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Abstract

We study online learning with the general notion of transductive regret, that is
regret with modification rules applying to expert sequences (as opposed to single
experts) that are representable by weighted finite-state transducers. We show how
transductive regret generalizes existing notions of regret, including: (1) external
regret; (2) internal regret; (3) swap regret; and (4) conditional swap regret. We
present a general and efficient online learning algorithm for minimizing transductive
regret. We further extend that to design efficient algorithms for the time-selection
and sleeping expert settings. A by-product of our study is an algorithm for swap
regret, which, under mild assumptions, is more efficient than existing ones, and a
substantially more efficient algorithm for time selection swap regret.

1 Introduction

Online learning is a general framework for sequential prediction. Within that framework, a widely
adopted setting is that of prediction with expert advice [Littlestone and Warmuth, 1994, Cesa-Bianchi
and Lugosi, 2006], where the algorithm maintains a distribution over a set of experts. At each round,
the loss assigned to each expert is revealed. The algorithm then incurs the expected value of these
losses for its current distribution and next updates its distribution.

The standard benchmark for the algorithm in this scenario is the external regret, that is the difference
between its cumulative loss and that of the best (static) expert in hindsight. However, while this
benchmark is useful in a variety of contexts and has led to the design of numerous effective online
learning algorithms, it may not constitute a useful criterion in common cases where no single fixed
expert performs well over the full course of the algorithm’s interaction with the environment. This
had led to several extensions of the notion of external regret, along two main directions.

The first is an extension of the notion of regret so that the learner’s algorithm is compared against
a competitor class consisting of dynamic sequences of experts. Research in this direction started
with the work of Herbster and Warmuth [1998] on tracking the best expert, who studied the scenario
of learning against the best sequence of experts with at most k switches. This work has been
subsequently improved [Monteleoni and Jaakkola, 2003], generalized [Vovk, 1999, Cesa-Bianchi
et al., 2012, Koolen and de Rooij, 2013], and modified [Hazan and Seshadhri, 2009, Adamskiy et al.,
2012, Daniely et al., 2015]. More recently, an efficient algorithm with favorable regret guarantees has
been given for the general case of a competitor class consisting of sequences of experts represented by
a (weighted) finite automaton [Mohri and Yang, 2017, 2018]. This includes as special cases previous
competitor classes considered in the literature.

The second direction is to consider competitor classes based on modifications of the learner’s sequence
of actions. This approach began with the notion of internal regret [Foster and Vohra, 1997, Hart and
Mas-Colell, 2000], which considers how much better an algorithm could have performed if it had
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switched all instances of playing one action with another, and was subsequently generalized to the
notion of swap regret [Blum and Mansour, 2007], which considers all possible in-time modifications
of a learner’s action sequence. More recently, Mohri and Yang [2014] introduced the notion of
conditional swap regret, which considers all possible modifications of a learner’s action sequence
that depend on some fixed bounded history. Odalric and Munos [2011] also studied regret against
history-dependent modifications and presented computationally tractable algorithms (with suboptimal
regret guarantees) when the comparator class can be organized into a small number of equivalence
classes.

In this paper, we consider the second direction and study regret with respect to modification rules. We
first present an efficient online algorithm for minimizing swap regret (Section 3). We then introduce
the notion of transductive regret in Section 4, that is the regret of the learner’s algorithm with respect
to modification rules representable by a family of weighted finite-state transducers (WFSTs). This
definition generalizes the existing notions of external, internal, swap, and conditional swap regret, and
includes modification rules that apply to expert sequences, as opposed to single experts. Moreover, we
present efficient algorithms for minimizing transductive regret. We further extend transductive regret
to the time-selection setting (Section 5) and present efficient algorithms minimizing time-selection
transductive regret. These algorithms significantly improve upon existing state-of-the-art algorithms
in the special case of time-selection swap regret. Finally, in Section 6, we extend transductive regret
to the sleeping experts setting and present new and efficient algorithms for minimizing sleeping
transductive regret.

2 Preliminaries and notation

We consider the setting of prediction with expert advice with a set Σ of N experts. At each round
t ∈ [T ], an online algorithm A selects a distribution pt over Σ, the adversary reveals a loss vector
lt ∈ [0, 1]N , where lt(x) is the loss of expert x ∈ Σ, and the algorithm incurs the expected loss pt · lt.
Let Φ ⊆ ΣΣ denote a set of modification functions mapping the expert set to itself. The objective
of the algorithm is to minimize its Φ-regret, RegT (A,Φ), defined as the difference between its
cumulative expected loss and that of the best modification of the sequence in hindsight:

RegT (A,Φ) = max
ϕ∈Φ

{
T∑
t=1

E
xt∼pt

[lt(xt)]− E
xt∼pt

[lt(ϕ(xt))]

}
. (1)

This definition coincides with the standard notion of external regret [Cesa-Bianchi and Lugosi,
2006] when Φ is reduced to the family of constant functions: Φext = {ϕa : Σ → Σ: a ∈ Σ,∀x ∈
Σ, ϕa(x) = a}, with the notion of internal regret [Foster and Vohra, 1997] when Φ is the family
of functions that only switch two actions: Φint = {ϕa,b : Σ → Σ: a, b ∈ Σ, ϕa,b(x) = 1x=ab +
1x=ba+ x1x 6=a,b}, and with the notion of swap regret [Blum and Mansour, 2007] when Φ consists
of all possible functions mapping Σ to itself: Φswap. In Section 4, we will introduce a more general
notion of regret with modification rules applying to expert sequences, as opposed to single experts.

There are known algorithms achieving an external regret in O(
√
T logN) with a per-iteration

computational cost in O(N) [Cesa-Bianchi and Lugosi, 2006], an internal regret in O(
√
T logN)

with a per-iteration computational cost in O(N3) [Stoltz and Lugosi, 2005], and a swap regret in
O(
√
TN logN) with a per-iteration computational cost in O(N3) [Blum and Mansour, 2007].

3 Efficient online algorithm for swap regret

In this section, we present an online algorithm, FASTSWAP, that achieves the same swap regret
guarantee as the algorithm of Blum and Mansour [2007], O(

√
TN logN), but admits the more

favorable per-iteration complexity of O(N2 log(T )), under some mild assumptions.

Existing online algorithms for internal or swap regret minimization require, at each round, solving
for a fixed-point of an N ×N -stochastic matrix [Foster and Vohra, 1997, Stoltz and Lugosi, 2005,
Blum and Mansour, 2007]. For example, the algorithm of Blum and Mansour [2007] is based on
a meta-algorithm A that makes use of N external regret minimization sub-algorithms {Ai}i∈[N ]

(see Figure 1). Sub-algorithm Ai is specialized in guaranteeing low regret against swapping expert
i with any other expert j. The meta-algorithm A maintains a distribution pt over the experts and,
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Figure 1: Illustration of the swap regret algorithm of Blum and Mansour [2007] or the FASTSWAP
algorithm, which use a meta-algorithm to control a set of N external regret minimizing algorithms.

Algorithm 1: FASTSWAP; {Ai}Ni=1 are external regret minimization algorithms.

Algorithm: FASTSWAP((Ai)Ni=1)
for t← 1 to T do

for i← 1 to N do
qi ← QUERY(Ai)

Qt ← [q1 · · · qN ]>

for j ← 1 to N do
cj ← minNi=1 Q

t
i,j

αt ← ‖c‖1; τt ←
⌈ log

(
1√
t

)
log(1−αt)

⌉
if τt < N then

pt ← p1
t ← c

αt

for τ ← 1 to τt do
(pτt )> ← (pτt )>(Qt −~1c>); pt ← pt + pτt

pt ← pt
‖pt‖1

else
p>t = FIXED-POINT(Qt)

xt ← SAMPLE(pt); lt ← RECEIVELOSS()
for i← 1 to N do

ATTRIBUTELOSS(pt[i]lt, Ai)

at each round t, assigns to sub-algorithm Ai only a fraction of the loss, (pt,ilt), and receives the
distribution qi (over the experts) returned by Ai. At each round t, the distribution pt is selected to be
the fixed-point of the N ×N -stochastic matrix Qt = [q1 · · · qN ]>. Thus, pt = ptQ

t is the stationary
distribution of the Markov process defined by Qt. This choice of the distribution is natural to ensure
that the learner’s sequence of actions is competitive against a family of modifications, since it is
invariant under a mapping that relates to this family of modifications.

The computation of a fixed-point involves solving a linear system of equations, thus, the per-round
complexity of these algorithms is in O(N3) using standard methods (or O(N2.373), using the method
of Coppersmith and Winograd). To improve upon this complexity in the setting of internal regret,
Greenwald et al. [2008] estimate the fixed-point by applying, at each round, a single power iteration
to some stochastic matrix. Their algorithm runs in O(N2) time per iteration, but at the price of a
regret guarantee that is only in O(

√
NT

9
10 ).

Here, we describe an efficient algorithm for swap regret, FASTSWAP. Algorithm 1 gives its pseu-
docode. As with the algorithm of Blum and Mansour [2007], FASTSWAP is based on a meta-algorithm
A making use of N external regret minimization sub-algorithms {Ai}i∈[N ]. However, unlike the
algorithm of Blum and Mansour [2007], which explicitly computes the stationary distribution of
Qt at round t, or that of Greenwald et al. [2008], which applies a single power iteration at each
round, our algorithm applies multiple modified power iterations at round t (τt power iterations). Our
modified power iterations are based on the REDUCEDPOWERMETHOD (RPM) algorithm introduced
by Nesterov and Nemirovski [2015]. Unlike the algorithm of Greenwald et al. [2008], FASTSWAP
uses a specific initial distribution at each round, applies the power method to a modification of the
original stochastic matrix, and uses, as an approximation, an average of all the iterates at that round.
Theorem 1. Let A1, . . . ,AN be external regret minimizing algorithms admitting data-dependent
regret bounds of the form O(

√
LT (Ai) logN), where LT (Ai) is the cumulative loss of Ai after T
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         sell:IBM/0.3
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IBM:Apple/0.3
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Figure 2: (i) Example of a WFST T: IT = 0, ilab[ET[0]] = {a, b}, olab[ET[1]] = {b}, ET[2] =
{(0, a, b, 1, 1), (0, b, a, 1, 1)}. (ii) Family of swap WFSTs Tϕ, with ϕ : {a, b, c} → {a, b, c}. (iii) A
more general example of a WFST.

rounds. Assume that, at each round, the sum of the minimal probabilities given to an expert by these
algorithms is bounded below by some constant α > 0. Then, FASTSWAP achieves a swap regret in
O(
√
TN logN) with a per-iteration complexity in O

(
N2 min

{
log T

log(1/(1−α)) , N
})

.

The proof is given in Appendix D. It is based on a stability analysis bounding the additive regret
term due to using an approximation of the fixed point distribution, and the property that τt iterations
of the reduced power method ensure a 1√

t
-approximation, where t is the number of rounds. The

favorable complexity of our algorithm requires an assumption on the sum of the minimal probabilities
assigned to an expert by the algorithms at each round. This is a reasonable assumption which one
would expect to hold in practice if all the external regret minimizing sub-algorithms are the same.
This is because the true losses assigned to each column of the stochastic matrix are the same, and the
rescaling based on the distribution pt is uniform over each row. Furthermore, since the number of
rounds sufficient for a good approximation can be efficiently estimated, our algorithm can determine
when it is worthwhile to switch to standard fixed-point methods, that is when the condition τt > N
holds. Thus, the time complexity of our algorithm is never worse than that of Blum and Mansour
[2007].

4 Online algorithm for transductive regret

In this section, we consider a more general notion of regret than swap regret, where the family
of modification functions applies to sequences instead of just to single experts. We will consider
sequence-to-sequence mappings that can be represented by finite-state transducers. In fact, more
generally, we will allow weights to be used for these mappings and will consider weighted finite-state
transducers. This will lead us to define the notion of transductive regret where the cumulative loss of
an algorithm’s sequence of actions is compared to that of sequences images of its action sequence via
a transducer mapping. As we shall see, this is an extremely flexible definition that admits as special
cases standard notions of external, internal, and swap regret.

We will start with some preliminary definitions and concepts related to transducers.

4.1 Weighted finite-state transducer definitions

A weighted finite-state transducer (WFST) T is a finite automaton whose transitions are augmented
with an output label and a real-valued weight, in addition to the familiar input label. Figure 2(i) shows
a simple example. We will assume both input and output labels to be elements of the alphabet Σ,
which denotes the set of experts. Σ∗ denotes the set of all strings over the alphabet Σ.

We denote by ET the set of transitions of T and, for any transition e ∈ ET , we denote by ilab[e] its
input label, by olab[e] its output label, and by w[e] its weight. For any state u of T, we denote by
ET[u] the set of transitions leaving u. We also extend the definition of ilab to sets and denote by
ilab[ET[u]] the set of input labels of the transitions ET[u].

We assume that T admits a single initial state, which we denote by IT . For any state u and string
x ∈ Σ∗, we also denote by δT(u, x) the set of states reached from u by reading string x as input. In
particular, we will denote by δT(IT, x) the set of states reached from the initial state by reading string
x as input.
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The input (or output) label of a path is obtained by concatenating the input (output) transition labels
along that path. The weight of a path is obtained by multiplying is transition weights. A path from
the initial state to a final state is called an accepting path. A WFST maps the input label of each
accepting path to its output label, with that path weight probability.

The WFSTs we consider may be non-deterministic, that is they may admit states with multiple
outgoing transitions sharing the same input label. However, we will assume that, at any state,
outgoing transitions sharing the same input label admit the same destination state. We will further
require that, at any state, the set of output labels of the outgoing transitions be contained in the set
of input labels of the same transitions. This requirement is natural for our definition of regret: our
learner will use input label experts and will compete against sequences of output label experts. Thus,
the algorithm should have the option of selecting an expert sequence it must compete against.

Finally, we will assume that our WFSTs are stochastic, that is, for any state u and input label a ∈ Σ,
we have

∑
e∈ET [u,a] w[e] = 1. The class of WFSTs thereby defined is broad and, as we shall see,

includes the families defining external, internal and swap regret.

4.2 Transductive regret

Given any WFST T, let T be a family of WFSTs with the same alphabet Σ, the same set of states Q,
the same initial state I and final states F , but with different output labels and weights. Thus, we can
write IT , FT , QT , and δT , without any ambiguity. We will also use the notation ET when we refer
to the transitions of a transducer within the family T in a way that does not depend on the output
labels or weights. We define the learner’s transductive regret with respect to T as follows:

RegT (A, T ) = max
T∈T

{
T∑
t=1

E
xt∼pt

[lt(xt)]−
T∑
t=1

E
xt∼pt

[ ∑
e∈ET [δT (IT ,x1:t−1),xt]

w[e] lt(olab[e])

]}
. (2)

This measures the maximum difference of the expected loss of the sequence xT1 played by A and
the expected loss of a competitor sequence, that is a sequence image by T ∈ T of xT1 , where the
expectation for competing sequences is both over pts and the transitions weights w[e] of T. We also
assume that the family T does not admit proper non-empty invariant subsets of labels out of any state,
i.e. for any state u, there exists no proper subset E ( ET [u] where the inclusion olab[E] ⊆ ilab[E]
holds for all T ∈ T . This is not a strict requirement but will allow us to avoid cases of degenerate
competitor classes.

As an example, consider the family of WFSTs Ta, a ∈ Σ, with a single state Q = I = F = {0} and
with Ta defined by self-loop transitions with all input labels b ∈ Σ with the same output label a, and
with uniform weights. Thus, Ta maps all labels to a. Then, the notion of transductive regret with
T = {Ta : a ∈ Σ} coincides with that of external regret.

Similarly, consider the family of WFSTs Tϕ, ϕ : Σ→ Σ, with a single state Q = I = F = {0} and
with Tϕ defined by self-loop transitions with input label a ∈ Σ and output ϕ(a), all weights uniform.
Thus, Tϕ maps a symbol a to ϕ(a). Then, the notion of transductive regret with T = {Tϕ : ϕ ∈ ΣΣ}
coincides with that of swap regret (see Figure 2 (ii)). The more general notion of k-gram conditional
swap regret presented in Mohri and Yang [2014] can also be modeled as transductive regret with
respect to a family of WFSTs (k-gram WFSTs). We present additional figures illustrating all of these
examples in Appendix A.

In general, it may be desirable to design WFSTs intended for a specific task, so that an algorithm is
robust against some sequence modifications more than others. In fact, such WFSTs may have been
learned from past data. The definition of transductive regret is flexible and can accommodate such
settings both because a transducer can conveniently help model mappings and because the transition
weights help distinguish alternatives. For instance, consider a scenario where each action naturally
admits a different swapping subset, which may be only a small subset of all actions. As an example,
an investor may only be expected to pick the best strategy from within a similar class of strategies.
For example, instead of buying IBM, the investor could have bought Apple or Microsoft, and instead
of buying gold, he could have bought silver or bronze. One can also imagine a setting where along
the sequences, some new alternatives are possible while others are excluded. Moreover, one may
wish to assign different weights to some sequence modifications or penalize the investor for choosing
strategies that are negatively correlated to recent choices. The algorithms in this work are flexible
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enough to accommodate these environments, which can be straightforwardly modeled by a WFST.
We give a simple example in Figure 2(iii) and give another illustration in Figure 5 in Appendix A,
which can be easily generalized. Notice that, as we shall see later, in the case where the maximum
out-degree of any state in the WFST (size of the swapping subset) is bounded by a mild constant
independent of the number of actions, our transductive regret bounds can be very favorable.

4.3 Algorithm

We now present an algorithm, FASTTRANSDUCE, seeking to minimize the transductive regret given a
family T of WFSTs.

Our algorithm is an extension of FASTSWAP. As in that algorithm, a meta-algorithm is used that
assigns partial losses to external regret minimization slave algorithms and combines the distributions
it receives from these algorithms via multiple reduced power method iterations. The meta-algorithm
tracks the state reached in the WFST and maintains a set of external regret minimizing algorithms
that help the learner perform well at every state. Thus, here, we need one external regret minimization
algorithm Au,i, for each state u reached at time t after reading sequence x1:t−1 and each i ∈ Σ
labeling an outgoing transition at u. The pseudocode of this algorithm is provided in Appendix B.

Let |ET |in denote the sum of the number of transitions with distinct input label at each state of T , that
is |ET |in =

∑
u∈QT |ilab[ET [u]]|. |ET |in is upper bounded by the total number of transitions |ET |.

Then, the following regret guarantee and computational complexity hold for FASTTRANSDUCE.

Theorem 2. Let (Au,i)u∈Q,i∈ilab[ET [u]] be external regret minimizing algorithms admitting data-
dependent regret bounds of the form O(

√
LT (Au,i) logN), where LT (Au,i) is the cumulative loss

of Au,i after T rounds. Assume that, at each round, the sum of the minimal probabilities given to
an expert by these algorithms is bounded below by some constant α > 0. Then, FASTTRANSDUCE

achieves a transductive regret against T that is inO(
√
T |ET |in logN) with a per-iteration complexity

in O
(
N2 min

{
log T

log(1/(1−α)) , N
})

.

The proof is given in Appendix E. The regret guarantee of FASTTRANSDUCE matches that of the
swap regret algorithm of Blum and Mansour [2007] or FASTSWAP in the case where T is chosen
to be the family of swap transducers, and it matches the conditional k-gram swap regret of Mohri
and Yang [2014] when T is chosen to be that of the k-gram swap transducers. Additionally, its
computational complexity is typically more favorable than that of algorithms previously presented in
the literature when the assumption on α holds, and it is never worse.

Remarkably, the computational complexity of FASTTRANSDUCE is comparable to the cost of
FASTSWAP, even though FASTTRANSDUCE is a regret minimization algorithm against an arbitrary
family of finite-state transducers. This is because only the external regret minimizing algorithms that
correspond to the current state need to be updated at each round.

5 Time-selection transductive regret

In this section, we extend the notion of time-selection functions with modification rules to the setting
of transductive regret and present an algorithm that achieves the same regret guarantee as Khot and
Ponnuswami [2008] in their specific setting, but with a substantially more favorable computational
complexity.

Time-selection functions were first introduced in [Lehrer, 2003] as boolean functions that determine
which subset of times are relevant in the calculation of regret. This concept was relaxed to the
real-valued setting by Blum and Mansour [2007] who considered time-selection functions taking
values in [0, 1]. The authors introduced an algorithm which, for K modification rules and M time-
selection functions, guarantees a regret in O(

√
TN log(MK)) and admits a per-iteration complexity

in O(max{NKM,N3}). For swap regret with time selection functions, this corresponds to a regret
bound of O(

√
TN2 log(MN)) and a per-iteration computational cost in O(NN+1M). [Khot and

Ponnuswami, 2008] improved upon this result and presented an algorithm with a regret bound
in O(

√
T log(MK)) and a per-iteration computational cost in O(max{MK,N3}), which is still

prohibitively expensive for swap regret, since it is in O(NNM).
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Algorithm 2: FASTTIMESELECTTRANSDUCE; AI , (AI,u,i) external regret algorithms.

Algorithm: FASTTIMESELECTTRANSDUCE(I, T , AI , (AI,u,i)I∈I,u∈QT ,i∈ilab[ET [q]])
u← IT
for t← 1 to T do

for each I ∈ I do
q̃← QUERY(AI)
for each i ∈ ilab[ET [u]] do

qI,i ← QUERY(AI,u,i)
Mt,u,I ← [qI,111∈ilab[ET [u]]; . . . ; qI,N1N∈ilab[ET [u]]]; Qt,u ← Qt,u + I(t)q̃IM

t,u,I ;
Zt ← Zt + I(t)q̃I

Qt,u ← Qt,u

Zt

for each j ← 1 to N do
cj ← mini∈ilab[ET [u]] Q

t,u
i,j 1j∈ilab[ET [u]]

αt ← ‖c‖1; τt ←
⌈ log

(
1√
t

)
log(1−αt)

⌉
if τt < N then

pt ← p0
t ← c

αt

for τ ← 1 to τt do
(pτt )> ← (pτt )>(Qt,u −~1c>); pt ← pt + pτt

pt ← pt
‖pt‖1

else
p>t ← FIXED-POINT(Qt,u)

xt ← SAMPLE(pt); lt ← RECEIVELOSS(); u← δT [u, xt]
for each I ∈ I do

l̃tI ← I(t)
(
p>t M

t,u,I lt − p>t lt
)

for each i ∈ ilab[ET [u]] do
ATTRIBUTELOSS(AI,u,i, pt[i]I(t)lt)

ATTRIBUTELOSS(AI , l̃t)

We now formally define the scenario of online learning with time-selection transductive regret. Let
I ⊂ [0, 1]N be a family of time-selection functions. Each time-selection function I ∈ I determines
the importance of the instantaneous regret at each round. Then, the time-selection transductive regret
is defined as:

RegT (A, I,Φ)

= max
I∈I,T∈Φ

{
T∑
t=1

I(t) E
xt∼pt

[lt(xt)]−
T∑
t=1

I(t) E
xt∼pt

[ ∑
e∈ET [δT (IT ,x1:t−1),xt]

w[e]lt(olab[e])

]}
. (3)

When the family of transducers admits a single state, this definition coincides with the notion of
time-selection regret studied by Blum and Mansour [2007] or Khot and Ponnuswami [2008].

Time-selection transductive regret is a more difficult benchmark than transductive regret because the
learner must account for only a subset of the rounds being relevant, in addition to playing a strategy
that is robust against a large set of possible transductions.

To handle this scenario, we propose the following strategy. We maintain an external regret minimizing
algorithmAI over the set of time-selection functions. This algorithm will be responsible for ensuring
that our strategy is competitive against the a posteriori optimal time-selection function. We also
maintain |I||Q|N other external regret minimizing algorithms, {AI,u,i}I∈I,u∈QT ,i∈ilab[ET [u]], which
will ensure that our algorithm is robust against each of the modification rules and the potential
transductions. We will then use a meta-algorithm to assign appropriate surrogate losses to each of
these external regret minimizing algorithms and combine them to form a stochastic matrix. As in
FASTTRANSDUCE, this meta-algorithm will also approximate the stationary distribution of the matrix
and use that as the learner’s strategy. We call this algorithm FASTTIMESELECTTRANSDUCE. Its
pseudocode is given in Algorithm 2.
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Theorem 3. Let (AI,u,i)I∈I,u∈QT ,i∈ilab[ET [q]] be external regret minimizing algorithms admitting
data-dependent regret bounds of the form O(

√
LT (AI,u,i) logN), where LT (AI,u,i) is the cumu-

lative loss of AI,u,i after T rounds. Let AI be an external regret minimizing algorithm over I that
admits a regret in O(

√
T log(|I|)) after T rounds. Assume further that at each round, the sum of

the minimal probabilities given to an expert by these algorithms is bounded below by some constant
α > 0. Then, FASTTIMESELECTTRANSDUCE achieves a time-selection transductive regret with re-
spect to the time-selection family I and WFST family T that is in O

(√
T (log(|I|) + |ET |in logN)

)
with a per-iteration complexity in O

(
N2
(

min
{

log(T )
log((1−α)−1) , N

}
+ |I|

))
.

In particular, Theorem 3 implies that FASTTIMESELECTTRANSDUCE achieves the same time-
selection swap regret guarantee as the algorithm of Khot and Ponnuswami [2008] but with a per-
round computational cost that is only in O

(
N2
(

min
{

log(T )
log((1−α)−1) , N

}
+ |I|

))
, as opposed to

O(|I|NN ), which is an exponential improvement! Notice that this significant improvement does not
require any assumption (it holds even for α = 0).

6 Sleeping transductive regret

The standard setting of prediction with expert advice can be extended to the sleeping experts scenario
studied by Freund et al. [1997], where, at each round, a subset of the experts are asleep and thus
unavailable to the learner. The sleeping experts setting has been used to model problems appearing in
text categorization [Cohen and Singer, 1999], calendar scheduling [Blum, 1997], or learning how to
formulate search-engine queries [Cohen and Singer, 1996].

The standard benchmark in this setting is the sleeping regret, that is the difference between the
cumulative expected loss of the learner and the cumulative expected loss of the best static distribution
over the experts, restricted to and normalized over the set of awake experts At ⊆ Σ at each round t:

max
u∈∆N

{
T∑
t=1

E
xt∼pAt

t

[lt(xt)]−
T∑
t=1

E
xt∼uAt

[lt(xt)]

}
. (4)

Here, for any distribution p, we use the notation pAt =
p|At∑
i∈At

pi
with p|A(a) = p(a)1a∈A, for any

a ∈ Σ and A ⊆ Σ. An alternative definition of sleeping regret studied and bounded by Freund et al.
[1997] is the following:

max
u∈∆N

{
T∑
t=1

u(At) E
xt∼pAt

t

[lt(xt)]−
T∑
t=1

E
xt∼u

[1xt∈At
lt(xt)]

}
. (5)

This is also the definition we will be adopting in our analysis. Note that if u(At) does not vary with t,
then the two definitions only differ by a multiplicative constant. By generalizing the results of Freund
et al. [1997] to arbitrary losses, that is beyond those that satisfy equation (6) in their paper, one can

show that there exist algorithms with sleeping regret in O
(√∑T

t=1 u
∗(At)Ext∼pt [lt(xt)] log(N)

)
,

where u∗ maximizes the expression to be bounded.

In this section, we extend this definition of sleeping regret to sleeping transductive regret, that is the
difference between the learner’s cumulative expected loss and the cumulative expected loss of any
transduction of the learner’s actions among a family of finite-state transducers, where the weights of
the transductions are normalized over the set of awake experts. The sleeping transductive regret can
be expressed as follows:

RegT (A, T , AT1 ) = max
T∈T

u∈∆N

{
T∑
t=1

u(At) E
xt∼pAt

t

[lt(xt)]

−
T∑
t=1

E
xt∼pAt

t

[ ∑
e∈ET [δT (IT ,x1:t−1),xt]

(u|At)olab[e]w[e]lt(olab[e])

]}
. (6)
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Figure 3: Maximum values of τ and minimum values of α in FASTSWAP experiments. The vertical
bars represent the standard deviation across 16 instantiations of the same simulation.

When all experts are awake at every round, i.e.At = Σ, the sleeping transductive regret reduces to the
standard transductive regret. When the family of transducers corresponds to that of swap regret, we un-
cover a natural definition for sleeping swap regret: maxϕ∈Φswap,u∈∆N

∑T
t=1 u(At)Ext∼pAt

t
[lt(xt)]−∑T

t=1 Ext∼pAt
t

[
uϕ(xt)1ϕ(xt)∈At

lt(ϕ(xt))
]
. We now present an efficient algorithm for minimizing

sleeping transductive regret, FASTSLEEPTRANSDUCE. Similar to FASTTRANSDUCE, this algorithm
uses a meta-algorithm with multiple regret minimizing sub-algorithms and a fixed-point approx-
imation to compute the learner’s strategy. However, since FASTSLEEPTRANSDUCE minimizes
sleeping transductive regret, it uses sleeping regret minimizing sub-algorithms (i.e. those with regret
guarantees of the form (5)). The meta-algorithm also designs a different stochastic matrix. The
pseudocode of this algorithm is given in Appendix C.
Theorem 4. Assume that the sleeping regret minimizing algorithms used as inputs of
FASTSLEEPTRANSDUCE achieve data-dependent regret bounds such that, if the algorithm selects
the distributions (pt)

T
t=1 and observes losses (lt)

T
t=1 with awake sets (At)

T
t=1, then the regret ofAqi is

at most O
(√∑T

t=1 u
∗(At)Ext∼pt [lt(xt)] log(N)

)
. Assume further that at each round, the sum of

the minimal probabilities given to an expert by these algorithms is bounded below by some constant
α > 0. Then, the sleeping regret RegT (FASTSLEEPTRANSDUCE, T , AT1 ) of FASTSLEEPTRANS-

DUCE is upper bounded by O
(√∑T

t=1 u(At)|ET |in log(N)
)

. Moreover, FASTSLEEPTRANSDUCE

admits a per-iteration complexity in O
(
N2 min

{
log T

log(1/(1−α)) , N
})

.

7 Experiments

In this section, we present some toy experiments illustrating the effectiveness of the Reduced Power
Method for approximating the stationary distribution in FASTSWAP.

We considered n base learners, where n ∈ {40, 80, 120, 160, 200}, each using the weighted-majority
algorithm [Littlestone and Warmuth, 1994]. We generated losses as i.i.d. normal random variables
with means in (0.1, 0.9) (chosen randomly) and standard deviation equal to 0.1. We capped the
losses above and below to remain in [0, 1]. We ran FASTSWAP for 10,000 rounds in each simulation
and repeated each simulation 16 times. The plot of the maximum τ for each simulation is shown in
Figure 3. Across all simulations, the maximum τ attained was 4, so that at most 4 iterations of the
RPM were needed on any given round to obtain a sufficient approximation. Thus, the per-iteration
cost in these simulations was indeed in Õ(N2), an improvement over the O(N3) cost in prior work.

8 Conclusion

We introduced the notion of transductive regret, further extended it to the time-selection and sleeping
experts settings, and presented efficient online learning algorithms for all these setting with sublinear
transductive regret guarantees. We both generalized the existing theory and gave more efficient
algorithms in existing subcases. The algorithms and results in this paper can be further extended to
the case of fully non-deterministic weighted finite-state transducers.
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A Additional figures and examples

A.1 Special cases of transductive regret.

0a:x/1

b:x/1

c:x/1 0a:b/1

b:a/1

c:c/1

(i) (ii)

0a:φ(a)/1

b:φ(b)/1

c:φ(c)/1

ε

a

a:ψ(ε,a)/1

b b:ψ(ε,b)/1

c

c:ψ(ε,c)/1

a:ψ(a,a)/1
b:ψ(a,b)/1

c:ψ(a,c)/1

a:ψ(b,a)/1

b:ψ(b,b)/1

c:ψ(b,c)/1

a:ψ(c,a)/1

b:ψ(c,b)/1
c:ψ(c,c)/1

(iii) (iv)

Figure 4: Several families of WFSTs for special cases of transductive regret for Σ = {a, b, c}. (i)
External regret with parameter x ∈ Σ. (ii) Internal regret: family of transducers Ta1,a2

with a1 6= a2,
a1, a2 ∈ Σ; example shown for Ta,b. (iii) Swap regret with parameter ϕ : Σ → Σ. (iv) Bigram
conditional swap regret with parameter ψ : (Σ ∪ {ε})× Σ→ Σ.
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A.2 Example with a swapping subset.

0

a

a:φ(a)/0.1

b

b:φ(b)/0.2

c

c:φ(c)/0.3

d

d:φ(d)/0.2

aa

a:φ(a)/0.8

ab

b:φ(b)/0.2

bb

b:φ(b)/0.3

bc c:φ(c)/0.4

bd

d:φ(d)/0.3

cb

b:φ(b)/0.2

cc
c:φ(c)/0.5

cd

d:φ(d)/0.3

dd
d:φ(d)/0.7

da

a:φ(a)/0.3

a:φ(a)/0.4

b:φ(b)/0.6

b:φ(b)/0.5

c:φ(c)/0.3

d:φ(d)/0.2

b:φ(b)/0.3

c:φ(c)/0.3

d:φ(d)/0.4b:φ(b)/0.3

c:φ(c)/0.3

d:φ(d)/0.4

d:φ(d)/0.5

a:φ(a)/0.5

b:φ(b)/0.4

c:φ(c)/0.2

d:φ(d)/0.4
b:φ(b)/0.8

c:φ(c)/0.1
d:φ(d)/0.1

d:φ(d)/0.4

a:φ(a)/0.6

d:φ(d)/0.2

a:φ(a)/0.8

a:φ(a)/0.1

b:φ(b)/0.9

Figure 5: Example of a WFST with Σ = {a, b, c, d} and where each state has a swapping subset.
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B Pseudocode of FASTTRANSDUCE

Algorithm 3: FASTTRANSDUCE; (Au,i)u∈QT ,i∈ilab[ET [u]] external regret minimization algorithms.

Algorithm: FASTTRANSDUCE(T , (Au,i)u∈QT ,i∈ilab[ET [u]])
u← IT
for t← 1 to T do

for each i ∈ ilab[ET [u]] do
qi ← QUERY(Au,i)

Qt,u ← [q111∈ilab[ET [u]] · · · qN1N∈ilab[ET [u]]]
>

for each j ← 1 to N do
cj ← mini∈ilab[ET [u]] Q

t,u
i,j 1j∈ilab[ET [u]]

αt ← ‖c‖1; τt ←
⌈ log

(
1√
t

)
log(1−αt)

⌉
if τt < N then

pt ← p0
t ← c

αt

for τ ← 1 to τt do
(pτt )> ← (pτt )>(Qt,u −~1c>); pt ← pt + pτt

pt ← pt
‖pt‖1

else
p>t = FIXED-POINT(Qt,u)

xt ← SAMPLE(pt); lt ← RECEIVELOSS(); u← δT (u, xt)
for each i ∈ ilab[ET[u]] do

ATTRIBUTELOSS(Au,i, pt[i]lt)
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C Pseudocode of FASTSLEEPTRANSDUCE

Algorithm 4: FASTSLEEPTRANSDUCE. (Au,i) sleeping regret minimization algorithms.

Algorithm: FASTSLEEPTRANSDUCE(T , {Au,i}u∈QT ,i∈ilab[ET [u]])
u← IT
for t← 1 to T do

At ← AWAKESET()
for each i ∈ ilab[ET [u]] ∩At do

qi ← QUERY(Au,i); qAt
i ←

qi|At∑
j∈At

qi

Qt,u ← [qAt
1 11∈ilab[ET [u]]∩At

; . . . ; qAt

N 1N∈ilab[ET [u]]∩At
]

for each j ← 1 to N do
cj ← mini∈ilab[ET [u]]∩At

Qt,u
i,j 1j∈ilab[ET [u]]∩At

αt ← ‖c‖1; τt ←
⌈ log

(
1√
t

)
log(1−αt)

⌉
if τt < N then

pt ← p0
t ← c

αt

for τ ← 1 to τt do
(pτt )> ← (pτt )>(Qt,u − [11∈At

; . . . ; 1|ilab[ET [q]]|∈At
]c>)

pt ← pt + pτt
pt ← pt

‖pt‖1
else

p>t ← FIXED-POINT(Qt,u)

pAt
t ←

pt|At∑
j∈At

pt,j
; xt ← SAMPLE(pAt

t ); lt ← RECEIVELOSS(); u← δT [u, xt]

for each i ∈ ilab[ET [u]] do
ATTRIBUTELOSS(Au,i, pt[i]lt)
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D Proof of Theorem 1

Theorem 1. Let A1, . . . ,AN be external regret minimizing algorithms admitting data-dependent
regret bounds of the form O(

√
LT (Ai) logN), where LT (Ai) is the cumulative loss of Ai after T

rounds. Assume that, at each round, the sum of the minimal probabilities given to an expert by these
algorithms is bounded below by some constant α > 0. Then, FASTSWAP achieves a swap regret in
O(
√
TN logN) with a per-iteration complexity in O

(
N2 min

{
log T

log(1/(1−α)) , N
})

.

Proof. Let pt be the distribution returned by FASTSWAP at round t. For any distribution p∗t , t ∈ [T ],
the following inequality holds:

T∑
t=1

E
xt∼pt

[lt(xt)]1τt<N =

T∑
t=1

E
xt∼p∗t

[lt(xt)]1τt<N +

T∑
t=1

E
xt∼pt

[lt(xt)]1τt<N

−
T∑
t=1

E
xt∼p∗t

[lt(xt)]1τt<N

≤
T∑
t=1

E
xt∼p∗t

[lt(xt)]1τt<N +

T∑
t=1

‖pt − p∗t ‖1‖lt‖∞1τt<N

≤
T∑
t=1

E
xt∼p∗t

[lt(xt)]1τt<N +

T∑
t=1

‖pt − p∗t ‖11τt<N .

Let p∗t be the stationary distribution of the row stochastic matrix Qt, p∗>t Qt = p∗>t . Then, we can
write

T∑
t=1

E
xt∼p∗t

[lt(xt)]1τt<N =

T∑
t=1

N∑
j=1

p∗t,j lt,j1τt<N

=

T∑
t=1

N∑
i=1

N∑
j=1

p∗t,iQ
t
i,j lt,j1τt<N

=

N∑
i=1

T∑
t=1

N∑
j=1

Qt
i,jpt,ilt,j1τt<N +

N∑
i=1

T∑
t=1

N∑
j=1

Qt
i,j(p

∗
t,i

− pt,i)lt,j1τt<N

≤
N∑
i=1

T∑
t=1

N∑
j=1

Qt
i,jpt,ilt,j1τt<N +

T∑
t=1

‖p∗t − pt‖11τt<N .

On the other hand, by design, if τt ≥ N , then pt = p∗t , so that

T∑
t=1

E
xt∼pt

[lt(xt)]1τt≥N =

N∑
i=1

T∑
t=1

N∑
j=1

Qt
i,jpt,ilt,j1τt≥N .

Thus, it follows that

T∑
t=1

E
xt∼pt

[lt(xt)] ≤
N∑
i=1

T∑
t=1

N∑
j=1

Qt
i,jpt,ilt,j + 2

T∑
t=1

‖p∗t − pt‖11τt<N

≤
N∑
i=1

[
min
j∈[N ]

T∑
t=1

pt,ilt,j + RegT (Ai,Φext)

]
+ 2

T∑
t=1

‖p∗t − pt‖11τt<N

= min
ϕ∈Φswap

N∑
i=1

[ T∑
t=1

pt,ilt,ϕ(i) + RegT (Ai,Φext)

]
+ 2

T∑
t=1

‖p∗t − pt‖11τt<N .
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Now let LT (Ai) denote the cumulative loss incurred by algorithm Ai. Since the losses attributed to
algorithm Ai are scaled by pt,i, at each round, the sum of the losses over all the algorithms is at most
1. Thus, by Jensen’s inequality, the following inequalities hold:

1

N

N∑
i=1

RegT (Ai,Φext) =
1

N

N∑
i=1

O
(√

LT (Ai) logN
)

≤ O
(√√√√ 1

N

N∑
i=1

LT (Ai) logN

)
≤ O

(√
T logN

N

)
,

which implies
∑N
i=1 RegT (Ai,Φext) ≤

√
TN logN .

Finally, during the rounds in which 1τt<N , pt is an RPM approximation of p∗t using τt iterations.
Thus, by Equation 3.7 in [Nesterov and Nemirovski, 2015] the following inequality holds: ‖pt −
p∗t ‖1 ≤ (1− αt)τt . Since τt is chosen so that the inequality (1− αt)τt ≤ 1/

√
t holds, it follows that∑T

t=1 ‖pt − p∗t ‖1τt<N ≤
∑T
t=1 1/

√
t ≤
√
T , which proves the regret bound RegT (A,Φswap) ≤

O(
√
TN logN).

Furthermore, the computational cost of the t-th iteration of the algorithm is dominated by τt matrix

multiplications or the solution of the linear system. τt can be bounded as follows: τt =
⌈ log

(
1√
t

)
log(1−αt)

⌉
≤

log
(

1√
t

)
log(1−α) + 1. Thus, the computational cost of the t-th iteration is in

O

(
N2 min

{
log t

log(1/(1− αt))
, N

})
≤ O

(
N2 min

{
log T

log(1/(1− α))
, N

})
.
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E Proof of Theorem 2

Theorem 2. Let (Au,i)u∈Q,i∈ilab[ET [u]] be external regret minimizing algorithms admitting data-
dependent regret bounds of the form O(

√
LT (Au,i) logN), where LT (Au,i) is the cumulative loss

of Au,i after T rounds. Assume that, at each round, the sum of the minimal probabilities given to
an expert by these algorithms is bounded below by some constant α > 0. Then, FASTTRANSDUCE

achieves a transductive regret against T that is inO(
√
T |ET |in logN) with a per-iteration complexity

in O
(
N2 min

{
log T

log(1/(1−α)) , N
})

.

Proof. Let pt be the distribution output by FASTTRANSDUCE at round t. For any distribution p∗t ,
t ∈ [T ], the following inequalities hold:

T∑
t=1

E
xt∼pt

[lt(xt)]1τt<N =

T∑
t=1

E
xt∼p∗t

[lt(xt)]1τt<N +

T∑
t=1

E
xt∼pt

[lt(xt)]1τt<N

−
T∑
t=1

E
xt∼p∗t

[lt(xt)]1τt<N

≤
T∑
t=1

E
xt∼p∗t

[lt(xt)]1τt<N +

T∑
t=1

‖pt − p∗t ‖1‖lt‖∞1τt<N

≤
T∑
t=1

E
xt∼p∗t

[lt(xt)]1τt<N +

T∑
t=1

‖pt − p∗t ‖11τt<N .

Let ut be the state that the algorithm is in at time t as a result of its past actions. Consider the matrix
Qt,ut defined in the algorithm. The restriction of the matrix Qt,ut to its non-zero rows and columns
is a row stochastic matrix. Let p∗t be its stationary distribution, and by augmenting it with zeros in the
zero rows of Qt,ut , we may take p∗t ∈ ∆N as a fixed point of Qt,ut . Then, we can write:

T∑
t=1

E
xt∼p∗t

[lt(xt)]1τt<N =

T∑
t=1

N∑
i=1

N∑
j=1

p∗t,iQ
t,ut

i,j lt,j1τt<N

=

N∑
i=1

T∑
t=1

N∑
j=1

Qt,ut

i,j pt,ilt,j1τt<N

+

N∑
i=1

T∑
t=1

N∑
j=1

Qt,ut

i,j (p∗t,i − pt,i)lt,j1τt<N

≤
N∑
i=1

T∑
t=1

N∑
j=1

Qt,ut

i,j pt,ilt,j1τt<N +

T∑
t=1

‖p∗t − pt‖11τt<N .

On the other hand, by design, if τt ≥ N , then pt = p∗t , so that

T∑
t=1

E
xt∼pt

[lt(xt)]1τt≥N =

N∑
i=1

T∑
t=1

N∑
j=1

Qt,ut

i,j pt,ilt,j1τt≥N .

Thus, it follows that for any WFST T ∈ T ,

T∑
t=1

E
xt∼pt

[lt(xt)] ≤
N∑
i=1

T∑
t=1

N∑
j=1

∑
u∈QT

Qt,u
i,j 1δT (IT ,x1:t−1)=upt,ilt,j + 2

T∑
t=1

‖p∗t − pt‖11τt<N

=
∑
u∈QT

∑
i∈ilab[ET [u]]

T∑
t=1

N∑
j=1

Qt,u
i,j 1δT (IT ,x1:t−1)=upt,ilt,j
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+ 2

T∑
t=1

‖p∗t − pt‖11τt<N

≤
∑
u∈QT

∑
i∈ilab[ET [u]]

min
i∗∈olab[ET [δT (IT ,x1:t−1),xt]]

T∑
t=1

1δT (IT ,x1:t−1)=upt,ilt,i∗

+ 2

T∑
t=1

‖p∗t − pt‖11τt<N +

N∑
i=1

∑
u∈QT

RegT (Au,i,Φext)

≤
∑
u∈QT

∑
i∈ilab[ET [q]]

∑
e∈ET [δT (IT ,x1:t−1),xt]

T∑
t=1

1δT (IT ,x1:t−1)=upt,iw[e]lt(olab[e])

+ 2

T∑
t=1

‖p∗t − pt‖11τt<N +
∑
u∈QT

∑
i∈ilab[ET [q]]

RegT (Au,i,Φext)

=

T∑
t=1

E
xt∼pt

 ∑
e∈ET [δT (IT ,x1:t−1),xt]

w[e]lt(olab[e])

+ 2

T∑
t=1

‖p∗t − pt‖11τt<N

+
∑
u∈QT

∑
i∈ilab[ET [q]]

RegT (Au,i,Φext).

Now let LT (Au,i) denote the cumulative loss incurred by algorithm Au,i. Since the losses attributed
to algorithm Au,i are scaled by 1δT (IT ,x1:t−1)=upt,i, it follows that at each round, the sum of the
losses over all the algorithms is at most 1. Thus, by Jensen’s inequality, it follows that

1∑
u∈QT |ilab[ET [u]]|

∑
u∈QT

∑
i∈ilab[ET [u]]

RegT (Au,i,Φext)

=
1∑

u∈QT |ilab[ET [u]]|
∑
u∈QT

∑
i∈ilab[ET [u]]

√
LT (Au,i) log(N)

≤
√√√√ 1∑

u∈QT |ilab[ET [u]]|
∑
u∈QT

∑
i∈ilab[ET [u]]

LT (Au,i) log(N)

≤
√

1∑
u∈QT |ilab[ET [u]]|T log(N),

so that
∑
u∈QT

∑
i∈ilab[ET [u]] RegT (Au,i,Φext) ≤

√
T
∑
u∈QT |ilab[ET [u]]| log(N).

Finally, during the rounds in which 1τt<N , pt is an RPM approximation of p∗t using τt iterations.
Thus, it follows from Equation 3.7 in [Nesterov and Nemirovski, 2015] that ‖pt− p∗t ‖1 ≤ (1−αt)τt .
By the algorithm’s choice of τt, ‖pt−p∗t ‖1 ≤ 1√

t
. Thus, it follows that

∑T
t=1 ‖pt−p∗t ‖11τt<N ≤

√
T ,

so that RegT (A, T ) ≤ O(
√
T
∑
u∈QT |ilab[ET [q]]| log(N)).

Moreover, the computational cost of the t-th iteration of the algorithm is dominated by τt matrix

multiplications or the solution of the linear system. τt can be bounded as follows: τt =
⌈ log

(
1√
t

)
log(1−αt)

⌉
≤

log
(

1√
t

)
log(1−α) + 1. Thus, the computational cost of the t-th iteration is in

O

(
N2 min

{
log t

log(1/(1− αt))
, N

})
≤ O

(
N2 min

{
log T

log(1/(1− α))
, N

})
.
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F Proof of Theorem 3

Theorem 3. Let (AI,u,i)I∈I,u∈QT ,i∈ilab[ET [q]] be external regret minimizing algorithms admitting
data-dependent regret bounds of the form O(

√
LT (AI,u,i) logN), where LT (AI,u,i) is the cumu-

lative loss of AI,u,i after T rounds. Let AI be an external regret minimizing algorithm over I that
admits a regret in O(

√
T log(|I|)) after T rounds. Assume further that at each round, the sum of

the minimal probabilities given to an expert by these algorithms is bounded below by some constant
α > 0. Then, FASTTIMESELECTTRANSDUCE achieves a time-selection transductive regret with re-
spect to the time-selection family I and WFST family T that is in O

(√
T (log(|I|) + |ET |in logN)

)
with a per-iteration complexity in O

(
N2
(

min
{

log(T )
log((1−α)−1) , N

}
+ |I|

))
.

Proof. We first note that since AI is designed to minimize external regret against the losses (̃lt)Tt=1,
it follows that for any I∗ ∈ I,

T∑
t=1

∑
I∈I

q̃tI l̃
t
I ≤

T∑
t=1

l̃tI∗ + RegT (AI).

Let ut be the state that the algorithm is in at time t as a result of its past actions. Consider the matrix
Qt,ut defined in the algorithm. The restriction of the matrix Qt,ut to its non-zero rows and columns
is a row stochastic matrix. Let p∗t be its stationary distribution, and by augmenting it with zeros in
the zero rows of Qt,ut , we may take p∗t ∈ ∆N as a fixed point of of Qt,ut . Then, by expanding the
definition of l̃t, we can rewrite the expression on the left-hand side as

T∑
t=1

∑
I∈I

q̃tI l̃
t
I1τt<N =

T∑
t=1

∑
I∈I

q̃tII(t)
(
p>t M

t,ut,I lt − p>t lt
)

1τt<N

=

T∑
t=1

∑
I∈I

q̃tII(t)p>t M
t,ut,I lt1τt<N −

T∑
t=1

∑
I∈I

q̃tII(t)p>t lt1τt<N

≥
T∑
t=1

∑
I∈I

q̃tII(t)(p∗t )
>Mt,ut,I lt1τt<N −

T∑
t=1

∑
I∈I

q̃tII(t)(p∗t )
>lt1τt<N

−
T∑
t=1

‖pt − p∗t ‖11τt<N .

On the other hand, by design, if τt ≥ N , then pt = p∗t , so that
T∑
t=1

∑
I∈I

q̃tI l̃
t
I1τt≥N =

T∑
t=1

∑
I∈I

q̃tII(t)(p∗t )
>Mt,ut,I lt1τt≥N −

T∑
t=1

∑
I∈I

q̃tII(t)(p∗t )
>lt1τt≥N .

Thus, it follows that
T∑
t=1

∑
I∈I

q̃tI l̃
t
I ≥

T∑
t=1

∑
I∈I

q̃tII(t)(p∗t )
>Mt,ut,I lt −

T∑
t=0

∑
I∈I

q̃tII(t)(p∗t )
>lt −

T∑
t=1

‖pt − p∗t ‖11τt<N .

If
∑
I∈I I(t)q̃tI 6= 0, then the fact that p∗t is a stationary distribution of Qt =

∑
I∈I I(t)q̃

t
IM

t,ut,I∑
I∈I I(t)q̃

t
I

implies that ∑
I∈I

q̃tII(t)(p∗t )
>Mt,ut,I lt =

∑
I∈I

q̃tII(t)(p∗t )
>lt.

On the other hand, if
∑
I∈I I(t)q̃tI = 0, then by non-negativity, it must be the case that I(t)q̃tI = 0

for every I ∈ I. Thus, it follows that∑
I∈I

q̃tII(t)(p∗t )
>Mt,ut,I lt =

∑
I∈I

q̃tII(t)(p∗t )
>lt = 0,
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which implies that
T∑
t=1

−l̃tI∗ ≤
T∑
t=1

‖pt − p∗t ‖11τt<N + RegT (AI).

By expanding the definition of l̃tI∗ , we can write

T∑
t=1

−l̃tI∗ =

T∑
t=1

−I∗(t)
(
p>t M

t,ut,I
∗
lt − p>t lt

)
=

T∑
t=1

I∗(t)p>t lt − I∗(t)p>t Mt,ut,I
∗
lt.

Moreover, for any T ∈ T , we can bound the second term in the following way:

T∑
t=1

I∗(t)p>t M
t,ut,I

∗
lt =

T∑
t=1

I∗(t)

N∑
i=1

pt,i

N∑
j=1

Mt,ut,I
∗

i,j lt,j

=
∑
u∈QT

N∑
i=1

T∑
t=1

N∑
j=1

Mt,ut,I
∗

i,j 1δT (IT ,x1:t−1)=uI
∗(t)pt,ilt,j

=
∑
u∈QT

∑
i∈ilab[ET [u]]

T∑
t=1

N∑
j=1

Mt,ut,I
∗

i,j 1δT (IT ,x1:t−1)=uI
∗(t)pt,ilt,j

≤
∑
u∈QT

∑
i∈ilab[ET [u]]

min
i∗∈olab[ET [u]]

T∑
t=1

1δT (IT ,x1:t−1)=uI
∗(t)pt,ilt,i∗

+
∑
u∈QT

∑
i∈ilab[ET [u]]

RegT (AI,u,i,Φext)

≤
∑
u∈QT

∑
i∈ilab[ET [u]]

∑
e∈ET [u]

w[e]

T∑
t=1

1δT (IT ,x1:t−1)=uI
∗(t)pt,ilt,olab[e]

+
∑
u∈QT

∑
i∈ilab[ET [u]]

RegT (AI,u,i,Φext)

=

T∑
t=1

I∗(t) E
xt∼pt

 ∑
e∈ET [δT (IT ,x1:t−1),xt]

w[e]lt(olab[e])


+
∑
u∈QT

∑
i∈ilab[ET [u]]

RegT (AI,u,i,Φext),

using the fact that algorithm AI,u,i minimizes external regret against the surrogate losses
I(t)1δT (IΦ,x1:t−1)=upt,ilt.

As in Theorem 2, the scaling assumption on the external regret minimizing algorithms and Jensen’s
inequality imply that

∑
u∈QT

∑
i∈ilab[ET [u]]

RegT (AI,u,i,Φext) ≤ O

√T ∑
u∈QT

|ilab[ET[u]]| log(N)

 .

Thus, we can write for any I∗ ∈ I that

T∑
t=1

I∗(t)p>t lt − I∗(t)p>t Mt,ut,I
∗
lt −

T∑
t=1

I∗(t) E
xt∼pt

 ∑
e∈ET [δT (IT ,x1:t−1),xt]

w[e]lt(olab[e])


≤ RegT (AI) +O

√T ∑
u∈QT

|ilab[ET[u]]| log(N)

+

T∑
t=1

‖pt − p∗t ‖11τt<N ,
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and as in Theorem 2, we can bound the l1 approximation error of pt for p∗t by

‖pt − p∗t ‖1 ≤ (1− αt)τt ≤
1√
t
,

by the algorithm’s choice of τt. Thus, by applying regret guarantee of algorithm AI together with
the above calculations, the time-selection transductive regret of FASTTIMESELECTTRANSDUCE is

in O
(√

T
(

log(|I|) +
∑
q∈QΦ

|ilab[ET[q]]| log(N)
))

.

Moreover, at each round t, the computational cost of the algorithm is dominated by two quantities:
the update of |I|N external regret minimizing algorithms over the N experts, which is in O(|I|N2),
and the fixed-point approximation or solution of the linear system, which is in

O

(
N2 min

{
log(t)

log ((1− αt)−1)
, N

})
≤ O

(
N2 min

{
log(T )

log ((1− α)−1)
, N

})
.
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G Proof of Theorem 4

Theorem 4. Assume that the sleeping regret minimizing algorithms used as inputs of
FASTSLEEPTRANSDUCE achieve data-dependent regret bounds such that, if the algorithm selects
the distributions (pt)

T
t=1 and observes losses (lt)

T
t=1 with awake sets (At)

T
t=1, then the regret ofAqi is

at most O
(√∑T

t=1 u
∗(At)Ext∼pt [lt(xt)] log(N)

)
. Assume further that at each round, the sum of

the minimal probabilities given to an expert by these algorithms is bounded below by some constant
α > 0. Then, the sleeping regret RegT (FASTSLEEPTRANSDUCE, T , AT1 ) of FASTSLEEPTRANS-

DUCE is upper bounded by O
(√∑T

t=1 u(At)|ET |in log(N)
)

. Moreover, FASTSLEEPTRANSDUCE

admits a per-iteration complexity in O
(
N2 min

{
log T

log(1/(1−α)) , N
})

.

Proof. Let u ∈ ∆N , and let pAt
t be the distribution output by FASTSLEEPTRANSDUCE at round t.

For any distribution p∗t , t ∈ [T ], the following inequalities hold:

u(At) E
xt∼pAt

t

[lt(xt)]1τt<N = u(At)

(
E

xt∼pAt,∗
t

[lt(xt)] + E
xt∼pAt

t

[lt(xt)]− E
xt∼pAt,∗

t

[lt(xt)]

)
1τt<N

≤ u(At)

(
E

xt∼pAt,∗
t

[lt(xt)] + ‖pAt
t − pAt,∗

t ‖1‖lt‖∞
)

1τt<N

≤ u(At)

(
E

xt∼pAt,∗
t

[lt(xt)] + ‖pAt
t − pAt,∗

t ‖1
)

1τt<N .

Let ut be the state that the algorithm is in at time t as a result of its past actions. Consider the matrix
Qt,ut defined in the algorithm. The restriction of Qt,ut to its non-zero rows and columns is a row
stochastic matrix. Let pAt,∗

t be its stationary distribution, and by augmenting it with zeros in the zero
rows of Qt,ut , we may take pAt,∗

t ∈ ∆N as a fixed point of Qt,ut . Then, we can write:

T∑
t=1

u(At) E
xt∼pAt,∗

t

[lt(xt)]1τt<N

=

T∑
t=1

N∑
i=1

N∑
j=1

u(At)p
At,∗
t,i Qt,ut

i,j lt,j1τt<N

=

N∑
i=1

T∑
t=1

N∑
j=1

u(At)Q
t,ut

i,j pAt
t,i lt,j1τt<N +

N∑
i=1

T∑
t=1

N∑
j=1

u(At)Q
t,ut

i,j (pAt,∗
t,i − pAt

t,i )lt,j1τt<N

≤
N∑
i=1

T∑
t=1

N∑
j=1

u(At)Q
t,ut

i,j pAt
t,i lt,j1τt<N +

T∑
t=1

u(At)‖pAt,∗
t − pAt

t ‖11τt<N .

On the other hand, by design, if τt ≥ N , then pt = p∗t , so that

T∑
t=1

u(At) E
xt∼pAt

t

[lt(xt)]1τt≥N ≤
T∑
t=1

N∑
i=1

T∑
t=1

N∑
j=1

u(At)Q
t,ut

i,j pAt
t,i lt,j1τt≥N .

Thus, it follows that for any WFST T ∈ T ,

T∑
t=1

u(At) E
xt∼pAt

t

[lt(xt)]

≤
N∑
i=1

T∑
t=1

N∑
j=1

u(At)Q
t,ut

i,j pAt
t,i lt,j + 2

T∑
t=1

u(At)‖pAt,∗
t − pAt

t ‖11τt<N
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=

N∑
i=1

T∑
t=1

N∑
j=1

∑
u∈QT

u(At)Q
t,u
i,j 1δT (IT ,x1:t−1)=up

At
t,i lt,j + 2

T∑
t=1

u(At)‖pAt,∗
t − pAt

t ‖11τt<N

=
∑
u∈QT

∑
i∈ilab[ET [u]]

T∑
t=1

N∑
j=1

u(At)Q
t,u
i,j 1δT (IT ,x1:t−1)=up

At
t,i lt,j

+ 2

T∑
t=1

u(At)‖pAt,∗
t − pAt

t ‖11τt<N

≤
∑
u∈QT

∑
i∈ilab[ET [u]]

min
uu,i∈∆N∑

j∈At
uq,ij =u(At)

T∑
t=1

N∑
j=1

1δT (IT ,x1:t−1)=uu
q,i
j 1j∈Atp

At
t,i lt,j

+ 2

T∑
t=1

u(At)‖pAt,∗
t − pAt

t ‖11τt<N +
∑
u∈QT

∑
i∈ilab[ET [u]]

RegT (Au,i,Φsleep)

≤
∑
u∈QT

∑
i∈ilab[ET [u]]

∑
e∈ET [q]

T∑
t=1

N∑
j=1

1δT (IT ,x1:t−1)=uuj1j∈At
w[e]pAt

t,i lt,j

+ 2

T∑
t=1

u(At)‖pAt,∗
t − pAt

t ‖11τt<N +
∑
u∈QT

∑
i∈ilab[ET [q]]

RegT (Au,i,Φsleep)

=

T∑
t=1

E
xt∼pt

 ∑
e∈ET [δT (IT ,x1:t−1),xt]

(u|At)olab[e]w[e]pAt
t,i lt(olab[e])


+ 2

T∑
t=1

u(At)‖pAt,∗
t − pAt

t ‖11τt<N +
∑
u∈QT

∑
i∈ilab[ET [q]]

RegT (Au,i,Φsleep).

For any distribution u∗ ∈ ∆N and awake sequence AT1 , Let Lu,AT
1

T =
∑T
t=1 u

∗(At)Ext∼pt [lt(xt)],

Thus, algorithm Au,i achieves a regret in O(

√
L
uq,∗i ,AT

1

T log(N)), where uq,∗i is a maximizer of
algorithm Au,i’s sleeping regret.

Since the losses attributed to algorithm Au,i are scaled by 1δT (IT ,x1:t−1)=up
At
t,i , it follows that at

each round, the sum of the losses over all the algorithms is at most 1. Thus, by Jensen’s inequality, it
follows that

1∑
u∈QT |ilab[ET [u]]|

∑
u∈QT

∑
i∈ilab[ET [u]]

RegT (Au,i,Φsleep)

=
1∑

u∈QT |ilab[ET [u]]|
∑
u∈QT

∑
i∈ilab[ET [u]]

√
L
uq,∗i ,AT

1

T (Au,i) log(N)

≤
√√√√ 1∑

u∈QT |ilab[ET [u]]|
∑
u∈QT

∑
i∈ilab[ET [u]]

L
u,AT

1

T (Au,i) log(N)

≤

√√√√ 1∑
u∈QT |ilab[ET [u]]|

T∑
t=1

u(At) log(N),

so that
∑
u∈QT

∑
i∈ilab[ET [u]] RegT (Au,i,Φsleep) ≤

√∑T
t=1 u(At)

∑
u∈QT

∑
i∈ilab[ET [u]] log(N).

Finally, during the rounds in which 1τt<N , pt is an RPM approximation of p∗t using τt iterations.
Thus, by Equation 3.7 in [Nesterov and Nemirovski, 2015] the following inequality holds: ‖pt −
p∗t ‖1 ≤ (1− αt)τt . Since τt is chosen so that the inequality (1− αt)τt ≤ 1/

√
t holds, it follows that
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∑T
t=1 u(At)‖pAt

t − pAt,∗
t ‖1 ≤

√
T , which proves the regret bound

T∑
t=1

u(At) E
xt∼pAt

t

[lt(xt)]−
T∑
t=1

E
xt∼pAt

t

 ∑
e∈ET [δT (IT ,x1:t−1),xt]

(u|At
)olab[e]w[e]lt(olab[e])


≤ O

√√√√ T∑
t=1

u(At)
∑
q∈QΦ

∑
i∈ilab[ET [q]]

log(N)

 .

Furthermore, the computational cost of the t-th iteration of the algorithm is dominated by τt matrix

multiplications or the solution of the linear system. τt can be bounded as follows: τt =
⌈ log

(
1√
t

)
log(1−αt)

⌉
≤

log
(

1√
t

)
log(1−α) + 1. Thus, the computational cost of the t-th iteration is in

O

(
N2 min

{
log t

log(1/(1− αt))
, N

})
≤ O

(
N2 min

{
log T

log(1/(1− α))
, N

})
.
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H Connections with game-theoretic equilibria

There is an elegant connection between regret minimization in online learning and convergence
to game-theoretic equilibria in repeated games [Nisan et al., 2007]. As an example, remarkably,
if all players in a repeated game follow a swap regret minimization algorithm, then the empirical
distribution of their play converges to a correlated equilibrium (see for example [Blum and Mansour,
2007]). Similarly, if all players follow a conditional swap regret minimization algorithm, then the
empirical distribution of their play converges to a conditional correlated equilibrium [Mohri and Yang,
2014]. Hazan and Kale [2008] showed a result generalizing this property to the case of a Φ-regret and
Φ-equilibrium. Moreover, the authors showed that the existence of an efficient Φ-regret minimizing
algorithm is equivalent to the possibility of efficiently computing a fixed point associated to Φ-regret.
However, their characterization of efficiency is a per iteration time complexity of O(|Φ|), which may
be very large, in fact exponential in the number of experts, as in the case of the examples discussed in
this paper. Here, we proved the existence of a large class of Φ-equilibria, transductive equilibria, i.e.
those induced by a WFST, that are realizable in time that is polynomial in the number of experts.

I Lower bound

Auer [2017] proved a lower bound of Ω(
√
TN) for swap regret. Since swap regret is a special case

of transductive regret, that lower bound applies to the setting of transductive regret as well. This is
further detailed in an extended version of this paper.

J Bandit setting

Blum and Mansour [2007] and Mohri and Yang [2014] respectively showed that swap and conditional
swap regret-minimizing algorithms can be extended to the bandit setting. Similarly, our more general
transductive regret-minimizing can be extended to the bandit setting, as shown and detailed in the
extended version of this paper.

26


	Introduction
	Preliminaries and notation
	Efficient online algorithm for swap regret
	Online algorithm for transductive regret
	Weighted finite-state transducer definitions
	Transductive regret
	Algorithm

	Time-selection transductive regret
	Sleeping transductive regret
	Experiments
	Conclusion
	Additional figures and examples
	Special cases of transductive regret.
	Example with a swapping subset.

	Pseudocode of FastTransduce
	Pseudocode of FastSleepTransduce
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Connections with game-theoretic equilibria
	Lower bound
	Bandit setting

