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Abstract

The Nystrom method is an efficient technique
to generate low-rank matrix approximations and
is used in several large-scale learning applica-
tions. A key aspect of this method is the dis-
tribution according to which columns are sam-
pled from the original matrix. In this work, we
present an analysis of different sampling tech-
niques for the Nystrom method. Our analysis
includes both empirical and theoretical compo-
nents. We first present novel experiments with
several real world datasets, comparing the perfor-
mance of the Nystrom method when used with
uniform versus non-uniform sampling distribu-
tions. Our results suggest that uniform sam-
pling without replacement, in addition to being
more efficient both in time and space, produces
more effective approximations. This motivates
the theoretical part of our analysis which gives
the first performance bounds for the Nystrom
method precisely when used with uniform sam-
pling without replacement.
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can be in the order of tens of thousands to millions, leading
to difficulty in operating on, or even storing the matrix.

An attractive solution to this problem involves using the
Nystrom method to generate a low-rank approximation of
the original matrix from a subset of its columns (Williams
and Seeger, 2000). A key aspect of the Nystrom method is
the distribution according to which the columns are sam-
pled. This method was first introduced to the machine
learning community (Williams and Seeger, 2000) using
uniform sampling without replacement, and this remains
the sampling method most commonly used in practice (de
Silva and Tenenbaum, 2002; Fowlkesal., 2004; Platt,
2003; Talwalkaret al., 2008). More recently, the Nystrom
method has been theoretically analyzed assuming a non-
uniform sampling of the columns: Drineas and Mahoney
(2005) provided bounds for the Nystrom approximation
while sampling with replacement from a distribution with
weights proportional to the diagonal elements of the input
matrix.

This paper presents an analysis of different sampling tech-
niques for the Nystrom methéd Our analysis includes
both empirical and theoretical components. We first present
novel experiments with several real-world datasets, com-
paring the performance of the Nystrom method when used
with uniform versus non-uniform sampling distributions.
Although previous works have compared uniform and non-
uniform distributions in a more restrictive setting (Drase

A common problem in many areas of large-scale maching 1 2001: Zhanget al, 2008), our results are the first

learning involves deriving a useful and efficient approxi-14 compare uniform sampling with the sampling technique
mation of a large matrix. This matrix may be a kernel s \hich the Nystrom method has theoretical guarantees.
matrix used with support vector machines (Boseral, oy results suggest that uniform sampling, in addition to
1992; Cortes and Vapnik, 1995), kernel principal compo-peing more efficient both in time and space, produces more
nent analysis (Scholkogtt al, 1998) or manifold learmning  effective approximations. We further show the benefits of
(Platt, 2003; Talwalkaet al, 2008). Large matrices also gampling without replacement. These empirical findings

naturally arise in other applications such as clusterimg. F ,otivate the theoretical part of our analysis. We give the
these large-scale problems, the number of matrix entries

1In this work, we consider only those sampling methods for
which the distribution over columns remains fixed throughbe
procedure. There exist othadaptive samplingechniques which
tend to perform better but are usually quite expensive ictma
(Deshpandet al., 2006).
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first performance bounds for the Nystrom method as it is | Name Type n d Kernel
used in practice, i.e., using uniform sampling without re- | PIE-2.7K || faces (profile)| 2731 | 2304 | linear
placement. PIE-7K faces (front) | 7412 | 2304 | linear
The remainder of the paper is organized as follows. Sec- MSéSST digit IMages 4000 1 784 | linear
. : . N . . proteins 4728 16 RBF
tion 2 introduces basic definitions and gives a brief presen- ABN abalones | 4177 3 RBE

tation of the Nystrom method. In Section 3, we provide an

extensive empirical comparison of various sampling meth-raple 1: Description of the datasets and kernels used in our
ods used with the Nystrom method. Section 4 presents oWyperiments (Asuncion and Newman, 2007; Gustafsion
novel bound for the Nystrom method in the scenario of uni-z|  2006; LeCun and Cortes, 2009; Sehal, 2002). @’

form sampling without replacement, and provides an analyenotes the number of features in input space.
ysis of the bound.

method. The runtime of this algorithm is &¢-nik): O(13)

2 Preliminaries for SVD onW andO(nlk) for multiplication withC.

Let G € R™™ be a symmetric positive semidefinite
(SPSD) Gram (or kernel) matrix. For any such Gram ma-3 Comparison of Sampling Methods

trix, there exists adk € R™*" such thatiZ = X " X. We

defineX ), j =1...n, asthejth columnvectoroff and  Since the Nystrom method operates on a subsét, dfe.,
Xy, 1 =1...m, asthethrow vector ofX, and denote by (, the selection of columns can significantly influence the
|-l the ly norm of a vector. Using singular value decom- accuracy of approximation. Thus, in this section we discuss
position (SVD), the Gram matrix can be written @= various sampling options used to select columns f(ém
UXU ", whereU is orthogonal and = diag(o,. .., 0,)

isa re_al diagonal matrix with diagonal entrie_s sorted in de— ¢ Description of Sampling Methods

creasing order. Far = rank(G), the pseudo-inverse ¢f
is defined a&t = Y°_, o, 'UWDU,,. Further, fork < r,
G =", o UM U, is the ‘best’ rankk approximation
to G, or the rankk matrix with minimal ||-|| » distance to
G, where||-|| » denotes the Frobenius norm of a matrix.

The most basic sampling technique involwgsformsam-
pling of the columns. Alternatively, théh column can

be sampled non-uniformly with weight proportional to ei-
ther its corresponding diagonal eleméht (diagonal sam-
gling) or thel, norm of the columncolumn-norm sam-
pling) (Drineas and Mahoney, 2005; Drinestsal., 2006b).
There are additional computational costs associated with
these non-uniform sampling method3(n) time and space
requirements for diagonal sampling aoidn?) time and
space for column-norm sampling. These non-uniform sam-
pling techniques are often presented using sampling with
replacement to simplify theoretical analysis. Columnmmor
%ampling has been used to analyze a general SVD approxi-
mation algorithm. Further, diagonal sampling with reptace
ment was used by Drineas and Mahoney (2005) to bound
the reconstruction error of the Nystrom methothough

the authors of that work suggest that column-norm sam-
pling would be a better sampling assumption for the analy-
sis of the Nystrom method.

The Nystrom method generates low-rank approximation
of G using a subset of the columns of the matrix (Williams
and Seeger, 2000). Suppose we randomly saingte n
columns ofG uniformly without replacemertt. Let C be
then x [ matrix of these sampled columns, arid be the

I x I matrix consisting of the intersection of thdssolumns
with the correspondingrows of G. SinceG is SPSD,W

is also SPSD. Without loss of generality, we can rearrang
the columns and rows aff based on this sampling such
that:

o

The Nystrom method usé® andC' from (1) to constructa
rank+ approximationGy to G for k < I. When used with
uniform sampling, the Nystrom approximation is:

Ga1 G2

w

d C=
| ana o= |

]. @)

Two other techniques have also been introduced for
sampling-based techniques to generate low-rank approxi-
) mations. The first method adaptively samples columns of

G while the second perfornismeans clustering as a pre-

The Frobenius distance betwe@randGy, |G — G| p, is processing step to construct informative columns (Desh-

one standard measurement of the accuracy of the Nystrop@ndeet al, 2006; Zhanget al, 2008). Although these
methods show good empirical accuracy on small datasets,

20ther sampling schemes are also possible as we discussin

Gy =CW,CT ~G.

Section 3. The formulation of the Nystrom method under ¢hes
sampling schemes is identical to the one presented hergjlmod
an additional step to normalize the approximation by théaro
bilities of the selected columns (Drineas and Mahoney, 005

3Although Drineas and Mahoney (2005) claimed to weight
each column proportional t6/%;, they in fact use the diagonal
sampling we present in this work, i.e., weights proporticioa
G (Drineas, 2008).
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Uniform vs Non—Uni Sampling: PIE-7K I/n || Dataset| Uniform+Rep Diag+Rep|Col-Norm+Rep
100 PIE-2.7K|| 38.8 (+1.5) [38.3 (£0.9)| 37.0 (£0.9)
> ool e : PIE-7K || 55.8 (+1.1) |46.4 (£1.7)| 54.2 (0.9)
8 R 5% | MNIST || 47.4 (£0.8) [46.9 (£0.7)| 45.6 (£1.0)
g gt ESS | 45.1 (+2.3) - 41.0 (£2.2)
< g0 1T ABN | 47.3 (+3.9) - 44.2 (+1.2)

) oy -7
£ ool P ---Uni+Rep PIE-2.7K][ 72.3 (£0.9) [65.0 (+£0.9)] 63.4 (£1.4)
s} P - - - Diag+Rep PIE-7K | 83.5 (£1.1) [69.8 (£2.2)| 79.9 (£1.6)
=~ - Col-Norm+Rep 20%| MNIST | 80.8 (£0.5) |79.4 (£0.5)| 78.1 (£0.5)
% of Columns Sampled (1/n) ABN || 77.1 (+3.0) - 66.3 (+4.0)
(a) (b)

Figure 1: (a) Nystrom relative accuracy for various sangpliechniques on PIE-7K. (b) Nystrom relative accuracy for
various sampling methods for two valuesigh with & = 100. Values in parentheses show standard deviations(for
different runs for a fixed. ‘+Rep’ denotes sampling with replacement. No error (‘syéported for diagonal sampling
with RBF kernels since diagonal sampling is equivalent tibaum sampling in this case.

they are both computationally inefficient for large-scaleproximation (&) as follows:
problems. Adaptive sampling requires a full pass through

G on each iteration, whilé-means clustering quickly be- relative accuracy= M
comes intractable for moderately large For this reason, |G — Gllr

in this work we focus on fixed distributions — either uni- \ie that relative accuracy is upper boundedi tgnd ap-
form or non-uniform — over the set of columns. proachesl for good approximations. We fixetd = 100

In the remainder of this section we present novel experfor all experiments, a value that captures more @& of
imental results comparing the performance of these santhe spectral energy for each dataset. We first compared the
pling methods on several data sets. Previous works haveffectiveness of the three sampling techniques using sam-
compared uniform and non-uniform in a more restrictivepling with replacement. The results for PIE-7K are pre-
setting, using fewer types of kernels and focusing only orsented in Figure 1(a) and summarized for all datasets in
column-norm sampling (Drinea al, 2001; Zhangtal,  Figure 1(b). The results across all datasets show that uni-
2008). However in this work we provide the first compar- form sampling outperforms all other methods, while be-
ison that includes diagonal sampling, the sampling teching much cheaper computationally and space-wise. Thus,
nique for which the Nystrém method has theoretical guarwhile non-uniform sampling techniques might be effective

antees. in extreme cases where a few columnstoflominate in
terms of||-||, this situation does not tend to arise with real-
3.2 Datasets world data, where uniform sampling is most effective.

. o Next, we compared the performance of uniform sampling
We used 5 datasets from a variety of applications, e.g., . : : .
. . . . with and without replacement. Figure 2(a) illustrates the
computer vision and biology, as described in Table 1. .
. effect of replacement for the PIE-7K dataset for different
SPSD kernel matrices were generated by mean centering .. - -
. : : = ratios. Similar results for the remaining datasets are
the datasets and applying either a linear kernel or RBF kerz. ; L :
; : summarized in Figure 2(b). The results show that uni-
nel. The diagonals (respectively column norms) of thes

. . orm sampling without replacement improves the accurac
kernel matrices were used to calculate diagonal (respec- Piing P P Y

tively column-norm) distributions. Note that the diagonal g:‘/;f;]ewl;]lgitrsc;?q nl]iithloez::/r? ar%S) ?)Tt%ltlang)tv; :t:ozsrp::zlgement,
distribution equals the uniform distribution for RBF kelsme piing '

since diagonal entries of RBF kernel matrices always equal .
one. 4 Improved Nystrom Bound

3.3 Experiments The experimental results from Section 3 show that uni-
form sampling is the cheapest and most efficient sampling
We used the datasets described in the previous section technique across several datasets. Further, it is the most
test the approximation accuracy for each sampling methoccommonly used method in practice. However, there does
Low-rank approximations ofs were generated using the not currently exist a formal analysis of the accuracy of
Nystrom method along with these sampling methods, andhe Nystrom approximation when using uniform sampling
accuracies were measured relative to the best kaag-  without replacement. We next present a theoretical analy-
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Effect of Replacement: PIE-7K

>

Q

5 [Dataset]| 5% | 10% | 15% | 30% |
b PIE-2.7K] 0.8 (+.6) | 1.7 (+£.3) 3(£9) | 4.4 (£4)
S PIE-TK | 0.7 (+£.3) | 1.5(+.3) 1(+.6) | 3.2(+3)
< MNIST || 1.0 (+.5) | 1.9 (+.6) | 2.3 (+.4) | 3.4(+.4)
2 ESS || 0.9(+9) | 1.8(+£9) | 22(+6) | 3.7(£.7)
-1 ABN || 0.7 (£1.2) | 1.3 (£1.8) | 2.6 (£1.4) | 4.5 (+1.1)
(®)

10 20 30 40
% of Columns Sampled (1/n)

(a) (b)

Figure 2: Comparison of uniform sampling with and withoyileeement measured by the difference in relative accuracy.
(a) Improvementin relative accuracy for PIE-7K when samgpivithout replacement. (b) Improvementin relative accyra
when sampling without replacement across all datasetsftows! /n percentages.

sis of the Nystrom method using the more reasonable agiven by Drineaset al. (2006a) to the more complex set-
sumption ofuniform sampling without replacemeniWe  ting of uniform sampling without replacement. This gen-
first introduce a general concentration bound for samplingeralization is not trivial since previous inequalities dpgn
without replacement (Section 4.1), and use it to derive aipon a key i.i.d. assumption which clearly does not hold
general bound on approximate matrix multiplication in thewhen sampling without replacement.

setting of sampling without replacement (Section 4.2). INthaorem 2. Supposel € R™*" B € R™*P, 1 <[ < n.
Section 4.3, following Drineas and Mahoney (2005), Wecpgase g sets) of sizel uniformly at random without re-
show the connection between the Nystrom method and apsi,cement frong1 . ..}, and letC' (R) equal the columns
proximate matrix multiplication and present our main re- j¢ 4 (rows of B) corresponding to indices i scaled by

sult: a general bound for the Nystrom method in the sce-\/n—/l ThenC R is an approximation toA B, i.e
nario of uniform sampling without replacement. ' T

n l
4.1 Concentration Bound for Sampling Without AB=> AUB, ~Y CYR = ? > AYB,) =CR,
Replacement t=1 t=1 tes

We will be using the following concentration bound for and,
sampling without replacement shown by Cortets al.

(2008) which holds fosymmetric functions A function n —

¢: X" — R defined over a sek’ is said to be sym- E [HAB - CRHF] = \J T Z||A(t)”2”B(t)H2- (4)
metric if ¢(z1,...,2m) = G(Tr(1),-- ., Trom) fOr any t=1

Z1,...,2, € X and any permutation of (1,...,m).

Further, lets € (0,1), t* = argmax,[|A®|||B,]|, and

Theorem 1. Letm andwu be positive integersgy, . .., 2,
log(2/d8)a(l,n—1)
l

a sequence of random variables sampled from an underlys = , with a(1, n — 1) defined in Theorem
ing setX’ of m + u elements without replacement, and let 1. Then, with probability at least — 4,
¢ : X™ — R be a symmetric function such that for al&

[1,m]andforallay,...,z,, € X anda), ...,z € X, -
n
|O(@1, .y Tm) — O(T1, e i1, T T 1, -y Tn)| A, |AB —CR|Fr < \J 7 ZHA(IS)HQ”B(t)H2 +
t=1

whereA is a positive real number. Therfe > 0,

_9e2
Pr{|6 — Elg]] > ] < 2exp <#> L ®

a(m, u)A?

HB(t*) .

4
V2 74 (5)

We note that for even moderately sizedndn, a(l,n —
l) ~ (1 —1/n) and thus) ~ /log(2/0)(1 — I/n).
4.2 Concentration Bound for Matrix Multiplication Corollary 1. If A = BT andt* = argmax, || A® ||, then

wherea(m, u) =

mu 1
mtu—1/2  1—1/(2max{m,u})"

To derive a bound for the Nystrom method using uniform
sampling without replacement, we first present a general- E [HAAT _ CC’T||F] <
ization of a bound on approximate matrix multiplication

n n
T2 A0]L (@)
t=1
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Further, lets € (0,1) andy = ,/2e@/aln=l) Tpey  Since all sets §,) have equal probability and each el-
with probability at leastl — & ! ement appears inf; of these sets, when we expand

[Ztesk AitBtjf we find that the coefficient for each

T T n @nas M4 2 (Al-tBtj)Q term is . Further, to find the coefficients for
144" =CCr < \| ! ;HA I+ \/ZHA @) the cross terms, we calculate the probability that two dis-
- tinct elements appear in the same set. If we fix elements

. , ,
In this special case, we use the tighter Lipschitz conditio gndz’ with ¢ 5 t and define sef); such that € Sy, then

defined in (26). Further, sincg"_[|A® |4 < pj At |4 Prit € Skl == Thus,
we can simplify Corollary 1 as follows: n
n
Corollary 2. If A= BT then E[(CR);] = T > (AiBiy)*+ (16)
n * t=1
E[|4AT —CCT ] < —| A" (8) n n
-1 n
Vi — Z Z Ay Bij Ay By
n—1
Further, leté € (0,1), t* = argmax,|A®|, andn = t=1 17t
log(2/8)a(l,n—=1) . T _ n n
—SEeamem—2 ., Then, with probability at least — 4, =2 Z(AitBtj)2+ (17)
1447 = CCTllp < (14 m) A @) L a
t—n B2
| | o — (4B} = > (AuByy)?)
The proof of this theorem and its corollaries involves t=1
bounding an expectation, determining a Lipschitz condi- N — 2 -1
tion and using the concentration bound of Theorem 1. < TZ(A“B“) l (AB)U’ (18)

These three steps are presented in detail below.
where the inequality follows sindec||; < v/n| x| forz €

Bound on Expectation R™. We can now bound the variance as:

To obtain a bound foE [||AB — CR||r|, we first calcu- Var[(CR);;] = E[(CR)%] - E[(CR)Z-J—]Q (19)
late expressions for the mean and variance of(ihg)th n

component ofCR, i.e., (CR);;. For any setS of distinct < n Z(AitBtg) (AB) (20)
elementsin{1...n},|S| = [, we definer(S) as the prob- L=

ability that a randomly chosen subset/aflements equals
S. There are a total 0(7) distinct sets and in the uni-
form case(S) = 1/(7). Furthermore, each element in
{1...n} appears in/n of these distinct sets. Thus, the E [[[AB — CR|%] =
following equalities hold:

Now, we can bound the expectation as:

_MS
M=

s
Il
-

E[(AB — CR)})]

7j=1

I
NE
M”S

(5) e
E[(CR);] = m(Sk) - Z %AitBtj] (10) 2.2 y
k=1 teSy J
‘%Z%%% (11) <7204 ;JMHM
1) t=1 o

Further, we have =t

n 2 By the concavity ofy/- and Jensen’s inequalitl, ||| AB —
2 _ 2 _
E[(CR)]" = (AB); = (ZA#BU) (13)  cr|p] < \/E [|AB - CR|2]. Thus,

and
L B[AB - CRmv_J S A0 IBal. @)
BlCRE =Y nlsi) - | - FAubu] )

) Lipschitz Bound

2
n
=— > m(Sk) { > AitBtj] . (15  considerthe functio® defined byd(S) = || AB—CR| r,
whereS is the set of indices chosen uniformly at random
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without replacement froni1...n} to construcC' and R.
If we create a new sét’ of indices by exchanging € S

4.3 Bound for Nystrom Method

for somei’ ¢ S, then we can construct the correspondingVe now present a bound on the accuracy of the Nystrom
C’ and R’ from this new set of indices. We are interestedMethod when columns are chosen uniformly at random

in finding aA such that

[B(5) — ®(S) < A. (22)

Using the triangle inequality, we see that
|AB — CR||r — ||AB — C'R'||r| < ||CR - C'R/||F.

We next observe that the difference betwégh andC’ R’
depends only on indicesandi’,* thus

G i
ICR~C'R|p = T|AY B — A B lr - (23)
n i i
< Z(IAPNIB I+ 1A 11 By )

< A

) ” ) (24)

where we use the triangle inequality and the identity

| A By [ = | A || By | o obtain (24).

Further, if A = B', we can obtain a tighter bound. If
a =AM anda’ = AW), we have:

/a/T”F _ \/Tr [(aaT _ a’a’T)T(aaT _ a’a’T)]

= Jllall* + a4 — 2(aTa’)?
Tal*+ ]

HaaT

(25)

without replacemernt.

Theorem 3. LetG € R™*" be an SPSD matrix. Assume
that! columns of= are sampled uniformly at random with-

out replacement, lef;, be the rankk Nystom approxima-
tion to G as described in (2), and l&t;, be the best rank-k
approximation taG. For e > 0, if | > 64k /e, then

E[|G - Gillr] <IIG - Gillr+

1
1€D(1) \ i=1

where ;) Gii is the sum of the largest diagonal

)

entries of G. Further, if n = M, with

a(l,n — 1) defined in Theorem 1 and if> 64k/¢* then
with probability at leastl — ¢,

|G — ékHF <||G — Gkllr +

Cr i

Recall that for even moderately sizedndn, a(l,n —1) ~

(1 —1/n) and thusy ~ /log(2/8)(1 —1/n). To prove
this theorem, we use Corollary 1 (see proof for further de-
tails). If we instead use Corollary 2, we obtain the follow-
ing weaker, yet more intuitive bourfd.

Corollary 3. LetG € R"*"™ pbe an SPSD matrix. Assume
that! columns of= are sampled uniformly at random with-

1
2

Combining (23) with (25), the condition in (22) is satisfied out replacement, le;, be the rankk Nystom approxima-

for any A such that,

A > || ACD)2,

Concentration Bound

tion to G as described in (2), and l&t;, be the best rank-k
approximation taG. For e > 0, if [ > 64k/e*, then

E[IG = Gillr] < |IG = Gllr + ¢ - max (nG) (28)

Further,ify = y/22C/2al:n=D) [with (1, n—1) definedin

Theorem 1 and if > 64k (1 +n)?/e* then with probability

Using the bound on the expectation and the Lipschitzy; aast] — 5

bound just shown, by Theorem 1, for any- 0 ando > 0,
the following inequality holds:

n n
Pr (148 - CRle > \[ 33 1A B+
t=1

2¢?

a(l,;— zw)‘ 27)

Settingd to match the right-hand side and choosing-
A log(2/5)2a(l.,n7l)

§2-exp(

yields the statement of Theorem 2.

4A similar argument is made in Drinea&s al. (2006a) using
the assumption of sampling independently and with replacgm

|G = Gillr < G = Gellr + - max (nGir)  (29)

Proof. The theorem and its corollary follow from applying
Lemma 2 to Lemma 1 and using Jensen’s inequality. Note
that when using these lemmas to prove Theorem 3, we use
the fact thatifG = X T X thenY_,_ ) G = [ X493,
where X (1) are the largest columns ofX with respect

to ||-||. We next state and prove these lemmas. O

Bounds for thel, norm can obtained using similar tech-
niques. They are omitted due to space constraints.

®Corollary 3 can also be derived from Theorem 3 by not-
ing that >,y Gis < Imax(Gi) and 37, GF <
n max (Gi)
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Lemma 1. LetG € R™ ™ be an SPSD matrix and define
X € R™*" such thatG = X T X. Further, letS, |S| =

[ be any set of indices chosen without replacement fronf’ = X

{1...n}. LetG} be the rankk Nysttom approximation
of G constructed from the columns Gf corresponding to
indices inS. DefineCx € R™*! as the columns inX
corresponding to the indices ifi scaled by,/n/I. Then

IG = GrllF < |G — Gll3+
WE|XXTXXT - CxCrCxCx|p.

Proof. The proof of this lemma in Drineas and Mahoney

Proof. We first expand® as follows:

XTXXT - XXTCxCy + XX TOxCy—
CxCyCxCy
=XXT(XXT —OxCy)+ (XXT - CxCy)CxCx.

Using the triangle inequality we have:
1Bl < (IXIF + ICx]F) - IXXT = CxCX e
2n .
< FIXTIE XX T - OxCx e

The lemma now follows by applying Corollary 1. O

(2005) does not require any assumption on the distribution

from which the columns are sampled and thus holds in theé

case of uniform sampling without replacement. Indeed, th
proof relies on the ability to decompose = X ' X. To
make this presentation self-contained, we next review th
main steps of the proof of this lemma.

LetX = USVT andCx = USVT denote the the singu-

lar value decompositions ok and Cx. Further, let(/,,
denote the topk left singular vectors ofCx and define

E=|XXTXXT - CxC{CxC%| . Then the follow-
ing inequalities hold:

IG = Gelle = 1X "X — X T U0, X7
= 1X " XN — 2 XX " Okllz + 10 XX " O

k
<IXTX|E = 0d(Cx) + 3VE|E|
t=1

k
<IXTXIE =Y od (X TX) + 4VE|| Bl

t=1

=G - Gill3 + 4VE||E| F.

Refer to Drineas and Mahoney (2005) for further details.
O

Lemma 2. SupposeX € R™*" 1 < [ < n and con-
struct C'x from X as described in Theorem 2. Lé&t =
XXTXXT - OxCLCxCY and defineX (1) ¢ Rmx!
as the largest columns ofX with respect td|-||. Then,

2n T
B [I1E)r] < TIX03 -

n n
7X@ (30)
t=1

Further, lets € (0,1) andn = M Then

with probability at leastl — ¢,

2n s n — nn *
IBls < ZIxC >|%v<4 72Xl x >||2>.
t=1

31

4.4 Analysis of Bound

§n the previous section we presented a new bound for

the Nystrom method, assuming columns are sampled uni-

‘?ormly without replacement. We now compare this bound

with one presented in Drineas and Mahoney (2005), in
which columns are sampled non-uniformly with replace-
ment using a diagonal distribution. We compare the rela-
tive tightness of the bounds assuming that the diagonal en-
tries of G are uniformly distributed, in which case Theorem

3 reduces to Corollary 3. This is the case for any normal-
ized kernel matrix ') constructed from an initial kernel
matrix (K) as follows:

K(z,y) _
K(z,2)K(y,y)

The diagonals of kernel matrices are also identical in the
case of the RBF kernels, which Williams and Seeger (2000)
suggests are particularly amenable to the Nystrom method
since their eigenvalues decay rapidly. When the diagonals
are equal, the form of the bound in Drineas and Mahoney
(2005) is identical to that of Corollary 3, and hence we can
compare the bounds by measuring the value of the minimal
allowablee as a function of the fraction of columns used for
approximation, i.e., thé/n ratio. Both bounds are tightest
when the inequalities involving e.g.,l > 64k(1+n)? /et

for Corollary 3, are set to equalities, so we use these equal-
ities to solve for the minimal allowable epsilon. In our
analysis, we fix the confidence paramefer= 0.1 and
setk = .01 x n. The plots displayed in Figure 3 clearly
show that the bound from Theorem 3 is tighter than that of
Drineas and Mahoney (2005).

K'(z,y) = (32)

5 Conclusion

The Nystrom method is used in a variety of large-scale
learning applications, in particular in dimensionalitdue-

tion and image segmentation. This method is commonly
used with uniform sampling without replacement, though
non-uniform distributions have been used to theoretically
analyze the Nystrom method.
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