Kernel Methods for Learning Languages

Leonid (Aryeh) Kontorovich® and Corinna Cortes” and
Mehryar Mohri ©P

& Department of Mathematics
Weizmann Institute of Science, Rehovot, Israel 76100

> Google Research,
76 Ninth Avenue, New York, NY 10011

¢Courant Institute of Mathematical Sciences,
251 Mercer Street, New York, NY 10012.

Abstract

This paper studies a novel paradigm for learning formal languages from positive
and negative examples which consists of mapping strings to an appropriate high-
dimensional feature space and learning a separating hyperplane in that space. Such
mappings can often be represented flexibly with string kernels, with the additional
benefit of computational efficiency. The paradigm inspected can thus be viewed as
that of using kernel methods for learning languages.

We initiate the study of the linear separability of automata and languages by
examining the rich class of piecewise-testable languages. We introduce a subsequence
feature mapping to a Hilbert space and prove that piecewise-testable languages
are linearly separable in that space. The proof makes use of word combinatorial
results relating to subsequences. We also show that the positive definite symmetric
kernel associated to this embedding is a rational kernel and show that it can be
computed in quadratic time using general-purpose weighted automata algorithms.
Our examination of the linear separability of piecewise-testable languages leads us
to study the general problem of separability with other finite regular covers. We
show that all languages linearly separable under a regular finite cover embedding,
a generalization of the subsequence embedding we use, are regular.

We give a general analysis of the use of support vector machines in combination
with kernels to determine a separating hyperplane for languages and study the
corresponding learning guarantees. Our analysis includes several additional linear
separability results in abstract settings and partial characterizations for the linear
separability of the family of all regular languages.

Key words: finite automata, learning automata, margin theory, support vector
machines, kernels, piecewise-testable languages.

Preprint submitted to Elsevier Science 28 December 2007

1 Motivation

The problem of automatically learning a language from examples is among
the most difficult problems of computer science and formal language theory.
Most instances of this problem are provably hard, even in the specific case of
learning finite automata or, equivalently, regular languages. This problem has
been extensively studied over the last few decades.

On the negative side, the natural Occam learning attempt of finding the small-
est automaton consistent with a set of accepted and rejected strings was shown
to be NP-complete by Angluin [2] and Gold [14]. Pitt and Warmuth [28] fur-
ther strengthened these results by showing that even an approximation within
a polynomial function of the size of the smallest automaton is NP-hard. These
results imply the computational intractability of the general problem of pas-
sively learning finite automata within many learning models, including the
mistake bound model of Haussler et al. [16] or the PAC-learning model of
Valiant [18].This last negative result can also be directly derived from the
straightforward observation that the VC-dimension of finite automata is infi-
nite.

On the positive side, Trakhtenbrot and Barzdin [31] showed that the small-
est finite automaton consistent with the input data can be learned exactly
from a uniform complete sample, whose size is exponential in the size of the
automaton. The worst case complexity of their algorithm is exponential but
a better average-case complexity can be obtained assuming that the topol-
ogy and the labeling are selected randomly [31] or even that the topology is
selected adversarially [11].

The model of identification in the limit of automata was introduced and dis-
cussed by Gold [13]. Deterministic finite automata were shown not to be iden-
tifiable in the limit from positive examples [13]. But positive results were given
for the identification in the limit of the families of k-reversible languages [3]
and subsequential transducers [26]. Some restricted classes of probabilistic au-
tomata such as acyclic probabilistic automata were also shown by Ron et al.
to be efficiently learnable [29].

There is a vast literature dealing with the problem of learning automata and a
comprehensive survey would be beyond the scope of this paper. Let us mention
however that the algorithms suggested for learning automata are typically
based on a state-merging idea. An initial automaton or prefix tree accepting
the sample strings is first created. Then, starting with the trivial partition

Email addresses: aryehk@wisdom.weizmann.ac.il (Leonid (Aryeh)
Kontorovich), corinna@google.com (Corinna Cortes), mohri@cims.nyu.edu

(Mehryar Mohri).

with one state per equivalence class, classes are merged while preserving an
invariant congruence property. The automaton learned is obtained by merging
states according to the resulting classes. Thus, the choice of the congruence
determines the algorithm.

This work departs from the established paradigm just described in that it
does not use the state-merging technique. Instead, it initiates the study of
linear separation of automata or languages by mapping strings to an appro-
priate high-dimensional feature space and learning a separating hyperplane
in that space. Such mappings can be represented with much flexibility by
string kernels, which can also be significantly more efficient to compute than
a dot product in that space. Thus, our study can be viewed as that of using
kernel methods for learning languages, starting with the rich class of piecewise-
testable languages.

Piecewise-testable languages form an important family of regular languages.
They have been extensively studied in formal language theory [23] starting
with the work of Imre Simon [30]. A language L is said to be n-piecewise-
testable, n € N, if whenever u and v have the same subsequences of length at
most n and v is in L, then v is also in L. A language L is said to be piecewise
testable if it is n-piecewise-testable for some n € N.

For a fixed n, n-piecewise-testable languages were shown to be identifiable in
the limit by Garcia and Ruiz [12]. The class of n-piecewise-testable languages
is finite and thus has finite VC-dimension. To the best of our knowledge,
there has been no learning result related to the full class of piecewise-testable
languages.

This paper introduces an embedding of all strings in a high-dimensional fea-
ture space and proves that piecewise-testable languages are finitely linearly
separable in that space, that is linearly separable with a finite-dimensional
weight vector. The proof is non-trivial and makes use of deep word combina-
torial results relating to subsequences. It also shows that the positive definite
kernel associated to this embedding can be computed in quadratic time. Thus,
the use of support vector machines [6,9,32] in combination with this kernel and
the corresponding learning guarantees are examined. Since the VC-dimension
of the class of piecewise-testable languages is infinite, it is not PAC-learnable
and we cannot hope to derive PAC-style bounds for this learning scheme.
But, the finite linear separability of piecewise-testable helps us derive weaker
bounds based on the concept of the margin.

The linear separability proof is strong in the sense that the dimension of
the weight vector associated with the separating hyperplane is finite. This is
related to the fact that a regular finite cover is used for the separability of
piecewise testable languages. This leads us to study the general problem of

separability with other finite regular covers. We prove that languages separated
with such regular finite covers are necessarily regular.

The paper is organized as follows. Section 2 introduces some preliminary
definitions and notation related to strings, automata, and piecewise-testable
languages. Section 3 presents the proof of the finite linear separability of
piecewise-testable languages using a subsequence feature mapping. Section
4 uses margin bounds to examine how the support vector machine algorithm
combined with this subsequence feature mapping or, equivalently, a subse-
quence kernel, can be used to learn piecewise-testable languages. Most of the
results of this section are general and hold for any finite linear separability with
kernels. Section 5 examines the general problem of separability with regular
finite covers and shows that all languages separated using such covers are regu-
lar. Section 6 shows that the subsequence kernel associated to the subsequence
feature mapping is a rational kernel and that it is efficiently computable us-
ing general-purpose algorithms. Several additional linear separability results
in abstract settings and partial characterizations are collected in Sections A
and B of the Appendix.

2 Preliminaries

In all that follows, X represents a finite alphabet. The length of a string z € >*
over that alphabet is denoted by |z| and the complement of a subset L C ¥*
by L = ¥*\ L. For any string z € ¥*, we denote by x[i] the ith symbol of
x, i < |z|. More generally, we denote by z[i:j], the substring of contiguous
symbols of = starting at z[i] and ending at z[j].

A string x is a subsequence of y € ¥* if x can be derived from y by erasing
some of y’s characters. We will write z C y to indicate that z is a subsequence
of y. The relation C defines a partial order over X*. For x € X", the shuffle
1deal of x is defined as the set of all strings containing x as a subsequence:

(z) ={ue ¥ :x Cu}=X"2[1)X" Exn]X". (1)

The definition of piecewise-testable languages was given in the previous sec-
tion. An equivalent definition is the following: a language is piecewise-testable
(PT for short) iff it is a finite Boolean combination of shuffle ideals [30].

We will often use the subsequence feature mapping ¢ : ©* — RY which asso-
ciates to x € ¥* a binary vector ¢(x) = (¥,)uex+ Whose non-zero components

correspond to the subsequences of z:!

1 ful x
w — - 2
J {O otherwise.)

The computation of the kernel associated to ¢ is based on weighted finite-state
transducers. A weighted finite-state transducer 7" over the field (R, @, ®,0, 1)
is an 8-tuple T' = (X, A, Q, I, F, E, \, p) where ¥ is the finite input alphabet
of the transducer; A is the finite output alphabet; () is a finite set of states;
I C @ the set of initial states; F' C @) the set of final states; £ C @ x (¥ U
{e}) x (AU {e}) x R x @ a finite set of transitions each with a weight w;
A 1 I — R the initial weight function; and p : F' — R the final weight function
mapping F' to R.

For a path 7 in a transducer, we denote by p[r| the origin state of that path,
by n|[r] its destination state, and by w[n] its weight obtained by multiplying
the weights of its constituent transitions. We also denote by P(I,x,y, F') the
set of paths from the initial states I to the final states F.

A transducer T is regulated if the output weight associated by T to any pair
of input-output string (x,y) by:

T(xy)= > Mol]) - wlr]- pln(x]] (3)

neP(l,z,y,F)

is well-defined and in R. T'(x,y) = 0 when P(I,z,y, F) = 0. If for all ¢ € Q
YoreP(gecq T € R, then T is regulated. In particular, when 7" has no e-
cycle, it is regulated. The weighted transducers we will be considering in this
paper will be regulated.

For any transducer T, we denote by T~! its inverse, that is the transducer
obtained from T by swapping the input and output label of each transition.
The composition of two weighted transducers 77 and T, with the same input
and output alphabets ¥ is a weighted transducer denoted by T} o T, when the
sum:

(TroT)(wy) = > Tilw.2) Ta(z,y) (4)

zeX*
is well-defined and in R for all =,y € ¥* [21].

3 Linear Separability of Piecewise-Testable Languages

This section shows that any piecewise-testable language is finitely linearly
separable for the subsequence feature mapping.

I Elements u € ¥* can be used as indices since ¥* and N are isomorphic.

We will show that every piecewise-testable language is given by some decision
list of shuffle ideals (a rather special kind of Boolean function). This suffices
to prove the finite linear separability of piecewise-testable languages since
decision lists are known to be linearly separable Boolean functions [4].

We will say that a string u € ¥* is decisive for a language L C 3* if ITI(u) C L
or [lI(u) C L. The string u is said to be positive-decisive for L when III(u) C L
(negative-decisive when II1(u) C L). Note that when u is positive-decisive
(negative-decisive),

relll(u)=xze€ L (resp.x € lll(u)=x¢L). (5)

Lemma 1 (Decisive strings) Let L C ¥* be a piecewise-testable language,
then there exists a decisive string u € ¥* for L.

Proof. We will prove that the existence of a decisive string is a property that
holds for shuffle ideals and that it is preserved under the Boolean opera-
tions (negation, intersection, union). This will imply that it holds for all finite
Boolean combinations of shuffle ideals, i.e., for all PT languages.

By definition, a shuffle ideal III(u) admits u as a decisive string. It is also
clear that if u is decisive for some PT language L, then u is also decisive for
L. Thus, the existence of a decisive string is preserved under negation. For the
remainder of the proof, L; and L, will denote two PT languages over .

If uy is positive-decisive for L; and uy is positive-decisive for Lo, II(uy) N
I(uy) € L = Ly N Ly. II(uy) N I(uy) is not empty since it contains, for
example, ujus. For any string v € I (uy) N I (us), I (u) € I (uy) NI (us),
thus any such w is positive-decisive for L. Similarly, when w; is negative-
decisive for Ly and uy negative-decisive for Lo any u € HI(uy) U II(ug) is
negative-decisive for L. = L; N Ly. Finally, if u; is positive-decisive for L
and us negative-decisive for Ly then any u € III(us) is negative-decisive for
L = LN Ly C L;. This shows that the existence of a decisive string is
preserved under intersection.

The existence of a decisive string is also preserved under union. If u; is positive-
decisive for L; and uy positive-decisive for Lo, then any u € I (u;) U I (us)
is positive-decisive for L = L U Lo. Similarly, when u; is negative-decisive for
Ly and usy negative-decisive for Lo, any u € II(uy) N I (ug) # 0 is negative-
decisive for L. = L; U Lo. Lastly, if u; is positive-decisive for L; and wus is
negative-decisive for Lo then any u € III(u;) is positive-decisive for L =
Ly U L. O

We say that u is minimally decisive for L if it admits no proper subsequence

v C u that is decisive for L.

Lemma 2 (Finiteness of set of minimally-decisive strings) Let L C >*
be a PT language and let D C ¥* be the set of all minimally decisive strings
for L, then D is a finite set.

Proof. Observe that D is a subsequence-free subset of ¥*: no element of D is a
proper subsequence of another. Thus, the finiteness of D follows directly from
Theorem 1 below. O

The following result, on which Lemma 2 is based, is a non-trivial theorem
of word combinatorics which was originally discovered, in different forms, by
Higman [17] in 1952 and Haines [15] in 1969. The interested reader could refer
to [24, Theorem 2.6] for a modern presentation.

Theorem 1 ([15,17]) Let X be a finite alphabet and L C ¥* a language
containing no two distinct strings x and y such that x C y. Then L s finite.

The definitions and the results just presented can be generalized to decisiveness
modulo a set V: we will say that a string u is decisive modulo some V C
Y if VNIO(u) € Lor VNIH(u) C L. As before, we will refer to the
two cases as positive- and negative-decisiveness modulo V and similarly define
mainimally decisive strings modulo V. These definitions coincide with ordinary
decisiveness when V' = ¥*.

Lemma 3 (Finiteness of set of minimally-decisive strings modulo V)
Let L,V C ¥* be two PT languages and let D C ¥* be the set of all minimally
decisive strings for L modulo V', then D is a non-empty finite set.

Proof. Lemma 1 on the existence of decisive strings can be generalized straight-
forwardly to the case of decisiveness modulo a PT language V: if L,V C »*
are PT and V # (), then there exists u € V' such that u is decisive modulo V'
for L. Indeed, by Lemma 1, for any language of the form III(s) there exists a
decisive string u € V N II(s). The generalization follows by replacing III(X)
with V' N II(X) in the proof of Lemma 1.

Similarly, in view of Lemma 2, it is clear that there can only be finitely many
minimally decisive strings for L modulo V. O

Theorem 2 (PT decision list) If L C ¥* is PT then L is equivalent to
some finite decision list /A over shuffle ideals.

Proof. Consider the sequence of PT languages Vi, Vs, ... defined according to
the following process:

o V| =X*

e When V; # (), V;, is constructed from V; in the following way. Let D; C V;
be the nonempty and finite set of minimally decisive strings u for L modulo
V;. The strings in D; are either all positive-decisive modulo V; or all negative-
decisive modulo V;. Indeed, if u € D, is positive-decisive and v € D; is
negative-decisive then wv € II(u) NIII(v), which generates a contradiction.
Define 0, as 0; = 1 when all strings of D; are positive-decisive, o; = 0 when
they are negative-decisive modulo V; and define V;,; by:

with III(D;) = Uyep, I (w).

We show that this process terminates, that is Viy,; = 0) for some N > 0. As-
sume the contrary. Then, the process generates an infinite sequence Dy, Do, . ..
Construct an infinite sequence X = (x,),en by selecting a string x,, € D,, for
any n € N. By construction, D, ; C III(D,) for all n € N, thus all strings
x, are necessarily distinct. Define a new sequence (y,)nen by: y1 = 27 and
Yn+1 = Tg(n), Where £ : N — N is defined for all n € N by:

£(n) = {min{k‘ € N:{y1,...,Yn, z} is subsequence-free}, if such a k exists,
o0 otherwise.
We cannot have £(n) # oo for all n > 0 since the set Y = {y1,y2,...} would
then be (by construction) subsequence-free and infinite. Thus, {(n) = oo for
some n > 0. But then any xp, £ € N, is a subsequence of an element of
{y1,...,yn}. Since the set of subsequences of {yi,...,y,} is finite, this would
imply that X is finite and lead to a contradiction.

Thus, there exists an integer N > 0 such that Vy,; = () and the process
described generates a finite sequence D = (D, ..., Dy) of nonempty sets as
well as a sequence o = (0;) € {0,1}". Let A be the decision list

(IL(D1),01), ..., (LL(Dn), o). (7)
Let A, : ¥* — {0,1}, n =1,..., N, be the mapping defined for all z € ¥* by:

o if x € III(D,,),

Apiq(x) otherwise,

Ve e, An(x) = { 8)

with Ayxyq(x) = on. It is straightforward to verify that A,, coincides with the
characteristic function of L over U, III(D;). This follows directly from the

definition of decisiveness. In particular, since

n—1
V. =) OI(D;) 9)
i=1
and VN+1 = (Z),
N
U (D, =¥, (10)
i=1
and A coincides with the characteristic function of L everywhere. O

Using this result, we show that a P'T language is linearly separable with a
finite-dimensional weight vector.

Corollary 1 For any PT language L, there exists a weight vector w € RY with
finite support such that L = {x : (w, ¢p(x)) > 0}, where ¢ is the subsequence
feature mapping.

Proof. Let L be a PT language. By Theorem 2, there exists a decision list
(II(Dy),01),...,(I(Dy),on) equivalent to L where each D,,, n =1,..., N,
is a finite set. We construct a weight vector w = (w,)ues+ € RY by starting
with w = 0 and modifying its coordinates as follows in the order n = N, N —
1,...,1:

+(X wl+1) ifo,=1,

v D,, w = vev e 11
" v —(\ > w| + 1) otherwise, (1)

where V'~ and V' denote

N N
Vi={ve U Ditw,<0} and VF={ve |J D;:w,>0}. (12

By construction, the decision list is equivalent to {z : (w, ¢(x)) > 0}. Since
each D,, n=1,..., N, is finite, the weight vector w has only a finite number
of non-zero coordinates. g

In particular, we obtain a new characterization of piecewise testability: a lan-
guage is PT if and only if it is finitely linearly separable under the subsequence
embedding. The “only if” direction is entailed by Corollary 1, while the “if”
direction is a consequence of Theorem 5, proved below.

The dimension of the feature space associated to ¢ is infinite. Section 6 will
show however that the kernel associated to ¢ can be computed efficiently. Lin-

ear separability combined with the use of this kernel ensures efficient learn-
ability, as we shall see in the next section.

4 Learning Linearly Separable Languages

This section deals with the problem of learning PT languages, and other lin-
early separable concept classes.

In the previous section, we showed that using the subsequence feature mapping
¢, or equivalently the corresponding subsequence kernel K, PT languages are
finitely linearly separable. In Section 6, we will show that K (x,y) can be com-
puted in O(|X||z||y|) for any two strings =,y € ¥*. These results suggest the
use of a linear separator learning technique such as support vector machines
(SVMs) [6,9,32] combined with the subsequence kernel K for learning PT lan-
guages. In view of the complexity of the subsequence kernel computation just
mentioned, the complexity of computing the SVM solution for a sample of
size m with longest sString ., is O(QP(m)) + m? |Zmax|?* [2]), where QP(m)
is the cost of solving a quadratic programming problem of size m, which is at
most O(m?).

We will use the standard margin bound to analyze the behavior of that algo-
rithm. Note however, that since the VC-dimension of the set of PT languages
is infinite, PAC-learning is not possible and we need to resort to a weaker
guarantee.

Let (z1,11)s -, (Tm,Ym) € X x {—1,+1} be a labeled sample from a set X
(X = X* when learning languages). The margin p of a hyperplane with weight
vector w € RY over this sample is defined by:

(13)

The sample is linearly separated by w iff p > 0. Note that our definition holds
even for infinite-size samples.

The linear separation result shown for the class of PT languages is strong in
the following sense. For any weight vector w € RY, let supp(w) = {i : w; # 0}
denote the support of w, then the following property holds for PT languages.

Definition 1 Let C be a concept class defined over a set X ; that is, C C 2%,
We will say that a concept ¢ € C' is finitely linearly separable, if there ezists
a mapping ¢ : X — {0,1} and a weight vector w € RY with finite support,

10

| supp(w)| < oo, such that
c={zre X :(w, é(zx)) >0} (14)

The concept class C' is said to be finitely linearly separable if all ¢ € C are
finitely linearly separable for the same mapping ¢.

Note that in general a linear separation in an infinite-dimensional space does
not guarantee a strictly positive margin p. Points in an infinite-dimensional
space may be arbitrarily close to the separating hyperplane and their infimum
distance could be zero. However, finitely linear separation does guarantee a
strictly positive margin.

Proposition 1 Let C' be a concept class defined over a set X that is finitely
linearly separable using the mapping ¢ : X — {0,1}N and a weight vector
w € RY. Then, the margin p of the hyperplane defined by w is strictly positive,
p>0.

Proof. By assumption, the support of w is finite. For any =z € X, let ¢'(z)
be the projection of ¢(x) on the span of w, span(w). Thus, ¢/(z) is a finite-
dimensional vector for any x € X with discrete coordinates in {0, 1}. Thus,
the set of S = {¢'(x) : v € X} is finite. Since for any z € X, (w, ¢(x)) =
(w, @' (x)), the margin is defined over a finite set:

/
zexX 5 lwl]
and is thus strictly positive. O

By Corollary 1, PT languages are finitely linearly separable under the subse-
quence embedding. Thus, there exists a hyperplane separating a PT language
with a strictly positive margin.

The following general margin bound holds for all classifiers consistent with
the training data [5].

Theorem 3 (Margin bound) Define the class F of real-valued functions
on the ball of radius R in R" as

F=A{z— (w,z):|w| <1,z <R} (16)

There is a constant o such that, for all distributions D over X, with prob-
ability at least 1 — § over m independently generated examples, if a classifier
sgn(f), with f € F, has margin at least p on the training examples, then the

11

generalization error of sgn(f) is no more than

(7)) R2 2 1
- <F log m+log(5)> . (17)

In general, linear separability does not provide a margin-based guarantee when
the support of the weight vector is unbounded. Any sample of size m can
be trivially made linearly separable by using an embedding ¢ : X — {0, 1}1
mapping each point x to a distinct dimension. The margin p for such a mapping
is ﬁ and thus goes to zero as m increases, and the ratio (R/p)?, where R = 1

is the radius of the sphere containing the sample points, is (R/p)?* = 4m. The
bound of Theorem 3 is not effective with that value of (R/p)?. The following
result shows however that linear separability with a finite support weight vector
ensures a strictly positive margin and thus convergence guarantees.

Theorem 4 Let C be a finitely linearly separable concept class over X with
a feature mapping ¢ : X — {0,13N. Define F as the class of real-valued
functions

F =Ax = (w,¢(x)) : |wl| < 1,[lo(x)| < R} (18)
There is a constant aq such that, for all distributions D over X, for any
concept ¢ € C, there exists pg > 0 such that with probability at least 1 — 9 over
m independently generated examples according to D, there exists a classifier
sgn(f), with f € F, with margin at least py on the training examples, and
generalization error no more than

— [=1 log(=) | . 1
) (19

Proof. Fix a concept ¢ € (. By assumption, c¢ is finitely linearly separable
from X \ ¢ by some hyperplane. By Proposition 1, the corresponding margin
po is strictly positive, pg > 0. pg is less than or equal to the margin of the
optimal hyperplane p separating ¢ from X \ ¢ based on the m examples.

Since the full sample X is linearly separable, so is any subsample of size m. Let
f € F be the linear function corresponding to the optimal hyperplane over a
sample of size m drawn according to D. Then, the margin of f is at least as
large as p since not all points of X are used to define f. Thus, the margin of
f is greater than or equal to py and the statement follows Theorem 3. O

Theorem 4 applies directly to the case of PT languages since by Corollary 1
they are finitely linearly separable under the subsequence embedding. Observe
that in the statement of the theorem, py depends on the particular concept ¢
learned but does not depend on the sample size m.

12

Note that the linear separating hyperplane with finite-support weight vector
is not necessarily an optimal hyperplane. The following proposition shows
however that this property holds when the mapping ¢ is surjective.

Proposition 2 Let ¢ € C be a finitely linearly separable concept with the
feature mapping ¢ : X — {0,1}N and weight vector w with finite support,
| supp(w)| < oo, such that ¢(X) = RYN. Assume that ¢ is surjective, then the
weight vector w corresponding to the optimal hyperplane for ¢ has also a finite
support and supp(w) C supp(w).

Proof. Assume that w; # 0 for some i ¢ supp(w). We first show that this
implies the existence of two points z_ ¢ ¢ and z, € ¢ such that ¢(x_) and
¢(z,) differ only by their ith coordinate.

Let ¢' be the mapping such that for all x € X, ¢'(z) differs from ¢(z) only
by the ith coordinate and let @’ be the vector derived from w by setting the
ith coordinate to zero. Since ¢ is surjective, thus ¢~!(¢/(x)) # 0. If z and any
r' € ¢7'(¢'(x)) are in the same class for all z € X, then

sgn((w, ¢(x))) = sgn((w, ¢ (x))). (20)

Fix x € X. Assume for example that [¢'(z)]; = 0 and [¢(z)]; = 1, then
(W, ¢ (x)) = (W', ¢(x)). Thus, in view of Equation 20,

sgn((w, ¢(x))) = sgn((w, ¢/ (z))) = sgu((d’, 6(x))). (21)

We obtain similarly that sgn({(w, ¢(x))) = sgn((@’, ¢(x))) when [¢'(z)]; = 1
and [¢(x)]; = 0. Thus, for all z € X, sgn((w, ¢(x))) = sgn({(w’, ¢(x))). This
leads to a contradiction, since the norm of the weight vector for the optimal
hyperplane is the smallest among all weight vectors of separating hyperplanes.

Since any pair x, 2’ as defined above cannot be in the same class, this proves
the existence of z_ ¢ ¢ and z; € ¢ with ¢(x_) and ¢(z,) differing only by
their ith coordinate.

But, since @ ¢ supp(w), for two such points z_ & ¢ and =, € ¢, (w,p(x_)) =
(w, ¢(x4)). This contradicts the status of sgn({w, ¢(x))) as a linear separator.
Thus, our original hypothesis cannot hold: there exists no ¢ ¢ supp(w) such
that w; # 0 and the support of w is included in that of w. O

In the following, we will give another analysis of the generalization error of
SVMs for finitely separable hyperplanes using the bound of Vapnik based on

13

the number of essential support vectors: 2

E[(,=1)?]
Elerror(hy,)] < 1l

, (22)
where h,, is the optimal hyperplane hypothesis based on a sample of m points,
error(hy,) the generalization error of that hypothesis, R,, 1 the smallest radius
of a set of essential support vectors of an optimal hyperplane defined over a
set of m + 1 points, and p,, 1 its margin.

Let ¢ be a finitely separable concept. When the mapping ¢ is surjective, by
Proposition 2, the weight vector w of the optimal separating hyperplane for
¢ has finite support and the margin py is positive, pg > 0. Thus, the smallest
radius of a set of essential support vectors for that hyperplane is R = /N (c)
where N(c) = |supp(w)|. If R,,41 tends to R when m tends to infinity, then
for all € > 0, there exists M, such that for m > M., R?*(m) < N(c) + e In
view of Equation 22, the expectation of the generalization error of the optimal
hyperplane based on a sample of size m is bounded by

E[(fz21)2] - N(c)+e

Pm+1

m+1 = pg(m+1)

Elerror(h,)] < (23)

This upper bound varies as —+.
m

5 Finite Cover with Regular Languages

In the previous sections, we introduced a feature mapping ¢, the subsequence
mapping, for which PT languages are finitely linearly separable. The subse-
quence mapping can be defined in terms of the set of shuffle ideals of all strings,
U, = ll(u), u € X*. A string x can belong only to a finite number of shuffle
ideals U,, which determine the non-zero coordinates of ¢(x). This leads us to
consider other such mappings based on other regular sets U, and investigate
the properties of languages linearly separated under such mappings. The main
result of this section is that all such linearly separated languages are regular.

2 A support vector ¢(z), = € X, is essential if ¢(x) € SV(S) whenever = € S, where
SV(S) are the support vectors induced by the sample S.

14

5.1 Definitions

Let U, C ¥*, n € N, be a countable family of sets such that any string z € >*
lies in at most finitely many U,,. Thus, for all x € >*,

an(x) < 00, (24)
where 1), is the characteristic function of U,,:
1 if x € U,
n(r) = 25
Ynla) {0 otherwise. (25)

Any such family (U,)nen is called a (locally) finite cover of ¥*. If additionally,
each U, is a regular set and X* is a member of the family, we will say that
(Up)nen is a reqular finite cover (RFC).

Any finite cover (U,),en naturally defines a positive definite symmetric kernel
K over X* given by:

Yo,y €X', K(z,y) =Y va(@)in(y). (26)

Its finiteness, symmetry, and positive definiteness follow its construction as
a dot product. K(z,y) counts the number of common sets U,, that = and y
belong to.

We may view 1 (z) as an infinite-dimensional vector in the space RY, in which
case we can write K(z,y) = (¢(z),¥(y)). We will say that ¢ is an RFC-
induced embedding. Any weight vector w € RY defines a language L(w) given
by:

L(w) ={z e X" : (w,¢¥(x)) > 0}. (27)
Note that since ¥* is a member of every RFC, K(z,y) > 1.

5.2 Main Result

The main result of this section is that any finitely linearly separable language
under an RFC embedding is regular. The converse is clearly false. For a given
RFC, not all regular languages can be defined by some separating hyperplane.
A simple counterexample is provided with the RFC {(), U, ¥* \ U, ¥*} where
U is some regular language. For this RFC, U, its complement, ¥*, and the
empty set are linearly separable but no other regular language is.

Theorem 5 Let ¢ : X* — {0,1} be an RFC-induced embedding and let

15

w € RY be a finitely supported weight vector. Then, the language L(w) = {x €
X*(w, () > 0} is regular.

Proof. Let f:¥* — R be the function defined by:

fx) = (w, ¢(x)) = ;wiw), (28)

where the weights w; € R and the integer N = | supp(w)| are independent of .
Observe that f can only take on finitely many real values {r : k =1,..., K}.
Let L,, € X* be defined by

er = f_l(rk)' (29)

A subset I C {1,2,..., N} is said to be ri-acceptable if Y ;c;w; = 7. Any
such rp-acceptable set corresponds to a set of strings L; C ¥* such that

L1:<ﬂw;1(1)>\(U w;1<1>)=(mvi)\(U U)
i€l ie{1,..,N\I i€l ie{1,..,N\I

Thus, L; is regular because each Uj; is regular by definition of the RFC. Each
L,, is the union of finitely many r;-acceptable L;’s, and L is the union of the
L,, for positive 7. O

Theorem 5 provides a representation of regular languages in terms of some
subsets of RY. Although we present a construction for converting this repre-
sentation to a more familiar one such as a finite automaton, our construction is
not necessarily efficient. Indeed, for some r; there may be exponentially many
rg-acceptable L;s. This underscores the specific feature of our method. Our
objective is to learn regular languages efficiently using some representation,
not necessarily automata.

5.3 Representer Theorem

Let S ={z; : 7 =1,...,m} C X* be a finite set of strings and a € R™. The
pair (S,) defines a language L(S,) given by:

L(S,a) ={zeX": iajK(x,xj) > 0}. (30)

Let w = 3772 aj3p(z;). Since each ¢(z;) has only a finite number of non-zero
components, the support of w is finite and by Theorem 5, L(.S, «) can be seen
to be regular. Conversely, the following result holds.

16

Theorem 6 Let v : ¥* — {0,1} be an RFC-induced embedding and let
w € RY be a finitely supported weight vector. Let L(w) be defined by L(w) =
{z € ¥* : (w,¥(x)) > 0}. Then, there exist (z;), j =1,...,m, and « € R™
such that L(w) = L(S, o) = {x € ¥ : 31, a; K (z, ;) > 0}.

Proof. Without loss of generality, we can assume that no cover set U, # ¥*,
U, is fully contained in a finite union of the other cover sets U,/, U, # X*.
Otherwise, the corresponding feature component can be omitted for linear
separation. Now, for any U, # ¥*, let z,, € U, be a string that does not
belong to any finite union of U,,, U, # ¥*. For U,, = ¥*, choose an arbitrary
string x,, € ¥*. Then, by definition of the x,,,

(0,60 = 3wy (0,3,). 31

This proves the claim. O

This result shows that any finitely linearly separable language can be inferred
from a finite sample.

5.4 Further Characterization

It is natural to ask what property of finitely supported hyperplanes is re-
sponsible for their inducing regular languages. In fact, Theorem 5 is readily
generalized:

Theorem 7 Let f : X — R be a function such that there exist an integer
N € N and a function g : {0,1}¥ — R such that

Ve e X', f(z)=g(Wi(x), va(x), ... ¢n(2)), (32)

Thus, the value of f depends on a fized finite number of components of 1.
Then, for any r € R, the language L = {x € X* : f(x) = r} is reqular.

Proof. Since f is a function of finitely many binary variables, its range is
finite. From here, the proof proceeds exactly as in the proof of Theorem 5,
with identical definitions for {7} and L,, . O

This leads to the following corollary.

17

Corollary 2 Let f : ¥* — R be a function satisfying the conditions of The-
orem 7. Then, for any r € R, the languages Ly = {x € ¥* : f(x) > r} and
Ly ={x € ¥ : f(x) <1} are reqular.

6 Efficient Kernel Computation

The positive definite symmetric kernel K associated to the subsequence feature
mapping ¢ is defined by:

Yo,y € X%, K(z,y) = (6(2),0(y)) = > [uEa][ulyl. (33)

ueX*

where [P] represents the 0-1 truth value of the predicate P. Thus, K(x,y)
counts the number of subsequences common to x and y, without multiplicity.

This subsequence kernel is closely related to but distinct from the one de-
fined by Lodhi et al. [22]. Indeed, the kernel of Lodhi et al. counts the num-
ber of occurrences of subsequences common to x and y. Thus, for example
K(abe, acbe) = 8, since the cardinal of the set of common subsequences of abe
and acbe, {€,a,b, c,ab, ac, bc,abc}, is 8. But, the kernel of Lodhi et al. (with-
out penalty factor) would instead associate the value 10 to the pair (abc, acbe),
since each of ¢ and ac occurs twice in the second string.

A string with n distinct symbols has at least 2™ possible subsequences, so a
naive computation of K (z,y) based on the enumeration of the subsequences
of x and y is inefficient. We will show however that K is a positive definite
symmetric rational kernel and that K(x,y) can be computed in quadratic
time, O(|X||x||y|), using the general algorithm for the computation of rational
kernels [7].3

To do so, we will show that there exists a weighted transducer 7" over the
semiring (R, +,-,0, 1) such that for all z,y € ¥*

K(z,y) = (T o T ")(z,y). (34)
This will prove that K is a rational kernel since it can be represented by the
weighted transducer S and by a theorem of [7], it is positive definite symmetric

since S has the form S =T o T~ !.

There exists a simple (unweighted) transducer T, mapping each string to the

3 In previous work [20], we described a special-purpose method suggested by Der-
ryberry [10] for computing K, which turns out to be somewhat similar to that of
Lodhi et al.

18

Fig. 1. Subsequence transducers for ¥ = {a,b}. A bold circle indicates an initial
state. Final states are marked with double-circles. (a) Transducer Tj associating to
each input string = € X* the set of its subsequences with multiplicity. (b) Subse-
quence transducer T associating to each string x € X* the set of its subsequences
with multiplicity one even if the number of occurrences is high.

set of its subsequences defined by the following regular expression over pairs:

U (a,a) U (a,e). (35)

a€ey

This is clear since, by definition, each symbol can be either left unchanged in
the output, or replaced by the empty string €, thereby generating all possible
subsequences. Figure 1(a) shows that transducer in the particular case of an
alphabet with just two symbols a and b. The transducer has only one state.

The transducer T, may generate several copies of the same subsequence of a
sequence z. For example, the subsequence a of x = aa can be generated by
Ty by either erasing the first symbol or the last symbol. To be consistent with
the definition of the subsequence kernel K, we need instead to generate only
one copy of each subsequence of a sequence. We will construct a transducer
T that will do just that. To simplify the discussion, we will assume that the
alphabet is reduced to 3 = {a,b}. The analysis extends to the general case
straightforwardly.

T is constructed by removing some paths of T to generate only the occurrence
of a subsequence u of x whose symbols are read as early as possible. We can
remove from Tj paths containing a pattern described by (b, €)(a, €)*(b, b). That
is because that subsequence can also be generated via (b, b)(a, €)*(b, €), which
corresponds to an earlier instance. Similarly, we can remove from Tj paths
containing a pattern described by (a, €)(b, €)*(a, a), which can be instead gen-
erated earlier via (a, a)(b, €)*(a,€). Figure 2 shows a transducer R describing

19

Fig. 2. Transducer R describing the set of paths to be removed from Tj.

the set of paths that we wish to remove from Tj.

To remove these paths, we can view R and T} as finite automata over the pair
alphabet (X U{e} x X U{e}) —{(¢, €)}. We can thus use the standard automata
complementation and difference algorithms to remove these paths [27]. The
result is exactly the transducer 7' shown in Figure 1(b).

Theorem 8 The transducer T maps each string x to the set of subsequences
of x with exactly one occurrence of each.

Proof. By construction, T" maps each string x to a set of subsequences of x
since it is derived from T by removing some paths. No subsequence is lost
since for each path of the form (a, €)(b, €)*(a, a) removed, there exists another
path in T generating the same output via (a,a)(b, €)*(a,€). Thus, T" maps
each string x to the set of all subsequences of x.

We now show that for any pair of input-output strings (z,y) accepted by T,
there exists a unique path labeled with (x,y) in 7. Fix a pair (z,y) accepted
by T and let 7 and 72 be two paths labeled with (z,y). Let m be the longest
prefix-path shared by 7 and .

7 cannot end in state a or state b. Indeed, since these states are not final,
there must be some suffix of (z,y) left to read. But, there is no input non-
determinism at these states. The input symbol uniquely determines the tran-
sition to read. This contradicts the property of @ being the longest common
prefix-path.

Similarly, 7 cannot end in state F' with some non-empty input symbol left to
read since there is no input non-determinism at that state.

20

7 cannot end in state I with some non-empty symbols left to read. Without
loss of generality, assume that the input symbol is a. If the output symbol
were also a, then the only alternative for the rest of both paths 7 and 7y at
state I is the loop labeled with (a,a). But, that would contradict again the
property of m being the longest common prefix-path. Similarly, if the output
label is b, the only alternative for both paths is the transition from I to b
followed by the one from b to I, again contradicting the status of 7.

The only alternatives left are that 7 ends at state I or F' with no other symbol
left to read, that is m = 7 = 7. O

Corollary 3 Let K be the subsequence kernel. Then, there exists a weighted
transducer T' over (R, +,+,0,1) such that for all x,y € 3*

K(z,y) = (T o T ")(z,y). (36)

Proof. By Theorem 8, the (unweighted) transducer 7' maps each sequence to
the set of its subsequences with multiplicity one. Let 7" be the weighted trans-
ducer over (R, +,+,0,1) derived from T by assigning weight 1 to all transitions
and final weights. By definition of 7', for all z,y € ¥* such that y is a subse-
quence of z, T'(x,y) = 1, since there is a unique path in 7" labeled with (z,y).
Thus, for all x,y € ¥*,

(T o T (@, y) = Lues- T'(z,u)T'(y, u)
= > uCazuly T (2, u)T'(y, u)
= 2uCoucy L1
= K(z,y),

which ends the proof. O

The subsequence kernel K can thus be computed using the standard compo-
sition algorithm and shortest-distance algorithms [7]. The transducer T" (or
T") does not need to be computed beforehand. Instead, it can be determined
on-demand, as needed for the specific strings x and y considered.

Since composition is associative, the composition operations for the compu-
tation of X o 7" o T""' o Y, where X and Y are automata representing the
strings « and y, can be carried out in any order [7]. In the specific case of
the subsequence transducer 77, it is advantageous to first compute X o 7" and
Y o T'~!. In fact, since after computation of X o 7", only the output labels of
this transducer are needed, we can project it on the output, that is remove
its input labels, and further optimize the result with the application of the

21

(a)

Fig. 3. (a) Finite automaton X accepting the string x = ababb. (b) Finite automa-
ton X' accepting exactly the set of subsequences of z obtained by application of
e-removal to the output projection of X o 1.

standard e-removal algorithm [25]. It is not hard to see that the resulting fi-
nite automaton X’ is a deterministic minimal automaton with the following
properties:

) it has exactly as many states as X and all its states are final;

) it has at most (|z| — 1)|¥| transitions;

) it accepts exactly the set of subsequences of x with multiplicity one;

) it can be derived from X in the following simple manner: at any non-final
state ¢ of X and for any alphabet symbol ¢ distinct from the one labeling
the outgoing transition of ¢, create a new transition to ¢’ with label ¢,
where ¢’ is the next following state along X with an incoming transition
labeled with c. No transition is created when such a state does not exist.

(1
(2
(3
(4

All of these properties directly result from property 4). Figure 3 illustrates
these properties in the case of a specific string. The application of e-removal
to the input projection of Y o7"~! results in an automaton Y’ with the similar
properties with respect to y.

K(x,y) can be computed by applying a shortest-distance algorithm to com-
pute the sum of the weights of all the paths of the automaton A resulting from
the composition X’ o Y’. The automaton A resulting from this composition
admits at most | X'||Y’| = | X||Y| states. Since both X’ and Y’ are determinis-
tic, A is also deterministic with at most |X| outgoing transitions at each state.
Thus, the size of A or the cost of the composition X’ o Y” is in O(|%]| X||Y]).
Since A is acyclic, a linear-time algorithm can be used to computed the sum
of the weights of its paths [7].

It can be shown straightforwardly that the size of X o 7" is in O(|X]|X]).
The cost of the application of e-removal to compute X’ from X o T” is also
in O(|X oT'"| 4+ | X'|) = O(]X||X]|) proceeding in reverse topological order to
remove e-transitions. Thus, the cost of the computation of X’ is in O(|X]|X])
and similarly that of computing Y in O(|X]]Y]). In view of that, the overall
complexity of the computation of K (z,y) is in O(|X||z||y|). The computation
of the subsequence kernel and other rational kernels can further benefit from a
substantially more efficient algorithm for composing three or more transducers,
N-way composition [1].

22

7 Conclusion

We introduced a new framework for learning languages that consists of map-
ping strings to a high-dimensional feature space and seeking linear separation
in that space and applied this technique to the non-trivial case of PT languages
and showed that this class of languages is indeed linearly separable and that
the corresponding subsequence kernel can be computed efficiently. We further
showed that the subsequence kernel is a positive definite symmetric rational
kernel.

Many other classes of languages could be studied following the same ideas.
This could lead to new results related to the problem of learning families of
languages or classes of automata. Some preliminary analyses of linear separa-
tion with rational kernels suggests that kernels such as that the subsequence
kernels with transducer values in a finite set admit a number of beneficial
properties such as that of guaranteeing a positive margin [8].

Acknowledgements

Much of the work by Leonid Kontorovich was done while visiting the Hebrew Uni-
versity, in Jerusalem, Israel, in the summer of 2003. Many thanks to Yoram Singer
for providing hosting and guidance at the Hebrew University. Thanks also to Daniel
Neill and Martin Zinkevich for helpful discussions. This work was supported in part
by the IST Programme of the European Community, under the PASCAL Network
of Excellence, IST-2002-506778. The research at CMU was supported in part by
NSF ITR grant 11S-0205456. This publication only reflects the authors’ views.

The work of Mehryar Mohri was partially funded by a Google Research Award and
the New York State Office of Science Technology and Academic Research (NYS-
TAR). This project was also sponsored in part by the Department of the Army
Award Number W23RYX-3275-N605. The U.S. Army Medical Research Acquisi-
tion Activity, 820 Chandler Street, Fort Detrick MD 21702-5014 is the awarding
and administering acquisition office. The content of this material does not necessar-
ily reflect the position or the policy of the Government and no official endorsement
should be inferred.

23

Appendix

A Linear Separability of Boolean Algebras

This section studies the linear separability of families of languages in greater ab-
straction.

Let A = {A; : i € I} denote a collection of languages A; C ¥*, which we shall
refer to as cover elements and let Bool(A) denote the class of languages L that are

finite Boolean combinations of the elements of A. Let ¢ be the natural embedding
Y 2 — {0, 1} defined by

[W(@)]; = [z € A]. (A.1)

Define LinSep(.A) to be the collection of languages L C ¥* that are finitely linearly
separable under 1. By Theorem 5, if A4 is a Regular Finite Cover then

LinSep(.A) C Bool(A). (A.2)
For the special case of A = {I1I(u) : u € ¥*}, by Corollary 1, the following holds:
LinSep(.A) D Bool(A). (A.3)

For what other families A does the Property A.3 hold? A simple example shows
that this property does not always hold. Let A = {0, L1, Lo, >*}, Ly # Ly and Ly
and Lo distinct from () and X*. Then, the language

L=I1I1ALy = (Ll U Lg) \ (L1 N Lg) (A4)

is not linearly separable under v, in the same way as the function XOR : {0,1}% —
{0,1} is not linearly separable in R2.

The following theorem introduces three key properties that help generalize Theorem
2.

Theorem 9 Let A be a family of languages verifying the following three properties:
(1) Everywhere Dense Intersections (EDI): for any nonempty A, B € A, there is
a nonempty C € A such that

CCANB. (A.5)

(2) Finite Antichains (FAC): if A is partially ordered by set inclusion then any
antichain must be finite.

(8) Locally Finite Cover (LFC): each x € ¥* is contained in at most finitely many
elements of A.

24

Then, Property A.3 is satisfied: LinSep(.A) D Bool(A).

Proof. (sketch) The proof is similar to that of Theorem 2. Using EDI, we can show
as with the induction in Lemma 1 that any L € Bool(.A) admits a decisive A € A.
Define such an A to be maximally decisive for L if A does not include an A" D A
that is decisive for L (this corresponds to the definition of minimally decisive in the
case of shuffle ideals).

We can use FAC to show that each L € Bool(A) has finitely many maximally
decisive cover elements. In the case of shuffle ideals, Higman’s theorem was used to
ensure that this property was satisfied.

If V€ Bool(.A), then decisiveness modulo V' is defined in the natural way and for
any L,V € Bool(A) there will be at least one but finitely many maximally decisive
cover elements for L modulo V.

We follow the decision-list construction of Theorem 2, with V; = ¥* and

Vi =Vi\ U 4, (A.6)
A€eD;

where D is the set of the maximally decisive cover elements for L modulo V;.

As in Theorem 2, we can show by contradiction that this process terminates.
Suppose the algorithm generated an infinite sequence of maximally decisive sets:
D1,Ds, ... Construct an infinite sequence (X,)nen by selecting a cover element
X, € Dy, for any n € N. By construction, we cannot have

X C Xny m>n. (A7)

Thus, in particular, all the sets X,, are distinct. As previously, we define the new
sequence (Y,)nen by Y1 = Xy and Y, 11 = X¢(p,), where { : N — N is given by

_Jmin{k € N: {Y7,...,Y,, X;} is an antichain}, if such a k exists,
&) = 00 otherwise.

(A.8)
We cannot have £(n) # oo for all n > 0 since the set {Y7,Ys,...} would then be an
infinite antichain, violating FAC. Thus, £(n) = oo for some n > 0, and our sequence
of Y’s is finite: Y = {¥7,Y5,...,Yy}. Since A.7 does not hold, it follows that for
k > N, each Xj contains some Y €), which violates LFC. This shows that the
decision list generated is indeed finite. Verifying its correctness is very similar to
the inductive argument used in the proof of Theorem 2. O

A particularly intriguing problem, which we leave open for now, is that of providing
an exact characterization of the families of languages A for which the equality
LinSep(A) = Bool(.A) holds.

25

B Linear Separability of Regular Languages

Our study of linear separability of languages naturally raises the question of whether
the family of all regular languages is finitely linearly separable under some universal
embedding. It turns out that there exists indeed a universal reqular kernel Kynry :
¥* x ¥* — R for which all regular languages are linearly separable [19].

Consider the set of deterministic finite automata (DFAs) over a fixed alphabet X. Let
L(M) denote the regular language accepted by a DFA M and let DFA(n) denote
the set of all DFAs with n states. Our universal kernel is based on the auxiliary
kernel K,,:
Kuwy)= 3 [ze L(M)]y € LAD]. (B.1)
MEeDFA(n)
Thus, K,, counts the number of DFAs with n states that accept both x and y. The
universal kernel is then defined by [19]:

min{|z|,[y[}

Konv(w,y) =[x =y] + Z K (2,y). (B.2)
n=1
The following theorem shows the universal separability property of that kernel [19].

Theorem 10 FEvery regular language is finitely linearly separable under the embed-
ding corresponding to Ky -

This embedding, modulo the fact that it is defined in terms of a direct sum of two
embeddings [19], corresponds to the family of sets A, where each A € A is of the
form

A={x € L(M): M € DFA(n),1 <n < |z|}. (B.3)

It is not hard to verify that A is a Regular Finite Cover. Thus, the converse of The-
orem 10 is also valid: any language separated by Kynry is regular. Combining these
observations with the Representer Theorem 6 yields the following characterization
of regular languages.

Theorem 11 A language L C X* is reqular if and only if there is a finite number
of support strings s1,...,S, € X* and weights aq,...,a,, € R such that

m
L={zeX) aKuu(si,z) > 0}. (B.4)
i=1

Since Kyniy linearly separates all regular languages, a fortiori, it also linearly sep-
arates the PT languages. However, while the subsequence kernel used to separate
PT languages was shown to admit an efficient computation (Section 6), Kyxy is
not known to enjoy the same property (an efficient approximation method is pre-
sented in [19] however). Also, the margins obtained by using Kyxyv are likely to be
significantly worse than those resulting from the subsequence kernel. However, we
have not yet derived quantitative margin bounds for the universal kernel that could
enable this comparison.

26

References

1]

[9]

Cyril Allauzen and Mehryar Mohri. N-Way Composition of Weighted Finite-
State Transducers. Technical Report TR2007-902, Courant Institute of
Mathematical Sciences, New York University, August 2007.

Dana Angluin. On the complexity of minimum inference of regular sets.
Information and Control, 3(39):337-350, 1978.

Dana Angluin. Inference of reversible languages. Journal of the ACM (JACM),
3(29):741-765, 1982.

Martin Anthony. Threshold Functions, Decision Lists, and the Representation
of Boolean Functions. Neurocolt Technical report Series NC-TR-96-028, Royal
Holloway, University of London, 1996.

Peter Bartlett and John Shawe-Taylor. Generalization performance of support
vector machines and other pattern classifiers. In Advances in kernel methods:
support vector learning, pages 43-54. MIT Press, Cambridge, MA, USA, 1999.

Bernhard E. Boser, Isabelle Guyon, and Vladimir N. Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual
Workshop of Computational Learning Theory, volume 5, pages 144-152,
Pittsburg, 1992. ACM.

Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational Kernels: Theory
and Algorithms. Journal of Machine Learning Research (JMLR), 5:1035-1062,
2004.

Corinna Cortes, Leonid Kontorovich, and Mehryar Mohri. Learning Languages
with Rational Kernels. In Proceedings of The 20th Annual Conference on
Learning Theory (COLT 2007), volume 4539 of Lecture Notes in Computer
Science, pages 349-364, San Diego, California, June 2007. Springer, Heidelberg,
Germany.

Corinna Cortes and Vladimir N. Vapnik. Support-Vector Networks. Machine
Learning, 20(3):273-297, 1995.

[10] Jonathan Derryberry, 2004. private communication.

[11] Yoav Freund, Michael Kearns, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire,

and Linda Sellie. Efficient learning of typical finite automata from random
walks. In STOC ’93: Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, pages 315-324, New York, NY, USA, 1993. ACM Press.

[12] Pedro Garcia and José Ruiz. Learning k-testable and k-piecewise testable

languages from positive data. Grammars, 7:125-140, 2004.

[13] E. Mark Gold. Language identification in the limit. Information and Control,

50(10):447-474, 1967.

27

[14] E. Mark Gold. Complexity of automaton identification from given data.
Information and Control, 3(37):302-420, 1978.

[15] L. H. Haines. On free monoids partially ordered by embedding. Journal of
Combinatorial Theory, 6:35-40, 1969.

[16] David Haussler, Nick Littlestone, and Manfred K. Warmuth. Predicting {0, 1}-
Functions on Randomly Drawn Points. In Proceedings of the first annual
workshop on Computational learning theory (COLT 1988), pages 280-296, San
Francisco, CA, USA, 1988. Morgan Kaufmann Publishers Inc.

[17] George Higman. Odering by divisibility in abstract algebras. Proceedings of
The London Mathematical Society, 2:326-336, 1952.

[18] Micheal Kearns and Umesh Vazirani. An Introduction to Computational
Learning Theory. The MIT Press, 1997.

[19] Leonid Kontorovich. A Universal Kernel for Learning Regular Languages. In
The 5th International Workshop on Mining and Learning with Graphs (MLG
2007), Florence, Italy, 2007.

[20] Leonid Kontorovich, Corinna Cortes, and Mehryar Mohri. Learning Linearly
Separable Languages. In Proceedings of The 17th International Conference on
Algorithmic Learning Theory (ALT 2006), volume 4264 of Lecture Notes in
Computer Science, pages 288-303, Barcelona, Spain, October 2006. Springer,
Heidelberg, Germany.

[21] Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Number 5
in EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
1986.

[22] Huma Lodhi, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. Text
classification using string kernels. In Todd K. Leen, Thomas G. Dietterich, and
Volker Tresp, editors, NIPS 2000, pages 563-569. MIT Press, 2001.

[23] M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of
Mathematics and Its Applications. Addison-Wesley, 1983.

[24] Alexandru Mateescu and Arto Salomaa. Handbook of Formal Languages,
Volume 1: Word, Language, Grammar, chapter Formal languages: an
Introduction and a Synopsis, pages 1-39. Springer-Verlag New York, Inc., New
York, NY, USA, 1997.

[25] Mehryar Mohri. Generic Epsilon-Removal and Input Epsilon-Normalization
Algorithms for Weighted Transducers. International Journal of Foundations of
Computer Science, 13(1):129-143, 2002.

[26] José Onmcina, Pedro Garcia, and Enrique Vidal. Learning subsequential
transducers for pattern recognition interpretation tasks. IEFE Trans. Pattern
Anal. Mach. Intell., 15(5):448-458, 1993.

[27] Dominique Perrin. Finite automata. In J. Van Leuwen, editor, Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics, pages
1-57. Elsevier, Amsterdam, 1990.

28

[28] Leonard Pitt and Manfred Warmuth. The minimum consistent DFA problem
cannot be approximated within any polynomial. Journal of the Assocation for
Computing Machinery, 40(1):95-142, 1993.

[29] Dana Ron, Yoram Singer, and Naftali Tishby. On the learnability and usage of
acyclic probabilistic finite automata. Journal of Computer and System Sciences,
56(2):133-152, 1998.

[30] Imre Simon. Piecewise testable events. In Automata Theory and Formal
Languages, pages 214-222, 1975.

[31] Boris A. Trakhtenbrot and Janis M. Barzdin. Finite Automata: Behavior and
Synthesis, volume 1 of Fundamental Studies in Computer Science. North-
Holland, Amsterdam, 1973.

[32] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

29

