International Journal of Foundations of Computer Science
(© World Scientific Publishing Company

A Dual Coordinate Descent Algorithm for SVMs Combined with Rational Kernels

CYRIL ALLAUZEN

Google Research,
76 Ninth Avenue, New York, NY 10011
allauzen@google.com

CORINNA CORTES

Google Research,
76 Ninth Avenue, New York, NY 10011
corinna@ google.com

MEHRYAR MOHRI

Courant Institute of Mathematical Sciences,
251 Mercer Street, New York, NY 10012, US,
and
Google Research,

76 Ninth Avenue, New York, NY 10011, US.
mohri@cs.nyu.edu

This paper presents a novel application of automata algorithms to machine learning. It introduces
the first optimization solution for support vector machines used with sequence kernels that is purely
based on weighted automata and transducer algorithms, without requiring any specific solver. The al-
gorithms presented apply to a family of kernels covering all those commonly used in text and speech
processing or computational biology. We show that these algorithms have significantly better compu-
tational complexity than previous ones and report the results of large-scale experiments demonstrating
a dramatic reduction of the training time, typically by several orders of magnitude.

1. Introduction

Weighted automata and transducer algorithms have been used successfully in a variety of
natural language processing applications, including speech recognition, speech synthesis,
and machine translation [23]. More recently, they have found other important applications
in machine learning [7,1]: they can be used to define a family of sequence kernels, ra-
tional kernels [7], which covers all sequence kernels commonly used in machine learning
applications in bioinformatics or text and speech processing.

Sequences kernels are similarity measures between sequences that are positive definite
symmetric, which implies that their value coincides with an inner product in some Hilbert
space. Kernels are combined with effective learning algorithms such as support vector ma-
chines (SVMs) [9] to create powerful classification techniques, or with other learning algo-
rithms to design regression, ranking, clustering, or dimensionality reduction solutions [25].
These kernel methods are among the most widely used techniques in machine learning.

2 C. Allauzen, C. Cortes and M. Mohri

Scaling these algorithms to large-scale problems remains computationally challenging,
however, both in time and space. One solution consists of using approximation techniques
for the kernel matrix, e.g., [12,2,27, 18] or to use early stopping for optimization algo-
rithms [26]. However, these approximations can of course result in some loss in accuracy,
which, depending on the size of the training data and the difficulty of the task, can be
significant.

This paper presents general techniques for speeding up large-scale SVM training when
used with an arbitrary rational kernel, without resorting to such approximations. We show
that coordinate descent approaches similar to those used by [15] for linear kernels can be
extended to SVMs combined with rational kernels to design faster algorithms with signif-
icantly better computational complexity. Remarkably, our solution techniques are purely
based on weighted automata and transducer algorithms and require no specific optimiza-
tion solver. To the best of our knowledge, they form the first automata-based optimization
algorithm of SVMs, probably the most widely used algorithm in machine learning. Further-
more, we show experimentally that our techniques lead to a dramatic speed-up of training
with sequence kernels. In most cases, we observe an improvement by several orders of
magnitude.

The remainder of the paper is structured as follows. We start with a brief introduction to
weighted transducers and rational kernels (Section 2), including definitions and properties
relevant to the following sections. Section 3 provides a short introduction to kernel methods
such as SVMs and presents an overview of the coordinate descent solution by [15] for linear
SVMs. Section 5 shows how a similar solution can be derived in the case of rational kernels.
The analysis of the complexity and the implementation of this technique are described and
discussed in Section 6. In section 7, we report the results of experiments with a large dataset
and with several types of kernels demonstrating the substantial reduction of training time
using our techniques.

2. Preliminaries

This section briefly introduces the essential concepts and definitions related to weighted
transducers and rational kernels. For the most part, we adopt the definitions and terminol-
ogy of [7], but we also introduce a linear operator that will be needed for our analysis.

2.1. Weighted transducers and automata

Weighted transducers are finite-state transducers in which each transition carries some
weight in addition to the input and output labels. The weight set has the structure of a
semiring, that is a ring that may lack negation [17]. In this paper, we only consider weighted
transducers over the real semiring (R, +, x,0, 1). Figure 1(a) shows an example. In this
figure, the input and output labels of a transition are separated by a colon delimiter and the
weight is indicated after the slash separator. A weighted transducer has a set of initial states
represented in the figure by a bold circle and a set of final states, represented by double
circles. A path from an initial state to a final state is an accepting path. The input (resp.
output) label of an accepting path is obtained by concatenating together the input (resp.

A Dual Coordinate Descent Algorithm for SVMs Combined with Rational Kernels 3

(b) ©

Fig. 1. (a) Example of weighted transducer U. (b) Example of weighted automaton A.. In this example, A can be
obtained from U by projection on the output and U(aab, baa) = A(baa) =3 x 1 x4 X 24+3 X2 X3 X 2.
(c) Bigram counting transducer T3 for ¥ = {a, b}. Initial states are represented by bold circles, final states by
double circles and the weights of transitions and final states are indicated after the slash separator.

output) symbols along the path from the initial to the final state. Its weight is computed by
multiplying the weights of its constituent transitions and multiplying this product by the
weight of the initial state of the path (which equals one in our work) and by the weight of
the final state of the path (displayed after the slash in the figure). The weight associated by
a weighted transducer U to a pair of strings (x,y) € £* x ¥* is denoted by U(x,y). For
example, the transducer of Figure 1(a) associates the weight 60 to the pair (aab, baa) since
there are two accepting paths labeled with input aab and output baa: one with weight 24
and another one with weight 36.

A weighted automaton A can be defined as a weighted transducer with identical input
and output labels. Since only pairs of the form (x, x) can have a non-zero weight, we denote
the weight associated by A to (x,x) by A(x) and refer it as the weight associated by A to
x. Similarly, in the graph representation of weighted automata, the output (or input) label
is omitted. Figure 1(b) shows an example of a weighted automaton. Discarding the input
labels of a weighted transducer U results in a weighted automaton A, said to be the output
projection of U, and denoted by A = TI5(U). The automaton in Figure 1(b) is the output
projection of the transducer in Figure 1(a).

The standard operations of sum -+, product or concatenation -, multiplication by a real
number and Kleene-closure * are defined for weighted transducers [24]: for any pair of
strings (x,y) and real number ~,

(Ul + UQ)(Xay) = Ul(X7 Y) + U2(X7 y)7
(Ur-Us)(x,y) = Z Ui(x1,y1) X Ua(x2,y2),

X1X2=X
Y1y2=Y

(YU)(x,y) =7 x U(x,y),
(U)(xy) =Y _(U")(x,y).

n>0

The inverse of a transducer U, denoted by U™, is obtained by swapping the input and out-

4 C. Allauzen, C. Cortes and M. Mohri

put labels of each transition. For all pairs of strings (x,y), we have U~} (x,y) = U(y, x).
The composition of two weighted transducers U; and U, with matching output and input
alphabets 3, is a weighted transducer denoted by U; o Uy when the sum:
(U o Ug)(x,y) = Z U, (x,2z) x Uy(z,y)
zeX*

is well-defined and in R for all x,y [24]. It can be computed in time O(|U;||Uz|)) where
|U| denotes the sum of the number of states and transitions of a transducer U. In the
following, we shall use the distributivity of + and multiplication by a real number, v, over
the composition of weighted transducers:

(Ul [¢] U3) + (UQ [e] Ud) = (U1 —|— UQ) [e] U3
(U1 0 Us) = ((vU1) 0 Uz) = (U 0 (vUy)).

We introduce a linear operator D over the set of weighted transducers. For any transducer
U, we define D(U) as the sum of the weights of all accepting paths of U:

D(U)= > wxl,
mEAcc(U)
where Acc(U) denotes the accepting paths of U and w|r] the weight of an accepting
path 7. By definition of D, the following properties hold for all ¥ € R and any weighted
transducers (U;);e1,m) and U:

> D(U;)=D(>_U;) and yD(U)=D(yU).
=1 i=1

2.2. Rational kernels

Given a non-empty set X, a function K: X x X — R is called a kernel. K is said to
be positive definite symmetric (PDS) when the matrix (K(x;,%;)),<; i<, is symmetric
and positive semi-definite (PSD) for any choice of m points in X [3]. A kernel between
sequences K : ¥* x ¥* — R is rational [7] if there exists a weighted transducer U such
that K coincides with the function defined by U, that is

K(X’ Y) = U(Xv Y) (€]

for all x,y € X*. As shown by [7], when there exists a weighted transducer T such that U
can be decomposed as U = T o T~ !, K is PDS. All the sequence kernels seen in practice
are precisely PDS rational kernels of this form [13, 19,21, 28, 6, 8].

A standard family of rational kernels is n-gram kernels, see e.g. [21, 20]. Let cx(z) be
the number of occurrences of z in x. The n-gram kernel K, of order n is defined as

K,(x,y) = Z cx(z)cy (2).
|z|=n

K, is a PDS rational kernel since it corresponds to the weighted transducer T,, o T,;*
where the transducer T, is defined such that T),(x,2z) = c,(z) for all x,z € ¥* with
|z| = n. The transducer T for ¥ = {a, b} is shown in Figure 1(c).

A Dual Coordinate Descent Algorithm for SVMs Combined with Rational Kernels 5

A key advantage of the rational kernel framework is that it can be straightforwardly
extended to kernels between two sets of sequences, or distributions over sequences repre-
sented by weighted automata X and Y. We define K (X, Y) as follow:

KX, Y)= > X(x)x K(x,y) x Y(y)
X, yEX*

> X(x) xU(x,y) x Y(y) =D(XoUoY).
X, yeX*

This extension is particularly important and relevant since it helps define kernels between
the lattices output by information extraction, speech recognition, machine translation sys-
tems, and other natural language processing tasks. Our results for faster SVMs training
apply similarly to large-scale training with kernels between lattices.

3. Kernel Methods and SVM Optimization

Kernel methods are widely used in machine learning. They have been successfully used in
a variety of learning tasks including classification, regression, ranking, clustering, and di-
mensionality reduction. This section gives a brief overview of these methods, and discusses
in more detail one of the most popular kernel learning algorithms, SVMs.

3.1. Overview of Kernel Methods

Complex learning tasks are often tackled using a large number of features. Each point
of the input space X is mapped to a high-dimensional feature space F' via a non-linear
mapping ®. This may be to seek a linear separation in a higher-dimensional space, which
was not achievable in the original space, or to exploit other regression, ranking, clustering,
or manifold properties that are easier to attain in that space. The dimension of the feature
space F' can be very large. In document classification, the features may be the set of all
trigrams. Thus, even for a vocabulary of just 200,000 words, the dimension of F is 2x105,

The high dimensionality of F' does not necessarily affect the generalization ability of
large-margin algorithms such as SVMs: remarkably, these algorithms benefit from theoret-
ical guarantees for good generalization that depend only on the number of training points
and the separation margin, and not on the dimensionality of the feature space. But the high
dimensionality of F' can directly impact the efficiency and even the practicality of such
learning algorithms, as well as their use in prediction. This is because to determine their
output hypothesis or for prediction, these learning algorithms rely on the computation of a
large number of dot products in the feature space F'.

A solution to this problem is the so-called kernel method. This consists of defining a
function K : X x X — R called a kernel, such that the value it associates to two examples
x and y in input space, K (x,y), coincides with the dot product of their images ®(x) and
®(y) in feature space. K is often viewed as a similarity measure:

vx,y € X, K(x,y)=®(x) ®(y). (©6)

6 C. Allauzen, C. Cortes and M. Mohri

A crucial advantage of K is efficiency: there is no need anymore to define and explicitly
compute ®(x), ®(y), and ®(x) " ®(y). Another benefit of K is flexibility: K can be
arbitrarily chosen so long as the existence of ® is guaranteed, a condition that holds when
K verifies Mercer’s condition. This condition is important to guarantee the convergence of
training for algorithms such as SVMs. In the discrete case, it is equivalent to K being PDS.

One of the most widely used two-group classification algorithm is SVMs [9]. The ver-
sion of SVMs without offsets is defined via the following convex optimization problem for
a training sample of m points x; € X with labels y; € {1, —1}:

1 m
min —w? + C’Zfl st yw ®(x) >1-& Vie[l,m],
wé 2 i=1

where the vector w defines a hyperplane in the feature space, & is the m-dimensional vector
of slack variables, and C' € R is a trade-off parameter. The problem is typically solved
by introducing Lagrange multipliers o« € R™ for the set of constraints. The standard dual
optimization for SVMs can be written as the convex optimization problem:

1
min F(a) = iaTQa —1Ta st. 0<a<C, ®)

(o4

where o« € R™ is the vector of dual variables and the PSD matrix Q is defined in terms of
the kernel matrix K:

Qi = viy;Kij = yiy; ®(x;) " ®(x;), ford,j € [1,m].

Expressed with the dual variables, the solution vector w can be written as

W= oy ®(x;).
i=1

3.2. Coordinate Descent Solution for SVM Optimization

A straightforward way to solve the convex dual SVM problem is to use a coordinate descent
method and to update only one coordinate «; at each iteration, see [15]. The optimal step
size 3* corresponding to the update of «; is obtained by solving

mﬁin %(a + 3e;) " Q(a+ fe;)) — 1" (a+ fe;)) st. 0< a+ fe; <C,

where e; is an m-dimensional unit vector. Ignoring constant terms, the optimization prob-
lem can be written as

mﬁin %ﬂ2Qm +3e/ (Qa—1) st. 0<o;+0<C.

If Qi = ®(x;) ®(x;) = 0, then ®(x;) = 0and Q; = e, Q = 0. Hence the objective
function reduces to —/3, and the optimal step size is §* = C — «;, resulting in the update:

A Dual Coordinate Descent Algorithm for SVMs Combined with Rational Kernels 7

SVMCOORDINATEDESCENT((X;)e[1,m])
1 a0
while « not optimal do
fori € [1,m] do
g —yxjw—1
o, « min(max(a; — &,O),)
w—w+ (o —a;)x;
Q; — o

return w

0NN Lt bW

Fig. 2. Coordinate descent solution for SVM.

a; < 0. Otherwise Q;; # 0 and the objective function is a second-degree polynomial in

b
(. Let By = —%, then the optimal step size is given by

Bo if —a; <Py <C,
B* =9 - if 8o < —ay,

C — «; otherwise.

The resulting update for «; is

To —
o < min <max (ai Qi((;‘l,()),C’)

When the matrix Q is too large to store in memory and Q;; # 0, the vector QQ; must be
computed at each update of «;. If the cost of the computation of each entry K;; is in O(IV)
where N is the dimension of the feature space, computing Q; is in O(mN), and hence the
cost of each update is in O(mN).

The choice of the coordinate «; to update is based on the gradient. The gradient of the
objective function is VF(a) = Qa — 1. Ata cost in O(mN) it can be updated via

VF(a) — VF(a) + A(a;) Q.

Hsieh et al. [15] observed that when the kernel is linear, that is when ®(x) = x, Q, & can

be expressed in terms of w, the SVM weight vector solution, w = 2]21 YjoX;e
m
T T T
Q= wi;(x{ x;)a; = yix{ w.
J=1

If the weight vector w is maintained throughout the iterations, then the cost of an update is
only in O(N) in this case. The weight vector w can be updated via

w— w+ A)yix;.

8 C. Allauzen, C. Cortes and M. Mohri

Maintaining the gradient V F'(«x) is however still costly. The jth component of the gradient
can be expressed as follows:

m
[VF()]; = Qo —1]; =Y x| xj05 — L= w ' (y;%;) — 1.

i=1

The update for the main term of component j of the gradient is thus given by:
w'x; — w'x; + (Aw) ;.
Each of these updates can be done in O (V). The full update for the gradient can hence be
done in O(mN). Several heuristics can be used to eliminate the cost of maintaining the
gradient. For instance, one can choose a random «; to update at each iteration [15] or se-
quentially update the «;s. Hsieh et al. [15] also showed that it is possible to use the chunk-
ing method of [16] in conjunction with such heuristics. Using the results from [22], [15]
showed that the coordinate descent algorithm with sequential update, SVMCOORDINAT-
EDESCENT (Figure 2), converges to the optimal solution with a linear or faster convergence
rate.
In the next section, we present an analysis of the convergence of the coordinate descent

solution just discussed in terms of the properties of the kernel matrix Q.

4. Convergence Guarantees for Coordinate Descent Algorithm

This section gives an explicit convergence guarantee for the coordinate descent algorithm
SVMCOORDINATEDESCENT of Figure 2.

Let " denote the value of « after r updates following the coordinate descent algorithm
iterating sequentially over the training set. A full iteration of the algorithm over the full
training set consists of m updates of a hence o™ is the value of « after k iterations
over the full training set. Let A\ax(Q) and /\;“ﬁn(Q) denote the largest eigenvalue and the

smallest non-zero eigenvalue of Q. The following is the main result of this section.

Theorem 1. There exists an optimal solution o™ of (8), a constant 1 > 1 and ro € N such
that for all v > 1o,

Flar™) - F(a*) < (1 - }7) (F(a") - Pla)) 20)
with
6
2m 1
n= ——"~ \/§+ —)‘max(Q) . (21)

ming,, 20 Qs ML(Q)

Theorem 1 implies that an e-accurate solution ¢, that is such that F'(«) < F(a*) + ¢, can
be obtained after O(log(1/€)) iterations over the training set. It further gives an explicit
expression for the bound in terms of quantities depending on the kernel matrix. Observe
that the closer 7 is to 1, the faster is the convergence of the algorithm. This implies that
a large Amax(Q), a large condition number cond(Q) = Amax(Q)/A: (Q) and a small

ming,, -0 Q;; would result in a slow convergence.

A Dual Coordinate Descent Algorithm for SVMs Combined with Rational Kernels 9

When the kernel used is normalized, as in the case of the widely used Gaussian kernels,
the expression of 7 given by (38) can be significantly simplified. Indeed, in that case, every
non-zero diagonal entry Q;; is equal to 1, A\pax(Q) > 1, and /\rf]in(Q) < 1. This implies
that

2m)\max(Q)3 \/§ 1 2 9
n=— + F1] 14+ ——)
Joig, Qii V Amax(Q) \/Amax(Q)ALn(Q) Amax(Q)
2
S 2'rn)\max((;z)3 \/§+ # +1 (1 + 2)2
Ar—"r_nn((g)
2
< 18mAmax(Q)? V22 < 21omAA‘“j"7@)3 = 210 MAmax(Q)? cond(Q).
)‘;’r_un(Q) min(Q)

Thus, in that case, we can replace the expression of 7 in the statement of the theorem by
210 MAmax(Q)? cond(Q).

Our analysis of the convergence of Algorithm SVMCOORDINATEDESCENT is based
on results by Luo and Tseng [22] on the convergence of the coordinate descent method. In
[22], the authors considered the following convex optimization problem:

min H(a) = G(Ea) +b'a st. acA (22)

@

where (i) A is a possibly unbounded box of R™, (ii) H and G are proper closed convex
functions respectively in R™ and RY, (iii) E is a N x m matrix with no zero column. The
authors showed that assuming that (iv) the set A* of optimal solutions in A is non empty,
(v) the domain of G is open and G is strictly convex twice differentiable on its domain and
(vi) V2G(Ea*) is positive definite for all a* € A*, then the coordinate descent algorithm
with sequential update converges to an optimal solution a* € A* with a convergence rate
at least linear. [22] showed that the sequence (a”),cn converges to an optimal solution ™.

Theorem 2 ([22]) There exists an optimal solution o* of (22), a constant 1 > 1 and
ro € N such that for all r > 1y,

i) = o) < (1=) o) =)

In [22], the authors showed that the constant) can be expressed as follows:
n = pw?m/ (o min |E;|2) (24)

where o and p only depend on G and w = k(2 + ||E||?). [22] does not give an explicit
expression of x but we will show that it can be expressed as a function of |E||, p and 6
where 6 is a constant depending only on E.

The existence of the constants p and o follows from the following observation. The
assumptions made by [22] on G imply that there exists a closed ball U/* around Ea* and

10 C. Allauzen, C. Cortes and M. Mohri

included in the domain of G and two constants ¢ and p such that for all z and w in U/*:
(VG(2z) = VG(W)) " (z — w) > 20z — w|?, (25)
IVG(z) = VG(W)| < pllz — w]. (26)

The existence of the constant 6 comes from the following result from Hoffman [14].

Lemma 3 ([14]) Let B be any k x n matrix. Then, there exists a constant 0 > 0 depending
only on B such that, for any & € A and any d € R¥ such that the linear system B3 = d,
B € A is consistent, there exists a point 3 satisfying BB = d, 3 € A, with

lec = Bl < 0B —dJl.

Let A={a e R™ |1 < a <u}withl € [—00,400)™ and u € (—o0, +00]™ and let
[a] T denotes the vector in R defined by having for i-th coordinate max(l;, min(z;, u;)),
for all ¢ € [1,m]. Lemma 3 is used by Luo and Tseng [22] to establish the existence of the
constant k.

Lemma 4 ([22]) There exists a constant k > 0 such that
|Ea” — Ea*| < klla” — [@" — VH(a")]"], Sforallr > ry.
The full proof of Lemma 4 is given in [22] (Lemma 4.4). The following lemma gives
an expression of x as a function of 6, p, o and || E||.
Lemma 5. We have that:
0+ |Elp 1
20 Vo

Proof. Let t* = Ea* and 4" = [@” — VH(a")|*. It follows from Lemma 3 that there
exists 3" in A such that ||a” — 8"|| < §||Ea” — t*|| for all » > r;. Hence, we have:

V=Bl <V —a"[+]a" =87 30)
<" - o+ 0[Ea” —t7. (€2))

K < 29)

The next step in the proof of Lemma 4 is as follows. For any subset I C [1, m], the authors
define a set R such that for all » € R such that r» > r;, the following inequalities hold:

20|Ba’” —t*[* < [la” —~"|| la" = 87| + |[VH(a") = VH(B)|| &” — "] (32)

< (la” = B[+ |Ellp[[Ea” — t*[)]la” =" (33)
< (le" =" +lv" = Bl + [[EllplBa” — t*[))[[a” =" (34)
< @lla” ="+ 0 + [Elp)[Ea” —t*[)la” =~ (35)
Thus,
0+ [Elp

r * 1 r r r * T T
Ba” — 7" < —fla” —y"[|* + [Ea” —t*[| [[a" =" (36)

20

In [22], the expression of the constants are not explicitly derived for the last three inequali-
ties. Also, their proof goes through a few extra steps that are not required. Indeed, we have

A Dual Coordinate Descent Algorithm for SVMs Combined with Rational Kernels 11

obtained with (36) a second-degree polynomial inequality of the form 22 — azy — by? < 0
with 2,5, a,b > 0 which implies that 2 < (ay + \/a2y? + 4by?)/2 < y(a + v/b). This
leads us to:

0+ |Elp 1
Ea" —t'| < | ————+ — T AT 37
Bar — v < (S50) o -] 7
Since the disjoint union of the R;’s is equal to N (see [22]), the inequality above holds for
all » > ry and Lemma 5 follows. O

The previous lemmas can be used to give the proof of Theorem 1.

Proof of Theorem 1. The SVM objective function F' coincides with H when G(3) =
%ﬁTﬁ for 3 € RN, b = 1, E is the N x m matrix defined by E =
(1 ®(x1),.. ., ym®(xm)) and A = {a € R™| 0 < a < C}. It is then clear that as-
sumptions (i), (ii) and (v) hold. Assumption (iv) follows from Weierstrass’ Theorem and
assumption (vi) follow from the fact that ETE = Q is a PSD matrix.

If there exists some zero columns in E, then the first iteration of the algorithm will set
the corresponding ;s to 0 and subsequent iterations will leave these values unchanged,
solving the sub-problem restricted to {i|E; # 0}. Hence we can assume without loss of
generality that assumption (iii) holds.

Therefore, we can apply Theorem 2 to our problem. Since VG(3) = (3, it follows
that U/* = RN, 0 = 1/2 and p = 1. Moreover, ||E;||? = E/E; = Q;; = Kj;. Finally,

we have that ||[E[|? = Apax(ETE) = A\pax(Q) and 0 < 1/4/AF. (Q). This leads to
K S \/5 + 1/)\jnin(Q) + Amax(Q) and

2

2m(2 + Amax(Q))? 1
n= - \/5 + ——+ Amax(Q) . (38)
énviil;ﬁlo Qii)\;m(Q)

Since the trace of Q is the sum of its eigenvalues, we have that mAnax(Q) > Tr(Q) =
>, Qi; > min; Q;; and hence

m)\max(Q)
We also have
2
Amax((Q) \/§+ # + Amax(Q) > AIII&X(Q) Z 1 (40)

\/)‘Ilin(Q))\gm(Q)

From (39) and (40) it follows that 7 > 1 and (20) then implies that («"),.cy converges to
o*. The simpler but less favorable expression of 7 given by (21) can be obtained as follows

12 C. Allauzen, C. Cortes and M. Mohri

SVMRATIONALKERNELS ((®})ie[1,m])
1 a0
2 while a not optimal do
3 foric[l,m]do
4 g—D(P,oW') -1
5 o, « min(max(a; — &,O),)
6 W' — W' + (af — ;) P}
7 Q; — o
8

return W’

Fig. 3. Coordinate descent solution for rational kernels.

from (38):
2

2m(2 + Amax(Q))Q \/5 4 # + /\max(Q)

= in Q.
&% Y VA (Q)

2m(v/2 + v/ Amax(Q))* Vid (@)

&% Y N (Q)
6
2 1
S ﬁ \/§+ - + Amax(Q)
Qi #0 ")‘jl_un(Q) U

5. Coordinate Descent Solution for Rational Kernels

This section shows that, remarkably, coordinate descent techniques similar to those de-
scribed in the previous section can be used in the case of rational kernels.

For rational kernels, the input “vectors” x; are sequences, or distributions over se-
quences, and the expression Z;nzl y;;X; can be interpreted as a weighted regular expres-
sion. For any ¢ € [1,m], let X; be a simple weighted automaton representing x;, and let
W denote a weighted automaton representing w = >-""; y;c;X;. Let U be the weighted
transducer associated to the rational kernel K. Using the linearity of D and distributivity
properties just presented, we can now write:

m m

Q=S i) = i DX U X, (4
Jj=1 j=1

m
=D(yX;0Uo Y y;0;X;) = D(yX; 0 UoW).
j=1
Since U is a constant, in view of the complexity of composition, the expression y; X; o U o
W can be computed in time O(|X;|[W]). When y;X; o U o W is acyclic, which is the

A Dual Coordinate Descent Algorithm for SVMs Combined with Rational Kernels 13

Table 1. Example dataset. The given ®/ and Qg;’s assume the use of a bigram kernel.

.

| = |w]| ® |Qa
ababa | +1 | Fig. 4(a) 8
abaab | +1 | Fig. 4(b) 6
abbab | —1 | Fig. 4(c) 6

[USTIN NO I

all

a/2 b/l al em." 61-2 o1
o e @ity
0::0
(@) (b) (c)

Fig. 4. The automata ®/, corresponding to the dataset from Table 1 when using a bigram kernel.

Fig. 5. Evolution of W through the first iteration of SVMRATIONALKERNELS on the dataset from Table 1.

case for example if U admits no input e-cycle, then D(y;X; o U o W) can be computed
in linear time in the size of y; X; o U o W using a shortest-distance algorithm, or forward-
backward algorithm. For all of the rational kernels that we are aware of, U admits no input
e-cycle and this property holds. Thus, in that case, if we maintain a weighted automaton W
representing w, Q. a can be computed in O(|X;||W]|). This complexity does not depend
on m and the explicit computation of m kernel values K (x;,x;), j € [1,m], is avoided.
The update rule for W consists of augmenting the weight of sequence x; in the weighted
automaton by A(a;)y;:

This update can be done very efficiently if W is deterministic, in particular if it is repre-
sented as a deterministic trie.
When the weighted transducer U can be decomposed as T o T 1, as for all sequence

14 C. Allauzen, C. Cortes and M. Mohri

Fig. 6. The automata ®/ o W' during the first iteration of SVMRATIONALKERNELS on the data in Table 1.

Table 2. First iteration of SVMRATIONALKERNELS on the dataset given Table 1. The last line gives the values
of cc and W at the end of the iteration.

i| o | W | ® oW | D(®0W) | o

1 (0,0,0) Fig. 5(a) | Fig. 6(a) 0 i

2 || (%,0,0) | Fig.5(b) | Fig.6(b) 3 L

3| (%,4.0) | Fig.5(c) | Fig.6(c) -z o
(3,4, 44 | Fig. 5(d)

kernels seen in practice, we can further improve the form of the updates. Let ITo(U) denote
the weighted automaton obtained form U by projection over the output labels as described
in Section 2. Then

Qa=D X;0ToT 'oW)=D((yX;oT)o (WoT)™)
=D (ITy(y:X; 0 T) o [Iy(W 0 T)) = D(®] 0 W), (43)

where ®] = I (y;X; 0 T) and W' =II;(W o T). ®;, i € [1, m] can be precomputed and
instead of W, we can equivalently maintain W', with the following update rule:

W — W' + A(a;) ®]. (44)
The gradient V(F')(a) = Qo — 1 can be expressed as follows
V(F) @) = [QTa—1]; = Q] a—1=D(® o W)-1.
The update rule for the main term D(<I>; o W) can be written as
D(®) 0o W') — D(® o W') + D(® 0 AW').

Using (43) to compute the gradient and (44) to update W', we can generalize Algo-
rithm SVMCOORDINATEDESCENT of Figure 2 and obtain Algorithm SVMRATIONALK-
ERNELS of Figure 3. It follows from Theorem 1 and [22] that this algorithm converges
at least linearly towards a global optimal solution. Moreover, the heuristics used by [15]
and mentioned in the previous section can also be applied here to empirically improve the

A Dual Coordinate Descent Algorithm for SVMs Combined with Rational Kernels 15

convergence rate of the algorithm. Table 2 shows the first iteration of SVMRATIONALK-
ERNELS on the dataset given by Table 1 when using a bigram kernel.

6. Implementation and Analysis

A key factor in analyzing the complexity of SVMRATIONALKERNELS is the choice of
the data structure used to represent W'. In order to simplify the analysis, we assume that
the ®.s, and thus W', are acyclic. This assumption holds for all rational kernels used in
practice. However, it is not a requirement for the correctness of SVMRATIONALKERNELS.
Given an acyclic weighted automaton A, we denote by I(A) the maximal length of an
accepting path in A and by n(A) the number of accepting paths in A.

6.1. Naive representation of W’

A straightforward choice follows directly from the definition of W’. W' is represented as
a non-deterministic weighted automaton, W’ = Z;”:l aj <I>}, with a single initial state and
m outgoing e-transitions, where the weight of the jth transition is «; and its destination
state is the initial state of ®/. The size of this choice of W' is [W'| = m + > 7", |®/].
The benefit of this representation is that the update of o using (44) can be performed in
constant time since it requires modifying only the weight of one of the e-transitions out
of the initial state. However, the complexity of computing the gradient using (43) is in
O(|®;|[W'[) = O(|®]| 3_7~, |®}]). From an algorithmic point of view, using this naive
representation of W' is equivalent to using (41) with y;y; K (x;,x;) = D(®; o @) to
compute the gradient.

6.2. Representing W' as a trie

Representing W' as a deterministic weighted trie is another approach that can lead to a
simple update using (44). A weighted trie is a rooted tree where each edge is labeled and
each node is weighted. During composition, each accepting path in @/ is matched with a
distinct node in W', Thus, n(®}) paths of W’ are explored during composition. Since the
length of each of these paths is at most [(®/), this leads to a complexity in O (n(®})I(®,))
for computing ®;0W" and thus for computing the gradient using (43). Since each accepting
path in @/ corresponds to a distinct node in W, the weights of at most n(®}) nodes of
W' need to be updated. Thus, the complexity of an update of W' is O (n(®})).

6.3. Representing W' as a minimal automaton

The drawback of a trie representation of W' is that it does not provide all of the sparsity
benefits of a fully automata-based approach. A more space-efficient approach consists of
representing W' as a minimal deterministic weighted automaton which can be substantially
smaller, exponentially smaller in some cases, than the corresponding trie.

The complexity of computing the gradient using (43) is then in O(|®’ o W’|) which is
significantly less than the O (n(®,)I(®})) complexity of the trie representation. Perform-

16 C. Allauzen, C. Cortes and M. Mohri

Table 3. Time complexity of each gradient computation and of each update of W' and the space complexity
required for representing W' given for each type of representation of W”.

Representation of W' Time complexity Space complexity
(gradient) (update) (for storing W)

naive (W7,) O(@} >, [®)) O(1) | O(m)

trie (W) O(n(®)I(®7)) O(n(®7)) | O(W])

minimal automaton (W) || O(|®; o W/_|) open O(IW..D

ing the update of W' using (44) can be more costly though. With the straightforward ap-
proach of using the general union, weighted determinization and minimization algorithms
[7, 23], the complexity depends on the size of W’. The cost of an update can thus some-
times become large. However, it is perhaps possible to design more efficient algorithms for
augmenting a weighted automaton with a single string or even a set of strings represented
by a deterministic automaton, while preserving determinism and minimality. The approach
just described forms a strong motivation for the study and analysis of such non-trivial and
probably sophisticated automata algorithms since it could lead to even more efficient up-
dates of W’ and overall speed-up of the SVMs training with rational kernels. We leave the
study of this open question to the future. We note, however, that that analysis could benefit
from existing algorithms in the unweighted case. Indeed, in the unweighted case, a number
of efficient algorithms have been designed for incrementally adding a string to a minimal
deterministic automaton while keeping the result minimal and deterministic [10, 4], and the
complexity of each addition of a string using these algorithms is only linear in the length
of the string added.

Table 3 summarizes the time and space requirements for each type of representation for
W', In the case of an n-gram kernel of order k, {(®}) is a constant k, n(®}) is the number
of distinct k-grams occurring in x;, n(W}) (= n(W/,)) the number of distinct k-grams
occurring in the dataset, and |[W}| the number of distinct n-grams of order less than or
equal to k in the dataset.

7. Experiments

We used the Reuters-21578 dataset, a large data set convenient for our analysis and com-
monly used in experimental analyses of string kernels (http://www.daviddlewis.com/
resources/). We refer by full dataset to the 12,902 news stories part of the ModeApte
split. Since our goal is only to test speed (and not accuracy), we train on training and test
sets combined. We also considered a subset of that dataset consisting of 466 news sto-
ries. We experimented both with n-gram kernels and gappy n-gram kernels with different
n-gram orders. We trained binary SVM classification for the acq class using the follow-
ing two algorithms: (a) the SMO-like algorithm of [11] implemented using LIBSVM [5]
and modified to handle the on-demand computation of rational kernels; and (b) SVM-
RATIONALKERNELS implemented using a trie representation for W'. Table 4 reports the
training time observed using a dual-core 2.2 GHz AMD Opteron workstation with 16GB

A Dual Coordinate Descent Algorithm for SVMs Combined with Rational Kernels 17

Table 4. Time for training an SVM classifier using an SMO-like algorithm and SVMRATIONALKERNELS using
a trie representation for W', and size of W’ (number of transitions) when representing W' as a deterministic
weighted trie and a minimal deterministic weighted automaton.

Dataset | Kernel Training Time Size of W’
SMO-like New Algo. trie min. aut.
Reuters | 4-gram 2m 18s 25s 66,331 34,785
(subset) | 5-gram 3m 56s 30s 154,460 63,643
6-gram 6m 16s 41s 283,856 103,459
7-gram 9m 24s 1m O1s 452,881 157,390
10-gram 25m 22s Im 53s | 1,151,217 413,878
gappy 3-gram 10m 40s Im 23s 103,353 66,650
gappy 4-gram 58m 08s Tm42s | 1,213,281 411,939
Reuters | 4-gram 618m 43s 16m 30s 242,570 106,640
(full) 5-gram >2000m 23m 17s 787,514 237,783
6-gram >2000m 31m22s | 1,852,634 441,242
7-gram >2000m 37m 23s | 3,570,741 727,743

of RAM, excluding the pre-processing step which consists of computing ®/, for each data
point and that is common to both algorithms. To estimate the benefits of representing W’
as a minimal automaton as described in Section 6.3, we applied the weighted minimization
algorithm to the tries output by SVMRATIONALKERNELS (after shifting the weights to the
non-negative domain) and observed the resulting reduction in size. The results reported in
Table 4 show that representing W’ by a minimal deterministic automaton can lead to very
significant savings in space and a substantial reduction of the training time with respect to
the trie representation using an incremental addition of strings to W,

8. Conclusion

We presented novel techniques for large-scale training of SVMs when used with sequence
kernels. We gave a detailed description of our algorithms and discussed different imple-
mentation choices, and presented an analysis of the resulting complexity. Our empirical
results with large-scale data sets demonstrate dramatic reductions of the training time. Our
software will be made publicly available through an open-source project. Remarkably, our
training algorithm for SVMs is entirely based on weighted automata algorithms and re-
quires no specific solver.

References

[1] Cyril Allauzen, Mehryar Mohri, and Ameet Talwalkar. Sequence kernels for predicting protein
essentiality. In ICML 2008, pages 9-16. ACM, 2008.

[2] Francis R. Bach and Michael I. Jordan. Kernel independent component analysis. Journal of
Machine Learning Research, 3:1-48, 2002.

[3] Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic Analysis on Semi-
groups. Springer-Verlag: Berlin-New York, 1984.

18 C. Allauzen, C. Cortes and M. Mohri

[4]
[5]
[6]
7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]

(15]

(16]
(17]
(18]
(19]

[20]

[21]

(22]

(23]
[24]
[25]
[26]

[27]

Rafael C. Carrosco and Mikel L. Forcada. Incremental construction and maintenance of mini-
mal finite-state automata. Computational Linguistics, 28(2):207-216, 2002.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Michael Collins and Nigel Duffy. Convolution kernels for natural language. In NIPS. MIT
Press, 2002.

Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational Kernels: Theory and Algo-
rithms. Journal of Machine Learning Research, 5:1035-1062, 2004.

Corinna Cortes and Mehryar Mohri. Moment kernels for regular distributions. Machine Learn-
ing, 60(1-3):117-134, 2005.

Corinna Cortes and Vladimir N. Vapnik. Support-Vector Networks. Machine Learning,
20(3):273-297, 1995.

Jan Daciuk, Stoyan Mihov, Bruce W. Watson, and Richard Watson. Incremental construction
of minimal acyclic finite state automata. Computational Linguistics, 26(1):3-16, 2000.
Rong-En Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information
for training SVM. Journal of Machine Learning Research, 6:1889-1918, 2005.

Shai Fine and Katya Scheinberg. Efficient SVM training using low-rank kernel representations.
Journal of Machine Learning Research, 2:243-264, 2002.

David Haussler. Convolution Kernels on Discrete Structures. Technical Report UCSC-CRL-
99-10, University of California at Santa Cruz, 1999.

Alan J. Hoffman. On approximate solutions of systems of linear inequalities. Journal of Re-
search of the National Bureau of Standards, 49:263-265, 1952.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and S. Sundararajan. A dual
coordinate descent method for large-scale linear SVM. In ICML 2008, pages 408—415. ACM,
2008.

Thorsten Joachims. Making large-scale SVM learning practical. In Advances in Kernel Meth-
ods: Support Vector Learning. The MIT Press, 1998.

Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Number 5 in EATCS
Monographs on Theoretical Computer Science. Springer, New York, 1986.

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. On sampling-based approximate spectral
decomposition. In ICML 2009. ACM, 2009.

Christina Leslie and Rui Kuang. Fast String Kernels using Inexact Matching for Protein Se-
quences. Journal of Machine Learning Research, 5:1435-1455, 2004.

Christina S. Leslie, Eleazar Eskin, and William Stafford Noble. The Spectrum Kernel: A String
Kernel for SVM Protein Classification. In Pacific Symposium on Biocomputing, pages 566-575,
2002.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. Text
classification using string kernels. Journal of Machine Learning Research, 2:419—44, 2002.
Zhi-Quan Luo and Paul Tseng. On the convergence of the coordinate descent method for con-
vex differentiable minimization. Journal of Optimization Theory and Applications, 72(1):7-35,
1992.

Mehryar Mohri. Weighted automata algorithms. In Manfred Droste, Werner Kuich, and Heiko
Vogler, editors, Handbook of Weighted Automata, chapter 6, pages 213-254. Springer, 2009.
Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power Series.
Springer, 1978.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
Univ. Press, 2004.

Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core vector machines: Fast SVM train-
ing on very large data sets. Journal of Machine Learning Research, 6:363-392, 2005.
Christopher K. I. Williams and Matthias Seeger. Using the Nystrom method to speed up kernel

A Dual Coordinate Descent Algorithm for SVMs Combined with Rational Kernels 19

machines. In NIPS, pages 682—688, 2000.

[28] A.Zien, G. Riitsch, S. Mika, B. Scholkopf, T. Lengauer, and K.-R. Miiller. Engineering support
vector machine kernels that recognize translation initiation sites. Bioinformatics, 16(9):799—
807, 2000.

