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Abstract

We present a series of theoretical and algorithmic results for time series prediction leveraging recent
advances in the statistical learning analysis of this problem and on-line learning. We prove the first
generalization bounds for a hypothesis derived by online-to-batch conversion of the sequence of
hypotheses output by an online algorithm, in the general setting of a non-stationary non-mixing
stochastic process. Our learning guarantees hold for adapted sequences of hypotheses both for
convex and non-convex losses. We further give generalization bounds for sequences of hypotheses
that may not be adapted but that admit a stability property. Our learning bounds are given in
terms of a discrepancy measure, which we show can be accurately estimated from data under a
mild assumption. Our theory enables us to devise a principled solution for the notoriously difficult
problem of model section in the time series scenario. It also helps us devise new ensemble methods
with favorable theoretical guarantees for forecasting non-stationary time series.

Keywords: time series prediction, on-line learning, generalization bounds, regret minimization,
validation, model selection, ensembles, stability, non-stationary, non-mixing.

1. Introduction

Time series appear in a variety of key real-world applications such as signal processing, includ-
ing audio and video processing; the analysis of natural phenomena such as local weather, global
temperature, and earthquakes; the study of economic or financial variables such as stock values,
sales amounts, energy demand; and many other similar areas. One of the central problems related
to time series analysis is that of forecasting, that is that of predicting the value YT+1, given past
observations Y1, . . . , YT .

Two distinct learning scenarios have been adopted in the past to study the problem of sequential
prediction, each leading to a different family of theoretical and algorithmic studies: the statistical
learning and the on-line learning scenarios.

The statistical learning scenario assumes that the observations are drawn from some unknown dis-
tribution. Within this scenario, early methods to derive a theoretical analysis of the problem have
focused on autoregressive generative models, such as the celebrated ARIMA model (Box and Jenk-
ins, 1990) and its many variants. These methods typically require strong distributional assumptions
and their guarantees are often only asymptotic. Many of the recent efforts in learning theory focus
on generalizing the classical analysis and learning bounds of the i.i.d. setting to scenarios with less
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restrictive distributional assumptions. Drifting or tracking scenarios extend the classical setting to
non-stationary sequences of independent random variables (Ben-David et al., 1989; Bartlett, 1992;
Barve and Long, 1997; Even-Dar et al., 2010; Mohri and Muñoz Medina, 2012). The scenario
of learning with dependent variables is another extension of the standard i.i.d. scenario that has
been the subject of several recent publications (Yu, 1994; Vidyasagar, 1997; Berti and Rigo, 1997;
Modha and Masry, 1998; Meir, 2000; Steinwart and Christmann, 2009; Mohri and Rostamizadeh,
2009; Alquier and Wintenberger, 2010; Pestov, 2010; Mohri and Rostamizadeh, 2010; Shalizi and
Kontorovitch, 2013; Alquier et al., 2014; Kuznetsov and Mohri, 2014). In most of this past lit-
erature, the underlying stochastic process is assumed to be stationary and mixing. To the best of
our knowledge, the only exception is the recent work of Kuznetsov and Mohri (2015), who ana-
lyzed the general non-stationary and non-mixing scenario and gave high-probability generalization
bounds for this framework.

The on-line learning scenario requires no distributional assumption. In on-line learning, the se-
quence is revealed one observation at a time and it is often assumed to be generated in an adversarial
fashion. The goal of the learner in this scenario is to achieve a regret, that is the difference between
the cumulative loss suffered and that of the best expert in hindsight, that grows sub-linearly with
time. There is a large body of literature devoted to the study of such problems and the design of
algorithms for different variants of this general scenario (Cesa-Bianchi and Lugosi, 2006).

Can we leverage the theory and algorithms developed for these two distinct scenarios to design
more accurate solutions for time series prediction? Can we derive generalization guarantees for
a hypothesis derived by application of an online-to-batch conversion technique to the sequence of
hypotheses output by an online algorithm, in the general setting of a non-stationary non-mixing
process? What other benefits can such combinations of the statistical learning and on-line learning
tools offer? This paper precisely addresses several of these questions. We present a series of the-
oretical and algorithmic results combining the benefits of the statistical learning approach to time
series prediction with that of on-line learning.

We prove generalization guarantees for predictors derived from regret minimization algorithms in
the general scenario of non-stationary non-mixing processes. We are not aware of any prior work
that provides a connection between regret minimization and generalization in this general setting.
Our results are expressed in terms of a generalization of the discrepancy measure that was introduced
in (Kuznetsov and Mohri, 2015), which can be viewed as a natural measure of the degree of non-
stationarity of a stochastic process taking into account the loss function and the hypothesis set used.
We show that, under some additional mild assumptions, this discrepancy measure can be estimated
from data, thereby resulting in fully data-dependent learning guarantees. Our results generalize the
previous work of Littlestone (1989) and Cesa-Bianchi et al. (2004) who designed on-line-to-batch
conversion techniques that use the hypotheses returned by a regret minimization algorithm to derive
a predictor benefitting from generalization guarantees in the setting of i.i.d. samples. Agarwal and
Duchi (2013) extended these results to the setting of asymptotically stationary mixing processes
for stable on-line learning algorithms under some additional assumptions on the regularity of both
the distribution and the loss function. However, stationarity and mixing assumptions often do not
hold for the task of time series prediction. For instance, processes that admit a trend or a seasonal
component are not stationary. Markov chains are not stationary unless started with an equilibrium
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distribution. Stochastic processes exhibiting long memory effects, such as fractional Brownian
motion, are often slowly or not mixing.

We also highlight the application of our results to two related problems: model selection in time
series prediction, and the design of accurate ensembles of time series predictors. Model selection
for time series prediction appears to be a difficult task: in contrast with the familiar i.i.d. scenario,
in time series analysis, there is no straightforward method for splitting a sample into a training
and validation sets. Using the most recent data for validation may result in models that ignore the
most recent information. Validating over the most distant past may lead to selecting sub-optimal
parameters. Any other split of the sample may result in the destruction of important statistical
patterns and correlations across time that may be present in the data. We show that, remarkably,
our on-line-to-batch conversions enable us to use the same time series for both training and model
selection.

Next, we show that our theory can guide the design of algorithms for learning ensembles of time
series predictors via on-line-to-batch conversions. One benefit of this approach is that a battery
of existing on-line learning algorithms can be used including those specifically designed for time
series prediction (Anava et al., 2013, 2015; Koolen et al., 2015) as well as others capable of dealing
with non-stationary sequences (Bousquet and Warmuth, 2001; Cesa-Bianchi et al., 2012; Chaudhuri
et al., 2010; Crammer et al., 2010; Herbster and Warmuth, 1998, 2001; Moroshko and Crammer,
2012, 2013; Moroshko et al., 2015).

The rest of this paper is organized as follows. In Section 2, we describe the learning scenario of
time series prediction that we consider and introduce some key notation, definitions, and concepts,
including a discrepancy measure that plays a central role in our analysis. Section 3 presents our
on-line-to-batch conversion techniques and a series of generalization guarantees. We prove the first
generalization bounds for a hypothesis derived by online-to-batch conversion of the sequence of
hypotheses output by an online algorithm, in the general setting of a non-stationary non-mixing
stochastic process. Our learning guarantees hold for adapted sequences of hypotheses both for
convex and non-convex losses. We also give generalization bounds for sequences of hypotheses
that may not be adapted but that admit a stability property. Our learning bounds are given in terms
of the discrepancy measure introduced, which we show can be accurately estimated from data under
a mild assumption. In Section 4, we show how our theory can be used to derive principled solutions
for model selection and for ensemble learning in the setting of non-stationary non-mixing time
series.

2. Learning scenario

Here, we describe the learning scenario we consider and introduce some preliminary definitions and
tools.

Let X denote the input space and Y the output space. We consider a scenario where the learner
receives a sequence (X1, Y1), . . . , (XT , YT ) that is the realization of some stochastic process, with
Zt = (Xt, Yt) ∈ Z = X × Y . Note that, quite often in time series prediction, the feature vector at
that time t is the collection of the past d output observations, that isXt = (Yt−1, . . . , Yt−d) for some
d. To simplify the notation, we will use the shorthand zba to denote a sequence za, za+1, . . . , zb.
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The goal of the learner is to select, out of a specified family H , a hypothesis h : X → Y that
achieves a small path-dependent generalization error

LT+1(h,Z
T
1 ) = E

[
L(h(XT+1), YT+1) | ZT1

]
, (1)

where L : Y × Y → [0,M ] is a loss function bounded by M > 0. To abbreviate the notation, we
will often write L(h, z) = L(h(x), y), for any z = (x, y) ∈ Z . Note that another performance
measure commonly used in the time series prediction literature is the averaged generalization error
E[LT+1(h,Z

T
1 )]. The path-dependent error that we consider is a finer measure of the generalization

ability than the averaged error since it takes into consideration the specific history realized, unlike
the averaged error, which is based on all possible trajectories of the stochastic process. Our results
can be easily extended to hold for non-integer times t and arbitrary prediction lag l ≥ 0.

A related learning scenario is that of on-line learning where time series are revealed to the learner
one observation at a time and where the goal of the on-line learner is to minimize regret after T
rounds. In this work, we consider the following general notion of regret for an on-line algorithm A
playing a sequence of hypotheses h = (h1, . . . , hT )

RegT =

T∑
t=1

L(ht, Zt)− inf
h∗

{
T∑
t=1

L(h∗, Zt) +R(h∗)

}
, (2)

where the infimum is taken over sequences in a (possibly random) subsetH∗ ⊆ HT and whereR is
a regularization term that controls the complexity of the competitor class H∗. This notion of regret
generalizes a number of other existing definitions. For instance, taking R = 0 and H∗ to be the
set of constant sequences recovers the standard notion of regret. The dynamic competitor or expert
tracking setting correspond toR = 0 andH∗ = HT . If we letH∗ = HT withH ⊆ Rn andR(h) =
λT
∑T

s,t=1 hsKs,tht where K is a positive definite matrix and λT ≥ 0 is a regularization parameter,
then we retrieve the notion of regret studied in (Herbster and Warmuth, 2001; Koolen et al., 2015).
Alternatively, we may require H∗ = {h = (h1, . . . , hT ) ∈ HT :

∑T
s,t=1 hsKs,tht ≤ C} for some

C > 0 and set λT = 0. More generally, let c ∈ C be a (possibly random) constraints function,
then we can define H∗ = {h ∈ HT : c(h1(X1), . . . , hT (XT )) < C}, which is a generalization of a
data-dependent competitor set studied by Rakhlin and Sridharan (2015).

In this work, we give learning guarantees for regret minimization algorithms for forecasting non-
stationary non-mixing time series. The key technical tool that we will need for our analysis is the
discrepancy measure that quantifies the divergence of the target and sample distributions defined
by

disc(q) = sup
h∈HA

∣∣∣∣∣
T∑
t=1

qt

(
LT+1(ht,Z

T
1 )− Lt(ht,Zt−11 )

)∣∣∣∣∣, (3)

where q = (q1, . . . , qT ) is an arbitrary weight vector and whereHA is a set of sequences of hypothe-
ses that the on-line algorithm A can pick. One possible choice is, for instance, HA = {h : R(h) ≤
C} for some C. In fact, HA can be even chosen in data-dependent fashion so long as each h ∈ HA
is adapted to the filtration of ZT1 . The notion of discrepancy that we consider here is a generalization
of the definition given by Kuznetsov and Mohri (2015) where the supremum is taken over constant
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sequences h. The crucial property of the discrepancy considered in that work is that it can be esti-
mated from data. Our generalization also admits this property, as well as a number of other favorable
ones. In particular, it can be bounded in terms of other familiar divergences between distributions
such as total variation and relative entropy. We provide further details in Appendix B.

3. Theory

In this section, we prove generalization bounds for a hypothesis derived by application of some
online-to-batch conversion techniques to the sequence of hypotheses output by an online algorithm,
in the general setting of a non-stationary non-mixing stochastic process. We first present learn-
ing guarantees for adapted sequences of hypotheses both for convex and non-convex losses (Sec-
tion 3.1). Next, in Section 3.2, we present generalization bounds for sequences of hypotheses that
may not be adapted but that admit a stability property. Our learning bounds are given in terms of
the discrepancy measure defined by (3). In Section 3.3, we show that, under a mild assumption, the
discrepancy term can be accurately estimated from data.

3.1. Adapted hypothesis sequences

Here, we consider sequences of hypotheses h = (h1, . . . , hT ) adapted to the filtration of ZT1 , that
is, such that ht is Zt−11 -measurable. This is a natural assumption since the hypothesis output by an
on-line algorithm at time t is based on data observed up to time t.

The proof techniques for the first results of this section can be viewed as extensions of those used
by Mohri and Muñoz Medina (2012) for the analysis of drifting. The next result is a key lemma
used in the proof of our generalization bounds.

Lemma 1 Let ZT1 be any sequence of random variables and let h = (h1, . . . .hT ) be any sequence
of hypotheses adapted to the filtration of ZT1 . Let q = (q1, . . . , qT ) be any weight vector. For any
δ > 0, each of the following inequalities holds with probability at least 1− δ:

T∑
t=1

qtLT+1(ht,Z
T
1 ) ≤

T∑
t=1

qtL(ht, Zt) + disc(q) +M‖q‖2

√
2 log

1

δ
,

T∑
t=1

qtL(ht, Zt) ≤
T∑
t=1

qtLT+1(ht,Z
T
1 ) + disc(q) +M‖q‖2

√
2 log

1

δ
.

Proof By definition of the path-dependent error, for any t ∈ [T ],At = qt
(
Lt(ht,Zt−11 )−L(ht, Zt)

)
is a martingale difference:

E
[
At|Zt−11

]
= qt

(
E
[
L(ht, Zt)|Zt−11

]
− E

[
L(ht, Zt)|Zt−11

])
= 0,

since h is an adapted sequence. Furthermore, since |At| ≤ M |qt|, by Azuma’s inequality, for any
δ > 0, the following inequality holds with probability at least 1− δ:

T∑
t=1

qtLt(ht,Zt−11 ) ≤
T∑
t=1

qtL(ht, Zt) +M‖q‖2

√
2 log

1

δ
.
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The proof of the first statement can be completed by observing that, by definition of the discrepancy,
we can write

T∑
t=1

qtLT+1(ht,Z
T
1 ) ≤

T∑
t=1

qtLt(ht,Zt−11 ) + disc(q).

The second statement follows by symmetry.

The next theorem is our main generalization guarantee for on-line-to-batch conversion with bounded
convex loss functions.

Theorem 2 Assume that L is convex and bounded by M . Let ZT1 be any sequence of random
variables. Let H∗ be a set of sequences of hypotheses that are adapted to ZT1 and let h1, . . . , hT
be a sequence of hypotheses adapted to ZT1 . Fix a weight vector q = (q1, . . . , qT ) in the simplex
and let h denote h =

∑T
t=1 qtht. Then, for any δ > 0, each of the following bounds holds with

probability at least 1− δ:

LT+1(h,Z
T
1 ) ≤

T∑
t=1

qtLt(ht,Zt−11 ) ≤
T∑
t=1

qtL(ht, Zt) + disc(q) +M‖q‖2

√
2 log

1

δ
,

LT+1(h,Z
T
1 ) ≤ inf

h∗∈H∗

{
T∑
t=1

qtLT+1(h
∗
t ,Z

T
1 ) +R(h∗)

}

+ 2 disc(q) +
RegT
T

+M‖q− u‖1 + 2M‖q‖2

√
2 log

2

δ
,

where u = ( 1
T , . . . ,

1
T ) ∈ RT .

Proof By the convexity of L, we can write LT+1(h,Z
T
1 ) ≤

∑T
t=1 qtLT+1(ht,Z

T
1 ). In view of that,

by Lemma 1, for any δ > 0, with probability at least 1− δ, the following inequality holds:

LT+1(h,Z
T
1 ) ≤

T∑
t=1

qtL(ht, Zt) + disc(q) +M‖q‖2

√
2 log

1

δ
.

This proves the first statement of the theorem. To prove the second statement, first observe that,
since L is bounded by M , for any h∗ ∈ H∗, the following holds:

T∑
t=1

qtL(ht, Zt)−
T∑
t=1

qtL(h∗t , Zt)−R(h∗)

≤
T∑
t=1

(
qt −

1

T

)
(L(ht, Zt)− L(h∗t , Zt)) +

1

T

T∑
t=1

(L(ht, Zt)− L(h∗t , Zt))−R(h∗)

≤M‖q− u‖1 +
RegT
T

.
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Thus, in view of the first statement, for any δ > 0, with probability at least 1 − δ
2 , the following

inequalities hold:

LT+1(h,Z
T
1 ) ≤

T∑
t=1

qtL(ht, Zt) + disc(q) +M‖q‖2

√
2 log

2

δ

≤
T∑
t=1

qtL(h∗t , Zt) +R(h∗) +M‖q− u‖1 +
RegT
T

+ disc(q) +M‖q‖2

√
2 log

2

δ
.

Now, fix ε > 0, and choose h∗ such that

T∑
t=1

qtLT+1(h
∗
t ,Z

T
1 ) +R(h∗) ≤ inf

h∗∈H∗

{
T∑
t=1

qtLT+1(h
∗
t ,Z

T
1 ) +R(h∗)

}
+ ε.

Using Lemma 1 to bound
∑T

t=1 qtL(h∗t , Zt) shows that the following inequalities hold with proba-
bility at least 1− δ

2 :

LT+1(h,Z
T
1 ) ≤

T∑
t=1

qtLT+1(h
∗
t ,Z

T
1 ) +R(h∗) +M‖q− u‖1 +

RegT
T

+ 2 disc(q)

+ 2M‖q‖2

√
2 log

2

δ

≤ inf
h∗∈H∗

{
T∑
t=1

qtLT+1(h
∗
t ,Z

T
1 ) +R(h∗)

}
+M‖q− u‖1 +

RegT
T

+ 2 disc(q)

+ 2M‖q‖2

√
2 log

2

δ
+ ε.

The result follows since this last inequality holds for any ε > 0.

Theorem 2 establishes an important connection between sequential prediction in the on-line learn-
ing framework and time series prediction in the batch setting. In particular, it provides the first
generalization bounds for hypotheses obtained by online-to-batch conversion from the output of an
regret minimization algorithm in the general setting of time series prediction with non-stationary
and non-mixing processes.

These results admit the same flavor as the uniform convergence guarantees of Kuznetsov and Mohri
(2015) for forecasting non-stationary time series, which are also expressed in terms of the discrep-
ancy measure. The presence of the discrepancy term in the bound highlights the challenges faced
by the learner in this scenario. It suggests that learning is more difficult when the discrepancy term
is larger, that is when the time series admits a higher degree of non-stationarity. Note that our proofs
are simpler than those presented by Kuznetsov and Mohri (2015) and do not require advanced tools
such as sequential complexity measures (Rakhlin et al., 2015b).

When ZT1 is an i.i.d. sequence, Theorem 2 recovers the on-line-to-batch guarantees of Cesa-Bianchi
et al. (2004), though our results are more general since we adopted a more inclusive notion of regret
in (2). Similarly, in the special case of a drifting scenario where ZT1 is a sequence of independent
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random variables, our results coincide with those of Mohri and Muñoz Medina (2012), modulo the
extra generality of our definition of regret.

Theorem 2 can be extended to hold for general non-convex bounded functions, which can be useful
for problems such as time series classification and anomaly detection where the natural loss is the
zero-one loss. The ensemble hypothesis in this case is defined to be

h = argmin
ht

(
T∑
s=t

qsL(ht, Zs) + pen(t, δ)

)
, (4)

where the penalty term pen is defined by pen(t, δ) = disc(qTt ) + M‖qTt ‖2
√

2 log 2(T+1)
δ , with

δ > 0 the desired confidence parameter. Note that this online-to-batch conversion technique can
be useful even with convex losses or whenever convex combinations of elements of Y are not well-
defined, for example for strings or graphs, or when the goal is to choose a single hypothesis, as in
the validation setting.

Theorem 3 Assume that L is bounded byM . Let ZT1 be any sequence of random variables. LetH∗

be a set of sequences of hypotheses that are adapted to ZT1 . Fix a weight vector q = (q1, . . . , qT )
in the simplex. For any δ > 0, let h be defined by (4), then, each of the following bounds holds with
probability at least 1− δ:

LT+1(h,Z
T
1 ) ≤

T∑
t=1

qtL(ht, Zt) + disc(q) +M‖q‖2

√
2 log

2(T + 1)

δ
,

LT+1(h,Z
T
1 ) ≤ inf

h∗∈H∗

{
T∑
t=1

qtLT+1(h
∗
t ,Z

T
1 ) +R(h∗)

}

+ 2 disc(q) +
RegT
T

+M‖q− u‖1 + 2M‖q‖2

√
2 log

2(T + 1)

δ
,

where u = ( 1
T , . . . ,

1
T ) ∈ RT .

3.2. Stable hypothesis sequences

One of our target applications is model selection for time series prediction. The objective is then to
select a good model given N models, each trained on the full sample ZT1 . One way to do that is to
run an online learning algorithm with these models used as experts and then use one of the online-to-
batch conversion techniques discussed in the previous section. However, the guarantees presented
in the previous section do not hold in this scenario since h is no longer an adapted sequence.

In this section, we extend our guarantees to this scenario assuming that the algorithms that were
used to generate the models were uniformly stable. Let A be a collection of a learning algorithms,
where each learning algorithm A ∈ A is defined as a rule that takes as input a sequence zT1 ∈ ZT
and outputs a hypothesis A(zT1 ) ∈ H . In other words, each learning algorithm is a map A : ZT →
H .
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An algorithm A ∈ A is β-uniformly stable if there exists β > 0 such that for any z = (x, y) ∈ Z and
for any two samples z and z′ that differ by exactly one point, the following condition holds:∣∣L(A(z)(x), y)− L(A(z′)(x), y)

∣∣ ≤ β. (5)

In what follows, we assume that A is a collection of uniformly stable algorithms. This condition
is not a strong limitation since many existing learning algorithms have been shown to be stable
(Bousquet and Elisseeff, 2002; Mohri and Rostamizadeh, 2010).

Given a sample ZT1 , we define a set of stable hypotheses as follows:

H = {h ∈ H : there exists A ∈ A such that h = A(ZT1 )}.

For each h = A(ZT1 ) ∈ H, we let βh denote a uniform stability coefficient of A, which is defined
by (5). We will also use a shorthand notation βt to denote βht .

The following is an analogue of Lemma 1 in this setting.

Lemma 4 Let ZT1 be any sequence of random variables and let h = (h1, . . . , hT ) ∈ HT be any
sequence of stable hypotheses. Let q = (q1, . . . , qT ) be any weight vector. For any δ > 0, each of
the following inequalities holds with probability at least 1− δ:

T∑
t=1

qtLT+1(ht,Z
T
1 ) ≤

T∑
t=1

qtL(ht, Zt) +

T∑
t=1

qtβt + disc(q) + 2M‖q‖2

√
2 log

2

δ
,

T∑
t=1

qtL(ht, Zt) ≤
T∑
t=1

qtLT+1(ht,Z
T
1 ) +

T∑
t=1

qtβt + disc(q) + 2M‖q‖2

√
2 log

2

δ
.

The proof of Lemma 4 is given in Appendix C. This result enables us to extend Theorem 2 and
Theorem 3 to the setting of this section.

Theorem 5 Assume that L is convex and bounded by M . Let ZT1 be any sequence of random
variables. Let H∗ be a set of sequences of stable hypotheses and let h1, . . . , hT be a sequence
of stable hypotheses. Fix a weight vector q = (q1, . . . , qT ) in the simplex and let h denote h =∑T

t=1 qtht. Then, for any δ > 0, each of the following bounds holds with probability at least 1− δ:

LT+1(h,Z
T
1 ) ≤

T∑
t=1

qtLt(ht,Zt−11 ) ≤
T∑
t=1

qtL(ht, Zt)+

T∑
t=1

qtβt+disc(q)+2M‖q‖2

√
2 log

2

δ
,

LT+1(h,Z
T
1 ) ≤ inf

h∗∈H∗

{
T∑
t=1

qtLT+1(h
∗
t ,Z

T
1 ) +R(h∗)

}
+ 2βmax + 2 disc(q)

+
RegT
T

+M‖q− u‖1 + 4M‖q‖2

√
2 log

4

δ
,

where βmax = suph∈H βh and u = ( 1
T , . . . ,

1
T ) ∈ RT .
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Theorem 6 Assume that L is bounded by M . Let ZT1 be any sequence of random variables. Let
H∗ be a set of sequences of stable hypotheses. Fix a weight vector q = (q1, . . . , qT ) in the simplex.
For any δ > 0, let h be defined by (4), then, each of the following bounds holds with probability at
least 1− δ:

LT+1(h,Z
T
1 ) ≤

T∑
t=1

qtL(ht, Zt) + βmax + disc(q) +M‖q‖2

√
2 log

2(T + 1)

δ
,

LT+1(h,Z
T
1 ) ≤ inf

h∗∈H∗

{
T∑
t=1

qtLT+1(h
∗
t ,Z

T
1 ) +R(h∗)

}
+ 2βmax

+ 2 disc(q) +
RegT
T

+M‖q− u‖1 + 2M‖q‖2

√
2 log

4(T + 1)

δ
,

where βmax = suph∈H βh and u = ( 1
T , . . . ,

1
T ) ∈ RT .

3.3. Discrepancy estimation

Our generalization guarantees in Theorem 2, Theorem 3, Theorem 5 and Theorem 6 critically de-
pend on the discrepancy disc(q). In this section, under some additional mild assumptions, we
show that the discrepancy measure admits upper bounds that can be estimated from the input sam-
ple.

The challenge in estimating the discrepancy disc(q) is that it depends on the distribution of ZT+1

which we never observe. Our discrepancy measure is the generalization of the discrepancy consid-
ered by Kuznetsov and Mohri (2015), thus, a similar approach can be used for its estimation. In
particular, we can assume that the distribution of Zt conditioned on the past history changes slowly
with time. Under that assumption, the last s observations ZTT−s+1 serve as a reasonable proxy for
ZT+1. More precisely, we can write

disc(q) ≤ sup
h∈HA

∣∣∣∣1s
T∑

τ=T−s+1

T∑
t=1

qtLτ (ht,Z
τ−1
1 )−

T∑
t=1

qtLt(ht,Zt−11 )

∣∣∣∣
+ sup

h∈HA

∣∣∣∣ T∑
t=1

LT+1(ht,Z
T
1 )− 1

s

T∑
τ=T−s+1

T∑
t=1

qtLτ (ht,Z
τ−1
1 )

∣∣∣∣.
The first term can be estimated from data as we show in Lemma 9 in Appendix C. For this bound
to be meaningful, we need that the second term in the above equation be sufficiently small, which
is in fact a necessary condition for learning, even in the space case of a drifting scenario, as shown
by Barve and Long (1997). However, the main disadvantage of this approach is that it relies on a
parameter s and it is not clear how this parameter can be chosen in a principled way.

Instead, we propose an alternative approach that is based on the implicit assumption thatH contains
a hypothesis h∗ that admits a small path-dependent generalization error, whose prediction can be
used as a proxy for ZT+1. We will also assume that the loss function is Lipschitz, that is, |L(y, y′)−
L(y, y′′)| ≤ C d(y′, y′′), where C > 0 is a constant and d the underlying metric. This assumption
holds for a broad family of regression losses commonly used in time series prediction. In fact, d

10
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often coincides with L, for example, L = d when L is the L2-norm. For simplicity, in the rest of
the paper, we will assume that C = 1. Observe that the following holds for any h∗:

disc(q) ≤ sup
h∈HA

∣∣∣∣∣
T∑
t=1

qt(E
[
L(ht(XT+1), h

∗(XT+1))
∣∣∣ZT1 ]− Lt(ht,Zt−11 ))

∣∣∣∣∣
+ sup

h∈HA

∣∣∣∣∣
T∑
t=1

qt(E
[
L(ht(XT+1), h

∗(XT+1))
∣∣∣ZT1 ]− LT+1(ht,Z

T
1 ))

∣∣∣∣∣
≤ sup

h∈HA

∣∣∣∣∣
T∑
t=1

qt(L(ht(XT+1), h
∗(XT+1))− Lt(ht,Zt−11 ))

∣∣∣∣∣
+ sup

h∈HA

T∑
t=1

qt E
[
d(ZT+1, h

∗(XT+1))
∣∣∣ZT1 ]

≤ sup
h∈H,h∈HA

∣∣∣∣∣
T∑
t=1

qt(L(ht(XT+1), h(XT+1))− Lt(ht,Zt−11 ))

∣∣∣∣∣+ ∆ (6)

where ∆ = E
[
d(ZT+1, h

∗(XT+1))
∣∣∣ZT1 ] and we may choose h∗ to be the hypothesis that achieves

infh∗ E[d(ZT+1, h
∗(XT+1))|ZT1 ]. The first term in the above bound, that we denote by discH(q)

can be estimated from the data as the next lemma shows. The guarantees that we present are in
terms of the expected sequential covering numbers Ez∼ZT

[N1(α,F , z)] of the set F = {(z, t) 7→
L(ht, z) : h ∈ HA} which are natural generalizations to the sequential setting of the standard ex-
pected covering numbers (Rakhlin et al., 2015b). Here, z is a Z-valued complete binary tree of
depth T and ZT the distribution induced over such trees (see Appendix A). A similar guarantee can
be given in terms of sequential Rademacher complexity. A brief review of sequential complexity
measures can be found in Appendix A.

Lemma 7 Let ZT1 be a sequence of random variables. Then, for any δ > 0, with probability at
least 1− δ, the following inequality holds for all α > 0:

disc(q) ≤ d̂iscH(q) + inf
h∗

E[d(ZT+1, h
∗(XT+1))|ZT1 ] + 2α+M‖q‖2

√
2 log

Ez∼ZT
[N1(α,G, z)]

δ
,

where d̂iscH(q) is the empirical discrepancy defined by

d̂iscH(q) = sup
h∈H,h∈HA

∣∣∣∣∣
T∑
t=1

qt(L(ht(XT+1), h(XT+1))− L(ht, Zt))

∣∣∣∣∣. (7)

The proof of this result can be found in Appendix C. In Section 4, we will show that that there are
efficient algorithms for the computation and optimization of this discrepancy d̂iscH(q). We can
further improve the computational cost by making a stronger implicit assumption that there exists
a single h∗ that has a small generalization error at each time step t. This assumption is closely
related to regret guarantees: the existence of such a hypothesis h∗ implies that minimizing regret
against such a competitor gives a meaningful learning guarantee. Using the same arguments as in

11
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the proof of Lemma 7, one can show that, with high probability, disc(q) is bounded by d̂iscHT (q)+
infh∗∈H

∑T
t=1 qt E[d(Zt, h

∗(Xt))|Zt−11 ] plus a complexity penalty, where

d̂iscHT (q) = sup
h∈H,h∈HT

∣∣∣∣∣
T∑
t=1

qt(L(ht(XT+1), h(XT+1))− L(ht(Xt), h(Xt))

∣∣∣∣∣. (8)

4. Applications

In this section we present the applications of our theory to two problems: model selection and the
design of ensemble solutions in time series prediction.

4.1. Model Selection

The first application that we consider is that of model selection for time series prediction. In this
setting, we are given N models that have been trained on the given sample ZT1 out of which we
wish to select a single best model. In the i.i.d. setting, this problem is typically addressed via
cross-validation: part of the sample ZT1 is reserved for training, the rest used as a validation set.
In that setting, high-probability performance guarantees can be given for this procedure that are
close to but weaker than those that hold for structural risk minimization (SRM) (Mohri et al., 2012).
Unfortunately, in the setting of time series prediction, it is not immediately clear how this can be
accomplished in a principled way. As already mentioned in Section 1, using the most recent data for
validation may result in models that ignore the most recent information. Validating over the most
distant past may lead to selecting sub-optimal parameters. Any other split of the sample may result
in the destruction of important statistical patterns and correlations across time that may be present
in the data.

Is it possible to come up with a principled solution for model selection in our general scenario?
Our Theorem 6 helps derive a positive response to this question and design an algorithm for this
problem. Note that Theorem 6 suggests that, if we could select a distribution q over the sample ZT1
that would minimize the discrepancy disc(q) and use it to weight training points, then we would
have a better learning guarantee for a hypothesis h obtained via on-line-to-batch conversion defined
by (4). This leads to the following algorithm:

• choose a weight vector q in the simplex that minimizes the empirical discrepancy, that is,
choose q as the solution of one of the following two optimization problems: minq d̂iscH(q)

or minq d̂iscHA(q). In several important special cases, these problems can be solved effi-
ciently as discussed later.

• use any on-line learning algorithm for prediction with expert advice to generate a sequence
of hypotheses h ∈ HT , whereH is a set of N models trained on ZT1 . Select a single model h
according to (4).

Observe that, by definition, the discrepancy is a convex function of q since the maximum of a set of
convex functions is convex and since the composition of a convex function with an affine function is
convex. Thus, both minq d̂iscH(q) and minq d̂iscHA(q) are convex optimization problems. Since
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both objectives admit a subgradient, a standard subgradient descent algorithm can be applied to
solve both of these problems. The bottleneck of this procedure, however, is the computation of the
gradient which requires solving an optimization problem in the definition of the discrepancy at each
iteration of the subgradient procedure.

For convex loss functions and a convex hypothesis set H , this optimization problem can be cast
as a difference of convex functions problem (DC-programming problem) which can be solved, for
instance, using the DC-algorithm of Tao and An (1998). Furthermore, this algorithm can be shown
to be globally optimal in the case of the squared loss with a set of linear hypothesis H , which is the
standard setting in time series prediction.

In special case of the squared loss with linear hypotheses H = {x 7→ w ·x : ‖w‖2 ≤ 1}, optimiza-
tion problem minq d̂iscHA(q) admits additional structure that can lead to more efficient solutions.
Indeed, in that case the objective can be rewritten as follows:

d̂iscHA(q) = max
‖wt‖2≤1,‖w‖2≤1

∣∣∣∣∣
T∑
t=1

qt
∥∥wt · xt −w · xt

∥∥2
2
− qt

∥∥wt · xT+1 −w · xT+1

∥∥2
2

∣∣∣∣∣
= max
‖wt‖2≤1,‖w‖2≤1

∣∣∣∣∣
T∑
t=1

(wt −w)>qt(xtx
>
t − xT+1x

>
T+1)(wt −w)

∣∣∣∣∣
= max
‖wt‖2≤1,‖w‖2≤1

∣∣∣(W −W′)>M(q)(W −W′)
∣∣∣

where W = (w1, . . . ,wT ) and W′ = (w, . . . ,w), and where M(q) is a block diagonal matrix
with block matrices qt(xtx>t − xT+1x

>
T+1) on the diagonal. Furthermore, observe that M(q) can

be written as M(q) =
∑

t=1 qtMt, where each Mt is a block diagonal matrix with all its blocks
equal to zero except from the tth one which is qt(xtx>t − xT+1x

>
T+1). This leads to the following

optimization problem:

min
q

max
‖wt‖2≤1,‖w‖2≤1

∣∣∣(W −W′)>M(q)(W −W′)
∣∣∣

subject to q>1 = 1, q ≥ 0. (9)

There are multiple different approaches for solving this optimization problem. Observe that this
optimization problem is similar to maximum eigenvalue minimization problem:

min
q

max
‖V‖2≤2

√
T

∣∣∣V>M(q)V
∣∣∣

subject to q>1 = 1, q ≥ 0.

In fact, for T = 1 these two problems coincide. Maximum eigenvalue minimization problem can
be solved using the smooth approximation technique of Nesterov (2007) applied to the objective
(Cortes and Mohri, 2014) or by writing it as an equivalent SDP problem which can then be solved
in polynomial-time using interior-point methods and several other specific algorithms (Fletcher,
1985; Overton, 1988; Jarre, 1993; Helmberg and Oustry, 2000; Alizadeh, 1995; Cortes and Mohri,
2014). The natural approaches for solving the optimization problem (9) also include the smooth
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approximation technique of Nesterov (2007) or casting it as an SDP problem. Another approach is
based on the relaxation of (9) to maximum eigenvalue minimization. Indeed, observe that

max
‖wt‖2≤1,‖w‖2≤1

∣∣∣(W −W′)>M(q)(W −W′)
∣∣∣ ≤ max

‖V‖2≤2
√
T

∣∣∣V>M(q)V
∣∣∣ ,

where we let V = W−W′ and the inequality is a consequence of the fact that, for any w,w1, . . . ,wT

such that ‖wt‖2 ≤ 1, ‖w‖2 ≤ 1 for all t the following bound holds:

‖V‖2 = ‖W −W′‖2 =

√√√√ T∑
t=1

‖wt −w‖22 ≤ 2
√
T .

We leave it to the future to give a more detailed analysis of the best specific algorithms for this
problem.

In a similar way, we can derive a validation procedure that is based on Theorem 3 for a slightly
different setting in which we do not choose among pre-trained models but rather among different
hyperparameter vectors θ1, . . . , θN . At each round of the execution of an on-line algorithm, one
hyperparameter vector θ is chosen as an expert, the corresponding hθ is trained on data that has
been observed so far and is used to make a prediction. The final hyperparameter vector is chosen
according to (4).

We conclude this section with the observation that model selection procedures described above can
also be applied in the i.i.d. setting in which case we can take q to be u.

4.2. Ensemble Learning

In this section, we present another application of our theory which is that of learning convex en-
sembles of time series predictors. Given a hypothesis set H and a sample ZT1 , that may consist of
the models that have been trained on ZT1 , the goal of the learner is to come up with a convex com-
bination

∑T
t=1 qtht for some h ∈ HA and a q in the simplex. We propose the following two-step

procedure:

• run a regret minimization algorithm on ZT1 to generate a sequence of hypotheses h.

• select an ensemble hypothesis h =
∑T

t=1 qtht where q is solution of the following convex
optimization problem over the simplex:

min
q

d̂iscH(q) +
T∑
t=1

qtL(ht, Zt)

subject to ‖q− u‖1 ≤ λ1, (10)

where λ1 ≥ 0 is some hyperparameter that can be set via a validation procedure.

Note that (10) directly optimizes the upper bound of Theorem 2. If models in H have been trained
on ZT1 , then an additional linear term

∑T
t=1 qtβt appears in the objective and the overall problem can

be handled in exactly the same way. Similarly, d̂iscHA(q) may be used in place of d̂iscH(q).
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As in Section 4.1, the convex optimization problem in (10) can be solved using a standard projected
subgradient algorithm where at each iteration a DC-algorithm of Tao and An (1998) is used to
compute the discrepancy, if H and L are convex. As before, this DC-algorithm is guaranteed
to be optimal if L is the squared loss and H is a set of linear hypothesis. Furthermore, for linear
hypotheses with the squared loss and d̂iscHA(q) in the objective, the same analysis as in Section 4.1
can be used.

5. Conclusion

Time series prediction is a fundamental learning problem. We presented a series of results exploiting
its recent analysis in statistical learning theory in the general scenario of non-stationary non-mixing
Kuznetsov and Mohri (2015) and other existing regret-based analysis and guarantees from the broad
on-line learning literature. This combination of the benefits of different approaches can lead to a
variety of rich problems and solutions in learning theory that we hope this work will promote and
stimulate.
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Appendix A. Sequential Complexities

The guarantees that we provide in this paper for estimating the discrepancy disc(q) are expressed
in terms of data-dependent measures of sequential complexity such as expected sequential covering
number or sequential Rademacher complexity (Rakhlin et al., 2010). We give a brief overview of
the notion of sequential covering number and refer the reader to the aforementioned reference for
further details. We adopt the following definition of a complete binary tree: a Z-valued complete
binary tree z is a sequence (z1, . . . , zT ) of T mappings zt : {±1}t−1 → Z , t ∈ [T ]. A path in the
tree is a sequence σ = (σ1, . . . , σT−1), with σ1, . . . , σT−1 ∈ {±1}. To simplify the notation we
will write zt(σ) instead of zt(σ1, . . . , σt−1), even though zt depends only on the first t−1 elements
of σ. The following definition generalizes the classical notion of covering numbers to the sequential
setting. A set V of R-valued trees of depth T is a sequential α-cover (with respect to q-weighted `p
norm) of a function class G on a tree z of depth T if for all g ∈ G and all σ ∈ {±}T , there is v ∈ V
such that (

T∑
t=1

∣∣∣vt(σ)− g
(
zt(σ)

)∣∣∣p) 1
p

≤ ‖q‖−1q α,

where ‖ · ‖q is the dual norm. The (sequential) covering number Np(α,G, z) of a function class G
on a given tree z is defined to be the size of the minimal sequential cover. The maximal covering
number is then taken to beNp(α,G) = supzNp(α,G, z). One can check that in the case of uniform
weights this definition coincides with the standard definition of sequential covering numbers. Note
that this is a purely combinatorial notion of complexity which ignores the distribution of the process
in the given learning problem.

Data-dependent sequential covering numbers can be defined as follows. Given a stochastic process
distributed according to the distribution p with pt(·|zt−11 ) denoting the conditional distribution at
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time t, we sample a Z ×Z-valued tree of depth T according to the following procedure. Draw two
independent samples Z1, Z

′
1 from p1: in the left child of the root draw Z2, Z

′
2 according to p2(·|Z1)

and in the right child according to p2(·|Z ′2). More generally, for a node that can be reached by a
path (σ1, . . . , σt), we draw Zt, Z

′
t according to pt(·|S1(σ1), . . . , St−1(σt−1)), where St(1) = Zt

and St(−1) = Z ′t. Let z denote the tree formed using Zts and define the expected covering number
to be Ez∼ZT

[
Np(α,G, z)

]
, where ZT denotes the distribution of z thereby defined.

One can define similarly other measures of complexity such as sequential Rademacher complexity
and the Littlestone dimension (Rakhlin et al., 2015a) as well as their data-dependent counterparts
(Rakhlin et al., 2011). One of the main technical tools used in our analysis is the notion of sequential
Rademacher complexity. Let G be a set of functions from Z to R. The sequential Rademacher
complexity of a function class Z is defined as the following:

R
seq
T (G) = sup

z
E

[
sup
g∈G

T∑
t=1

σt qt g
(
zt(σ)

)]
, (11)

where the supremum is taken over all complete binary trees of depth T with values in Z and where
σ is a sequence of Rademacher random variables (i.i.d. uniform random variables taking values in
{±1}).

Appendix B. Discrepancy Measure

One of the key ingredients needed for the derivation of our learning guarantees is the notion of
discrepancy between the target distribution and the distribution of the sample that was introduced in
Section 2. Our discrepancy measure is a direct extension of the discrepancy measure in (Kuznetsov
and Mohri, 2015) to the setting of on-line learning algorithms and it enjoys many of the same
favorable properties as its precursor.

One natural interpretation of disc is as a measure of the non-stationarity of the stochastic process
Z with respect to both the loss function L and the hypothesis set H . In particular, note that if the
process Z is i.i.d., then we simply have disc(q) = 0 provided that qts form a probability distribu-
tion.

As a more interesting example, consider the case of a Markov chain on a set {0, . . . , N − 1} such
that P(Xt ≡ (i − 1) mod N |Xt−1 = i) = pi (mod 2) and P(Xt ≡ (i + 1) mod N |Xt−1 = i) =
1 − pi (mod 2) for some 0 ≤ p0, p1 ≤ 1. In other words, this is a random walk on {0, . . . , N − 1},
with transition probability distribution changing depending on the equivalent class of the time step
t. This process is non-stationary. Suppose that the set of hypotheses used by an on-line algorithm
is {x 7→ a(x− 1) + b(x + 1): a + b = 1, a, b ≥ 0} and the loss function is defined by L(y, y′) =
`(|y − y′|) for some `. It follows that for any (a, b),

Ls(ht,Zs−11 ) = ps(mod 2)`(|at − bt − 1|) + (1− ps(mod 2))`(|at − bt + 1|)

and hence disc(q) = 0 provided that q is a probability distribution that is supported on odd ts if T is
odd or even ts if T is even. Note that if we chose a different hypothesis set, then, in general, we may
have disc(q) 6= 0. This highlights an important property of discrepancy: it takes into account not

19



KUZNETSOV MOHRI

only the underlying distribution of the stochastic process but also other components of the learning
problem such as the loss function and the hypothesis set used. Similar results can be established for
weakly stationary stochastic process as well (Kuznetsov and Mohri, 2014).

It is also possible to give bounds on disc(q) in terms of other natural divergences between distri-
butions. For instance, if q is a probability distribution, then, by Pinsker’s inequality, the following
holds:

disc(q) ≤M
∥∥∥∥PT+1(·|ZT1 )−

T∑
t=1

qtPt(·|Zt−11 )

∥∥∥∥
TV

≤ 1√
2
D

1
2

(
PT+1(·|ZT1 ) ‖

T∑
t=1

qtPt(·|Zt−11 )

)
,

where ‖ · ‖TV denotes the total variation distance, D(· ‖ ·) the relative entropy, Pt+1(·|Zt1) the con-
ditional distribution of Zt+1, and

∑T
t=1 qtPt(·|Zt−11 ) the mixture of the sample marginals.

However, the most important property of the discrepancy disc(q) is, as shown later in Lemma 9
and Lemma 7, that it can be accurately estimated from data under some additional mild assump-
tions.

Appendix C. Proofs

Theorem 3 Assume that L is bounded byM . Let ZT1 be any sequence of random variables. LetH∗

be a set of sequences of hypotheses that are adapted to ZT1 . Fix a weight vector q = (q1, . . . , qT )
in the simplex. For any δ > 0, let h be defined by (4), then, each of the following bounds holds with
probability at least 1− δ:

LT+1(h,Z
T
1 ) ≤

T∑
t=1

qtL(ht, Zt) + disc(q) +M‖q‖2

√
2 log

2(T + 1)

δ
,

LT+1(h,Z
T
1 ) ≤ inf

h∗∈H∗

{
T∑
t=1

qtLT+1(h
∗
t ,Z

T
1 ) +R(h∗)

}

+ 2 disc(q) +
RegT
T

+M‖q− u‖1 + 2M‖q‖2

√
2 log

2(T + 1)

δ
,

where u = ( 1
T , . . . ,

1
T ) ∈ RT .

Proof Observe that

min
0≤t≤T

LT+1(ht,Z
T
1 ) + 2 pen(t, δ/2)

≤ min
0≤t≤T

1

‖qTt ‖1

T∑
i=t

qiLT+1(hi,Z
T
1 ) +

2

‖qTt ‖1
disc

(
qTt
)

+ 2
‖qTt ‖2
‖qTt ‖1

M

√
log

2(T + 1)

δ
.
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Let Mt and Kt be defined as follows:

Mt =

T∑
i=t

q̃iLT+1(hi,Z
T
1 ) + 2 disc

(
q̃Tt
)

+ 2‖q̃Tt ‖2M
√

log
2(T + 1)

δ

Kt =
T∑
i=t

q̃iL(hi, Zi) + disc
(
q̃Tt
)

+ ‖q̃Tt ‖2M
√

log
2(T + 1)

δ
,

where q̃i = qi/‖qTt ‖1. Then, by Lemma 1, it follows that

P
(

min
0≤t≤T

(
LT+1(ht,Z

T
1 ) + 2 pen(t, δ/2)

)
≥ min

0≤t≤T
Kt

)
≤

T∑
t=1

P(Mt ≥ Kt) ≤
δ

2
.

Combining this with Lemma 8 yields the first statement of the theorem. The second statement fol-
lows from the same arguments as in the proof of Theorem 2.

Lemma 8 Let ZT1 be any sequence of random variables and let h1, . . . , hT be any sequence of
hypotheses adapted to ZT1 . Let q = (q1, . . . , qT ) be any weight vector in the simplex. If the loss
function L is bounded and h is defined by (4), then, for any δ > 0, each of the following bounds
holds with probability at least 1− δ:

LT+1(h,Z
T
1 ) ≤ min

0≤t≤T
(LT+1(ht,Z

T
1 ) + 2 pen(t, δ)).

Proof We define

t̃ = argmin
0≤t≤T

(Gt + pen(t, δ))

t̂ = argmin
0≤t≤T

(St + pen(t, δ)),

where St =
∑T

s=t qsL(ht, Zs) and Gt =
∑T

s=t qsLs(ht,Z
s−1
1 ). We also let h̃ = ht̃ and S̃ = St̃.

Observe that St̂+pen(t̂, δ) ≤ S̃+pen(t̃, δ) and so if we letA = {LT+1(ĥ,Z
T
1 ) ≥ LT+1(h̃,Z

T
1 )+

2 pen(t̃, δ)} then

P(A) = P
(
A,St̂ + pen(t̂, δ) ≤ S̃ + pen(t̃, δ)

)
≤

T−1∑
t=0

P
(
A,St + pen(t, δ) < S̃ + pen(t̃, δ)

)
.

Note that St + pen(t, δ) < S̃ + pen(t̃, δ) implies that at least one of the following events must
hold:

B1 = {St ≤ LT+1(ht,Z
T
1 )− pen(t, δ)},

B2 = {S̃ ≥ LT+1(h̃,Z
T
1 ) + pen(t̃, δ)},

B3 = {LT+1(ht,Z
T
1 )− LT+1(ht,Z

T
1 ) < 2 pen(t̃, δ)}.
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Therefore,

P
(
A,St + pen(t, δ) < S̃ + pen(t̃, δ)

)
≤ P(B1) + P(B2) + P(B3, A) = P(B1) + P(B2)

since P(B3, A) = 0. Then it follows that

P(A) ≤
T∑
t=1

P(St ≤ LT+1(ht,Z
T
1 )− pen(t, δ)) + T

∑
t=1

P(St ≥ LT+1(ht,Z
T
1 ) + pen(t, δ)).

By the special choice of the pen(t, δ) it follows that P(A) ≤ δ and the proof is complete.

Lemma 4 Let ZT1 be any sequence of random variables and let h = (h1, . . . , hT ) ∈ HT be any
sequence of stable hypotheses. Let q = (q1, . . . , qT ) be any weight vector. For any δ > 0, each of
the following inequalities holds with probability at least 1− δ:

T∑
t=1

qtLT+1(ht,Z
T
1 ) ≤

T∑
t=1

qtL(ht, Zt) +
T∑
t=1

qtβt + disc(q) + 2M‖q‖2

√
2 log

2

δ
,

T∑
t=1

qtL(ht, Zt) ≤
T∑
t=1

qtLT+1(ht,Z
T
1 ) +

T∑
t=1

qtβt + disc(q) + 2M‖q‖2

√
2 log

2

δ
.

Proof For each t, we let ZTt and Z̃Tt be independent sequences of random variables drawn from
PT
t (·|Zt−11 ). Define Ẑ(t) as the sequence (Z1, . . . , Zt−1, Z̃t, . . . , Z̃T ) and observe that for any

function g : RT → R and any s ≤ t the following holds:

E
[
g
(
ZT1
)
| Zs−11

]
= E

[
g
(
Ẑ(t)

)
| Zs−11

]
. (12)

Recall that, by definition of HT , each ht is a hypothesis At(Z
T
1 ) : X → Y returned by a stable

algorithm At ∈ A trained on ZT1 .

In view of (12), At = Lt(At(Z
T
1 ),Zt−11 )−Lt(At(Ẑ(t)),Zt−11 ) forms a martingale sequence. Thus,

by Azuma’s inequality, with probability at least 1− δ/2,
∑T

t=1 qtAt ≤M‖q‖2
√

2 log 2
δ .

Similarly, Bt = EZt [L(At(Ẑ(t)), Zt)|Zt−11 ] − L(At(Z
T
1 ), Zt) is a martingale difference and with

probability at least 1− δ/2,
∑T

t=1 qtBt ≤M‖q‖2
√

2 log 2
δ .

By stability, we have Lt(At(Ẑ(t)),Zt−11 )− EZt [L(At(Ẑ(t)), Zt)|Zt1] ≤ βt. It follows that, for any
δ > 0, with probability at least 1− δ, the following inequality holds:

T∑
t=1

qtLt(ht,Zt−11 ) ≤
T∑
t=1

qtL(ht, Zt) +

T∑
t=1

qtβt + 2M‖q‖2

√
2 log

2

δ
.

The first statement of the lemma then follows from the definition of the discrepancy. The second
statement follows by symmetry.
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Theorem 5 Assume that L is convex and bounded by M . Let ZT1 be any sequence of random
variables. Let H∗ be a set of sequences of stable hypotheses and let h1, . . . , hT be a sequence
of stable hypotheses. Fix a weight vector q = (q1, . . . , qT ) in the simplex and let h denote h =∑T

t=1 qtht. Then, for any δ > 0, each of the following bounds holds with probability at least 1− δ:

LT+1(h,Z
T
1 ) ≤

T∑
t=1

qtLt(ht,Zt−11 ) ≤
T∑
t=1

qtL(ht, Zt)+
T∑
t=1

qtβt+disc(q)+2M‖q‖2

√
2 log

2

δ
,

LT+1(h,Z
T
1 ) ≤ inf

h∗∈H∗

{
T∑
t=1

qtLT+1(h
∗
t ,Z

T
1 ) +R(h∗)

}
+ 2βmax + 2 disc(q)

+
RegT
T

+M‖q− u‖1 + 4M‖q‖2

√
2 log

4

δ
,

where βmax = suph∈H βh and u = ( 1
T , . . . ,

1
T ) ∈ RT .

Proof The proof of this Theorem is similar to that of Theorem 2 with the only difference that we
use Lemma 4 instead of Lemma 1.

Theorem 6 Assume that L is bounded by M . Let ZT1 be any sequence of random variables. Let
H∗ be a set of sequences of stable hypotheses. Fix a weight vector q = (q1, . . . , qT ) in the simplex.
For any δ > 0, let h be defined by (4), then, each of the following bounds holds with probability at
least 1− δ:

LT+1(h,Z
T
1 ) ≤

T∑
t=1

qtL(ht, Zt) + βmax + disc(q) +M‖q‖2

√
2 log

2(T + 1)

δ
,

LT+1(h,Z
T
1 ) ≤ inf

h∗∈H∗

{
T∑
t=1

qtLT+1(h
∗
t ,Z

T
1 ) +R(h∗)

}
+ 2βmax

+ 2 disc(q) +
RegT
T

+M‖q− u‖1 + 2M‖q‖2

√
2 log

4(T + 1)

δ
,

where βmax = suph∈H βh and u = ( 1
T , . . . ,

1
T ) ∈ RT .

Proof The proof of this Theorem is analogous to the proof of Theorem 3 with the only difference
that we use Lemma 4 instead of Lemma 1.

Lemma 9 Let ZT1 be a sequence of random variables. Then, for any δ > 0, with probability at
least 1− δ, the following bound holds for all α > 0

disc(q) ≤ d̂iscY(q) + sγ + 2α+M‖q− us‖2

√
2 log

Ez∼ZT
[N1(α,G, z)]

δ
,

where the empirical discrepancy is defined by

d̂iscY(q) = sup
h∈HA

∣∣∣∣∣1s
T∑

τ=T−s+1

T∑
t=1

qtL(ht, Zτ )−
T∑
t=1

qtL(ht, Zt))

∣∣∣∣∣,
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and γ=supt‖Pt+1(·|Zt1)−Pt(·|Zt−11 )‖TV and us is the uniform distribution on the last s points.

Proof We observe that

discY(q)− d̂iscY(q) ≤ sup
G

∣∣∣∣∣
T∑
t=1

(qt − pt)(E[g(Zt, t)|Zt−11 ]− g(Zt, t))

∣∣∣∣∣,
where G = sup{(z, s) 7→ L(hs, z) : h ∈ HA}. The conclusion of the lemma follows from Theo-
rem 10.

Lemma 7 Let ZT1 be a sequence of random variables. Then, for any δ > 0, with probability at
least 1− δ, the following inequality holds for all α > 0:

disc(q) ≤ d̂iscH(q) + inf
h∗

E[d(ZT+1, h
∗(XT+1))|ZT1 ] + 2α+M‖q‖2

√
2 log

Ez∼ZT
[N1(α,G, z)]

δ
,

where d̂iscH(q) is the empirical discrepancy defined by

d̂iscH(q) = sup
h∈H,h∈HA

∣∣∣∣∣
T∑
t=1

qt(L(ht(XT+1), h(XT+1))− L(ht, Zt))

∣∣∣∣∣. (13)

Proof We observe that

discH(q)− d̂iscH(q) ≤ sup
G

∣∣∣∣∣
T∑
t=1

qt E[g(Zt, t)|Zt−11 ]− g(Zt, t)

∣∣∣∣∣,
where G = sup{(z, s) 7→ L(hs, z) : h ∈ HA}. The conclusion of the lemma follows from Theo-
rem 10.

Theorem 10 Let ZT1 be a sequence of random variables distributed according to p. Define Ψ(ZT1 )

by Ψ(ZT1 ) = supf∈F

∣∣∣∣∑T
t=1 qt E[f(Zt)|Zt−11 ] − f(Zt)

∣∣∣∣. Then, for any ε > 2α > 0, the following

inequality holds:

P
(
Ψ(ZT1 ) ≥ ε

)
≤ E

v∼ZT

[
N1(α,F ,v)

]
exp

(
− (ε− 2α)2

2M2‖q‖22

)
.

Theorem 10 is a consequence of Theorem 1 in (Kuznetsov and Mohri, 2015), where a slightly tighter
statement is proven by bounding (Φ(ZT1 )−∆), with Φ(ZT1 ) the supremum of the empirical process
and ∆ the discrepancy measure defined in (Kuznetsov and Mohri, 2015).
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