohri and Yang (2014) and Mohri and Yang (2017), the authors considered a more
powerful set of competitors and showed that the repeated play according to conditional swap-regret
or transductive regret algorithms leads to a new set of equilibria.
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3 Policy regret in reactive versus strategic environments

Often, distant actions in the past influence an adversary more than more recent ones. The definition of
policy regret (2) models this influence decay by assuming that the adversary is m-memory bounded
for some m ∈ N. This assumption is somewhat stringent, however, since ideally we could model the
current move of the adversary as a function of the entire past, even if actions taken further in the past
have less significance. Thus, we extend the definition of Arora et al. (2012b) as follows.
Definition 3.1. The m-memory policy regret at time T of a sequence of actions (at)Tt=1 with respect
to a fixed action a in the action set A and the sequence of utilities (ut)Tt=1, where ut ∶ At → R and
m ∈ N⋃{∞} is defined as follows:

P (T, a) =
T

∑
t=1

ut(a1,⋯, at−m, a,⋯, a) −
T

∑
t=1

ut(a1,⋯, at).

We say that the sequence (at)Tt=1 admits sublinear policy regret (or no policy regret) if P (T, a) = o(T ),
for all actions a ∈ A.

Let us emphasize that this definition is just an extension of the standard policy regret definition and
that, when the utility functions are m-memory bounded, the two definitions exactly coincide.

While the motivation for policy regret suggests that this should be a stronger notion compared to
external regret, we show that not only that these notions are incomparable in the general adversarial
setting, but that they are also incompatible in a strong sense.
Theorem 3.2. There exists a sequence of m-memory bounded utility functions (ut)Tt=1, where
ut∶A → R, such that for any constant m ≥ 3 (independent of T ), any action sequence with sublinear
policy regret admits linear external regret and any action sequence with sublinear external regret
admits linear policy regret.

The proof of this theorem is based on constructing a sequence for which no reasonable play can
attain sublinear external regret. In particular, the only way the learner can achieve sublinear external
regret is if they choose to have very small utility. To achieve this, the utility functions chosen by the
adversary are the following. At time t, if the player chose to play the same action as their past 2
actions, then they get utility 1

2
. If the player’s past two actions were equal but their current action is

different, then they get utility 1, and if their past two actions differ then no matter what their current
action is they receive utility 0. It is easy to see that the maximum utility play for this sequence (and
the lowest 2-memory bounded policy regret strategy) is choosing the same action at every round.
However, such an action sequence admits linear external regret. Moreover, every sublinear external
regret strategy must then admit sublinear utility and thus linear policy regret.

As discussed in Section 1, in many realistic environments, we can instead think of the adversary as
a self-interested agent seeking to maximize his own utility, rather than attempting to maximize the
regret of the player. This more strategic environment is better captured by the game theory setting, in
particular a 2-player game where both players are seeking to maximize their utility. Even though
we have argued that external regret is not a good measure, our next result shows that minimizing
policy regret in games can be achieved if both players choose their strategies according to certain no
external regret algorithms. More generally, we adapt a classical notion of stability from the statistical
machine learning setting and argue that if the players use no external regret algorithms that are stable,
then the players will have no policy regret in expectation. To state the result formally we first need to
introduce some notation.

Game definition: We consider a two-player game G, with players 1 and 2. The action set of player
i is denoted by Ai, which we think of as being embedded into R∣Ai∣ in the obvious way where each
action corresponds to a standard basis vector. The corresponding simplex is ∆Ai. The action of
player 1 at time t is at and that of player 2 is bt. The observed utility for player i at time t is ui(at, bt)
and this is a bilinear form with corresponding matrix Pi. We assume that the utilities are bounded in
[0,1].

Algorithm of the player: When discussing algorithms, we take the view of player 1. Specifically,
at time t, player 1 plays according to an algorithm which can be described as Algt∶ (A1 ×A2)t →
∆A1. We distinguish between two settings: the full information setting where the player observes
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the full utility function at time t (i.e., u1(⋅, bt)), and the bandit setting, in which the player only
observes u1(at, bt). In the full information setting, algorithms such as multiplicative weight updates
(MWU Arora et al. (2012c)) depend only on the past t − 1 utility functions (u1(⋅, b`))t−1

`=1, and thus
we can think of Algt as a function ft∶At2 →∆A1. In the bandit setting, however, the output at time t
of the algorithm depends both on the previous t − 1 actions (a`)t−1

`=1 and on the utility functions (i.e.,
the actions picked by the other player).

But even in the bandit setting, we would like to think of the player’s algorithm as a function
ft∶At2 → ∆A1. We cannot quite do that, however, we can think of the player’s algorithm as a
distribution over such functions. So, how do we remove the dependence on At1? Intuitively, if we fix
the sequence of actions played by player 2, we want to take the expectation of Algt over possible
choices of the t actions played by player 1. In order to do that more formally, consider the distribution
µ overAt−1

1 ×At−1
2 generated by simulating the play of the players for t rounds. Then, let µb0∶t be the

distribution obtained by conditioning µ on the actions of player 2 being b0∶t. Now, we let ft(b0∶t−1)
be the distribution obtained by sampling a0∶t−1 from µb1∶t−1 and using Alg(a0∶t−1, b0∶t−1). When
taking expectations over ft, the expectation is taken with respect to the above distribution. We also
refer to the output pt = ft(b0∶t−1) as the strategy of the player at time t.

Now that we can refer to algorithms simply as functions (or distributions over functions), we introduce
the notion of a stable algorithm.
Definition 3.3. Let ft∶At2 → ∆A1 be a sample from Algt (as described above), mapping the past
t actions in A2 to a distribution over the action set A1. Let the distribution returned at time t
be p1

t = ft(b1,⋯, bt). We call this algorithm on average (m,S(T )) stable with respect to the
norm ∥⋅∥, if for any b′1,⋯, b′m ∈ A2 such that p̃1

t = ft(b1,⋯, bt−m, a′1,⋯, b′m) ∈ ∆A1, it holds that
E[∑Tt=1 ∥p1

t − p̃1
t ∥] ≤ S(T ), where the expectation is taken with respect to the randomization in the

algorithm.

Even though this definition of stability is given with respect to the game setting, it is not hard to see
that it can be extended to the general online learning setting, and in fact this definition is similar in
spirit to the one given in Saha et al. (2012). It turns out that most natural no external regret algorithms
are stable. In particular, we show, in the supplementary, that both Exp3 Auer et al. (2002) and MWU
are on average (m,m

√
T ) stable with respect to `1 norm for any m < o(

√
T ). It is now possible to

show that if each of the players are facing stable no external regret algorithms, they will also have
bounded policy regret (thus the incompatibility of Theorem 3.2 cannot occur in this case).
Theorem 3.4. Let (at)Tt=1 and (bt)Tt=1 be the action sequences of player 1 and 2 and suppose that
they are coming from no external regret algorithms modeled by functions ft and gt, with regrets
R1(T ) and R2(T ) respectively. Assume that the algorithms are on average (m,S(T )) stable with
respect to the `2 norm. Then, the following inequalities hold:

E [P (T, a)] ≤
√

∣A1∣∥P1∥S(T ) +R1(T )
E [P (T, b)] ≤

√
∣A2∣∥P2∥S(T ) +R2(T ),

where ut(a1∶t) in the definition of P (T, a) equals u1(at, gt(a0∶t−1)) and similarly in the definition
of P (T, b), equals u2(bt, ft(b0∶t−1)). The above holds for any fixed actions b ∈ A2 and a ∈ A1. Here
the matrix norm ∥ ⋅ ∥ is the spectral norm.

4 Policy equilibrium
Recall that, unlike external regret, policy regret captures how other players in a game might react
if a player decides to deviate from his strategy. The situation is similar when considering different
notions of equilibria. In particular Nash equlibria, Correlated equilibria and CCEs can be interpreted
in the following way: if player i deviates from the equilibrium play, his utility will not increase
no matter how he decides to switch, provided that all other players continue to play according to
the equilibrium. This sentiment is a reflection of what no external and no swap regret algorithms
guarantee. Equipped with the knowledge that no policy regret sequences are obtainable in the game
setting under reasonable play from all parties, it is natural to reason how other players would react if
player i deviated and what would be the cost of deviation when taking into account possible reactions.

Let us again consider the 2-player game setup through the view of player 1. The player believes their
opponent might be m-memory bounded and decides to proceed by playing according to a no policy
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regret algorithm. After many rounds of the game, player 1 has computed an empirical distribution
of play σ̂ over A ∶= A1 × A2. The player is familiar with the guarantees of the algorithm and
knows that if, instead, they changed to playing any fixed action a ∈ A1, then the resulting empirical
distribution of play σ̂a, where player 2 has responded accordingly in a memory-bounded way, is
such that E(a,b)∼σ̂ [u1(a, b)] ≥ E(a,b)∼σ̂a [u1(a, b)] − ε. This thought experiment suggests that if no
policy regret play converges to an equilibrium, then the equilibrium is not only described by the
deviations of player 1, but also through the change in player 2’s behavior, which is encoded in the
distribution σ̂a. Thus, any equilibrium induced by no policy regret play, can be described by tuples
of distributions {(σ,σa, σb)∶ (a, b) ∈ A}, where σa is the distribution corresponding to player 1’s
deviation to the fixed action a ∈ A1 and σb captures player 2’s deviation to the fixed action b ∈ A2.
Clearly σa and σb are not arbitrary but we still need a formal way to describe how they arise.

For convenience, let us restrict the memory of player 2 to be 1. Thus, what player 1 believes is that at
each round t of the game, they play an action at and player 2 plays a function ft∶A1 → A2, mapping
at−1 to bt = ft(at−1). Finally, the observed utility is u1(at, ft(at−1)). The empirical distribution
of play, σ̂, from the perspective of player 1, is formed from the observed play (at, ft(at−1))Tt=1.
Moreover, the distribution, σ̂a, that would have occurred if player 1 chose to play action a on every
round is formed from the play (a, ft(a))Tt=1. In the view of the world of player 1, the actions taken by
player 2 are actually functions rather than actions in A2. This suggests that the equilibrium induced
by a no-policy regret play, is a distribution over the functional space defined below.
Definition 4.1. Let F1 ∶= {f ∶Am1

2 → A1} and F2 ∶= {g ∶ Am2

1 → A2} denote the functional spaces
of play of players 1 and 2, respectively. Denote the product space by F ∶= F1 ×F2.

Note that when m1 = m2 = 0, F is in a one-to-one correspondence with A, that is when players
believe their opponents are oblivious, we recover the action set studied in standard equilibria. For
simplicity, for the remainder of the paper we assume thatm1 =m2 = 1. However, all of the definitions
and results that follow can be extended to the fully general setting of arbitrary m1 and m2; see the
supplementary for details.

Let us now investigate how a distribution π over F can give rise to a tuple of distributions (σ̂, σ̂a, σ̂b).
We begin by defining the utility of π such that it equals the utility of a distribution σ over A i.e., we
want E(f,g)∼π [u1(f, g)] = E(a,b)∼σ [u1(a, b)]. Since utilities are not defined for functions, we need
an interpretation of E(f,g)∼π [u1(f, g)] which makes sense. We notice that π induces a Markov chain
with state space A in the following way.
Definition 4.2. Let π be any distribution over F . Then π induces a Markov process with transition
probabilities P [(a2, b2)∣(a1, b1)] = ∑(f,g)∈F1×F2∶f(b1)=a2,g(a1)=b2 π(f, g). We associate with this
Markov process the transition matrix M ∈ R∣A∣×∣A∣, with Mx1,x2 = P [x2∣x1] where xi = (ai, bi).

Since every Markov chain with a finite state space has a stationary distribution, we think of utility of
π as the utility of a particular stationary distribution σ of M. How we choose σ among all stationary
distributions is going to become clear later, but for now we can think about σ as the distribution which
maximizes the utilities of both players. Next, we need to construct σa and σb, which capture the
deviation in play, when player 1 switches to action a and player 2 switches to action b. The no-policy
regret guarantee can be interpreted as E(f,g)∼π [u1(f, g)] ≥ E(f,g)∼π [u1(a, g(a))] i.e., if player 1
chose to switch to a fixed action (or equivalently, the constant function which maps everything to the
action a ∈ A1), then their utility should not increase. Switching to a fixed action a, changes π to a
new distribution πa over F . This turns out to be a product distribution which also induces a Markov
chain.
Definition 4.3. Let π be any distribution over F . Let δa be the distribution over F1 putting all
mass on the constant function mapping all actions b ∈ A2 to the fixed action a ∈ A1. Let πF2 be
the marginal of π over F2. The distribution resulting from player 1 switching to playing a fixed
action a ∈ A, is denoted as πa = δa × πF2 . This distribution induces a Markov chain with transition
probabilities P [(a, b2)∣(a1, b1)] = ∑(f,g)∶g(a1)=b2 π(f, g) and the transition matrix of this Markov
process is denoted by Ma. The distribution πb and matrix Mb are defined similarly for player 2.

Since the no policy regret algorithms we work with do not directly induce distributions over the
functional space F but rather only distributions over the action space A, we would like to state all
of our utility inequalities in terms of distributions over A. Thus, we would like to check if there is
a stationary distribution σa of Ma such that E(f,g)∼π [u1(a, g(a))] = E(a,b)∼σa [u1(a, b)]. This is
indeed the case as verified by the following theorem.
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Theorem 4.4. Let π be a distribution over the product of function spaces F1 × F2. There
exists a stationary distribution σa of the Markov chain Ma for any fixed a ∈ A1 such that
E(a,b)∼σa [u1(a, b)] = E(f,g)∼π [u1(a, g(a))]. Similarly, for every fixed action b ∈ A2, there ex-
ists a stationary distribution σb of Mb such that E(a,b)∼σb [u2(a, b)] = E(f,g)∼π [u2(f(b), b)].

The proof of this theorem is constructive and can be found in the supplementary. With all of this
notation we are ready to formally describe what no-policy regret play promises in the game setting in
terms of an equilibrium.
Definition 4.5. A distribution π over F1 ×F2 is a policy equilibrium if for all fixed actions a ∈ A1

and b ∈ A2, which generate Markov chains Ma and Mb respectively, with stationary distributions σa
and σb from Theorem 4.4, there exists a stationary distribution σ of the Markov chain M induced by
π such that:

E(a,b)∼σ [u1(a, b)] ≥ E(a,b)∼σa [u1(a, b)]
E(a,b)∼σ [u2(a, b)] ≥ E(a,b)∼σb [u2(a, b)] .

(3)

In other words, π is a policy equilibrium if there exists a stationary distribution σ of the Markov chain
corresponding to π, such that, when actions are drawn according to σ, no player has incentive to
change their action. For a simple example of a policy equilibrium see Section E in the supplementary.

4.1 Convergence to the set of policy equilibria

We have tried to formally capture the notion of equilibria in which player 1’s deviation would lead to
a reaction from player 2 and vice versa in Definition 4.5. This definition is inspired by the counter-
factual guarantees of no policy regret play and we would like to check that if players’ strategies
yield sublinear policy regret then the play converges to a policy equilibrium. Since the definition of
sublinear policy regret does not include a distribution over functional spaces but only works with
empirical distributions of play, we would like to present our result in terms of distributions over the
action space A. Thus we begin by defining the set of all product distributions σ ×σa ×σb, induced by
policy equilibria π as described in the previous subsection. Here σa and σb represent the deviation in
strategy if player 1 changed to playing the fixed action a ∈ A1 and player 2 changed to playing the
fixed action b ∈ A2 respectively as constructed in Theorem 4.4.
Definition 4.6. For a policy equilibrium π, let Sπ be the set of all stationary distributions which
satisfy the equilibrium inequalities (3), Sπ ∶= {σ ×σa ×σb ∶ (a, b) ∈ A} . Define S = ⋃π∈Π Sπ , where
Π is the set of all policy equilibria.

Our main result states that the sequence of empirical product distributions formed after T rounds of
the game σ̂ × σ̂a × σ̂b is going to converge to S. Here σ̂a and σ̂b denote the distributions of deviation
in play, when player 1 switches to the fixed action a ∈ A1 and player 2 switches to the fixed action
b ∈ A2 respectively. We now define these distributions formally.
Definition 4.7. Suppose player 1 is playing an algorithm with output at time t given by ft ∶ At2 →
∆A1 i.e. p1

t = ft(b0∶t−1). Similarly, suppose player 2 is playing an algorithm with output at
time t given by p2

t = gt(a0∶t−1). The empirical distribution at time T is σ̂ ∶= 1
T ∑

T
t=1 pt, where

pt = p1
t × p2

t is the product distribution over A at time t. Further let (p2
a)t = gt(a0∶t−m, a, . . . , a)

denote the distribution at time t, provided that player 1 switched their strategy to the constant action
a ∈ A1. Let δa denote the distribution over A1 which puts all the probability mass on action a. Let
(pa)t = δa × (p2

a)t be the product distribution over A, corresponding to the change of play at time
t. Denote by σ̂a = 1

T ∑
T
t=1(pa)t the empirical distribution corresponding to the change of play. The

distribution σ̂b is defined similarly.

Suppose that ft and gt are no-policy regret algorithms, then our main result states that the sequence
(σ̂ × σ̂a × σ̂b)T converges to the set S.

Theorem 4.8. If the algorithms played by player 1 in the form of ft and player 2 in the form of gt
give sub-linear policy regret sequences, then the sequence of product distributions (σ̂ × σ̂a × σ̂b)∞T=1
converges weakly to the set S.

In particular if both players are playing MWU or Exp3, we know that they will have sublinear policy
regret. Not surprisingly, we can show something slightly stronger as well. Let σ̃, σ̃a and σ̃b denote
the empirical distributions of observed play corresponding to σ̂, σ̂a and σ̂b, i.e. σ̃ = 1

T
δt, where δt

7



denotes the Dirac distribution, putting all weight on the played actions at time t. Then these empirical
distributions also converge to S almost surely.

4.2 Sketch of proof of the main result

The proof of Theorem 4.8 has three main steps. The first step defines the natural empirical Markov
chains M̂, M̂a and M̂b from the empirical play (pt)∞t=1 (see Definition B.2) and shows that the
empirical distributions σ̂, σ̂a and σ̂b are stationary distributions of the respective Markov chains.
The latter is done in Lemma B.3. The next step is to show that the empirical Markov chains
converge to Markov chains M, Ma and Mb induced by some distribution π over F . In particular, we
construct an empirical distribution π̂ and distributions π̂a and π̂b corresponding to player’s deviations
(see Definition B.5), and show that these induce the Markov chains M̂, M̂a and M̂b respectively
(Lemma B.7). The distribution π we want is now the limit of the sequence (π̂)T . The final step
is to show that π is a policy equilibrium. The proof goes by contradiction. Assume π is not a
policy equilibrium, this implies that no stationary distribution of M and corresponding stationary
distributions of Ma and Mb can satisfy inequalities (3). Since the empirical distributions σ̂, σ̂a and σ̂b
of the play satisfies inequalities (3) up to an o(1) additive factor, we can show, in Theorem B.8, that
in the limit, the policy equilibrium inequalities are exactly satisfied. Combined with the convergence
of M̂, M̂a and M̂b to M, Ma and Mb, respectively, this implies that stationary distributions of M, Ma

and Mb, satisfying (3), giving a contradiction.

We would like to emphasize that the convergence guarantee of Theorem 4.8 does not rely on there
being a unique stationary distribution of the empirical Markov chains M̂, M̂a and M̂b or their
respective limits M,Ma,Mb. Indeed, Theorem 4.8 shows that any limit point of {(σ̂, σ̂a, σ̂b)T }∞T=1
satisfies the conditions of Definition 4.5. The proof does not require that any of the respective Markov
chains have a unique stationary distribution, but rather requires only that σ̂ has sublinear policy
regret. We would also like to remark that {(σ̂, σ̂a, σ̂b)T }∞T=1 need not have a unique limit and our
convergence result only guarantees that the sequence is going to the set S. This is standard when
showing that any type of no regret play converges to an equilibrium, see for example Stoltz and
Lugosi (2007).

4.3 Relation of policy equlibria to CCEs

So far we have defined a new class of equilibria and shown that they correspond to no policy regret
play. Furthermore, we know that if both players in a 2-player game play stable no external regret
algorithms, then their play also has sublinear policy regret. It is natural to ask if every CCE is also
a policy equilibrium: if σ is a CCE, is there a corresponding policy equilibrium π which induces a
Markov chain M for which σ is a stationary distribution satisfying (3)? We show that the answer to
this question is positive:
Theorem 4.9. For any CCE σ of a 2-player game G, there exists a policy-equilibrium π which
induces a Markov chain M with stationary distribution σ.

To prove this, we show that for any CCE we can construct stable no-external regret algorithm which
converge to it, and so since stable no-external regret algorithms always converge to policy equilibria
(Theorem 3.4), this implies the CCE is also a policy equilibrium.

However, we show the converse is not true: policy equilibria can give rise to behavior which is not a
CCE. Our proof appeals to a utility sequence which is similar in spirit to the one in Theorem 3.2, but
is adapted to the game setting.
Theorem 4.10. There exists a 2-player game G and product distributions σ × σa × σb ∈ S (where S
is defined in Definition 4.6 as the possible distributions of play from policy equilibria), such that σ is
not a CCE of G.

In Section E of the supplementary we give a simple example of a policy equilibrium which is not a
CCE.

5 Discussion

We presented a new twist on policy regret by examining it in the game setting, where we introduced
the notion of policy equilibrium and showed that it captures the behavior of no policy regret players.
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While our characterization is precise, we view only it as the first step towards truly understanding
policy regret and its variants in the game setting. Many interesting open questions remain. Even
with our current definitions, since we now have a broader class of equilibria to consider, it is natural
to return to the extensive literature in algorithmic game theory on the price of anarchy and price
of stability, and reconsider it in the context of policy equilibria. For example Roughgarden (2015)
showed that in smooth games the worst CCE is no worse than the worst Nash. Since policy equilibria
contain all CCEs (Theorem 4.9), does the same hold for policy equilibria?

Even more interesting questions remain if we further generalize our definitions. For example, what
happens with more than two players? With three or more players, the definitions of reaction by
necessity become more complicated. Or, what happens when m is not a constant? No policy regret
algorithms exist for superconstant m, but our notion of equilibrium requires m to be constant in order
for the Markov chains to make sense. Finally, what if we compare against deviations that are more
complicated than a single action, in the spirit of swap regret or Φ-regret?

From an online learning perspective, note that our notion of on average stable and the definition of
m-memory boundedness are different notions of stability. Is there one unified definition of stable
that would allow us to give no policy regret algorithms against stable adversaries even outside of the
game setting?
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Supplementary Material to “Policy Regret in Repeated Games"

A Proofs of results from Section 3

Theorem A.1. Let the space of actions be {0,1} and define the m-memory bounded utility functions
as follows:

ft(at−m+1, .., at) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 at−m+i = at−m+i+1 = 1 for i ∈ {1, ..,m − 2} ∧ at−1 ≠ at
1
2

at−m+i = at−m+i+1 = 1 for i ∈ {1, ..,m − 1}
0 otherwise

.

Assuming m ≥ 3 is a fixed constant (independent of T ) any sequence with with sublinear policy regret
will have linear external regret and every sequence with sublinear external regret will have linear
policy regret.

Proof of Theorem 3.2. Let (at)Tt=1 be a sequence with sublinear policy regret. Then this sequence
has utility at least T

2
− o(T ) and so there are at most o(T ) terms in the sequence which are not

equal to 1. Let the subsequence consisting of all at = 0 be indexed by I. Define Ĩ = {t, t +
1,⋯, t +m − 1 ∶ t ∈ I} and consider the subsequence of functions (ft)t/∈Ĩ . This is precisely the
sequence of functions which have utility 1

2
with respect to the sequence of play (at)Tt=1. Notice

that the length of this sequence is at least T −mo(T ) = T − o(T ). The utility of this sequence is
∑t/∈Ĩ −ft(at−m+1, .., at)∑t/∈Ĩ ft(1, ..,1) = T−o(T )

2
, however, this subsequence has linear external

regret, since ∑t/∈Ĩ ft(at−m+1, .., at−1,0) = ∑t/∈Ĩ ft(1, ..,1,0) = T − o(T ). Thus the external regret
of (at)Tt=1 is

T

∑
t=1

[ft(at−m+1, ..,0) − ft(at−m+1, .., at)] = ∑
t/∈Ĩ

[ft(at−m+1, ..,0) − ft(at−m+1, .., at)]

+∑
t∈Ĩ

[ft(at−m+1, ..,0) − ft(at−m+1, .., at)]

≥ T − o(T )
2

+∑
t∈Ĩ

[ft(at−m+1, ..,0) − ft(at−m+1, .., at)]

≥ T
2
− o(T ),

where the last inequality follows from the fact that the cardinality of Ĩ is at most o(T ) and thus
∑t∈Ĩ[ft(at−m+1, ..,0) − ft(at−m+1, .., at)] ≥ −o(T ).

Assume that (at)Tt=1 has sublinear external regret. From the above argument, it follows that the utility
of the sequence is at most o(T ) (otherwise if the sequence has utility ω(T ), we can repeat the previous
argument and get a contradiction with the fact the sequence is no-external regret). This implies that
the the policy regret of the sequence is ∑Tt=1[ft(1,1,⋯,1) − ft(at−m+1, .., at)] = T

2
− o(T ).

Theorem A.2. Let (at)Tt=1 and (bt)Tt=1 be the action sequences of player 1 and 2 respectively and
suppose that they are coming from no-regret algorithms with regrets R1(T ) and R2(T ) respectively.
Assume that the algorithms are on average (m,S(T )) stable with respect to the `2 norm. Then

E [u2(ft(b0∶t−m+1, b,⋯, b), b) −
T

∑
t=1

u2(ft(b0∶t−1), bt)] ≤
√

∣A2∣∥P2∥S(T ) +R2(T ),

for any fixed action b ∈ A2. A similar inequality holds for any fixed action a ∈ A1 and the utility of
player 1.
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Proof of Theorem 3.4.

E [u2(ft(b0,⋯, bt−m+1, b,⋯, b), b) −
T

∑
t=1

u2(ft(b0,⋯, bt−2, bt−1), bt)]

= E [u2(ft(b0,⋯, bt−m+1, b,⋯, b), b) −
T

∑
t=1

u2(ft(b0,⋯, bt−2, bt−1), b)]

+E [u2(ft(b0,⋯, bt−1), b) −
T

∑
t=1

u2(ft(b0,⋯, bt−2, bt−1), bt)]

≤
T

∑
t=1

∥b⊺P2∥2∥ft(b0,⋯, bt−m+1, b,⋯, b) − ft(b0,⋯, bt−2, bt−1)∥2 +R2(T )

≤
√

∣A2∣∥P2∥S(T ) +R2(T ),
where the first inequality holds by Cauchy-Schwartz, the second inequality holds by using the
m-stability of the algorithm, together with the inequality between l1 and l2 norms.

The next theorems show that MWU and Exp3 are stable algorithms.
Theorem A.3. MWU is an on average (m,m

√
T ) stable algorithm with respect to `1, for any

m < o(
√
T ).

Proof of Theorem A.3. We think of MWU as Exponentiated Gradient (EG) where the loss vector
has i-th entry equal to the negative utility if the player decided to play action i. Let the observed
loss vector at time j be l̂j and the output distribution be pj , then the update of EG can be written as
pj+1 = arg minp∈C ⟨̂lj , p⟩ + 1

η
D(p, pj), where C is the simplex of the set of possible actions and D is

the KL-divergence. Using Lemma 3 in Saha et al. (2012), with f(p) = ⟨̂lj , p⟩ + 1
η
D(p, pj) and the

fact that the KL-divergence is 1-strongly convex over the simplex C with respect to the `1 norm, we
have:

1

2η
∥pj − pj+1∥2

1 ≤ f(pj) − f(pj+1) = ⟨pj − pj+1, l̂j⟩ −
1

η
D(pj+1, pj)

≤ ∥pj − pj+1∥1 ∥l̂j∥∞ ≤ ∥pj − pj+1∥1 ,

where the second inequality follows from Hölder’s inequality and the fact that D(pj+1, pj) ≥ 0.

Thus with step size η ∼
√

1
T

, we have ∥pj − pj+1∥1 ≤ 1

2
√
T

. Using triangle inequality, we can get

∥pj−1 − pj+1∥1 ≤ ∥pj−1 − pj∥1 + ∥pj − pj+1∥1 ≤
2

2
√
T

and induction shows that ∥pj−m+1 − pj+1∥1 ≤
m

2
√
T 1

. Suppose for the last m iterations, a fixed loss function la was played instead and the
resulting output of the algorithm becomes p̃j+1. Then using the same argument as above we have
∥pj−m+1 − p̃j+1∥1 ≤

m

2
√
T

and thus ∥pj+1 − p̃j+1∥1 ≤
m
√
T

. Summing over all T rounds concludes the
proof.

Theorem A.4. Exp3 is an on average (m,m
√
T ) stable algorithm with respect to `1, for any

m < o(
√
T )

Proof of Theorem A.4. The update at time t, conditioning on the the draw being i, is given by

pit+1 =
wit exp( γ

kpi
t

uit)

wit exp( γ

kpi
t

uit)+∑j≠iw
j
t

and for j ≠ i, pjt+1 = wjt

wit exp( γ

kpi
t

uit)+∑j≠iw
j
t

, where ut is the utility

vector at time t, wt is the weight vector at time t i.e. wit+1 = wit exp ( γ
kpit

uit) ,wjt+1 = w
j
t , and k is the

number of actions. We have the following bound:

∣pit+1 − pit∣ =
RRRRRRRRRRRRRR

wit exp ( γ
kpit

uit)

wit exp ( γ
kpit

uit) +∑j≠iw
j
t

− wit

∑j wjt

RRRRRRRRRRRRRR
≤
RRRRRRRRRRRRRR

wit(exp ( γ
kpit

uit) − 1)

∑j wjt

RRRRRRRRRRRRRR

= pit(exp( γ

kpit
uit) − 1) ≤ pit2

γ

kpit
uit ≤ 2

γ

k
,
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where the first inequality uses the fact that pit+1 ≥ pit and the second inequality uses the choice of γ
together with exp (x) ≤ 2x + 1 for x ∈ [0,1]. Similarly for j ≠ i, we have:

∣pjt+1 − p
j
t ∣ =

RRRRRRRRRRRRRR

wjt

wit exp ( γ
kpit

uit) +∑j≠iw
j
t

− wjt

∑j wjt

RRRRRRRRRRRRRR
≤
RRRRRRRRRRRRRR

wjt

∑j wjt

⎛
⎜
⎝

1 − 1

exp (γu
i
t

kpit
)

⎞
⎟
⎠

RRRRRRRRRRRRRR

= pjt (1 − exp(−γu
i
t

kpit
)) ≤ pjt

γuit
kpit

≤ pjt
kpit

γ,

where we have used pjt+1 ≤ pjt and exp (−x) ≥ 1 − x for all x. We can now proceed to bound
Eit [∥pt+1 − pt∥1∣i1∶t−1], where it is the random variable denoting the draw at time t:

Eit [∥pt+1 − pt∥1∣i1∶t−1] = ∑
i

pit∥pt+1 − pt∥1 = ∑
i

pit
⎛
⎝
∣pit+1 − pit∣ +∑

j≠i

∣pjt+1 − p
j
t ∣
⎞
⎠

≤ 2γ +∑
i,j

pit
pjt
kpit

γ = 3γ.

Setting γ ∼ 1
√
T

finishes the proof.

Combining the above results together, we can show that both players will also have no-policy regret
for any m < o(

√
T ).

Corollary A.5. Let (at)Tt=1 and (bt)Tt=1, be the action sequences of players 1 and 2 respectively and
suppose that the sequences are coming from MWU. Then for any fixed m, it holds:

E [u2(ft(b0∶t−m+1, b,⋯, b), b) −
T

∑
t=1

u2(ft(b0∶t−1), bt)] ≤ O(
√

∣A2∣∥P2∥m
√
T ),

for any fixed action b ∈ A2, where ft are the functions corresponding to the MWU algorithm used by
player 1.

Proof. From Theorem A.3 it follows that MWU is on average (m,m
√
T ) stable and has regret at

most O(
√
T ).

B Proofs of results from Section 4

Theorem B.1. Let π be a distribution over the product of function spaces F1 × F2. There exists
a stationary distribution σ̃ of the Markov chain Ma for any fixed a ∈ A1 and (f, g) ∼ π such that
E(a,b)∼σ̃ [u1(a, b)] = E(f,g)∼π [u1(a, g(a))]

Proof of Theorem 4.4. Note that, by definition (Ma)(ã,b̃),(â,̂b) = 0 if â ≠ a and M
(ã,b̃),(â,̂b) =

∑f,g∶g(ã)=b̂ π(f, g) if â = a. Consider the distribution σ̃ over A, where σ̃
(ã,b̃) = 0 if ã ≠ a and

σ̃
(ã,b̃) = ∑f,g∶g(a)=b̃ π(f, g) if ã = a. We now show that σ̃ is a stationary distribution of Ma:

(σ̃⊺Ma)(a,b̃) = ∑
(â,̂b)

σ̃
(â,̂b)(Ma)(â,̂b),(a,b̃) = ∑

b̂

σ̃
(a,̂b)(Ma)(a,̂b),(a,b̃)

= ∑
b̂

⎛
⎜
⎝

∑
f,g∶g(a)=b̂

π(f, g)
⎞
⎟
⎠

⎛
⎜
⎝

∑
f,g∶g(a)=b̃

π(f, g)
⎞
⎟
⎠

=
⎛
⎜
⎝

∑
f,g∶g(a)=b̃

π(f, g)
⎞
⎟
⎠

⎛
⎜
⎝
∑
b̂

∑
f,g∶g(a)=b̂

π(f, g)
⎞
⎟
⎠

= ∑
f,g∶g(a)=b̃

π(f, g) = σ̃
(a,b̃).
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Finally, notice that:

E(f,g)∼π [u1(a, g(a))] = ∑
b∈A2

u1(a, b)P [g(a) = b] = ∑
b∈A2

u1(a, b) ∑
f,g∶g(a)=b

π(f, g).

B.1 Sketch of proof of the main result

The proof of Theorem 4.8 has three main steps. The first step defines the natural empirical Markov
chains M̂, M̂a and M̂b from the empirical play (pt)tt=1 and shows that the empirical distributions σ̂,
σ̂a and σ̂b are stationary distributions of the respective Markov chains. The next step is to show that
the empirical Markov chains converge to Markov chains M, Ma and Mb induced by some distribution
π over F . The final step is to show that π is a policy equilibrium.

We begin with the definition of the empirical Markov chains.

Definition B.2. Let the empirical Markov chain be M̂, with M̂i,j =
1
T ∑

T
t=1 pt−1(xi)pt(xj)
1
T ∑

T
t=1 pt(xi)

, if
1
T ∑

T
t=1 pt(xi) ≠ 0 and 0 otherwise, where pt is defined in 4.7. For any fixed a ∈ A1, let

the empirical Markov chain corresponding to the deviation in play of player 1 be M̂a, with

(M̂a)i,j =
1
T ∑

T
t=1(pa)t−1(xi)(pa)t(xj)

1
T ∑

T
t=1(pa)t(xi)

, if 1
T ∑

T
t=1(pa)t(xi) ≠ 0 and 0 otherwise, where (pa)t is defined

in 4.7. The Markov chain M̂b is defined similarly for any b ∈ A2.

The intuition behind constructing these Markov chains is as follows – if we were only provided with
the observed empirical play (xt)Tt=1 = (at, bt)Tt=1 and someone told us that the xt’s were coming
from a Markov chain, we could try to build an estimator of the Markov chain by approximating each
of the transition probabilities. In particular the estimator of transition from state i to state j is given

by M̃i,j =
1
T ∑

T
t=1 δt−1(xi)δt(xj)
1
T ∑

T
t=1 δt(xi)

, where δt(xi) = 1 if xi occurred at time t and 0 otherwise. When
the players are playing according to a no-regret algorithm i.e. at time t, xt is sampled from pt, it is
possible to show that M̃i,j concentrates to M̂i,j (see section B.4). Not only does M̂ arise naturally,
but it turns out that the empirical distribution σ̂ defined in 4.7 is also a stationary distribution of M̂.

Lemma B.3. The distribution of play σ̂ = 1
T ∑

T
t=1 pt is a stationary distribution of M̂. Similarly the

distributions σ̃, σ̂a, σ̃a, σ̂b and σ̃b are stationary distributions of the Markov chains M̃, M̂a, M̃a, M̂b

and M̃b respectively.

Proof. We show the result for σ̂ and M̂. The rest of the results can then be derived in the same way.

(σ̂⊺M̂)j =
∣A∣

∑
i=1

( 1

T

T

∑
t=1

pt(xi))
1
T ∑

T
t=1 pt−1(xi)pt(xj)
1
T ∑

T
t=1 pt(xi)

= 1

T

T

∑
t=1

pt(xj)
∣A∣

∑
i=1

pt−1(xi) =
1

T

T

∑
t=1

pt(xj).

Suppose that both players are playing MWU for T rounds. Then Lemma B.3 together with Theo-
rems 3.4 and the stability of MWU imply that E(a,b)∼σ̂ [u1(a, b)] ≥ E(a,b)∼σ̂a [u1(a, b)]−O(m/

√
T ).

A similar inequality holds for player 2 and σ̂b. As T → ∞, the inequality above becomes similar
to (3). This will play a crucial role in the proof of our convergence result, which shows that σ̂, σ̂a
and σ̂b converge to the set of policy equilibria. We would also like to guarantee that the empirical
distributions of observed play σ̃, σ̃a and σ̃b also converge to this set. To show this second result, we
are going to proof that σ̃ approaches σ̂ almost surely as T goes to infinity.

Lemma B.4. Let σ̂ = 1
T ∑

T
t=1 pt be the empirical distribution after T rounds of the game and let

σ̃ = 1
T ∑

T
t=1 δt be the empirical distribution of observed play. Then lim supT→∞ ∥σ̃ − σ̂∥1 = 0

almost surely. Similarly, for the distributions corresponding to deviation in play we have
lim supT→∞ ∥σ̃a − σ̂a∥1 = 0 and lim supT→∞ ∥σ̃b − σ̂b∥1 = 0 almost surely.

Proof. The proof follows the same reasoning as the proof of lemma B.19.
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Our next step is to show that the empirical Markov chains M̂ converge to a Markov chain M induced
by some distribution π over the functional space F . We do so by constructing a sequence of empirical
distributions π̂ over F , based on the players’ strategies, which induce M̂. We can then consider every
convergent subsequence of (π̂)∞T`=1 with limit point π and argue that the corresponding sequence
(M̂)∞T`=1 of Markov chains converges to the Markov chain induced by π.

Definition B.5. Let π̂ be the distribution over F , such that the probability to sample any fixed
f ∶ A2 → A1 and g ∶ A1 → A2 is π̂(f, g) = ∏i∈∣A∣

∑t pt−1(xi)pt(yi)
∑t=1 pt(xi)

, where xi = (ai, bi) and
yi = (f(bi), g(ai)). Similarly, let π̂a and π̂b be the distributions over F constructed as above but by
using the empirical distribution of deviated play induced by player 1 deviating to action a ∈ A1 and
player 2 deviating to action b ∈ A2.

The next lemma checks that π̂ is really a probability distribution.

Lemma B.6. The functionals π̂, π̂a and π̂b are all probability distributions.

Proof. Consider the space of all transition events for a fixed (a, b) pair i.e. S(a,b) =
{((a′, b′) × (a, b)) ∶ (a′, b′) ∈ A}. There is an inherent probability measure on this set, given
by P [(a′, b′) × (a, b)] = ∑t pt−1(a,b)pt(a

′,b′)
∑t pt(a,b)

. It is easy to see that this is a probability measure, since
the measure of the whole set is exactly

∑
(a′,b′)∈A

∑t pt−1(a, b)pt(a′, b′)
∑t pt(a, b)

=
∑t pt−1(a, b)∑(a′,b′)∈A pt(a′, b′)

∑t pt(a, b)
= 1.

The set of all F can exactly be thought of as ×(a,b)∈AS(a,b) and the function π̂ defined in B.5 is
precisely the product measure on that set. Similar arguments show that π̂a and π̂b are probability
distributions.

The proof of the above lemma reveals something interesting about the construction of π̂. Fix the
actions (a, b) ∈ A. Then the probability to sample a function pair (f, g) which map (a, b) to (a′, b′)
i.e. a′ = f(a) and b′ = f(b) is precisely equal to the entry M̂(a,b),(a′,b′) of the empirical Markov
chain. Since every function pair (f, g) ∈ F is determined by the way A is mapped, and we have
already have a probability distribution for a fixed mapping (a, b) to (a′, b′), we can just extend this
to π̂ by taking the product distribution over all pairs (a, b) ∈ A. This construction gives us exactly
that M̂ is induced by π̂.

Lemma B.7. Let M̂, M̂a and M̂b be the empirical Markov chains defined in B.2, then the induced
Markov chain from π̂ is exactly M̂ and the induced Markov chains from π̂a and π̂b are exactly M̂a

and M̂b.

Proof. Consider M̂(a,b),(a′,b′) = ∑
T
t=1 pt(a

′,b′)pt−1(a,b)
∑
T
t=1 pt(a,b)

. The transition probability induced by π̂ is
exactly

P [(a′, b′)∣(a, b)] = ∑
(f,g)∶(f(b),g(a))=(a′,b′)

π̂(f, g) = ∑
(f,g)∶(f(b),g(a))=(a′,b′)

∏
i∈[∣A∣]

∑t pt−1(xi)pt(yi)
∑t=1 pt(xi)

= ∑
(f,g)∶(f(b),g(a))=(a′,b′)

∑t pt−1(a, b)pt(a′, b′)
∑t=1 pt(a, b)

∏
i∈[∣A∣],(xi,yi)≠((a,b),(a′,b′)

∑t pt−1(xi)pt(yi)
∑t=1 pt(xi)

= ∑t pt−1(a, b)pt(a′, b′)
∑t=1 pt(a, b)

∑
(f,g)∶(f(b),g(a))=(a′,b′)

∏
i∈[∣A∣],(xi,yi)≠((a,b),(a′,b′)

∑t pt−1(xi)pt(yi)
∑t=1 pt(xi)

= ∑t pt−1(a, b)pt(a′, b′)
∑t=1 pt(a, b)

,

where the last equality holds, because for fixed (f, g) with xi = (ai, bi) and yi = (f(bi), g(ai)),
the product ∏i∈[∣A∣],(xi,yi)≠((a,b),(a′,b′)

∑t pt−1(xi)pt(yi)
∑t=1 pt(xi)

is exactly the conditional probability
π̂((f, g)∣(f(b), g(a)) = (a′, b′)). The result for π̂a and π̂b is shown similarly.
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The last step of the proof is to show that any limit point π of (π̂)T is necessarily a policy equilibrium.
This is done through an argument by contradiction. In particular we assume that a limit point π is
not a policy equilibrium. The limit point π induces a Markov chain M, which we can show is the
limit point of the corresponding subsequence of (M̂)T by using lemma B.7. Since π is not a policy
equilibrium, no stationary distribution of M can satisfy the inequalities (3). We can now show that
the subsequence of (σ̂)T which are stationary distributions of the corresponding M̂’s, converges to a
stationary distribution of M. This, however, is a contradiction because of the next theorem.

Theorem B.8. Let P be the set of all product distributions σ × σa × σb which satisfy the inequalities
in 3:

E(a,b)∼σ [u1(a, b)] ≥ E(a,b)∼σa [u1(a, b)]
E(a,b)∼σ [u2(a, b)] ≥ E(a,b)∼σb [u2(a, b)] .

Let σ̂T be the empirical distribution of play after T rounds and let σ̂Ta be the empirical distribution
when player 1 switches to playing action a and define σ̂Tb similarly for player 2. Then the product
distribution σ̂T × σ̂Ta × σ̂Tb converges to weakly to the set P .

Proof. Theorem B.8 follows from the fact that convergence in the Prokhorov metric implies weak
convergence. First notice that by Prokhorov’s theorem P(A) is a compact metric space with the
Prokhorov metric. Thus by Tychonoff’s Theorem the product space P(A)3 is compact in the maxi-
mum metric. Suppose for a contradiction that the sequence (σ̂T × σ̂Ta × σ̂Tb )T does not converge to the
set S. This implies that there exists some subsequence (σ̂k×σ̂ka×σ̂kb )k, converging to some σ̂×σ̂a×σ̂b /∈
S. If σ̂ × σ̂a × σ̂b /∈ S, then either E(a,b)∼σ [u1(a, b)] < E(a,b)∼σa [u1(a, b)] or E(a,b)∼σ [u2(a, b)] <
E(a,b)∼σb [u2(a, b)]. WLOG suppose the first inequality holds. From our assumption, the con-
tinuity of u1 and the definition of the maximum metric we have limk→∞E(a,b)∼σ̂k [u1(a, b)] =
E(a,b)∼σ̂ [u1(a, b)] and limk→∞E(a,b)∼σ̂ka

[u1(a, b)] = E(a,b)∼σ̂a [u1(a, b)]. Notice that by the fact
σ̂ka is the average empirical distribution if player 1 changed its play to the fixed action a ∈ A1 and
σ̂k being the average empirical distribution it holds that E(a,b)∼σ̂k [u1(a, b)] −E(a,b)∼σ̂ka

[u1(a, b)] ≥
−o(1) and thus limk→∞ [E(a,b)∼σ̂k [u1(a, b)] −E(a,b)∼σ̂ka

[u1(a, b)]] ≥ 0. The above implies:

0 ≤ lim
k→∞

[E(a,b)∼σ̂k [u1(a, b)] −E(a,b)∼σ̂ka
[u1(a, b)]]

= lim
k→∞

E(a,b)∼σ̂k [u1(a, b)] − lim
k→∞

E(a,b)∼σ̂ka
[u1(a, b)]

= E(a,b)∼σ̂ [u1(a, b)] −E(a,b)∼σ̂a [u1(a, b)] < 0,

which is a contradiction. Since A×A ×A is separable then convergence in the Prokhorov metric
in P(A ×A×A) is equivalent to weak convergence. Again we can argue by contradiction – if we
assume that (σ̂T × σ̂Ta × σ̂Tb )T doesn’t converge to the set S in the Prokhorov metric, then there
exists some subsequence (σ̂k × σ̂ka × σ̂kb )k which converges to some µ ∈ P(A3) such that µ /∈ S.
First we argue that µ must be a product measure i.e. µ = (σ̂ × σ̂a × σ̂b). Let (σ̂j × σ̂ja × σ̂jb)j be
a convergence subsequence of (σ̂k × σ̂ka × σ̂kb )k in P(A)3, with limit (σ̂ × σ̂a × σ̂b), then each of
σ̂j , σ̂ja and σ̂jb converge weakly to σ̂, σ̂a and σ̂b respectively and thus (σ̂j × σ̂ja × σ̂jb)j converges
weakly to σ̂ × σ̂a × σ̂b and thus it converges in the Prokhorov metric of P(A3). This implies that
(σ̂k×σ̂ka×σ̂kb )k also converges weakly to σ̂×σ̂a×σ̂b and so µ is a product measure. Again since µ /∈ S,
assume WLOG E(a,b)∼σ̂ [u1(a, b)] < E(a,b)∼σ̂a [u1(a, b)]. Define f ∶ A3 → R, f(a, b, c, d, e, f) =
u1(a, b) − u1(c, d). f is continuous and from the no-policy regret of the pair σ̂k, σ̂ka we have:

0 ≤ lim
k→∞

E(a,b,c,d,e,f)∼(σ̂k×σ̂ka×σ̂
k
b
)k

[f(a, b, c, d, e, f)] = E(a,b,c,d,e,f)∼µ [f(a, b, c, d, e, f)] < 0,

which is again a contradiction.

For completeness we restate the main result below and give its proof in full.

Theorem B.9. If the algorithms played by player 1 in the form of ft and player 2 in the form of gt
give sub-linear policy regret sequences, then sequence of product distributions (σ̂T × σ̂Ta × σ̂Tb )∞T=1
converges weakly to the set S.
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Proof of Theorem 4.8. We consider the sequence of empirical distributions π̂T defined in B.5, over
the functional space F1 × F2 and show that this sequence must converge to the set of all policy
equilibria Π in the Prokhorov metric onP(F1×F2). First, notice that since the functions f ∶ A2 → A1

are from finite sets of actions to finite sets of actions, we can consider the set F1 as a subset of a finite
dimensional vector space, with the underlying field of real numbers and the metric induced by the
l1 norm. Similarly, we can also equip F2 with the l1 norm. Since both F1 and F2 are closed sets
with respect to this metric and they are clearly bounded, they are compact. Thus the set F1 ×F2 is
a compact set with the underlying metric d being the maximum metric. By Prokhorov’s theorem
we know that P(F1 × F2) is a compact metric space with the Prokhorov metric. Suppose that the
sequence (π̂T )T does not converge to Π. This implies that there is some convergent subsequence
(π̂t)t with a limit π outside of Π. Let M be the Markov chain induced by π and let M̂T be the
Markov chain induced by π̂T .

First we show that limt→∞ ∥M̂t −M∥1 = 0. Recall that M(a,b),(a′,b′) = ∑(f,g)∶f(b)=a′,g(a)=b′ π(f, g)
and that by lemma B.7 M̂t

(a,b),(a′,b′) = ∑(f,g)∶f(b)=a′,g(a)=b′ π̂
t(f, g). Notice that f, g are continuous

functions on F1 and F2, since the topology induced by the l1 metric on both sets is exactly the the
discrete topology and every function from a topological space equipped with the discrete topology
is continuous. Since convergence in the Prokhorov metric implies weak convergence, we have
that for any fixed f, g, limt→∞ π̂t(f, g) = π(f, g). Since the sum ∑(f,g)∶f(b)=a′,g(a)=b′ π̂

t(f, g) is
finite this implies that limt→∞∑(f,g)∶f(b)=a′,g(a)=b′ π̂

t(f, g) = ∑(f,g)∶f(b)=a′,g(a)=b′ π(f, g) and so
limt→∞ ∥M̂t −M∥1 = 0.

Next we show that any convergent subsequence (σ̂k)k of (σ̂t)t in the Prokhorov metric, converges
to a stationary distribution σ of M. First notice that (σ̂k)k exists, since P(A) is compact. Next,
suppose σ is the limit of (σ̂k)k in the Prokhorov metric. This implies that limk→∞ σ̂k(a, b) = σ(a, b),
in particular if we consider A ⊂ R∣A∣ and σ̂k, σ ∈ R∣A∣ as vectors, then the above implies that
limk→∞ ∥σ − σ̂k∥1 = 0. Next we construct the following sequence (σkn)kn of stationary distributions
of M – choose kn large enough, so that ∥M − M̂kn∥ ≤ 1

n
. Such a kn exists, because (M̂k)k is a

subsequence of (M̂t)t which converges to M. By lemma B.3, there exists a stationary distribution
σkn of M such that ∥σ̂kn − σkn∥1 ≤ c

n
, for some constant c. We show that σkn converges to σ.

Fix some ε > 0, we find an N , such that for any n ≥ N we have ∥σkn − σ∥1 < ε. Notice that
∥σkn − σ∥1 ≤ ∥σkn − σ̂kn∥1 + ∥σ̂kn − σ∥1. Since ∥σkn − σ̂kn∥1 ≤ c

n
and by convergence, we know

that for ε
2

, there exists N ′ such that for any n ≥ N ′, ∥σ̂kn − σ∥1 < ε
2

, we can set N = max ( 2
cε
,N1).

Suppose, for a contradiction, that σ is not a stationary distribution of M. Then there exists some ε
such that ∥σ⊺M − σ∥2 > ε. This implies:

ε < ∥σ⊺M − σ∥2 ≤ ∥σ⊺M − σ⊺knM∥2 + ∥σ⊺knM − σ∥2 < 2∥σkn − σ∥2,

where the last inequality holds by the fact σ−σkn is not a stationary distribution of M and thus M can
only shrink the difference as a stochastic matrix. The inequality 2∥σkn − σ∥2 > ε is a contradiction
since we know that σkn converges to σ and thus σ is a stationary distribution of M. Since strong
convergence, implies weak convergence, which in hand implies convergence in the Prokhorov metric
for separable metric spaces, we have shown that every convergent subsequence of (σ̂t)t converges to
a stationary distribution of M in the Prokhorov metric.

Next, we show that (π̂ta)t converges to πa. By assumption (π̂t)t converges weakly to π. Since we
are are in a finite dimensional space, we also have strong convergence. In particular, for any g ∈ F2,
we have

lim
t→∞

∑
f∈F1

π̂t(f, g) = ∑
f∈F1

lim
t→∞

π̂t(f, g) = ∑
f∈F1

π(f, g)

and so the sequence of marginal distribution also converges to the respective marginal of π. Since π̂ta
is exactly the product distribution of the dirac distribution over F1 putting all weight on the constant
function mapping everything to the fixed action a and the marginal of π̂t over F2, by the convergence
of marginals we conclude that (π̂ta)t converges to πa in the strong sense and thus in the Prokhorov
metric. In the same way we can show that (π̂tb)t converges to πb.

With a similar argument as for (σ̂t) we show that every convergent subsequence of (σ̂ta)t converges
to a stationary distribution of Ma and any convergent subsequence of (σ̂tb)t converges to a stationary
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distribution of Mb. Because of the construction in theorem B.1 and the convergence of π̂a to πa, we
can guarantee that (σ̂ta)t converges precisely to σa:

σa(a, b) = ∑
f,g∶g(a)=b

πa(f, g) = ∑
f,g∶g(a)=b

lim
t→∞

π̂ta(f, g)

= lim
t→∞

∑
f,g∶g(a)=b

π̂ta(f, g) = lim
t→∞

σ̂ta(a, b).

Similarly σ̂tb converges to σ̂b. However, we assumed that π is not a policy equilibrium and thus no
stationary distributions of M, Ma and Mb can satisfy the policy equilibrium inequalities. We now
arrive at a contradiction since by theorem B.8 and the above, we have that any limit point of (σ̂t)t
and the corresponding distributions for fixed actions a and b are stationary distributions of M, Ma

and Mb, respectively, which satisfy the policy equilibrium inequalities.

Not surprisingly, we are able to show that the empirical distributions of observed play, also converge
to the set of S almost surely.

Corollary B.10. The sequence of product distributions (σ̃ × σ̃a × σ̃b)∞T=1 converges weakly to the set
S almost surely.

Proof. We are going to show that for any convergent subsequence (σ̂t)t of (σ̂)T with limit point σ,
the corresponding subsequence (σ̃t)t converges to σ a.s.. LetE be the event that limt→∞ ∥σ−σ̃t∥1 = 0.
Consider the following event limt→∞ ∥σ − σ̂t∥1 + limt→∞ ∥σ̂t − σ̃t∥1 = 0 denoted by E′. Notice that
every time E′ occurs E also occurs because

∥σ − σ̃t∥1 ≤ ∥σ − σ̂t∥1 + ∥σ̂t − σ̃t∥1,

and taking limits, preserves the non-strict inequality. By Theorem B.19, E′ occurs with probability 1
and thus E occurs w.p. 1 as well.

B.2 Proof that CCEs are a subset of policy equilibria

Lemma B.11. For any fixed game G and a CCE σ of G, there exist on average (m,R(T )) stable
no-external regret algorithms, which if the players follow, the empirical distribution of play, converges
to σ. Here m < o(T ) and R(T ) ≤ O(

√
T ).

Proof. Fix the time horizon to be T . We assume that at round t of the game, player i has access
to an oracle which provides σ̂t, the empirical distribution of play. The algorithm of player i is the
following – split the time horizon into mini-batches of size

√
T . For the first mini-batch the player

plays according to σ. At the end of the mini-batch, the oracle provides the player with σ̂t and the
player checks if ∥σ̂t − σ∥1 ≤ ∣A∣

T 1/6 . If the condition is satisfied, then the algorithm continues playing

according to σ. At the j-th epoch, the player checks if ∥σ̂t − σ∥1 ≤ ∣A∣

jT 1/6 . If at any of the epochs the
inequality turns out to be false, then the player switches to playing Exp3 at the end of the next epoch
for the rest of the game i.e. if at the end of the j-th epoch, the inequality does not hold, then at the
end of the j + 1-st epoch, the player switches to playing Exp3. First we show that this is a no-external
regret algorithm. Suppose until epoch j the player has not switched to Exp3 and then at epoch j the
player switches. Let ut denote the utility function which the player observed at time t. Let (at)Tt=1 be
the action sequence of the player. For any fixed action a ∈ Ai we have:

E [
T

∑
t=1

ut(a) −
T

∑
t=1

ut(at)] = E
⎡⎢⎢⎢⎢⎣

(j−1)
√
T

∑
t=1

ut(a) −
(j−1)

√
T

∑
t=1

ut(at)
⎤⎥⎥⎥⎥⎦
+

(j+1)
√
T

∑
t=(j−1)

√
T+1

[ut(a) − u(at)]

+E
⎡⎢⎢⎢⎢⎣

T

∑
t=(j+1)

√
T+1

ut(a) − u(at)
⎤⎥⎥⎥⎥⎦

≤ E
⎡⎢⎢⎢⎢⎣

(j−1)
√
T

∑
t=1

ut(a) −
(j−1)

√
T

∑
t=1

ut(at)
⎤⎥⎥⎥⎥⎦
+ 2

√
T + c

√
∣Ai∣ log (∣Ai∣)T
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where in the first inequality we have used the fact that the utilities are in [0,1] and
the bound on the regret of Exp3 where c is some constant. We now bound the term

E [∑(j−1)
√
T

t=1 ut(a) −∑(j−1)
√
T

t=1 ut(at)] via two applications of lemma B.13.

1

T
E
⎡⎢⎢⎢⎢⎣

(j−1)
√
T

∑
t=1

ut(a) −
(j−1)

√
T

∑
t=1

ut(at)
⎤⎥⎥⎥⎥⎦
= E(a′,b′)∼σ̂t [ui(a, b′)] −E(a′,b′)∼σ̂t [ui(a′, b′)]

= E(a′,b′)∼σ̂t [ui(a, b′)] −E(a′,b′)∼σ [ui(a, b′)] +E(a′,b′)∼σ [ui(a, b′)] −E(a′,b′)∼σ [ui(a′, b′)]
+E(a′,b′)∼σ [ui(a′, b′)] −E(a′,b′)∼σ̂t [ui(a′, b′)]

≤ ∥Pi∥
(j − 1)∣A∣
jT 1/6

+ ⟨Pi,E(a′,b′)∼σ [b′a′⊺]⟩ − ⟨Pi,E(a′,b′)∼σ̂t [b′a′⊺]⟩

≤ 2∥Pi∥
∣A∣
T 1/6

,

where the first inequality follows from lemma B.13 and the fact σ is a CCE. The second inequality

again follows from lemma B.13. The above implies E [∑(j−1)
√
T

t=1 ut(a) −∑(j−1)
√
T

t=1 ut(at)] ≤
√
T ∣A∣

2

T 1/6 . This follows fact that the spectral norm of the utility matrix for player i can not exceed ∣A∣,
which again follows from the boundedness of utilities.

Next, we show that if all players, play according to the algorithm, then with high probability, the
empirical distribution of play converges to σ. For this, we analyze the probability of the event that
∥σ̂t−σ∥1 > ∣A∣

T 1/6 after the first epoch. By Azuma’s inequality, we have that P [∣σ̂t(x) − σ(x)∣ > ε
∣A∣

] ≤
2 exp (−ε2t/(2∣A∣)), for any fixed action x ∈ A. By a union bound over all possible actions, we get
that P [∥σ̂1 − σ∥1 > ε] ≤ 2∣A∣ exp (−ε2t/(2∣A∣)). Plugging in ε = ∣A∣

T 1/6 , we get that the probability
the algorithm fails after the first epoch is bounded by 2∣A∣ exp (−T 1/6∣A∣/2). Now the probability
that the algorithm fails after epoch j is bounded by

(1 − 2∣A∣ exp (−T 1/6∣A∣/2))
j−1

2∣A∣ exp (−j2T 1/6∣A∣/2) < 2∣A∣ exp (−T 1/6∣A∣/2) .
A very pessimistic union bound now gives us that the probability the algorithm fails to converge to σ,
provided that all players use it, is upper bounded by 2

√
T ∣A∣ exp (−T 1/6∣A∣/2).

Using a doubling trick, we can achieve the same results for any T . As in theorem B.19, we can now
get lim supT→∞ ∥σ̂T − σ∥1 = 0 almost surely and thus the empirical distribution of play converges to
σ a.s.. To check the stability of the algorithm we consider three possibilities – the player is playing
according to σ and is not in an epoch after which they switch to Exp3, the player is playing according
to σ and is in an epoch after which they switch to Exp3 and the player has switched to playing Exp3.
We take the view of player 1. Consider the first case and suppose the current epoch of the algorithm
is j. In particular consider time step j

√
T + i at which the play was according to σj√T+i = σ and

suppose player 2 in the last m < o(
√
T ) switched from playing distributions (pt)j

√
T

t=j
√
T+i−m

to

(p̃t)j
√
T

t=j
√
T+i−m

so that player 1 plays σ̃j√T+i. Since m < o(
√
T ), the only change in the current

algorithm can occur at the j − 1-st epoch and is in the form of the algorithm decides to switch to
Exp3. Since the switch can only occur after the j-th epoch is done, this implies that at time j

√
T + i

again the play is according to the distribution σ and we have ∥σj√T+i − σ̃j√T+i∥1 = 0. Consider the
second case in which at the end of epoch j the algorithm switches to playing Exp3. If the past m
actions of player 2 change, this can only change the decision at the end of j − 1-st epoch of player
1 to switch to Exp3. However, as in the previous case, the player at the j-th epoch is still playing
according to σ and again the algorithm is stable at each iteration during the epoch. Finally, in the
third case we have stability from the fact Exp3 is stable and once we enter an epoch during which
Exp3 is played, changing the past m-actions of player 2 can not change the decision of player 1 to
switch to Exp3, since m < o(

√
T ) and the epochs are of size

√
T .

As a consequence of the proof we see that, the algorithm is on average stable for any m < o(
√
T ).
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Table 1: Utility for player 1
player 1\player 2 c_1 c_2
a 3/4 0
b 1 0

Theorems 4.9 and 4.10 are combined in the the following theorem.

Theorem B.12. For any CCE σ of a 2-player game G, there exists a policy-equilibrium π, which
induces a Markov chain M, with stationary distribution σ. Further, there exists a 2-player game G
and product distributions σ × σa × σb ∈ S, where S is defined in 4.6, such that σ is not a CCE of G.

Proof. First note that lemma B.11 guarantees that for any CCE σ there exists an m-stable on average
no-external regret algorithm, which generates an empirical distribution of play σ̃ converging to
σ almost surely. From the m-stability of the algorithm and theorem A.2, we know that if both
players play according to σ̃ then the empirical sequence of play also has no-policy regret and thus by
theorem B.9, we know that σ̃ × σ̃a × σ̃b converges to the set of policy-regret equilibria.

To show the second part of the theorem, we consider a game in which the pay-off matrix for player 2
is just some constant multiple of 1A11

⊺
A2

, where 1Ai ∈ R∣Ai∣ is the vector with each entry equal to 1.
This implies that whatever sequence player 2 chooses to play, they will have no-policy regret and
no-external regret, since the observed utility in expectation is going to be equal for all actions b ∈ A2.
Let A1 = {a, b}. The utility matrix of player 1 is given in 1. The strategy of player 2 is the following:

ft(at−1, at) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 at−1 = a, at = b
3
4

at−1 = at = a
0 otherwise

.

Similarly to the proof of theorem A.1, we can show that any no-policy regret strategy for player 1,
incurs linear external regret. For any time step t, let σ̂1

t be the dirac distribution for player 1, putting
all probability mass on action a and let σ̂2

t be the dirac distribution putting all probability mass on
the action played by player 2 at time t. Let σ̂ = 1

T ∑
T
t=1 σ̂

1
t (σ̂2

t )⊺ be the empirical distribution after
T rounds. Then by theorem B.9 σ̂ × σ̂a × σ̂b converges to the set of policy equilibria. However, by
construction, if player 1, plays according to σ̂, then they will have linear external regret and thus the
σ̂ can not be converging to the set of CCEs.

B.3 Auxiliary results.

Lemma B.13. Let σ and σ′ be two distributions supported on a finite set and let f be a utility/loss
function uniformly bounded by 1. If ∥σ − σ′∥1 ≤ ε then ∣Ea∼σ [f(a)] −Ea∼σ′ [f(a)] ∣ ≤ ε.

Proof.

∣Es∼σ [f(s)] −Es′∼σ′ [f(s)] ∣ = ∣ ∑
s∈S

σ(s)f(s) − ∑
s∈S

σ′(s)f(s)∣

= ∣ ∑
s∈S

f(s)(σ(s) − σ′(s))∣ ≤ ∑
s∈S

∣σ(s) − σ′(s)∣ = ∥σ − σ′∥1 ≤ ε.

Lemma B.14. Let M ∈ Rd×d and M̂ ∈ Rd×d be two row-stochastic matrices, such that ∥M − M̂∥ ≤ ε,
then for any stationary distribution σ̂ of M̂, there exists a stationary distribution σ of M, such that
∥σ̂ − σ∥1 ≤ 4d2ε

δ
.

Proof. Let U ∈ Rd×k be the left singular vectors corresponding to the singular value 1 of M and let
Û ∈ Rd×l be the left singular vectors corresponding to the singular value 1 of M̂. First notice that

∥MM⊺ − M̂M̂⊺∥ ≤ ∥MM⊺ −MM̂⊺∥ + ∥MM̂⊺ − M̂M̂⊺∥ ≤ (∥M∥ + ∥M̂∥)∥M − M̂∥ ≤ 2ε
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Denote the eigen-gap of M by δ, then by Wedin’s theorem (see for example lemma B.3 in Allen-Zhu
and Li (2016)) theorem we have

∥Û⊺U⊥∥ ≤ ∥MM⊺ − M̂M̂⊺∥
δ

≤ 2ε

δ
.

WLOG assume σ̂ = (Û)i

∥(Û)i∥1
. This implies that ∥σ̂⊺U⊥∥2 ≤ 2dε

δ
and thus:

∥UU⊺σ̂ − σ̂∥2 = ∥(I −UU⊺)σ̂∥2 = ∥U⊥(U⊥)⊺σ̂∥2 ≤ ∥σ̂⊺U⊥∥2 ≤
2dε

δ
.

Let σi = Ui
∥Ui∥1

be the stationary distribution of M, corresponding to the i-th left singular vector

and let αi = (U⊺σ̂)i∥Ui∥1 ≥ 0. Then we have ∥∑i αiσi − σ̂∥1 ≤ 2d2ε
δ

, where the inequality follows
from the derivation above and the inequality between l1 and l2 norms. Let σ = ∑i αiσi

∥∑i αiσi∥1
. This is a

stationary distribution of M, since

σ⊺M = 1

∥∑i αiσi∥1
∑
i

αiσ
⊺
i M = ∑i αiσi

∥∑i αiσi∥1
= σ.

Notice that by reverse triangle inequality we have

∣∥∑
i

αiσi∥1 − ∥σ̂∥1∣ ≤
2d2ε

δ
,

or equivalently

∣∥∑
i

αiσi∥1 − 1∣ ≤ 2d2ε

δ
.

Thus we have:

∥σ − σ̂∥1 ≤ ∥∑
i

αiσi − σ̂∥1 + ∥σ −∑
i

αiσi − σ̂∥1 ≤
2d2ε

δ
+ ∥σ∥1∣1 − ∥∑

i

αiσi∥1∣ ≤
4d2ε

δ
.

Corollary B.15. Let the empirical distribution of observed play be σ̃T = 1
T ∑

T
t=1 δt, the empirical

distribution of play if player 1 deviated to playing fixed action a ∈ A1 be σ̃Ta and the empirical
distribution of play if player 2 to action b ∈ A2 be σ̃Tb . The sequence (σ̃T , σ̃Ta , σ̃Tb )T converges to the
set P almost surely.

Proof. Lemma B.13, together with theorem B.19 imply that

lim sup
T→∞

∣E(a,b)∼σ̃T [u1(a, b)] −E(a,b)∼σ̂T [u1(a, b)] ∣ = 0

almost surely i.e.

P [lim sup
T→∞

∣E(a,b)∼σ̃T [u1(a, b)] −E(a,b)∼σ̂T [u1(a, b)] ∣ = 0] = 1.

Since

lim sup
T→∞

∣E(a,b)∼σ̃T [u1(a, b)]−E(a,b)∼σ̂T [u1(a, b)] ∣ ≥ lim inf
T→∞

∣E(a,b)∼σ̃T [u1(a, b)]−E(a,b)∼σ̂T [u1(a, b)] ∣ ≥ 0,

this implies that

P [lim inf
T→∞

∣E(a,b)∼σ̃T [u1(a, b)] −E(a,b)∼σ̂T [u1(a, b)] ∣ = 0] = 1.

On the other hand this implies

P [lim inf
T→∞

∣E(a,b)∼σ̃T [u1(a, b)] −E(a,b)∼σ̂T [u1(a, b)] ∣ = 0⋂ lim sup
T→∞

∣E(a,b)∼σ̃T [u1(a, b)] −E(a,b)∼σ̂T [u1(a, b)] ∣ = 0] ≥ 1
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and so
P [ lim

T→∞
∣E(a,b)∼σ̃T [u1(a, b)] −E(a,b)∼σ̂T [u1(a, b)] ∣ = 0] = 1.

In a similar way we can get limT→∞ ∣E(a,b)∼σ̃Ta
[u1(a, b)] − E(a,b)∼σ̂Ta

[u1(a, b)] ∣ = 0 a.s.
The above imply that limT→∞E(a,b)∼σ̃T [u1(a, b)] − E(a,b)∼σ̂T [u1(a, b)] = 0 a.s. and
limT→∞E(a,b)∼σ̂Ta

[u1(a, b)] −E(a,b)∼σ̃Ta
[u1(a, b)] = 0 a.s. and thus:

0 = lim
T→∞

E(a,b)∼σ̃T [u1(a, b)] −E(a,b)∼σ̂T [u1(a, b)] + lim
T→∞

E(a,b)∼σ̂Ta
[u1(a, b)] −E(a,b)∼σ̃Ta

[u1(a, b)]

= lim
T→∞

E(a,b)∼σ̃T [u1(a, b)] −E(a,b)∼σ̃Ta
[u1(a, b)] + lim

T→∞
E(a,b)∼σ̂Ta

[u1(a, b)] −E(a,b)∼σ̂T [u1(a, b)]

a.s.. Since E(a,b)∼σ̂Ta
[u1(a, b)] −E(a,b)∼σ̂T [u1(a, b)] < o(1), this implies that

0 ≤ − lim
T→∞

E(a,b)∼σ̂Ta
[u1(a, b)] −E(a,b)∼σ̂T [u1(a, b)]

= lim
T→∞

E(a,b)∼σ̃T [u1(a, b)] −E(a,b)∼σ̃Ta
[u1(a, b)]

a.s.. Now we can proceed as in the proof of theorem B.8.

B.4 Concentration of M̃

Lemma B.16. With probability at least 1 − ∣A∣6 exp (−Tε2
4

) it holds that ∣ 1
T ∑

T
t=1 pt−1(xi)pt(xj) −

1
T ∑

T
t=1 δt−1(xi)δt(xj)∣ < ε and ∣ 1

T ∑
T
t=1 pt(xi) − 1

T ∑
T
t=1 δt(xi)∣ < ε, simultaneously for all i.

Proof. We consider the random variable Zt = δt(xi) − pt(xi), notice that E [Zt∣p1,⋯, pt−1] = 0
so that {Zt}t is a bounded martingale sequence with ∣Zt∣ < 1 and thus by Azuma’s inequality
we have P [∣ 1

T ∑
T
t=1Zt∣ ≥ ε] < 2 exp (−Tε2

2
) which shows that 1

T ∑
T
t=1 δt(ai) concentrates around

1
T ∑

T
t=1 pt(xi). Let Rt = δt−1(xi)δt(xj) − pt−1(xi)pt(xj) and consider the filtration {Ft}t, where

F1 = ∅, Ft = Σ(δ1,⋯, δt) is the sigma algebra generated by the random variables δ1 to δt. Then
∣R2t∣ ≤ 1 and E [R2t∣F1,⋯,F2t−2] = 0, so {R2t}t is also a bounded martingale difference and thus

P [∣ 1
T ∑

T
2

t=1R2t∣ ≥ ε
2
] < 2 exp (−Tε2

4
). A similar argument allows us to bound the sum of the R2t+1’s

and a union bound gives us P [∣ 1
T ∑

T
t=1Rt∣ ≥ ε] < 4 exp (−Tε2

4
). A union bound over all i finishes

the proof.

Definition B.17. Define the perturbed distribution of player i at time t to be p̃it = (1 −
√

∣A∣ε̃)pit +
1
√

∣A∣ε̃

∣Ai∣
.

Lemma B.18. The difference of expected utilities from playing according to (p̃it)Tt=1 instead of
(pit)Tt=1 is at most 2T

√
∣A∣ε̃

Proof. From lemma B.13 at each time step the difference of expected utility is bounded by
√

∣A∣ε̃ in
absolute value.

Theorem B.19. If at time t player i plays according to p̃it , where ε̃ = T−1/4
∣A∣

and pt = p̃1
t (p̃2

t )⊺,

then the regret for playing according to p̃it is at most O(T 7/8). Further lim supT→∞ ∥M̃ − M̂∥
2
= 0,

almost surely. Additionally if σ̃ = 1
T ∑

T
t=1 δt is the stationary distribution of M̃ corresponding to the

observed play and σ̂ = 1
T ∑

T
t=1 pt is the stationary distribution of M̂ corresponding to the averaged

empirical distribution, then lim supT→∞ ∥σ̃ − σ̂∥1 = 0 almost surely.

Proof. Set ε̃ = T−1/4
∣A∣

. The regret bound of the no-external regret algorithms now becomes O(T 7/8).

We can, however, now guarantee that ∑Tt=1 pt(xi) ≥ T−1/4
∣A∣

and thus, combining this with the

high probability bound we obtain that with probability at least 1 − C exp (−Tε2
4

) it holds that
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∣M̃i,j − M̂i,j ∣ < 2εT
1/4
∣A∣

. To see this, let x = 1
T ∑

T
t=1 pt−1(xi)pt(xj), x̂ = 1

T ∑
T
t=1 δt−1(xi)δt(xj), y =

1
T ∑

T
t=1 pt(xi), ŷ = 1

T ∑
T
t=1 δt(xi). Then

∣M̃i,j − M̂i,j ∣ = ∣x
y
− x̂
ŷ
∣ ≤ ∣x − x̂∣

∣y∣ + ∣x̂∣
∣1/y − 1/ŷ∣ ≤

ε

ε̃
+ ∣x̂∣∣y − ŷ∣

∣yŷ∣ ≤ 2
ε

ε̃
,

where the last inequality holds because x̂ ≤ ŷ. Setting ε = T −1/3 and a union bound
we arrive at P [∥M̃ − M̂∥

2
> T −1/12] < C exp (−T 1/3

4
). By Borel-Cantelli lemma we have

lim supT→∞ ∥M̃ − M̂∥
2
= 0 almost surely. From lemma B.16 and a union bound we know that

with P [∥σ̃ − σ̂∥1 > ε] < 2∣A∣ exp (−Tε2
4

). Setting ε = T −1/3 and again using Borel-Cantelli’s lemma
we see that lim supT→∞ ∥σ̃ − σ̂∥1 = 0.

C Extending the framework to arbitrary memories

Definition C.1. Let player 1 have memory m1 and player 2 have memory m2. Let
the function spaces be F1 = {f ∶ Am1

2 → A1} and F2 = {f ∶ Am2

1 →
A2}. Let π be a distribution over F1 × F2. Define the m-memory bounded
Markov process, where m = max(m1,m2) to be P [(at, bt)∣(at−1, bt−1),⋯, (at−m, bt−m)] =
∑(f,g)∈F1×F2∶f(bt−1,⋯,bt−m1

)=at,g(at−1,⋯,at−m2
)=bt π(f, g). We associate with this Markov process the

matrix M ∈ R∣A∣
m
×∣A∣

m

, with M(xt,xt−1,⋯,xt−m+1),(xt−1,⋯,xt−m) = P [xt∣xt−1,⋯, xt−m] and Mi,j = 0
for all other entries.
Definition C.2. The utility of π is defined through the stationary distribution γ of M. In particular γ
is a distribution over ∣A∣m with entries indexed by (xt,⋯, xt−m+1). Let σ be the marginal distribution
of xt, then ui(π) = supσ E(a,b)∼σ [ui(a, b)]
Definition C.3. The empirical m-memory bounded Markov process is M̂ with
P [(ak, bk)∣(ak−1, bk−1),⋯, (ak−m, bk−m)] = ∑t∏

m
i=0 pt−i((ak−i,bk−i))

∑t∏
m−1
i=0 pt−i((ak−i,bk−i))

Theorem C.4. The distribution σ̂ over ∣A∣m with entries indexed as

σ̂((a1, b1),⋯, (am, bm)) = 1

T
∑
t

m−1

∏
i=0

pt−i((ai+1, bi+1))

, is a stationary distribution of M̂.

Proof. Consider (σ̂⊺M̂)x2,⋯,xm+1 , we show it is equal to σ̂(x2,⋯, xm+1):

(σ̂⊺M̂)x2,⋯,xm+1 = ∑
x1,⋯,xm

M̂(x1,⋯,xm),(x2,⋯,xm+1)σ̂(x1,⋯, xm)

= ∑
x1

P [xm+1∣x1,⋯, xm] σ̂(x1,⋯, xm)

= ∑
x1

∑t∏m
i=0 pt−i(xi+1)

∑t∏m−1
i=0 pt−i(xi+1)

1

T
∑
t

m−1

∏
i=0

pt−i(xi+1) =
1

T
∑
x1

∑
t

m

∏
i=0

pt−i(xi+1)

= 1

T
∑
t

m

∏
i=1

pt−i(xi+1) =
1

T
∑
t

m−1

∏
i=0

pt−i(xi+2) = σ̂(x2,⋯, xm+1)

Also need a theorem which states that the utility E(f,g)∼π [u1(a, g(a, ⋅, a)] is the expectation of the
stationary distribution of the Markov process coming from the play (a, g(a,⋯, a)) according to the
marginal of g.
Definition C.5. Let Ma

1 be the m2-memory bounded Markov process which comes from player 1
playing a fixed action a ∈ A1 and player 2 playing g ∈ F2 according to the marginal of π, i.e.
(Ma

1)(x1,⋅,xm2
),(x1,⋅,xm2+1) = P [xm2+1∣x1,⋯, xm2] = ∑(f,g)∶g(a1,⋯,am2

)=bm2+1
π(f, g) if am2+1 = a

or 0 otherwise (here xi = (ai, bi)). Similarly let Mb
2 be the m1-memory bounded Markov process

which arises when player 2 switches to playing the constant action.
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Theorem C.6. Consider Ma
1 and let m = m2. Let σ̄ be the following distribution over Am –

σ̄(x1,⋯, xm) = ∑(f,g)∶g(a,⋅,a)=b π(f, g) if x1 = ⋯ = xm = (a, b) and 0 otherwise. Then σ̄ is a
stationary distribution of Ma

1 and its marginal distribution γ(a, b) = ∑(f,g)∶g(a,⋅,a)=b π(f, g) is such
that E(a,b)∼γ [u1(a, b)] = E(f,g)∼π [u1(a, g(a,⋯, a))].

Proof.
(σ̄⊺Ma

1)x2,⋯,xm+1 = ∑
x1

σ̄(x1,⋯, xm)(Ma
1)(x1,⋯,xm),(x2,⋯,xm+1)

= ∑
x1

σ̄(x1,⋯, xm)P [xm+1∣x1,⋯, xm]

= ∑
b1∈A2

σ((a, b1),⋯, (a, b1)) ∑
f,g(a,⋯,a)=bm+1

π(f, g)

= ∑
b1∈A2

⎡⎢⎢⎢⎢⎣
∑

f,g(a,⋯,a)=b1

π(f, g)
⎤⎥⎥⎥⎥⎦

∑
f,g(a,⋯,a)=bm+1

π(f, g)

= ∑
f,g(a,⋯,a)=bm+1

π(f, g) = σ((a, bm+1),⋯, (a, bm+1)) = σ(x2,⋯, xm+1)

The rest of the proofs extend in similar ways to the case with general memory. There is the question
of not requiring σ̄ to be a stationary distribution but to be any distribution such that the marginal
with respect to the first coordinate of σ̄⊺Ma

1 , satisfies the expectation equality E(a,b)∼γ [u1(a, b)] =
E(f,g)∼π [u1(a, g(a,⋯, a))].

D Extending the framework to arbitrary number of players

Definition D.1. Consider an n player game where player i has memory mi. Define
the set of functions Fi = {f ∶ Ami−i → Ai}. We consider a distribution π over
F = ×ni=1Fi. Let m = max(m1,⋯,mn). Letx = (a1,⋯, an) ∈ A and let x−i =
(a1,⋯, ai−1, ai+1,⋯, an) ∈ A−i. Define the m-memory Markov process M such that
P [xm+1∣x1,⋯, xm] = ∑(f1(x−1m ,⋯,x

−1
m−m1+1)=a

1
m+1,⋯,fn(x−nm ,⋯,x−nm−mn+1)=a

n
m+1)

π(f1,⋯, fn).

All other definitions follow the same form. The problem with this most general setting is – how do we
construct no-policy regret algorithms and what does it even mean to have no-policy regret? The utility
function of player i at time t – ui(⋅, x−it ) is no longer interpretable is an m-memory bounded function,
since x−it depends on all other players’ memories. One possible solution is to look at this utility as an
m-memory bounded function, where m is the maximum memory among all other players.

E Simple example of a policy equilibrium

We now present a simple 2-player game with strategies of the players which lead to a policy
equilibrium, which in fact is not a CCE. Further these strategies give the asymptotically maximum
utility for both row and column players over repeated play of the game. The idea behind the
construction is very similar to the one showing incompatibility of policy regret and external regret.
The utility matrix for the game is given in Table 2. Since the column player has the same payoff for

Table 2: Utility matrix
Player 1\Player 2 c d
a (3/4,1) (0,1)
b (1,1) (0,1)

all his actions they will always have no policy and no external regret. The strategy the column player
chooses is to always play the function f ∶ A1 → A2:

f(x) = {c x = a
d x = b.
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In the view of the row player, this strategy corresponds to playing against an adversary which plays
the familiar utility functions:

ut(at−1, at) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 at−1 = a, at = b
3
4

at−1 = at = a
0 otherwise.

We have already observed that on these utilities, the row player can have either no policy regret or
no external regret but not both. What is more the utility of no policy regret play is higher than the
utility of any of the no external regret strategies. This already implies that the row player is better off
playing according to the no policy regret strategy which consists of always playing the fixed function
g ∶ A2 → A1 given by g(x) = a. Below we present the policy equilibrium π ∈ ∆F , corresponding
Markov chain M ∈ R∣A∣×∣A∣ and its stationary distribution σ ∈ ∆A satisfying the no policy regret
requirement.

π(f̃ , g̃) = δ(f,g),M =

(a, c) (a, d) (b, c) (b, d)
⎛
⎜
⎝

⎞
⎟
⎠

(a, c) 1 0 0 0
(a, d) 1 0 0 0
(b, c) 0 1 0 0
(b, d) 0 1 0 0

, σ(x, y) = δ(a,c).

Suppose the row player was playing any no policy regret strategy, for example one coming from a no
policy regret algorithm, as a response to the observed utilities ut(⋅, ⋅). Since the only sublinear policy
regret play for these utilities is to only deviate from playing a a sublinear number of times we see that
the empirical distribution of play for the row player converges to the dirac distribution δa. Together
with the strategy of the column player, this implies the column player chooses the action d only a
sublinear number of times and thus their empirical distribution of play converges to δc. It now follows
that the empirical distribution of play converges to δa × δc = δ(a,c) ∈ ∆A. We can similarly verify that
the empirical Markov chain will converge to M and the empirical functional distribution π̂ converges
to π. Theorem B.9 guarantees that because both players incur only sublinear regret π is a policy
equilibrium. It should also be intuitively clear why this is the case without the theorem – suppose that
the row player switches to playing the fixed action b. The resulting functional distribution, Markov
chain and stationary distributions become:

πb(f̃ , g̃) = δ(f,ĝ≡b),Mb =

(a, c) (a, d) (b, c) (b, d)
⎛
⎜
⎝

⎞
⎟
⎠

(a, c) 0 0 1 0
(a, d) 0 0 1 0
(b, c) 0 0 0 1
(b, d) 0 0 0 1

, σb(x, y) = δ(b,d).

The resulting utility for the row player is now 0, compared to the utility gained from playing according
to π, which is 3/4.
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