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Abstract
Blackwell’s celebrated approachability theory provides a general framework for a variety of

learning problems, including regret minimization. However, Blackwell’s proof and implicit algo-
rithm measure approachability using the `2 (Euclidean) distance. We argue that in many applica-
tions such as regret minimization, it is more useful to study approachability under other distance
metrics, most commonly the `∞-metric. But, the time and space complexity of the algorithms
designed for `∞-approachability depend on the dimension of the space of the vectorial payoffs,
which is often prohibitively large. Thus, we present a framework for converting high-dimensional
`∞-approachability problems to low-dimensional pseudonorm approachability problems, thereby
resolving such issues. We first show that the `∞-distance between the average payoff and the ap-
proachability set can be equivalently defined as a pseudodistance between a lower-dimensional
average vector payoff and a new convex set we define. Next, we develop an algorithmic theory
of pseudonorm approachability, analogous to previous work on approachability for `2 and other
norms, showing that it can be achieved via online linear optimization (OLO) over a convex set
given by the Fenchel dual of the unit pseudonorm ball. We then use that to show, modulo mild nor-
malization assumptions, that there exists an `∞-approachability algorithm whose convergence is
independent of the dimension of the original vectorial payoff. We further show that that algorithm
admits a polynomial-time complexity, assuming that the original `∞-distance can be computed ef-
ficiently. We also give an `∞-approachability algorithm whose convergence is logarithmic in that
dimension using an FTRL algorithm with a maximum-entropy regularizer. Finally, we illustrate
the benefits of our framework by applying it to several problems in regret minimization.
Keywords: Blackwell’s approachability, regret minimization, swap regret.
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PSEUDONORM APPROACHABILITY

1. Introduction

The notion of approachability introduced by Blackwell (1956) can be viewed as an extension of von
Neumann’s minimax theorem (von Neumann, 1928) to the case of vectorial payoffs. Blackwell gave
a simple example showing that the straightforward analog of von Neumann’s minimax theorem does
not hold for vectorial payoffs. However, in contrast with this negative result for one-shot games,
he proved that, in repeated games, a player admits an adaptive strategy guaranteeing that their
average payoff approaches a closed convex set in the limit, provided that the set satisfies a natural
separability condition.

The theory of Blackwell approachability is intimately connected with the field of online learning
for the reason that the problem of regret minimization can be viewed as an approachability prob-
lem: in particular, the learner would like their vector of regrets (with respect to each competing
benchmark) to converge to a non-positive vector. In this vein, Abernethy et al. (2011) demonstrated
how to use algorithms for approachability to solve a general class of regret minimization problems
(and conversely, how to use regret minimization to construct approachability algorithms). However,
applying their reduction sometimes leads to suboptimal regret guarantees – for example, for the
specific case of minimizing external regret over T rounds with K actions, their reduction results in
an algorithm with O(

√
TK) regret (instead of the optimal O(

√
T logK) regret bound achievable

by e.g. multiplicative weights).
One reason for this suboptimality is the choice of distance used to define approachability. Both

Blackwell and Abernethy et al. consider approachability algorithms that minimize the Euclidean (`2)
distance between their average payoff and the desired set. We argue that, for applications to regret
minimization, it is often more useful to study approachability under other distance metrics, most
commonly approachability under the `∞ metric to the non-positive orthant, which is well suited
to capture the fact that regret is a maximum over various competing benchmarks. This has been
observed in the past in several recent publications (Perchet, 2015; Shimkin, 2016; Kwon, 2021). In
particular, by constructing algorithms for `∞ approachability, it is possible to naturally recover a
O(

√
T logK) external regret learning algorithm (and algorithms with optimal regret guarantees for

many other problems of interest).
However, there is still one significant problem with developing regret minimization algorithms

via `∞ approachability (or any of the forms of approachability previously mentioned): the time
and space complexity of these algorithms depends polynomially on the dimension d of the space of
vectorial payoffs, which in turn equals the number of benchmarks we compete against in our regret
minimization problem. In some regret minimization settings, this can be prohibitively expensive.
For example, in the setting of swap regret (where the benchmarks are parameterized by the d =KK

swap functions mapping [K] to [K]), this results in algorithms with complexity exponential in K.
On the other hand, there exist algorithms, e.g. (Blum and Mansour, 2007), which are both efficient
(poly(K) time and space) and obtain optimal regret guarantees.

1.1. Main results

In this paper, we present a framework for converting high-dimensional `∞ approachability problems
to low-dimensional “pseudonorm” approachability problems, in turn resolving many of these issues.
To be precise, recall that the setting of approachability can be thought of as a T -round repeated
game, where in round t the learner chooses an action pt from some convex “action” set P ⊆ Rn,
the adversary simultaneously chooses an action `t from some convex “loss” set L ⊆ Rm, and the
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PSEUDONORM APPROACHABILITY

learner receives a vector-valued payoff u(pt, `t), where u∶P × L → Rd is a d-dimensional bilinear
function. The learner would like the `∞ distance between their average payoff 1

T ∑u(pt, `t) and
some convex set1 S to be as small as possible.

We first demonstrate how to construct a new d′-dimensional bilinear function ũ∶P × L → Rd′ ,
a new convex set S′ ⊆ Rd′ , and a pseudonorm2 f such that the “pseudodistance” between the aver-
age modified payoff 1

T ∑ ũ(pt, `t) and S′ is equal to the `∞ distance between the original average
payoff and S. Importantly, the new dimension d′ is equal to mn and is independent of the original
dimension d.

We then develop an algorithmic theory of pseudonorm approachability analogous to that devel-
oped in (Abernethy et al., 2011) for the `2 norm and (Shimkin, 2016; Kwon, 2021) for other norms,
showing that, in order to perform pseudonorm approachability, it suffices to be able to perform on-
line linear optimization (OLO) over a convex set given by the Fenchel dual of the unit pseudonorm
ball (and that the rate of approachability is directly related to the regret guarantees of this OLO
subalgorithm). This has the following consequences for approachability:

• First, by solving this OLO problem with a quadratic regularized Follow-The-Regularized-
Leader (FTRL) algorithm, we show (modulo mild normalization assumptions on the sizes of
P, L, and u) that there exists a pseudonorm approachability algorithm (and hence an `∞ ap-
proachability algorithm for the original problem) which converges at a rate of O(nm/

√
T ).

We additionally provide a stronger bound on the rate which scales as O(DuDpD`/
√
T )

where Dp = diamP, D` = diamL, and Du is the maximum `2 norm of the set of vec-
tors formed by taking the coefficients of components of u (Theorem 13). In comparison,
the best-known generic guarantee for `∞-approachability prior to this work converged at a
d-dependent rate of O(

√
(log d)/T ).

• Second, we show that as long as we can evaluate the original `∞-distance between
1
T ∑u(pt, `t) and (−∞,0]d efficiently, we can implement the above algorithm in poly(m,n)
time per round (Theorem 19). This has the following natural consequence for the class of
regret minimization problems that can be written as `∞-approachability problems: if it is pos-
sible to efficiently compute some notion of regret for a sequence of losses and actions, then
there is an efficient (in the dimensions of the actions and losses) learner that minimizes this
regret.

• Finally, in some cases, the O(
√

(log d)/T ) approachability rate from (inefficient) `∞-
approachability outperforms the rate obtained by the quadratic regularized FTRL algorithm.
We define a new regularizer whose value is given by finding the maximum entropy distri-
bution of a subset of distributions of support d, and show that, by using this regularizer, we
recover this O(

√
(log d)/T ) rate. In particular, whenever we can efficiently compute this

maxent regularizer, there is an efficient learning algorithm with a O(
√

(log d)/T ) approach-
ability rate.

1. For simplicity, throughout this paper we assume S to be the negative orthant (−∞,0]d, as this is the case most
relevant to regret minimization. However, much of our results extend straightforwardly to arbitrary convex sets.

2. In this paper a pseudonorm is a function f ∶Rd
′

→ R≥0 which satisfies most of the properties of a norm (e.g. positive
homogeneity, triangle inequality), but may be asymmetric (there may exist x where f(x) ≠ f(−x)) and may not be
definite (there may exist x ≠ 0 where f(x) = 0). Just as a norm ∥⋅∥ defines a distance between x, y ∈ Rd

′

via ∥x− y∥,
a pseudonorm f defines the pseudodistance f(x − y).
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We then apply our framework to various problems in regret minimization:

• We show that our framework straightforwardly recovers a regret-optimal and efficient al-
gorithm for swap regret minimization. Doing so requires computing the above maximum
entropy regularizer for this specific case, where we show that it has a nice closed form. In
particular, to our knowledge. this is the first approachability-based algorithm for swap regret
that both is efficient and has the optimal minimax regret.

• In Section 4.3, we apply our framework to develop the first efficient contextual learning al-
gorithms with low Bayesian swap regret. Such algorithms have the property that if learners
employ them in a repeated Bayesian game, the time-average of their strategies will converge
to a Bayesian correlated equilibrium, a well-studied equilibrium notion in game theory (see
e.g. Bergemann and Morris (2016)).

This notion of Bayesian swap regret was recently introduced by Mansour et al. (2022), who
also provided an algorithm with low Bayesian swap regret, albeit one that is not computation-
ally efficient. By applying our framework, we easily obtain an efficient contextual learning
algorithm with O(CK

√
T ) Bayesian swap regret, resolving an open question of Mansour

et al. (2022) (here C is the number of “contexts” / “types” of the learner).

• In Section 4.4, we further analyze the application of our general `∞-approachability theory
and algorithm to the analysis of reinforcement learning (RL) with vectorial losses. We point
out how our framework can provide a general solution in the full information setting with
known transition probabilities and how we can recover the best known solution for standard
regret minimization in episodic RL. More importantly, we show how our framework and algo-
rithm can lead to an algorithm for constrained MDPs with a significantly more favorable regret
guarantee, logarithmic in the number of constraints k, in contrast with the

√
k-dependency of

the results of Miryoosefi et al. (2019).

1.2. Related Work

There is a wide literature dealing with various aspects of Blackwell’s approachability, including its
applications to game theory, regret minimization, reinforcement learning, and multiple extensions.

Hart and Mas-Colell (2000) described an adaptive procedure for players in a game based on
Blackwell’s approachability, which guarantees that the empirical distributions of the plays converges
to the set of a correlated equilibrium. This procedure is related to internal regret minimization, for
which, as shown by Foster and Vohra (1999), the existence of an algorithm follows the proof of
Hart and Mas-Colell (2000). Hart and Mas-Colell (2001) further gave a general class of adaptive
strategies based on approachability. Approachability has been widely used for calibration (Dawid,
1982), see Foster and Hart (2018) for a recent work on the topic. Approachability and partial
monitoring were studied in a series of publications by Perchet (2010); Mannor et al. (2014a,b);
Perchet and Quincampoix (2015, 2018); Kwon and Perchet (2017). More recently, approachability
has also been used in the analysis of fairness in machine learning (Chzhen et al., 2021).

Approachability has also been extensively used in the context of reinforcement learning. Man-
nor and Shimkin (2003) discussed an extension of regret minimization in competitive Markov deci-
sion processes (MDPs) whose analysis is based on Blackwell’s approachability theory. Mannor and

4



PSEUDONORM APPROACHABILITY

Shimkin (2004) presented a geometric approach to multiple-criteria reinforcement learning formu-
lated as approachability conditions. Kalathil et al. (2014) presented strategies for approachability
for MDPs and Stackelberg stochastic games based on Blackwell’s approachability theory. More re-
cently, Miryoosefi et al. (2019) used approachability to derive solutions for reinforcement learning
with convex constraints.

The notion of approachability was further extended in several studies. Vieille (1992) used dif-
ferential games with a fixed duration to study weak approachability in finite dimensional spaces.
Spinat (2002) formulated a necessary and sufficient condition for approachability of non-necessary
convex sets. Lehrer (2003) extended Blackwell’s approachability theory to infinite-dimensional
spaces.

The most closely related work to this paper, which we build upon, is that of Abernethy et al.
(2011) who showed that, remarkably, any algorithm for Blackwell’s approachability could be con-
verted into one for online convex optimization and vice-versa. Bernstein and Shimkin (2015) also
discussed a related response-based approachability algorithm.

Perchet (2015) presented a specific study of `∞ approachability, for which they gave an ex-
ponential weight algorithm. Shimkin (2016, Section 5) studied approachability for an arbitrary
norm and gave a general duality result for an arbitrary norm using Sion’s minmax theorem. The
pseudonorm duality theorem we prove, using Fenchel duality, can be viewed as a generalization.
Kwon (2016, 2021) also presented a duality theorem similar to that of Shimkin (2016) which they
used to derive a FTRL algorithm for general norm approachability. They further treated the special
case of internal and swap regret. However, unlike the algorithms derived in this work, the compu-
tational complexity of their swap regret algorithm is in O(KK). This is also true of the paper of
Perchet (2015) which also analyzes the swap regret problem.

It is known that if all players follow a swap regret minimization algorithm, then the empir-
ical distribution of their play converges to a correlated equilibrium (Blum and Mansour, 2007).
Hazan and Kale (2008) showed a result generalizing this property to the case of Φ-regret and Φ-
equilibrium, where the Φ-regret is the difference between the cumulative expected loss suffered by
the learner and that of the best Φ-modification of the sequence in hindsight. Gordon et al. (2008)
further generalized the results of Hazan and Kale (2008) to a more general class of Φ-modification
regrets. The algorithms discussed in (Gordon et al., 2008) are distinct from those discussed in this
paper (they do not clearly extend to the general approachability setting, and they require signifi-
cantly different computational assumptions than ours). Nevertheless, they bare some similarity with
our work.

2. Preliminaries

Notation. We use [n] as a shorthand for set {1,2, . . . , n}. We write ∆d = {x ∈ Rd ∣ xi ≥ 0,∑xi =
1} to denote the simplex over d dimensions and ∆d = {x ∈ Rd ∣ xi ≥ 0,∑xi ≤ 1} to denote the
convex hull of the d-simplex with the origin. conv(S) denotes the convex hull of the points in S,
and cone(S) = {αx ∣ α ≥ 0, x ∈ conv(S)} the convex cone generated by the points in S.

Some of the more standard proofs have been deferred to Appendix A.
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2.1. Blackwell approachability and regret minimization

We begin by illustrating the theory of Blackwell approachability for the specific case of the `∞-
distance; this case is both particularly suited to the application of regret minimization, and will play
an important role in the results (e.g. reductions to pseudonorm approachability) that follow.

We consider a repeated game setting, where every round t a learner chooses an action pt be-
longing to a bounded3 convex set P ⊆ [−1,1]n, and an adversary simultaneously chooses a loss `t
belonging to a bounded convex set L ⊆ [−1,1]m. Let u∶P × L → [−1,1]d be a bounded bilinear4

vector-valued payoff function, and let S ⊆ Rd be a closed convex set with the property that for every
` ∈ L, there exists a p ∈ P such that u(p, `) ∈ S (we say that such a set is “separable”). When d = 1,
the minimax theorem implies that there exists a single p ∈ P such that for all `, u(p, `) ∈ S.

This is not true for d > 1, but the theory of Blackwell approachability provides the following
algorithmic analogue of this statement. Define a learning algorithmA to be a collection of functions
At∶Lt−1 → P for each t ∈ [T ], where At describes how the learner decides their action pt as
a function of the observed losses `1, `2, . . . , `t−1 up until time t − 1. Blackwell approachability
guarantees that there exists a learning algorithm A such that when A is run on any loss sequence `
the resulting action sequence p has the property that:

lim
T→∞

d∞ ( 1

T

T

∑
t=1

u(pt, `t),S) = 0. (1)

(Here for v,w ∈ Rd, d∞(v,w) = maxi ∣vi −wi∣ represents the `∞ distance between v and w).
As mentioned, one of the main motivations for studying Blackwell approachability is its con-

nections to regret minimization. In particular, for a fixed choice of u, define

Reg(p, `) = max(max
i∈[d]

(
T

∑
t=1

ui(pt, `t)) ,0) . (2)

Note first that this definition of “regret” is exactly T times the `∞ approachability distance in
the case where S = (∞,0]d is the negative orthant; that is,

Reg(p, `) = T ⋅ d∞ ( 1

T

T

∑
t=1

u(pt, `t), (−∞,0]d) . (3)

But secondly, note that by choosing P, L, and u carefully, the definition (2) can capture a wide
variety of forms of regret studied in regret minimization. For example:

• When P = ∆K , L = [0,1]K , d =K, and u(p, `)i = ⟨p, `⟩− `i, Reg(p, `) is the external regret
of playing action sequence p against loss sequence `; i.e., it measures the regret compared to
the best single action.

3. We bound the entries of P, L, and u within [−1,1] for convenience, but it is generally easy to translate between
different boundedness assumptions (since almost all relevant quantities are linear). We express the majority of our
theorem statements (with the notable exception of Theorem 13) in a way that is independent of the choice of bounds.

4. We briefly note that all our results also hold for biaffine functions ui; in particular, extending the loss and action sets
slightly (by replacing P and L with P × {1} and L × {1}) allows us to write any biaffine function over the original
sets as a bilinear function over the extended sets.
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• When P = ∆K , L = [0,1]K , d = KK , and (for each function π∶ [K] → [K], u(p, `)π =
∑Ki=1 pi(`i − `π(i)), Reg(p, `) is the swap regret of playing action sequence p against loss
sequence `; i.e., it measures the regret compared to the best action sequence p′ obtained by
applying a fixed swap function to sequence p.

• When P ⊆ Rn is a convex polytope, L = [0,1]n, d = ∣V (P)∣ (where V (P) is the set of vertices
of P), and (for each vertex v ∈ V (P)), u(p, `)v = ⟨p, `⟩ − ⟨v, `⟩, this captures the (external)
regret from performing online linear optimization over the polytope P (see Section 2.2).

• Finally, to illustrate the power of this framework, we present an unusual swap regret min-
imization that we call “Procrustean swap regret minimization” (after the orthogonal Pro-
crustes problem, see (Gower and Dijksterhuis, 2004)). Let P = {x ∈ Rn ∶ ∣∣x∣∣2 ≤ 1} be
the unit ball in n dimensions, L = [−1,1]n, and, for each orthogonal matrix5 Q ∈ O(n), let
u(p, `)Q = ⟨p, `⟩ − ⟨Qp, `⟩.

When the negative orthant (−∞,0]d is separable with respect to u, which is true in all of the
above examples, the theory of Blackwell approachability immediately guarantees the existence of
a sublinear regret learning algorithm A for the corresponding notion of regret. Specifically, define
the regret of a learning algorithmA to be the worst-case regret over all possible loss vectors ` ∈ LT ;
i.e.,

Reg(A) = max
`∈LT

Reg(p, `), (4)

where pt = At(`1, . . . , `t−1). Then (1) implies that the same algorithm A satisfies Reg(A) = o(T ).
Motivated by this application, we will restrict our attention for the remainder of this paper to the
setting where S = (−∞,0]d and will assume (unless otherwise specified) that this S is separable
with respect to the bilinear function u we consider.

In fact, the theory of `∞-approachability is constructive and allows us to write down explicit
algorithms A along with explicit (and in many cases, near optimal) regret bounds. However, before
we introduce these algorithms, we will need to introduce the problem of online linear optimization.

2.2. Online linear optimization

Here we discuss algorithms for online linear optimization (OLO), a special case of online convex
optimization where all the loss functions are linear functions of the learner’s action. These will form
an important primitive of our algorithms for approachability.

Let X,Y be two bounded convex subsets of Rr and consider the following learning problem.
Every round t (for T rounds) our learning algorithm must choose an element xt ∈ X as a function
of y1, y2, . . . , yt−1. The adversary simultaneously chooses a loss “function” yt ∈ Y. This causes
the learner to incur a loss of ⟨xt, yt⟩ in round t. The goal of the learner is to minimize their regret,
defined as the difference between their total loss and the loss they would have incurred by playing
the best fixed action in hindsight, i.e.,

5. Technically, this leads to an infinite dimensional u (since the group of orthogonal matrices is infinite), but one can
instead take an arbitrarily fine discrete approximation of the set. Indeed, one of the advantages of the results we
present is that they are largely independent of the dimension d of u.
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Reg(x,y) = max
x∗∈X

(
T

∑
t=1

⟨xt, yt⟩ −
T

∑
t=1

⟨x∗, yt⟩) .

There are many similarities between this problem and the approachability and regret minimiza-
tion problems discussed in Section 2.1. For example, if we take X = P = ∆K and Y = L = [0,1]K ,
then OLO is equivalent to the problem of external regret minimization. However, not all regret
minimization problems can be written directly as an instance of OLO – for example, there is no
clear way to write swap regret minimization as an OLO instance. Eventually we will demonstrate
how to apply OLO as a subroutine to solve any regret minimization problem, but this will involve a
reduction to Blackwell approachability and will require running OLO on different spaces than the
action/loss sets P and L directly (which is why we distinguish the action/loss sets for OLO as X and
Y respectively).

There is an important subclass of algorithms for OLO known as Follow the Regularized Leader
(FTRL) algorithms (Shalev-Shwartz, 2007; Abernethy et al., 2008). An FTRL algorithm is com-
pletely specified by a strongly convex function R∶X→ R, and plays the action

xt = argmin
x∈X

(R(x) +
t−1

∑
s=1

⟨x, ys⟩) .

In words, this algorithm plays the action that minimizes the total loss on the rounds until the
present (“following the leader”), subject to an additional regularization term. It is possible to char-
acterize the worst-case regret of an FTRL algorithm in terms of properties of the regularizer R and
the sets X and Y (see e.g. Theorem 15 of Hazan (2016)). For our purposes, we will only need the
following two results for specific regularizers.

Lemma 1 (Quadratic regularizer, (Zinkevich, 2003)) Let Dx = diamX and Dy = maxy∈Y ∣∣y∣∣2.
Let x0 be an arbitrary element of X, and let R(x) = ∣∣x − x0∣∣2. Then, the FTRL algorithm with
regularizer R incurs worst-case regret at most O(DxDy

√
T ).

Lemma 2 (Negative entropy regularizer, (Kivinen and Warmuth, 1995)) Let X = ∆d, Y = [0,1]d,
and let R(x) = ∑di=1 xi logxi (where we extend this to the boundary of X by letting 0 log 0 = 0).
Then, the FTRL algorithm with regularizer R incurs worst-case regret at most O(

√
T log d).

2.3. Algorithms for `∞-approachability

We can now write down an explicit description of our algorithm for `∞-approachability (in terms
of a blackbox OLO algorithm) and get quantitative bounds on the rate of convergence in the LHS
of (1). Let F be an OLO algorithm for the sets X = ∆d and Y = [−1,1]d. Then we can describe our
algorithm A for `∞-approachability as Algorithm 1.

It turns out that we can relate the `∞ approachability distance to (−∞,0]d (and hence the regret
of this algorithm A) to the regret of our OLO algorithm F .

Theorem 3 We have that

Reg(A) = T ⋅ d∞ ( 1

T

T

∑
t=1

u(pt, `t), (−∞,0]d) ≤ Reg(F).

8
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Algorithm 1: Description of Algorithm A for `∞-approachability

Initialize θ1 to an arbitrary point in ∆d;

for t← 1 to T do
Choose pt ∈ P so that for all ` ∈ L, ⟨θt, u(pt, `)⟩ ≤ 0. Such a pt is guaranteed to exist by the
separability condition on u, since ⟨θ, s⟩ ≤ 0 for any θ ∈ ∆d and s ∈ (−∞,0]d;

Play action pt and receive as feedback `t ∈ L;
Set yt = −u(pt, `t);
Set θt+1 = F(y1, y2, . . . , yt).

end

If we let F be the negative entropy FTRL algorithm (Lemma 2)6, we obtain the following regret
guarantee for A.

Corollary 4 For any bilinear regret function u∶P×L→ [−1,1]d, there exists a regret minimization
algorithm A with worst-case regret Reg(A) = O(

√
T log d).

Equivalently, Corollary 4 can be interpreted as saying that there exists an `∞-approachability
algorithm which approaches the negative orthant at an average rate of O(

√
(log d)/T ). In general,

(3) lets us straightforwardly convert between results for approachability and results for regret min-
imization. Throughout the remainder of the paper we will primarily phrase our results in terms of
Reg(A), but switch between quantities of interest when convenient.

3. Main Results

Already Corollary 4 leads to a number of impressive consequences. For example, when applied to
the problem of swap-regret minimization (where u has dimension d = KK), it leads to a learning
algorithm with O(

√
KT logK) regret, matching the best known regret bounds for this problem

(Blum and Mansour, 2007). However, the algorithm we obtain in this way has two unfortunate
properties.

First, since u is d-dimensional, implementing the algorithm as written above requiresO(poly(d))
time and space complexity (even storing any specific yt or θt requires Ω(d) space). This is fine if d
is small, but in many of our applications d is much (e.g., exponentially) larger than the dimensions
m and n of the loss and action sets. For example, for swap regret we have d =KK but m = n =K.
Although Corollary 4 gives us an optimal O(

√
KT logK) swap regret algorithm, it takes exponen-

tial time / space to implement (in contrast to other known swap regret algorithms, such as that of
Blum and Mansour (2007)).

Secondly, although Corollary 4 has only a logarithmic dependence on d, sometimes even this
may be too large (for example when we want to compete against an uncountable set of benchmarks).
In such cases, we would ideally like a regret bound that depends on the action and loss sets but not
directly on d.

6. There is a slight technical difference between the sets X = ∆d and Y = [−1,1]d in Algorithm 1 and the sets X ′ = ∆d

and Y ′ = [0,1]d in Lemma 2. However, note that if we map x ∈ X to (x1, x2, . . . , xn,1 − ∑xi) ∈ ∆d+1 and
y ∈ [−1,1]d to ((1 + y1)/2, (1 + y2)/2, . . . , (1 + yd)/2,0) ∈ [0,1]d+1, we preserve the inner product of x and y up
to an additive constant, which disappears when computing regret, and a factor of 1/2.
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In the following subsections, we will demonstrate a framework for regret minimization that
allows us to achieve both of these goals (under some fairly light computational assumptions on u).

3.1. Approachability for pseudonorms

In Section 2.3, we described the theory of Blackwell approachability for a distance metric defined
by the `∞ norm (i.e., ∣∣z∣∣∞ = maxi ∣zi∣). We begin here by describing a generalization of this
approachability theory to functions we refer to as pseudonorms and pseudodistances. A function
f ∶Rd → R≥0 is a pseudonorm if f(0) = 0, f is positive homogeneous (for all z ∈ Rd, α ∈ R≥0,
f(αz) = αf(z)), and f satisfies the triangle inequality (f(z + z′) ≤ f(z) + f(z′) for all z, z′ ∈
Rd). Note that unlike norms, pseudonorms may not satisfy definiteness and are not necessarily
symmetric; it may be the case that f(z) ≠ f(−z). However, all norms are pseudonorms. Note also
that by the positive homogeneity and the triangle inequality, a pseudonorm is a convex function. A
pseudonorm f defines a pseudodistance function df via: ∀z, z′ ∈ Rd, df(z, z′) = f(z − z′).

In order to effectively work with pseudodistances, it will be useful to define the dual set T∗f
associated to f as follows: T∗f = {θ∶ ∀z ∈ Rd, ⟨θ, z⟩ ≤ f(z)}. This coincides with the traditional
notion of duality in convex analysis; for example, when f is a norm, T∗f coincides with the dual
ball of radius one: T∗f = {θ∶ ∥θ∥∗ ≤ 1} (e.g., when f is the d-dimensional `∞ norm, T∗f is the d-
dimensional `1-ball). The following theorem relates the pseudodistance between z and a convex set
S to a convex optimization problem over the dual set.

Theorem 5 For any closed convex set S ⊂ Rd, the following equality holds for any z ∈ Rd:

df(z,S) = inf
s∈S
f(z − s) = sup

θ∈T∗
f

{θ ⋅ z − sup
s∈S

θ ⋅ s}.

Proof We adopt the standard definition and notation in optimization for an indicator function IK of
a set K: for any x, IK(x) = 0 if x is in K, +∞ otherwise. Define f̃ by f̃(s) = f(z−s) for all s ∈ Rd
and set g = IS.

By definition, the conjugate function of f is defined by: ∀y ∈ Rd, f∗(y) = supx∈Rd x ⋅ y − f(x).
Now, if y is in T∗f , then we have f∗(y) ≤ f(x) − f(x) = 0. Thus, since f(0) = 0, the supremum
in the definition of f∗ is achieved for x = 0 and f∗(0) = 0. Otherwise, if y /∈ T∗f , there exists
x ∈ X such that x ⋅ y > f(x). For that x, for any t > 0, by the positive homogeneity of f , we have
(tx) ⋅y −f(tx) = t(x ⋅ y − f(x)) > 0. Taking the limit t→ +∞, this shows that f∗(y) = +∞. Thus,
we have f∗(y) = IT∗

f
.

By definition, the conjugate function f̃∗ is defined for all θ by f̃∗(θ) = supx∈X x ⋅ θ−f(z −x) =
supu∈X(z − u) ⋅ θ − f(u) = f∗(−θ) + z ⋅ θ = IT∗

f
(−θ) + z ⋅ θ, which can also be derived from the

conjugate function calculus in Table B.1 of (Mohri et al., 2018).
It is also known that the conjugate function of the indicator function g is defined by g∗∶ θ ↦

sups∈S θ ⋅ s (Boyd and Vandenberghe, 2014). Since dom(f̃) = Rd and cont(g) = S, we have
dom(f̃) ∩ cont(g) = S ≠ ∅. Thus, for any convex and bounded set S in Rd, by Fenchel duality

10
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(Theorem 25, Appendix B), we can write:

df(z,S) = inf
s∈S
f(z − s)

= inf
s∈Rd

{f(z − s) + IS(s)} (def. of IS)

= sup
θ∈Rd

{−(IT∗
f
(−θ) + θ ⋅ z) − sup

s∈S
{−θ ⋅ s}} (Fenchel duality theorem)

= sup
−θ∈T∗

f

{−θ ⋅ z − sup
s∈S

{−θ ⋅ s}} (def. of IT∗
f
)

= sup
θ∈T∗

f

{θ ⋅ z − sup
s∈S

θ ⋅ s}. (change of variable)

This completes the proof.

We will primarily be concerned with the case where S is a convex cone. A convex cone is a set
C such that if x ∈ C, αx ∈ C for all α ≥ 0. In this case, Theorem 5 can be simplified to write df(z,C)
as a linear optimization problem over the intersection of T∗f and the polar cone of C.

Corollary 6 Let C be a convex cone, and let C○ = {y ∣ ⟨y, x⟩ ≤ 0∀x ∈ C} be the polar cone of C.
Fix a d-dimensional pseudonorm f and let TC

f = T∗f ∩ C○. Then for any z ∈ Rd,

df(z,C) = sup
θ∈TC

f

(θ ⋅ z).

3.2. From high-dimensional `∞ approachability to low-dimensional pseudonorm
approachability

In Section 2.3, we expressed the regret for a general regret minimization problem as the `∞ distance

Reg = T ⋅ d∞ ( 1

T

T

∑
t=1

u(pt, `t), (−∞,0]d) . (5)

In this section, we will demonstrate how to rewrite this in terms of a lower-dimensional pseudodis-
tance.

Consider the bilinear “basis map” ũ ∶ P ×L → Rnm given by ũ(p, `)i,j = pi`j . Note that every
bilinear function b∶P × L → R can be written in the form b(p, `) = ⟨ũ(p, `), v⟩ for some vector
v ∈ Rnm (i.e., the monomials in ũ form a basis for the set of biaffine functions on P ×L)7.

Let vi ∈ Rnm be the vector of coefficients corresponding to the component ui of u and consider
the function f(x) = max(maxi∈[d]⟨vi, x⟩,0). Note that f is a pseudonorm on Rnm; indeed, it’s
straightforward to see that f is non-negative and f(αx) = αf(x) for any α ≥ 0. In addition, let C
be the convex cone defined by C = {x ∣ ⟨x, vi⟩ ≤ 0∀i ∈ [d]}. We claim that that we can rewrite the
`∞ distance in (5) in the following way.

7. If it is helpful, one can think of ũ as the natural map from P×L to the tensor product P ⊗ L. The vectors vi can then
be thought of as elements of the dual space, each representing a linear functional on P ⊗ L.

11
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Theorem 7 We have that

d∞ ( 1

T

T

∑
t=1

u(pt, `t), (−∞,0]d) = df (
1

T

T

∑
t=1

ũ(pt, `t),C) . (6)

The dual set T∗f associated to this pseudonorm is given by:

T∗f = {θ̃ ∈ Rnm∶ ∀x ∈ Rnm, ⟨θ̃, x⟩ ≤ max
i∈[d]

⟨vi, x⟩}.

The following two properties of this dual set will be useful in the sections that follow. First, we
show that we can alternately think of T∗f as the convex hull of the vi.

Lemma 8 The dual set T∗f coincides with the convex hull of vis: T∗f = conv{v1, . . . , vd}.

Secondly, we show that the dual set T∗f is contained within the polar cone C○ of C.

Lemma 9 We have that T∗f ⊆ C○, where C○ = {y ∣ ⟨y, x⟩ ≤ 0∀x ∈ C}.

Proof By Lemma 8, it suffices to show that each vi ∈ C○, i.e., for each vi, that ⟨vi, x⟩ ≤ 0 for all
x ∈ C. However, this immediately follows by the definition of C, since each x ∈ C satisfies ⟨x, vi⟩ ≤ 0
for all i ∈ [d]. (An equivalent way of thinking about this is that C is already the polar cone of the
cone generated by the vi, so the vi must lie in the polar to C).

This allows us to simplify Corollary 6 even further.

Corollary 10 For this convex cone C and pseudonorm f , we have that for any z ∈ Rmn,

df(z,C) = sup
θ̃∈T∗

f

⟨θ̃, z⟩ .

Finally, we prove the following “separability” conditions for this approachability problem.

Lemma 11 The following two statements are true.

1. For any ` ∈ L, there exists a p ∈ P such that ũ(p, `) ∈ C.

2. For any θ̃ ∈ T∗f , there exists a p ∈ P such that ⟨θ̃, ũ(p, `)⟩ ≤ 0 for all ` ∈ L.

3.3. Algorithms for pseudonorm approachability

We now present an algorithm for pseudonorm approachability in the setting of Section 3.2 (i.e.,
for the bilinear function ũ and the convex cone C). Just as the algorithm in Section 2.3 for `∞-
approachability required an OLO algorithm for the simplex, this algorithm will assume we have ac-
cess to an OLO algorithm F̃ for the sets X = T∗f , and Y = − conv(ũ(P,L)) (recall that conv(ũ(P,L))
denotes the convex hull of the points ũ(p, `) ∈ Rnm for p ∈ P and ` ∈ L).

Our algorithm Ã is summarized above in Algorithm 2. We now have the following analogue of
Theorem 3.

12
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Algorithm 2: Description of Algorithm Ã for f -approachability

Initialize θ̃1 to an arbitrary point in T∗f ;

for t← 1 to T do
Choose pt ∈ P so that for all ` ∈ L, ⟨θ̃t, ũ(pt, `)⟩ ≤ 0 (such a pt is guaranteed to exist by the

second statement in Lemma 11);
Play action pt and receive as feedback `t ∈ L;
Set yt = −ũ(pt, `t);
Set θ̃t+1 = F̃(y1, y2, . . . , yt).

end

Theorem 12 The following guarantee holds for the pseudonorm approachability algorithm Ã:

Reg(Ã) = T ⋅ df (
1

T

T

∑
t=1

ũ(pt, `t),C) ≤ Reg(F̃).

Proof The first equality follows as a direct consequence of Theorem 7 (which proves that the df
distance to C is equal to the analogous `∞ distance to (−∞,0]d) and Theorem 3 (which shows that
this `∞ distance is equal to the regret of our regret minimization problem). It therefore suffices to
prove the second equality.

Note that

df (
1

T

T

∑
t=1

ũ(pt, `t),C) = sup
θ̃∈T∗

f

⟨θ̃, 1

T

T

∑
t=1

ũ(pt, `t)⟩

= − inf
θ̃∈X

⟨θ̃, 1

T

T

∑
t=1

(−ũ(pt, `t))⟩

= 1

T
Reg(F̃) − 1

T

T

∑
t=1

⟨θ̃t,−ũ(pt, `t)⟩

≤ 1

T
Reg(F̃).

Here, the first equality holds as a consequence of Corollary 10, and the last inequality holds
since (by choice of pt in step 2a) ⟨θ̃t, ũ(pt, `)⟩ ≤ 0 for all t ∈ [T ].

If we choose F̃ to be FTRL with a quadratic regularizer, Lemma 1 implies the following result.

Theorem 13 Let u∶P → L be a bilinear regret function. Then there exists a regret minimization
algorithm Ã for u with regret

Reg(Ã) = O(Dz(diamP)(diamL)
√
T ),

where Dz = maxi∈[d] ∣∣vi∣∣. If we let

λ = max
i∈[d]

∣∣vi∣∣∞ = max
i∈[d],j∈[m],k∈[n]

∣ ∂2ui
∂pj∂`k

∣ ,

13
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then this regret bound further satisfies

Reg(Ã) = O(λnm
√
T ).

Proof To see the first result, note that Lemma 1 directly implies a bound ofO(diam(X)diam(Y)
√
T ),

where X = T∗f and Y = − conv(ũ(P,L)). We’ll now proceed by simplifying diam(X) and diam(Y).
First, for X, recall from Lemma 8 that X = T∗f is the convex hull of the d vectors vi ∈ Rnm, so
diam(X) = O(maxi∈[d] ∣∣vi∣∣) = O(Dz). Second, for Y, note that diam(Y) = O(maxy∈Y ∣∣y∣∣) =
O(maxp∈P,`∈L ∣∣ũ(p, `)∣∣). But ∣∣ũ(p, `)∣∣ = ∣∣p∣∣ ⋅ ∣∣`∣∣, so diam(Y) = O (maxp∈P ∣∣p∣∣ ⋅max`∈L ∣∣`∣∣) =
O((diamP)(diamL)). Combining these, we obtain the first inequality.

The second result directly follows from the following three facts: i. diamP = O(
√
n) (since

P ⊆ [−1,1]n, ii. diamL = O(
√
m) (since L ⊆ [−1,1]m), and iii. Dz ≤ λ

√
mn.

Theorem 13 shows that in settings where λ is constant (which is true in all the settings we
consider), there exists an algorithm where Reg(Ã) = poly(n,m)

√
T ; notably, Reg(Ã) does not

depend on the dimension d, which in many cases can be thought of as the number of benchmarks of
comparison for our learning algorithm.

In the following two sections, we will show how to strengthen this result in two different ways.
First, we will show that (modulo some fairly mild computational assumptions) it is possible to
efficiently implement the algorithm of Theorem 13. Second, we will show that by using a different
choice of regularizer, we can recover exactly the regret obtained in Corollary 4.

3.4. Efficient algorithms for pseudonorm approachability

3.4.1. COMPUTATIONAL ASSUMPTIONS

In this section we will discuss how to transform the algorithm in Theorem 13 into a computationally
efficient algorithm. Note that without any constraints on L, P, and u or how they are specified,
performing any sort of regret minimization efficiently is a hopeless task (e.g., consider the case
where it is computationally hard to even determine membership in P). We’ll therefore make the
following three structural / computational assumptions on L, P, and u.

First, we will restrict our attention to cases where the loss set L is “orthant-generating”. A
convex subset S of Rd is orthant-generating if S ⊆ [0,∞)d and for each i ∈ [d], there exists an
λi > 0 such that λiei ∈ S (as part of this assumption, we will also assume we have access to the
values λi). Note that many common choices for L (e.g., [0,1]m, ∆m, intersections of other `p balls
with the positive orthant) are all orthant-generating.

Second, we will assume we have an efficient separation oracle for the action set P; that is,
an oracle which takes a p ∈ Rn and outputs (in time poly(n)) either that p ∈ P or a separating
hyperplane h ∈ Rn such that ⟨p, h⟩ > maxp′∈P⟨p′, h⟩.

Finally, we will assume we have access to what we call an efficient regret oracle for u. Given a
collection of R action/loss pairs (pr, `r) ∈ P×L and R positive constants αr ≥ 0, an efficient regret
oracle can compute (in time poly(n,m,R)) the value of maxi∈[d]∑Rr=1 αrui(pr, `r). This can be
thought of as evaluating the function Reg(p, `) for a pair of action and loss sequences that take on
the action/loss pair (pr, `r) an αr/∑r′ αr′ fraction of the time. At a higher level, having access to
an efficient regret oracle means that a learner can efficiently compute their overall regret at the end
of T rounds (it is hard to imagine how one could efficiently minimize regret without being able to
compute it).
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3.4.2. EXTENDING THE DUAL SET

One of the ingredients we will need to implement algorithm Ã is a membership oracle for the dual
set T∗f (e.g. in order to perform OLO over this dual set). To check whether θ̃ ∈ T∗f , it suffices to
check whether ⟨θ̃, x⟩ ≤ maxi∈[d]⟨vi, x⟩ for all x ∈ Rnm, so in turn, it will be useful to be able to
compute the function maxi∈[d]⟨vi, x⟩ for any x ∈ Rnm.

Computing this maximum is very similar8 to what is provided by our regret oracle: note that by
writing ui(pr, `r) as ⟨vi, ũ(pr, `r)⟩, we can think of the regret oracle providing the value of:

max
i∈[d]

⟨vi,
R

∑
r=1

αrũ(pr, `r)⟩ .

If it were possible to write any x ∈ Rd in the form ∑Rr=1 αrũ(pr, `r), we would be done.
However, this may not be possible: in particular, ∑Rr=1 αrũ(pr, `r) must lie in the convex cone
cone(ũ(P,L)) generated by all points of the form ũ(p, `).

We will therefore briefly generalize the theory of Section 3.1 to cases where we are only able to
optimize over an extension of the dual set. Given a convex cone Z, let T∗f (Z) = {θ ∣ ∀z ∈ Z, ⟨θ, z⟩ ≤
f(z)}. Note that T∗f ⊆ T∗f (Z) (since in T∗f , ⟨θ, z⟩ ≤ f(z) must hold for all z in the ambient space).
The following lemma shows that if z is in Z, to maximize a linear function over T∗f it suffices to
maximize it over T∗f (Z).

Lemma 14 Let Z be an arbitrary convex cone. Then if z ∈ Z, the following equalities hold:

sup
θ∈T∗

f

⟨θ, z⟩ = sup
θ∈T∗

f
(Z)

⟨θ, z⟩ = f(z).

Now, consider the specific convex cone Z = cone(ũ(P,L)). Given Lemma 14, it is straightfor-
ward to check that Theorem 12 continues to hold even if the domain X of the OLO algorithm F̃ is
set to T∗f (Z) instead of T∗f . In particular, the first equality in the proof of Theorem 12 is still true
when T∗f is replaced by T∗f (Z), since 1

T ∑t ũ(pt, `t) ∈ Z.
There is one other issue we must deal with: it is possible that T∗f (Z) is significantly larger than

T∗f , and therefore an OLO algorithm with domain T∗f (Z) might incur more regret than that of T∗f .
In fact, there are cases where the set T∗f (Z) is unbounded. Nonetheless, the following lemma shows
that for OLO with a quadratic regularizer, we will never encounter very large values of θ̃.

Lemma 15 Let R(θ̃) = ∣∣θ̃∣∣2, and fix a z ∈ Z and η > 0. Let

θ̃opt = argmin
θ̃∈T∗

f
(Z)

(ηR(θ̃) − ⟨θ̃, z⟩) .

Then ∣∣θ̃opt∣∣ ≤ diam(T∗f ).

8. In fact, in almost all practical cases where we have an efficient regret oracle, it is possible by a similar computation
to directly compute this maximum. Here we describe an approach that works in a blackbox way given only a strict
regret oracle – if you are accept the existence of an oracle that can optimize linear functions over the vi, you can skip
this subsection.
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Lemma 15 therefore implies that a quadratic-regularized OLO algorithm F̃ will only output
values of θ̃ with ∣∣θ̃∣∣ ≤ diam(T∗f ), and therefore we can safely set X = T∗f ∩ {θ ∣ ∣∣θ∣∣ ≤ ρ}, where
ρ = Θ(diam(T∗f )) is an efficiently computable upper bound on diam(T∗f ). This guarantees that
diam(X) = O(diam(T∗f )), and thus the regret guarantees of Theorem 13 remain unchanged.

3.4.3. CONSTRUCTING A MEMBERSHIP ORACLE

We will now demonstrate how to use our regret oracle to construct a membership oracle for the
expanded set X defined in the previous section. We first show that it is possible to check for mem-
bership in Z (and further, when z ∈ Z, write z as a convex combination of the generators of Z).

Lemma 16 Given a point z ∈ Rnm, we can efficiently check whether z ∈ Z. If z ∈ Z, we can also
efficiently write z in the form ∑mk=1 αkũ(pk, `k) (for an explicit choice of pk, `k, and αk).

Note that expressing z in the form ∑mk=1 αkũ(pk, `k) allows us to directly apply our efficient
regret oracle (with R =m). We therefore gain the following optimization oracle as a corollary.

Corollary 17 Given an efficient regret oracle, for any z ∈ Z we can efficiently (in time poly(n,m))
compute maxi∈[d]⟨vi, z⟩.

Finally, we will show that given these two results, we can efficiently construct a membership
oracle for our set X. To do this, we will need the following fact (loosely stated; see Lemma 26 in
Appendix B for an accurate statement): it is possible to minimize a convex function over a convex
set as long as one has an evaluation oracle for the function and a membership oracle for the convex
set.

Lemma 18 Given an efficient regret oracle for u, we can construct an efficient membership oracle
for the set X.

3.4.4. IMPLEMENTING REGRET MINIMIZATION

Equipped with this membership oracle, we can now state and prove our main theorem.

Theorem 19 Assume that:

1. The convex set L is orthant-generating.

2. We have an efficient separation oracle for the convex set P.

3. We have an efficient regret oracle for the regret function u.

Then it is possible to implement the algorithm of Theorem 13 in poly(n,m) time per round.

Proof There are two steps of unclear computational complexity in the description of the algorithm
in Section 3.3: step 2a, where we find a pt such that ⟨θ̃t, ũ(pt, `)⟩ ≤ 0 for all ` ∈ L, and step 2d,
where we have to run our OLO subalgorithm over T∗f (which we specifically instantiate as FTRL
with a quadratic regularizer).

We begin by describing how to perform step 2a efficiently. Fix a θ̃t. Note that since L is
orthant-generating, to check whether ⟨θ̃t, ũ(pt, `)⟩ ≤ 0 for all ` ∈ L, it suffices to check whether
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ũ(pt, ek) ≤ 0 for each unit vector ek ∈ Rm. Therefore, to find a valid pt we must find a point pt ∈ P
that satisfies an additional m explicit linear constraints. Since we have an efficient separation oracle
for P, this is possible in poly(n,m) time.

To implement the FTRL algorithm F over the set X = T∗f with a quadratic regularizer, each
round we must find the minimizer of the convex function g(θ̃) = R(θ̃) + η∑t−1

s=1⟨θ̃, ũ(ps, `s)⟩ over
the convex set X. To do this, it suffices to exhibit an evaluation oracle for g and a membership oracle
for X. To evaluate g, note that we simply need to be able to compute R(θ̃) (which is a Euclidean
distance in Rmn) and ∑t−1

s=1⟨θ̃, ũ(ps, `s)⟩ which we can do in O(mn) time by keeping track of the
cumulative sum∑t−1

s=1 ũ(ps, `s) and computing a single inner product in Rmn. A membership oracle
for X is provided by Lemma 18.

3.5. Recovering `∞ regret via maxent regularizers

One interesting aspect of this reduction to pseudonorm approachability is that, in some cases, the
regret bound of O(

√
T log d) achievable via `∞-approachability (Corollary 4) sometimes outper-

forms the regret bound of O(λmn
√
T ) achieved by pseudonorm approachability (Theorem 13),

for example when d = poly(m,n). Of course, this comparison is not completely fair: in both
cases there is flexibility to specify the underlying OLO algorithm, and the O(

√
T log d) bound uses

an FTRL algorithm with a negative entropy regularizer, whereas our pseudonorm approachability
bound uses an FTRL algorithm with a quadratic regularizer. After all, there are well-known cases
(e.g. for OLO over a simplex, as in `∞-approachability) where the negative entropy regularizer leads
to exponentially better (in d) regret bounds than the quadratic regularizer.

In this subsection, we will show that there exists a different regularizer for pseudonorm ap-
proachability – one we call a maxent regularizer – which recovers the O(

√
T log d) regret bound of

Corollary 4. In doing so, we will also better understand the parallels between the regret minimiza-
tion algorithm A (which works via reduction to `∞-approachability in a d-dimensional space) and
the regret minimization algorithm Ã (which works via reduction to pseudonorm approachability in
an nm-dimensional space).

Let V be the d-by-nm matrix whose ith row equals vi. Note that V allows us to translate
between analogous concepts/quantities for A and Ã in the following way.

Lemma 20 The following statements are true:

• For any p ∈ P and ` ∈ L, u(p, `) = V ũ(p, `).

• The dual set T∗f = V
T∆d (i.e., θ̃ ∈ T∗f iff there exists a θ ∈ ∆d such that θ̃ = V T θ).

• If θ ∈ ∆d and θ̃ = V T θ ∈ T∗f , then for any p ∈ P and ` ∈ L, ⟨θ, u(p, `)⟩ = ⟨θ̃, ũ(p, `)⟩.

• Fix θt ∈ ∆d and let θ̃ = V T θ. If pt satisfies ⟨θt, u(pt, `)⟩ ≤ 0 for all ` ∈ L, then pt also satisfies
⟨θ̃t, ũ(pt, `)⟩ ≤ 0 for all ` ∈ L.

Proof The first statement follows from the fact that V ũ(p, `)i = ⟨vi, ũ(p, `)⟩ = u(p, `)i. The second
claim follows as a consequence of Lemma 8 (that T∗f is the convex hull of the vectors vi). The
third claim follows from the first claim: ⟨θ, u(p, `)⟩ = ⟨θ, V ũ(p, `)⟩ = ⟨V T θ, ũ(p, `)⟩ = ⟨θ̃, ũ(p, `)⟩.
Finally, the fourth claim follows directly from the third claim.
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Now, fix a regret minimization problem (specified by P, L, and u) and consider the execution of
algorithm A on some specific loss sequence ` = (`1, `2, . . . , `T ). Each round t, A runs the entropy-
regularized FTRL algorithm F to generate a θt ∈ ∆d (as a function of the actions and losses up until
round t) and then uses θt to select a pt that satisfies ⟨θt, u(pt, `)⟩ ≤ 0 for all ` ∈ L. If we execute
algorithm Ã for the same regret minimization problem on the same loss sequence, each round t, Ã
runs some (to be determined) FTRL algorithm F̃ to generate a θ̃t ∈ T∗f , and then uses θ̃t to select a
pt that satisfies ⟨θ̃t, ũ(pt, `)⟩ for all ` ∈ L. Lemma 20 shows that if θ̃t = V T θt for each t, then both
algorithms will generate exactly the same sequence of actions in response to this loss sequence9,
and hence the same regret.

The question then becomes: how do we design an OLO algorithm F̃ that outputs θ̃t = V T θt each
round that F would output θt? Recall that if F is an FTRL algorithm with regularizer R ∶ ∆d → R,
then

θt = argmin
θ∈∆d

(R(θ) +
t−1

∑
s=1

⟨θ, u(pt, `t)⟩) .

Define R̃ ∶ T∗f → R via

R̃(θ̃) = min
θ∈∆d

V T θ=θ̃

R(θ). (7)

We claim that if we let F̃ be the FTRL algorithm that uses regularizer R̃, then F̃ will output our
desired sequence of θ̃t.

Lemma 21 The following equality holds for the output θ̃t:

θ̃t = argmin
θ̃∈T∗

f

(R̃(θ̃) +
t−1

∑
s=1

⟨θ̃, ũ(pt, `t)⟩) = V T θt.

Proof Note that we can write

9. Technically, there may be some leeway in terms of which pt to choose that e.g. satisfies ⟨θt, u(pt, `)⟩ ≤ 0 for all
` ∈ L, and the two different procedures could result in different choices of pt. But if we break ties consistently (e.g.
add the additional constraint of choosing the pt that maximizes the inner product of pt with some generic vector),
then both procedures will produce the same value of pt.
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θ̃t = argmin
θ̃∈T∗

f

(R̃(θ̃) +
t−1

∑
s=1

⟨θ̃, ũ(pt, `t)⟩)

= argmin
θ̃∈T∗

f

⎛
⎜
⎝

⎛
⎜
⎝

min
θ∈∆d

V T θ=θ̃

R(θ)
⎞
⎟
⎠
+
t−1

∑
s=1

⟨θ̃, ũ(pt, `t)⟩
⎞
⎟
⎠

= argmin
θ̃∈T∗

f

⎛
⎜
⎝

min
θ∈∆d

V T θ=θ̃

(R(θ) +
t−1

∑
s=1

⟨θ, u(pt, `t)⟩)
⎞
⎟
⎠

= V T argmin
θ∈∆d

(R(θ) +
t−1

∑
s=1

⟨θ, u(pt, `t)⟩)

= V T θt.

The third equality follows from the fact that if θ̃ = V T θ, then ⟨θ, u(p, `)⟩ = ⟨θ̃, ũ(p, `)⟩ (by
Lemma 20).

Corollary 22 Let F be an FTRL algorithm over ∆d with regularizer R, and let F̃ be an FTRL
algorithm over T∗f with regularizer R̃. Then Reg(A) = Reg(Ã).

We now consider the specific case where R is the negentropy function; i.e., for θ ∈ ∆d, R(θ) =
−H(θ) = ∑di=1 θi log θi. For this choice of R, R̃ becomes

R̃(θ̃) = − max
θ∈∆d

V T θ=θ̃

H(θ). (8)

In other words, −R̃(θ̃) is the maximum entropy of any distribution θ in ∆d that satisfies the nm
linear constraints imposed by V T θ = θ̃. This is exactly an instance of the Maxent problem studied
in (Berger et al., 1996; Rosenfeld, 1996; Pietra et al., 1997; Dudı́k et al., 2007) and (Mohri et al.,
2018)[chapter 12].

It is known (Pietra et al., 1997; Dudı́k et al., 2007; Mohri et al., 2018) that the entropy maximiz-
ing distribution is a Gibbs distribution. In particular, the θ maximizing the expression in (8) satisfies
(for some real constants λjk for j ∈ [n], k ∈ [m])

θi =
exp (∑nj=1∑mk=1 λjkvijk)

Z(λ)
, (9)

where Z(λ) (the “partition function”) is defined via

Z(λ) =
d

∑
i=1

exp
⎛
⎝

n

∑
j=1

m

∑
k=1

λjkvijk
⎞
⎠
. (10)

Generally, there is exactly one choice of λjk which results in V T θ = θ̃ (since there are mn free
variables and mn linear constraints). For this optimal λ, it is known that the maximum entropy is
given by ⟨λ, θ̃⟩−logZ(λ). If it is possible to solve this system for λjk and evaluate Z(λ) efficiently,
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we can then evaluate R̃ efficiently. In Section 4.1 we will see how to do this for the specific case of
swap regret (where we are helped by the fact that (9) guarantees that θ is a product distribution).

Regardless of how we compute the maxent regularizer R̃, efficient computation leads to an
efficient O(

√
T log d) regret minimization algorithm.

Corollary 23 If there exists an efficient (poly(n,m) time) algorithm for computing the maxent
regularizer R̃(θ̃), then there exists a regret minimization algorithm Ã for u with regretO(

√
T log d)

and that can be implemented in poly(n,m) time per round.

4. Applications

4.1. Swap regret

Recall that in the setting of swap regret, the action set is P = ∆K (distributions over K actions),
the loss set is L = [0,1]K , and the swap regret of playing a sequence of actions p on a sequence of
losses ` is given by

SwapReg(p, `) = max
π∶[K]→[K]

T

∑
t=1

K

∑
i=1

(pti`ti − pti`tπ(i)).

In words, swap regret compares the total loss achieved by this sequence of actions with the loss
achieved by any transformed action sequence formed by applying an arbitrary “swap function” to
the actions (i.e., always playing action π(i) instead of action i). Swap regret minimization can be
directly written as an `∞-approachability problem for the bilinear function u∶P ×L→ RKK

where

uπ(p, `) =
K

∑
i=1

(pi`i − pi`π(i)).

(here we index u by the KK functions π ∶ [K] → [K]). Note that the negative orthant is indeed
separable with respect to u since if we let p∗(`) = argminp∈P⟨p, `⟩, uπ(p, `) ≤ 0 for any swap
function π.

We can now apply the theory developed in Section 3. First, since m = n = K and the maxi-
mum absolute value of any coefficient in u is 1, Theorem 13 immediately results in a swap regret
algorithm with regret O(K2

√
T ). Moreover, since we can write

max
π∶[K]→[K]

T

∑
t=1

K

∑
i=1

(pti`ti − pti`tπ(i)) =
K

∑
i=1

max
j∈[K]

T

∑
t=1

(pti`ti − pti`tj),

we can compute SwapReg efficiently. By Theorem 19, we can therefore implement thisO(K2
√
T )-

regret algorithm efficiently (in poly(K) time per round). We can improve upon this regret bound
by noting that diam(P) = O(1), diam(L) = O(

√
K), and Dz = O(

√
K) (the coefficient vec-

tor vπ corresponding to uπ(p, `) contains at most 2K coefficients that are ±1). It follows that
Dz(diamP)(diamL) = O(K), and it follows from the first part of Theorem 13 that the regret of
the aforementioned algorithm is actually only O(K

√
T ).

This is still a factor of approximately O(
√
K) larger than the optimal O(

√
TK logK) bound.

To achieve the optimal regret bound, we will show how to compute the maxent regularizer for
swap regret (and hence can efficiently implement an O(

√
T log d) = O(

√
TK logK) algorithm via
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Corollary 23). Recall that the maxent regularizer R̃(θ̃) is defined for θ̃ ∈ V T∆d is the negative of
the maximum entropy of a distribution θ ∈ ∆d that satisfies θ̃ = V T θ. For our problem, θ̃ is (K2)-
dimensional, and this imposes the following linear constraints on θ (which we view as a distribution
over swap functions π):

θ̃ij = − ∑
π∣π(i)=j

θπ for j ≠ i

θ̃ii = 1 − ∑
π∣π(i)=i

θπ.

Now, by the characterization presented in (9)10, we know the entropy maximizing θ satisfies
(for some K2 constants λij)

θπ =
exp (∑Ki=1 λiπ(i))

∑π′ exp (∑Ki=1 λiπ′(i))
=

∏K
i=1 exp (λiπ(i))

∑π′∏K
i=1 exp (λiπ′(i))

=
K

∏
i=1

exp(λiπ(i))
∑Kj=1 exp(λij)

.

In particular, this shows that the entropy maximizing distribution θ is a product distribution
over the set of swap functions π where for each i ∈ [K] the value of π(i) is chosen independently.
Moreover, from θ̃ we can recover the overall marginal probability qij = Pπ∼θ[π(i) = j] (it is −θ̃ij if
j ≠ i and 1 − θ̃ii if j = i). The entropy of this product distribution can therefore be written as:

H(θ) =
K

∑
i=1

H(π(i)) = −
K

∑
i=1

K

∑
j=1

qij log qij .

Our regularizer R̃(θ̃) is simply −H(θ) and can clearly be efficiently computed as a function of θ̃. It
follows from Corollary 23 that there exists an efficient (poly(K) time per round) regret minimiza-
tion algorithm for swap regret that incurs O(

√
T log d) = O(

√
TK logK) worst-case regret.

Finally, we briefly remark that the pseudonorm f we construct here is closely related to the `1,∞
group norm defined overK-by-K square matrices as the `1 norm of vector formed by the `∞ norms
of the rows (i.e., ∣∣M ∣∣1,∞ = ∑Ki=1 maxj∈[K] ∣Mij ∣). This is not unique to swap regret; in many of our
applications, the relevant pseudonorm can be thought of as a composition of multiple smaller norms
(often `1 or `∞ norms).

4.2. Procrustean swap regret

To illustrate the power of Theorem 19, we present a toy variant of swap regret where the learner must
compete against an infinite set of swap functions (in particular, all orthogonal linear transformations
of their sequence of actions) and yet can do this efficiently while incurring low (polynomial in the
dimension of their action set) regret.

In this problem, the action set P = {x ∈ Rn ; ∣∣x∣∣2 ≤ 1} is the set of unit vectors with norm at
most 1 and the loss set L = [−1,1]n. The learner would like to minimize the following notion of
regret:

ProcrustesReg(p, `) = max
Q∈O(n)

T

∑
t=1

(⟨pt, `t⟩ − ⟨Qpt, `t⟩). (11)

10. In particular, in the case of swap regret we have that vπ,i,j = 1(k = j)−1(k = π(j)). Since the first term (1(k = j))
does not depend on π, we can ignore its contribution to θπ (it cancels from the numerator and denominator).
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Here, O(n) is the set of all orthogonal n-by-n matrices. We call this notion of regret Procrustean
swap regret due to its similarity with the orthogonal Procrustes problem from linear algebra, which
(loosely) asks for the orthogonal matrix which most closely maps one sequence of points x1 onto
another sequence of points x2 (in our setting, we intuitively want to map x onto −` to minimize the
loss of our benchmark). See Gower and Dijksterhuis (2004) for a more detailed discussion of the
Procrustes problem. Regardless, note that we can compute ProcrustesReg(p, `) efficiently, since
we have an efficient membership oracle for the convex hull conv(O(n)) of the set of orthogonal
matrices (specifically, an n-by-n matrix M belongs to conv(O(n)) iff all its singular values are at
most 1 in absolute value).

In our approachability framework, we can capture this notion of regret with the bilinear function
u(p, `) with coordinates indexed by Q ∈ O(n) with u(p, `)Q = ⟨p, `⟩ − ⟨Qp, `⟩ (which is separable
with respect to the negative orthant, since for p = −`/∣∣`∣∣2, u(p, `)Q ≤ 0). Since all the conditions of
Theorem 19 hold, there is an efficient learning algorithm which incurs at mostO(

√
nT ) Procrustean

swap regret (in particular, diamP = O(1), diamL = O(
√
n), and Dz = O(1)).

4.3. Converging to Bayesian correlated equilibria

Swap regret has the nice property that if in a repeated n-player normal-form game, all players run a
low-swap regret algorithm to select their actions, their time-averaged strategy profile will converge
to a correlated equilibrium (indeed, this is one of the major motivations for studying swap regret).

In repeated Bayesian games (games where each player has private information drawn inde-
pendently from some distribution each round) the analogue of correlated equilibria is Bayesian
correlated equilibria. Playing a repeated Bayesian game requires a contextual learning algorithm,
which can observe the private information of the player (the “context”) and select an action based on
this. Mansour et al. (2022) show that there is a notion of regret (that we call BayesSwapReg) such
that if all learners are playing an algorithm with low BayesSwapReg, then over time they converge
on average to a Bayesian correlated equilibrium. However, while Mansour et al. (2022) provide a
low BayesSwapReg algorithm, their algorithm is not provably efficient (it requires finding the fixed
point of a system of quadratic equations); by applying our framework, we show that it is possible to
obtain a polynomial-time, low-BayesSwapReg algorithm for this problem.

Formally, we study the following full-information contextual online learning setting. As before,
there are K actions, but there are now C different contexts (“types”). Every round t, the adversary
specifies a loss function `t ∈ L = [0,1]CK , where `t,i,c represents the loss from playing action i
in context c. Simultaneously, the learner specifies an action pt ∈ P = ∆([K])C ⊂ RCK which we
view as a function mapping each context to a distribution over actions. Overall, the learner receives
expected utility ∑Cc=1 PC[c]∑Ki=1 pt(c)i`t,i,c this round (the learner’s context is drawn iid from the
publicly known distribution C each round). In this formulation BayesSwapReg can be written in the
form

BayesSwapReg = max
κ,πc

T

∑
t=1

C

∑
c=1

P
C
[c]

K

∑
i=1

(pt(c)i`t,i,c − pt(κ(c))i`t,πc(i),c) , (12)

where the maximum is over all “type swap functions” κ∶ [C] → [C] and C-tuples of “action-
deviation swap functions” πc∶ [K] → [K]. It is straightforward to verify that BayesSwapReg (as
written in (12)) can be written as an `∞-approachability problem for a bilinear function u∶P ×L →
Rd for d = CCKKC . The theory of `∞-approachability guarantees the existence of an algorithm
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with O(
√
T log d) = O(

√
T (C logC +KC logK)) regret, but this algorithm has time/space com-

plexity O(d) and is very inefficient for even moderate values of C or K.
Instead, in Appendix C, we show that BayesSwapReg can be written in the form

BayesSwapReg =
C

∑
c=1

max
c′∈[C]

K

∑
i=1

max
j∈[K]

T

∑
t=1

P
C
[c] (pt(c)i`t,i,c − pt(c′)i`t,j,c) .

This allows us to evaluate BayesSwapReg in poly(C,K,T ) time and apply our pseudonorm ap-
proachability framework. Directly from Theorems 13 and 19, we know that there exists an efficient
(poly(C,K) time per round) learning algorithm that incurs at most O(K2C2

√
T ) swap regret. As

with swap regret, we can tighten this bound somewhat by examining the values of diam(X) and
diam(Y) and show that this algorithm actually incurs at most O(KC

√
T ) regret (details left to

Appendix C).
This is within approximately an O(

√
KC) factor of optimal. Interestingly, unlike with swap

regret, it is unclear if it is possible to efficiently solve the relevant entropy maximization problem
for Bayesian swap regret (and hence achieve the optimal regret bound). We pose this as an open
question.

Open Question 1 Is it possible to efficiently (in poly(K,C) time) evaluate the maximum entropy
regularizer R̃(θ̃) for the problem of Bayesian swap regret?

4.4. Reinforcement learning in constrained MDPs

We consider episodic reinforcement learning in constrained Markov decision processes (MDPs).
Here, the agent receives a vectorial reward (loss) in each time step and aims to find a policy that
achieves a certain minimum total reward (maximum total loss) in each dimension. Approachability
has been used to derive reinforcement learning algorithms for constrained MDPs before (Miryoosefi
et al., 2019; Yu et al., 2021; Miryoosefi and Jin, 2021), however, exclusively using `2 geometry. As
a result, these methods aim to bound the `2 distance to the feasible set and the bounds scale with
the `2 norm of the reward vector. This deviates from the more common, and perhaps more natural,
formulation for constrained MDPs studied in other works (Efroni et al., 2020; Brantley et al., 2020;
Ding et al., 2021). Here, each component of the loss vector is within a given range (e.g. [0,1]) and
the goal is to minimize the largest constraint violation among all components. We will show that
`∞-approachability is the natural approach for this problem and yields algorithms that avoid the

√
d

factor in the regret, where d is the number of constraints, that algorithms based on `2 approachability
suffer. While the number of constraints d can sometimes be small, there are many applications
where d is large and a poly(d) dependency in the regret is undesirable, even when a computational
dependency on d is manageable. For example, constraints may arise from fairness considerations
like demographic disparity that ensure that the policy behaves similarly across all protected groups.
This would require a constraint for each pair of groups which could be very many.

The formal problem setup is as follows. We consider an MDP (X,A, P,{`}t∈[T ]) defined by a
state space X, an action set A, a transition function P ∶X ×A ×X → [0,1], where P (x′∣x, a) is the
probability of reaching state x′ when choosing action a at state x, and `∶X ×A → [0,1]d the loss
vector function with ` = (`1, . . . , `d). We work with losses for consistency with the other sections
but our results also readily apply to rewards. To simplify the presentation, we will assume a layered
MDP with L+1 layers with X = ⋃Ll=0 Xl, Xi∩Xj = ∅ for i ≠ j, and with X0 = {x0} and XL = {xL}.
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We define a (stochastic) policy π as mapping from A ×X → [0,1] where π(a∣x) represents the
probability of action a in state x. Given a policy π and the transition probability P , we define the
occupancy measure qP,π as the probability of visiting state-action pair (x, a) when following policy
P (Altman, 1999; Neu et al., 2012): qP,π(x, a) = P[x, a ∣ P,π]. We will denote by ∆(P ) the set of
all occupancy measures, obtained by varying the policy π. It is known that ∆(P ) forms a polytope.

We consider the feasibility problem in CMDPs with stochastic rewards and unknown dynamics.
The loss vector `∶X × A → [0,1]d is the same in all episodes, L = {`}. Our goal is to learn a
policy π ∈ Π such that ⟨qP,π, `⟩ ≤ c for a given threshold vector c ∈ [0, L]d. The payoff function

u∶∆(P ) ×L → Rd is defined as: u(p, `) = [
p⋅`1−c1

⋮
p⋅`d−cd

]. The set S = (−∞,0]d is separable as long as

there is a policy that satisfies all constraints. Although we define the payoff function u in terms of
occupancy measures ∆(P ), they will be implicit in the algorithm.

To aide the comparison of our approach to existing work in this setting, we omit the dimen-
sionality reduction with pseudonorms in this application and directly work in the d-dimensional
space. We will analyze Algorithm 1 for `∞ approachability, which can be implemented in MDPs
by adopting the following oracles from prior work (Miryoosefi et al., 2019) on CMDPs:

• BESTRESPONSE-Oracle For a given θ ∈ Rd, this oracle returns a policy π that is ε0-optimal
with respect to the reward function (s, a)↦ −⟨`(s, a), θ⟩.

• EST-Oracle For a given policy π, this oracle returns a vector z ∈ [0, L]d such that ∥z −
⟨qP,π, `⟩∥∞ ≤ ε1.

Consider first the case without approximation errors, ε0 = ε1 = 0, for illustration. For a vector
θt ∈ ∆d+1, let θ′t ∈ Rd be the vector that contains only the first d dimensions of θt. When we call
the BESTRESPONSE oracle with vector θ′t, it returns a policy πt such that its occupancy measure
satisfies ⟨qP,πt ,−θ′t ⋅ `⟩ ≥ maxq⋆∈∆(P )⟨q⋆,−θ′t ⋅ `⟩. We can use this to show:

θt ⋅ [u(qP,πt , `), 0] = θ′t ⋅ u(qP,πt , `) = ⟨qP,πt , θ′t ⋅ `⟩ − c ≤ ⟨q⋆, θ′t ⋅ `⟩ − c ≤ 0

where q⋆ is the occupancy measure of a policy that satisfies all constraints.
Thus qP,πt is a valid choice for pt in Line 3 of Algorithm 1. Passing the policy πt to the EST

yields ẑt = u(qP,πt , `) + c; this is enough to compute

yt = −[ẑt − c, 0] = −[u(pt, `), 0]

in Line 5 of Algorithm 111. Finally, we obtain θt+1 ∈ Rd+1 by passing y1, y2, . . . , yt to a negative
entropy FTRL algorithm as the OLO algorithm F (Line 6 of Alg. 1).

Using similar steps as for Theorem 3 and relying on the regret bound for F in Lemma 2, we can
show the following guarantee:

Proposition 24 Consider a constrained episodic MDP with horizon L, fixed loss vectors ` with
`(s, a) ∈ [0,1]d for all state-action pairs (s, a) ∈ X×A and a constraint threshold vector c ∈ [0, L]d.
Assume that there exists a feasible policy that satisfies all constraints and let π̄ be the mixture policy

11. Since FTRL with negative entropy regularizer operates on the simplex with ∥θt∥ = 1, we pad the inputs with a zero
dimension obtain an OLO algorithm on the interior of ∆d.
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of π1, . . . , πT generated by the approach described above. Then the maximum constraint violation
of π̄ satisfies

max
i∈[d]

{qP,π̄ ⋅ `i − ci} = d∞ ( 1

T

T

∑
t=1

u(qP,πt , `),S) ≤ O
⎛
⎝
L

√
log(d)
T

⎞
⎠
+ ε0 + 2ε1.

Applying the results from prior work (Miryoosefi et al., 2019) based on `2 approachability
would yield a bound of (L

√
d + ε1)T−1/2 + ε0 + 2ε1 in our setting with an additional

√
d and ε1

factor in front of T−1/2. For the sake of exposition, we illustrated the benefit of `∞ approachability
using the oracles adopted by Miryoosefi et al. (2019), but our approach can also be applied with
similar advantages to other works that make oracle calls explicit (Yu et al., 2021; Miryoosefi and
Jin, 2021).

5. Conclusion

We presented a new algorithmic framework for `∞-approachability, which we argued is the ap-
propriate notion of approachability for a variety of applications such as regret minimization. Our
algorithms leverage a key dimensionality reduction and a reduction to an online linear optimization.
These ideas can be similarly used to derive useful algorithms for approachability with alternative
distance metrics. In fact, as already pointed out, some of our algorithms can be equivalently viewed
as the result of a reduction to an online linear optimization for an alternative notion of group-norm
approachability.
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Université Pierre et Marie Curie, Paris 6, 2016.

Joon Kwon. Refined approachability algorithms and application to regret minimization with global
costs. The Journal of Machine Learning Research, 22:200–1, 2021.

Joon Kwon and Vianney Perchet. Online learning and blackwell approachability with partial moni-
toring: Optimal convergence rates. In Aarti Singh and Xiaojin (Jerry) Zhu, editors, Proceedings
of AISTATS, volume 54, pages 604–613. PMLR, 2017.

Yin Tat Lee, Aaron Sidford, and Santosh S Vempala. Efficient convex optimization with member-
ship oracles. In Conference On Learning Theory, pages 1292–1294. PMLR, 2018.

Ehud Lehrer. Approachability in infinite dimensional spaces. Int. J. Game Theory, 31(2):253–268,
2003.

Shie Mannor and Nahum Shimkin. The empirical bayes envelope and regret minimization in com-
petitive markov decision processes. Math. Oper. Res., 28(2):327–345, 2003.

Shie Mannor and Nahum Shimkin. A geometric approach to multi-criterion reinforcement learning.
J. Mach. Learn. Res., 5:325–360, 2004.

Shie Mannor, Vianney Perchet, and Gilles Stoltz. Set-valued approachability and online learning
with partial monitoring. J. Mach. Learn. Res., 15(1):3247–3295, 2014a.

Shie Mannor, Vianney Perchet, and Gilles Stoltz. Approachability in unknown games: Online
learning meets multi-objective optimization. In Proceedings of COLT, volume 35, pages 339–
355, 2014b.

Yishay Mansour, Mehryar Mohri, Jon Schneider, and Balasubramanian Sivan. Strategizing against
learners in Bayesian games, 2022. URL https://arxiv.org/abs/2205.08562.

Sobhan Miryoosefi and Chi Jin. A simple reward-free approach to constrained reinforcement learn-
ing. CoRR, abs/2107.05216, 2021.

27

https://arxiv.org/abs/2205.08562


PSEUDONORM APPROACHABILITY
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Appendix A. Omitted proofs

A.1. Proof of Theorem 3

Proof [Proof of Theorem 3] Similar results appear in e.g. Kwon (2021). For completeness, we
include a proof here.

We will need the following fact: for any x ∈ Rd, d∞(x, (∞,0]d) = supθ∈∆d
⟨θ, x⟩. This is easy

to verify (both sides are equal to max(maxi∈[d] xi,0)), but is also a consequence of Fenchel duality
(see e.g. Appendix B and the proof of Theorem 5).

Armed with this fact, note that

d∞ ( 1

T

T

∑
t=1

u(pt, `t), (−∞,0]d) = sup
θ∈∆d

⟨θ, 1

T

T

∑
t=1

u(pt, `t)⟩

= − inf
θ∈X

⟨θ, 1

T

T

∑
t=1

(−u(pt, `t))⟩

= 1

T
Reg(F) − 1

T

T

∑
t=1

⟨θt,−u(pt, `t)⟩

≤ 1

T
Reg(F).

A.2. Proof of Corollary 6

Proof [Proof of Corollary 6] Note that if θ /∈ C○, then there exists a z ∈ C such that ⟨θ, z⟩ > 0.
Therefore, if θ /∈ C○, then the supremum sups∈C θ ⋅ s =∞ (we can take s to be a large multiple of z).
On the other hand, if θ ∈ C○, then the supremum sups∈C θ ⋅ s = 0 (taking s = 0). It follows that the
supremum supθ∈T∗

f
{θ ⋅ z − sups∈C θ ⋅ s} in Theorem 5 must be achieved for a θ ∈ C○ (we know that

df(z,C) is not infinite since 0 ∈ C, so df(z,C) ≤ f(z)). For such θ, the sups∈S θ ⋅ s term vanishes,
and we are left with the statement of this corollary.

A.3. Proof of Theorem 7

Proof [Proof of Theorem 7] Note that for any ρ ≥ 0 we have the following chain of equivalences:
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d∞ ( 1

T

T

∑
t=1

u(pt, `t), (−∞,0]d) ≤ ρ

⇔ 1

T

T

∑
t=1

ui(pt, `t) ≤ ρ ∀i ∈ [d]

⇔ 1

T

T

∑
t=1

⟨ũ(pt, `t), vi⟩ ≤ ρ ∀i ∈ [d]

⇔ ⟨ 1

T

T

∑
t=1

ũ(pt, `t), vi⟩ ≤ ρ ∀i ∈ [d]

⇔ f ( 1

T

T

∑
t=1

ũ(pt, `t)) ≤ ρ. (13)

We will now prove that this final inequality on the norm f (13) implies the desired inequality on
df :

df (
1

T

T

∑
t=1

ũ(pt, `t),C) ≤ ρ. (14)

Note that since 0 ∈ C, (14) directly implies 13. To show that (13) implies (14), we must show
that

f (( 1

T

T

∑
t=1

ũ(pt, `t)) − c) ≤ ρ.

for any c ∈ C. This in turn is equivalent to proving that:

⟨( 1

T

T

∑
t=1

ũ(pt, `t)) − c, vi⟩ ≤ ρ ∀i ∈ [d].

But since c ∈ C, ⟨c, vi⟩ ≥ 0 for all i ∈ [d]. Therefore, as long as

⟨ 1

T

T

∑
t=1

ũ(pt, `t), vi⟩ ≤ ρ ∀i ∈ [d],

(which is true by (13)), (14) will be true as well, as desired.

A.4. Proof of Lemma 8

Proof [Proof of Lemma 8] Let H denote conv{v1, . . . , vd}. If θ̃ is in H, then we can write θ̃ =
∑di=1 αivi for some αi ≥ 0, i ∈ [d], with ∑di=1 αi = 1. Thus, for any x ∈ Rmn, we have

⟨θ̃, x⟩ =
d

∑
i=1

αi⟨vi, x⟩ ≤
d

∑
i=1

αimax
j∈[d]

⟨vj , x⟩ = max
j∈[d]

⟨vj , x⟩,
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which implies that θ̃ is in T∗f . Conversely, if θ̃ is not in H, since H is a non-empty closed convex
set, θ̃ can be separated from H, that is there exists x ∈ Rd such that

⟨θ̃, x⟩ > sup
v∈H

⟨v, x⟩ ≥ max
i∈[d]

⟨vi, x⟩,

which implies that θ̃ is not in T∗f . This completes the proof.

A.5. Proof of Lemma 11

Proof [Proof of Lemma 11] We begin with the first statement. Note that since the negative orthant
(−∞,0]d is separable with respect to u, for any ` ∈ L, there exists a p ∈ P such that ui(p, `) ≤ 0 for
all i ∈ [d]. Now, recall that we can write ui(p, `) = ⟨ũ(p, `), vi⟩, so it follows that ⟨ũ(p, `), vi⟩ ≤ 0
for all i ∈ [d]. This implies ũ(p, `) ∈ C, as desired.

We next prove the second statement. Note that since θ̃ ∈ T∗f ⊆ C○, this implies that if ũ(p, `) ∈ C,
then ⟨θ̃, ũ(p, `)⟩ ≤ 0. By the first statement, this means that for any ` ∈ L, there exists a p ∈ P such
that ⟨θ̃, ũ(p, `)⟩ ≤ 0. By the minimax theorem (since P and L are both convex sets and ⟨θ̃, ũ(p, `)⟩
is a bilinear function of p and `), this implies that there exists a p ∈ P such that for all ` ∈ L,
⟨θ̃, ũ(p, `)⟩ ≤ 0, as desired.

A.6. Proof of Lemma 14

Proof [Proof of Lemma 14] Note that by the definition of T∗f (Z), it must be the case that supθ∈T∗
f
(Z)⟨θ, z⟩ ≤

f(z) (this is one of the constraints defining T∗f (Z)). Since T∗f ⊆ T∗f (Z), if we show that supθ∈T∗
f
⟨θ, z⟩ =

f(z) this proves the theorem. But this follows directly from Theorem 5 applied to the closed convex
set S = {0}.

A.7. Proof of Lemma 15

Proof [Proof of Lemma 15] Consider the element

θ̃′ = argmin
θ̃∈T∗

f

−⟨θ̃, z⟩

which minimizes the unregularized objective over the smaller set T∗f . By Lemma 14, we must have
that ⟨θ̃′, z⟩ ≥ ⟨θ̃opt, z⟩. But also, by definition of θ̃opt, we must have that ηR(θ̃opt) − ⟨θ̃opt, z⟩ ≤
ηR(θ̃′) − ⟨θ̃′, z⟩. It follows that R(θ̃opt) ≤ R(θ̃′), and thus ∣∣θ̃opt∣∣ ≤ ∣∣θ̃′∣∣ ≤ diam(T∗f ).

A.8. Proof of Lemma 16

Proof [Proof of Lemma 16] Extend the domain of ũ as a function to Rn ×Rm, and note that there
is a unique way to write z = ∑mk=1 ũ(zk, ek), where for each k ∈ [m], zk is an element of Rn and ek
is the kth unit vector in Rm. We first claim z ∈ Z = cone(ũ(P,L)) iff each zk ∈ cone(P).

To see this, first note that since L is orthant-generating, there exist a sequence of λk such that
λkek ∈ L for each k ∈ [m]. Now, if each zk ∈ cone(P), then ũ(zk, ek) ∈ cone(ũ(P,L)) (since
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ek ∈ cone(L)), so z ∈ Z. Conversely, if z ∈ Z, then we can write z = ∑αRr=1ũ(pr, `r) for some
R > 0 and αr ≥ 0. Expanding each `r in the {λkek} basis, we find that each zk must be a positive
linear combination of the values pr and therefore zk ∈ cone(P).

Therefore, to check whether z ∈ Z, it suffices to check whether each component zk of z belongs
to cone(P). This is possible to do efficiently given an efficient separation oracle for P (we can write
the convex program βzk ∈ P for β > 0). Finally, if each zk ∈ cone(P) we can also recover a value
βk for each k such that βkzk ∈ P (via the same convex program). This allows us to explicitly write
z = ∑mk=1 αkũ(pk, `k) with pk = βkzk, `k = λkek, and αk = 1/(βkλk).

A.9. Proof of Lemma 18

Proof [Proof of Lemma 18] Checking for membership in the ball of radius ρ is straightforward, so it
suffices to exhibit a membership oracle for the set T∗f (Z). Fix a θ̃ and consider the convex function
h(z) = maxi∈[d]⟨vi, z⟩ − ⟨θ̃, z⟩. Note that by the definition of θ̃ ∈ T∗f (Z) iff minz∈Z h(z) ≤ 0, so it
suffices to compute the minimum of h(z) over the convex set Z.

As mentioned, to do this it suffices to exhibit a membership oracle for Z and an evaluation oracle
for h(z). But now, Lemma 16 provides a membership oracle for Z and Corollary 17 allows us to
efficiently evaluate h(z) for z ∈ Z.
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A.10. Proof of Proposition 24

Proof [Proof of Proposition 24] We define yt = −[u(pt, `), 0] the noiseless and ỹt = −[ẑt − c,0] the
actual loss passed to the OLO algorithm. We bound

max
i∈[k]

{qP,π̄ ⋅ ` − c} = d∞ ( 1

T

T

∑
t=1

u(qP,πt , `),S)

= max
θ∈∆d+1

θ ⋅ (
1
T ∑

T
t=1 u(qP,πt , `)

0
)

= max
θ∈∆d+1

1

T

T

∑
t=1

θ ⋅ (u(q
P,πt , `)
0

)

≤ max
θ∈∆d+1

{− 1

T

T

∑
t=1

⟨θ, ỹt⟩ + ε1} (def. ỹt and EST oracle)

= − min
θ∈∆d+1

{ 1

T

T

∑
t=1

⟨θ, ỹt⟩} + ε1

≤ Reg(F)
T

− 1

T

T

∑
t=1

⟨θt, ỹt⟩ + ε1

≤ Reg(F)
T

− 1

T

T

∑
t=1

⟨θt, yt⟩ + ε1 (EST oracle)

≤ Reg(F)
T

+ 1

T

T

∑
t=1

⟨θt,(
u(qP,πt , `)

0
)⟩ + 2ε1 (definition yt)

≤ Reg(F)
T

+ 1

T

T

∑
t=1

⟨θt ⋅ (
u(qP,πt , `)

0
)⟩ + 2ε1 (definition yt)

≤ Reg(F)
T

+ ε0 + 2ε1 (BESTRESPONSE oracle)

≤ 2L

√
log(d + 1)

T
+ ε0 + 2ε1 (Lemma 2)

Appendix B. General theorems from convex optimization

We will use the following Fenchel duality theorem (Borwein and Zhu, 2005; Rockafellar, 1970),
see also (Mohri et al., 2018).

Theorem 25 (Fenchel duality) Let X and Y be Banach spaces, f ∶X → R ∪ {+∞} and g∶Y →
R ∪ {+∞} convex functions and A∶X → Y a bounded linear map. Assume that f , g and A satisfy
one of the following conditions:

• f and g are lower semi-continuous and 0 ∈ core(dom(g) −Adom(f));

• Adom(f) ∩ cont(g) ≠ ∅;
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then p = d for the dual optimization problems

p = inf
x∈X

{f(x) + g(Ax)}

d = sup
x∗∈Y∗

{−f∗(A∗x∗) − g∗(−x∗)}

and the supremum in the second problem is attained if finite.

When constructing efficient algorithms, we will need a efficient method for minimizing a convex
function over a convex set given only a membership oracle to the set and an evaluation oracle to the
function. This is provided by the following lemma.

Lemma 26 Let K be a bounded convex subset of Rd and f ∶ K → [0,1] a convex function
over K. Then given access to a membership oracle for K (along with an interior point x0 ∈ K
satisfying B(x0, r) ⊆ K ⊆ B(x0,R) for some given radii r,R > 0) and an evaluation oracle for f ,
there exists an algorithm which computes the minimum value over f (to within precision ε) using
poly(d, log(R/r), log(1/ε)) time and queries to these oracles.

Proof See Lee et al. (2018).

Appendix C. Bayesian correlated equilibria

Here we provide another application of the `∞ approachability framework, to the problem of con-
structing learning algorithms that converge to correlated equilibria in Bayesian games. Correlated
equilibria in Bayesian games (alternatively, “games with incomplete information”) are well-studied
throughout the economics and game theory literature; see e.g. (Forges, 1993; Forges et al., 2006;
Bergemann and Morris, 2016). Unlike ordinary correlated equilibria, which are also well-studied
from a learning perspective, relatively little is known about algorithms that converge to correlated
equilibria in Bayesian games. Hartline et al. (2015) study no-regret learning in Bayesian games,
showing that no-regret algorithms converge to a Bayesian coarse correlated equilibrium. More re-
cently, Mansour et al. (2022) introduce a notion of Bayesian swap regret with the property that
learners with sublinear Bayesian swap regret converge to correlated equilibria in Bayesian games.
Mansour et al. (2022) construct a learning algorithm that achieves low Bayesian swap regret, albeit
not a provably efficient one. In this section, we apply our approachability framework to develop the
first efficient low-regret algorithm for Bayesian swap regret.

We begin with some preliminaries about standard (non-Bayesian) normal-form games. In a
normal form game G with N players, each player n must choose a mixed action xn ∈ ∆([K]) (for
simplicity we will assume each player has the same number of pure actions). We call the collection
of mixed strategies x = (x1,x2, . . . ,xN) played by all players a strategy profile. We will let Ui(x)
denote the utility of player n under strategy profile x (and insist that Ui is linear in each player’s
strategy).

Given a function π∶ [K] → [K] and a mixed action xn ∈ ∆([K]), let π(xn) be the mixed
action in ∆([K]) formed by sampling an action from xn and then applying the function π (i.e.,
π(xn)i = ∑i′∣π(i′)=i xn,i′). A correlated equilibrium of G is a distribution D over strategy profiles
x such that for any player n and function π∶ [K]→ [K], it is the case that
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E
x∼D

[Un(x′)] ≤ E
x∼D

[Un(x)],

where x′ = (x1,x2, . . . , π(xn), . . . ,xN). Similarly, an ε-correlated equilibrium of G is a distribu-
tion D with the property that

E
x∼D

[Un(x′)] ≤ E
x∼D

[Un(x)] + ε,

for any n ∈ [N] and π∶ [K] → [K]. Correlated equilibria have the following natural interpretation:
a mediator samples a strategy profile x from D and tells to each player n a pure action an randomly
sampled from xn. If each player is incentivized to play the action an they are told, then D is a
correlated equilibrium.

We define Bayesian games similarly to standard games, with the modification that now each
player n also has some private information cn ∈ [C] drawn from some public distribution Cn. We
call the vector of realized types c = (c1, c2, . . . , cN) the type profile of the players (drawn randomly
from C = C1 × ⋅ ⋅ ⋅ × CN ), and now let the utility Un(x,c) of player n depend on both the strategy
profile and type profile of the players. Note that we can alternately think of the strategy of player
n as a function xn∶ [C] → ∆([K]) mapping contexts to mixed actions; in this case we can again
treat the expected utility for player n (with expectation taken over the random type profile) as a
multilinear function Un(x) function of the strategy profile x = (x1, . . . ,xN).

As with regular correlated equilibria, we can motivate the definition of Bayesian correlated
equilibria via the introduction of a mediator. In the Bayesian case, all players begin by revealing
their private types to the mediator, and the mediator observes a type profile c. The mediator then
samples an joint action profile x from a distributionD(c) that depends on the observed type profile.
Finally, for each player n, the mediator samples a pure action an ∼ xn from the mixed strategy for
n, and relays an to player n (which they should follow). In order for this to be a valid correlated
equilibrium, the following incentive compatibility constraints must be met:

• Players must have no incentive to deviate from the strategy xn relayed to them. As in cor-
related equilibria, this includes deviations of the form “if I am told to play action i, I will
instead play action j”.

• Players also must have no incentive to misreport their type (thus affecting the distribution
D(c) over joint strategy profiles).

• Moreover, no combination of the above two deviations should result in improved utility for a
player.

Formally, we define a Bayesian correlated equilibrium for a Bayesian game as follows. The
distributions D(c) form a Bayesian correlated equilibrium if, for any player n ∈ [N], any “type
deviation” κ∶ [C] → [C], and any collection of “action deviations” πc∶ [K] → [K] (for each c ∈
[C]),

E
x∼D(c),c∼C

[Un(x′)] ≤ E
x∼D(c),c∼C

[Un(x)]

where x′ is derived from x by deviating from xn in the following way: when the player n has type c,
they first report type c′ = κ(c) to the mediator; if the mediator then tells them to play action a, they
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instead play πc(a). No such deviation should improve the utility of an agent in a Bayesian correlated
equilibrium. Likewise, an ε-Bayesian correlated equilibrium is a collection of distributions D(c)
where no deviation increases the utility of a player by more than ε.

In order to play a Bayesian game, a learning algorithm must be contextual (using the agent’s
private information to decide what action to play). We study the following setting of full-information
contextual online learning. As before, there are K actions, but there are now C different contexts
(/types). Every round t, the adversary specifies a loss function `t ∈ L = [0,1]CK , where `t,i,c
represents the loss from playing action i in context c. Simultaneously, the learner specifies an action
pt∶ [C]→∆([K]) mapping each context to a distribution over actions. Overall, the learner receives
expected utility ∑Cc=1 PC[c]∑Ki=1 pt(c)i`t,i,c this round (here C is a distribution over contexts; we
assume that the learner’s context is drawn i.i.d. from C each round, and that this distribution C is
publicly known).

Motivated by the deviations considered in Bayesian correlated equilibria, we can define the
following notion of swap regret in Bayesian games (“Bayesian swap regret”):

BayesSwapReg = max
κ,πc

T

∑
t=1

C

∑
c=1

P
C
[c]

K

∑
i=1

(pt(c)i`t,i,c − pt(κ(c))i`t,πc(i),c) . (15)

Lemma 27 Let A be an algorithm with BayesSwapReg(A) = o(T ). Assume each player i in a re-
peated Bayesian gameG (over T rounds) runs a copy of algorithmA, and let pt = (p(1)t , p

(2)
t , . . . , p

(N)
t )

be the strategy profile at time t. Then the time-averaged strategy profile D(c)∶ [C]N → ∆([K]N),
defined by sampling a t uniformly at random from [T ] and returning pt is an ε-Bayesian correlated
equilibrium with ε = o(1).

Proof We will show that there exists no deviation for player n which increases their utility by more
than BayesSwapReg(A)/T = o(1).

Fix a type deviation κ∶ [C] → [C] and set of action deviations πc∶ [K] → [K]. This collection
of deviations transforms an arbitrary strategy p ∈ ∆([K])C into the strategy p′ satisfying p′(c)i =
∑i′∣πc(i′)=i p(κ(c))i′ .

For each t ∈ [T ], with probability 1/T the mediator will return the strategy profiles pt =
(p(1)t , p

(2)
t , . . . , p

(N)
t ). Now, since Un is multilinear in the strategies of each player, there exists

some vector `t such that the utility of player n if they defect to a some strategy p′ is given by the
inner product ⟨p, `t⟩.

In particular, conditioned on the mediator returning pt, the difference in utility for player n
between playing p(n) and the strategy p′ formed by applying the above deviations to p(n) is exactly

C

∑
c=1

P
C
[c]

K

∑
i=1

(p(n)t (c)i`t,i,c − p(n)t (κ(c))i`t,πc(i),c) .

Taking expectations over all t, we have that the expected difference in utility by deviating is

1

T

T

∑
t=1

C

∑
c=1

P
C
[c]

K

∑
i=1

(p(n)t (c)i`t,i,c − p(n)t (κ(c))i`t,πc(i),c) .

But since player n selected their strategies by playingA, this is at most BayesSwapReg(A)/T =
o(1), as desired.
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It is possible to phrase (15) in the language of `∞-approachability by considering the CC ⋅KKC

dimensional vectorial payoff u(p, `) given by:

u(p, `)κ,πc =
C

∑
c=1

P
C
[c]

K

∑
i=1

(p(c)i`i,c − p(κ(c))i`πc(i),c) .

A straightforward computation shows that the negative orthant is separable with respect to u.

Lemma 28 The set S = (−∞,0]d is separable with respect to the vectorial payoff u.

Proof Fix an ` ∈ [0,1]CK . Then note that if we let p(c) = ei, where i = argminj∈[K] `t,j,c (i.e.,
p(c) is entirely supported on the best fixed action to play in context c), it follows that p(c)i`t,i,c ≤
p(c′)i`t,j,c for all c′ ∈ [C] and j ∈ [K], and therefore that u(p, `) ∈ S.

This in turn leads (via Theorem 3) to a low-regret (albeit computationally inefficient) algorithm
for Bayesian swap regret. Instead, as in the case of swap regret, we will apply our pseudonorm
approachability framework. First, we will show that we can rewrite (15) in such a way that allows
us to easily evaluate BayesSwapReg.

Lemma 29 We have that

BayesSwapReg =
C

∑
c=1

max
c′∈[C]

K

∑
i=1

max
j∈[K]

T

∑
t=1

P
C
[c] (pt(c)i`t,i,c − pt(c′)i`t,j,c) . (16)

Proof From (15), we have that

BayesSwapReg = max
κ,πc

T

∑
t=1

C

∑
c=1

P
C
[c]

K

∑
i=1

(pt(c)i`t,i,c − pt(κ(c))i`t,πc(i),c)

= max
κ,πc

C

∑
c=1

K

∑
i=1

T

∑
t=1

P
C
[c] (pt(c)i`t,i,c − pt(κ(c))i`t,πc(i),c)

= max
κ∶[C]→[C]

C

∑
c=1

max
πc∶[K]→[K]

K

∑
i=1

T

∑
t=1

P
C
[c] (pt(c)i`t,i,c − pt(κ(c))i`t,πc(i),c)

=
C

∑
c=1

max
c′∈[C]

K

∑
i=1

max
j∈[K]

T

∑
t=1

P
C
[c] (pt(c)i`t,i,c − pt(c′)i`t,j,c) .

Note that (16) allows us to efficiently (in poly(K,C,T ) time) evaluate BayesSwapReg. As
mentioned in the main text, directly from Theorems 13 and 19 this gives us an efficient (poly(C,K)
time per round) learning algorithm that incurs at most O(K2C2

√
T ) swap regret. We will now

examine the values of diam(P), diam(L) and Dz and show that this algorithm actually incurs at
most O(KC

√
T ) regret.

First, note that since P = ∆([K])C , elements p ∈ P can be thought of as C K-tuples of positive
numbers that add to 1. Each such K-tuple has squared distance at most 1, so diam(P) ≤

√
C.

Second, since L = [0,1]KC , diam(L) =
√
KC. Finally, the KC coefficients of each zκ,πc consist

of 2K copies of the distribution P[c]; this has `2 norm at most
√

2K, soDz = O(
√

2K). Combining
these three quantities according to Theorem 13, we obtain the following corollary.
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Corollary 30 There exists an efficient contextual learning algorithm with BayesSwapReg =
O(CK

√
T ).
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