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Abstract In this note, we present some key results complementing a previous manuscript
(Hoffman et al., 2021) dealing with the problem of multiple-source adaptation, a key learning
problem in applications. In particular, we extend the theoretical results presented for the
probability model to the case where estimated distributions are used, first by giving a guarantee
that depends on the Rényi divergence of the target distribution and the family of mixtures of
estimated distributions, next by generalizing that to a result that only depends on the Rényi
divergence with respect to the family of mixtures of the exact source distributions.

Keywords domain adaptation ⋅ multiple-source adaptation ⋅ Rényi divergence ⋅ transfer
learning.

1 Introduction

In (Hoffman et al., 2021), we presented a general theoretical and algorithmic analysis of the
problem of multiple-source adaptation, a key learning problem in applications. This note is
complementing that work with some key theoretical results for the probability model.

We first briefly recapitulate the learning scenario we consider. Let X denote the input
space and Y the output space. We consider a multiple-source domain adaptation (MSA)
problem in the general stochastic scenario where there is a distribution over the joint input-
output space X × Y . We assume that X and Y are discrete, but the predictors we consider
can take real values. Our theory can be straightforwardly extended to the continuous case
with summations replaced by integrals in the proofs. We identify a domain with a distribution
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Dk over X ×Y , and assume that the learner admits access to the true, or, more likely, to an
estimated distribution for each domain.

We further assume that the learner has access to a predictor hk for each domain Dk,
k ∈ [p] = {1, . . . , p}. We consider two types of predictor functions hk, and their associated
loss functions ` under the regression model (R) and the probability model (P) respectively:

hk∶ X → R `∶R × Y → R+ (R)
hk∶ X × Y → [0,1] `∶ [0,1] → R+ (P).

We abuse the notation and write `(h,x, y) to denote the loss of a predictor h at point (x, y),
that is `(h(x), y) in the regression model, and `(h(x, y)) in the probability model. In this
note, we are particularly interested in the probability model. We denote by L(D, h) the
expected loss of a predictor h with respect to the distribution D:

L(D, h) = E
(x,y)∼D

[`(h,x, y)]

We assume that ` is convex, continuous, and bounded. We will assume that each hk is a
relatively accurate predictor for the distribution Dk: there exists ε > 0 such that L(Dk, hk) ≤
ε for all k ∈ [p]. We will also assume that the loss of the source predictor hk is bounded, that
is `(hk, x, y) ≤M for all (x, y) ∈ X × Y and all k ∈ [p].

The learner’s objective in the MSA problem is to combine these predictors to design a
predictor with small expected loss on a target domain DT . The target distribution may be an
arbitrary and unknown mixture of the source domains: DT ∈ {Dλ∶Dλ = ∑pk=1 λkDk, λ ∈
∆}, where Dλ is a mixture of source domains with mixture parameter λ ∈∆, and where ∆
is the simplex of dimension p, ∆ = {(λ1,⋯, λp)∶∑pk=1 λk = 1, λk ≥ 0,∀k ∈ [p]}. We are
also interested in the case where DT is some arbitrary distribution that is not necessarily a
mixture of source domains. Let us emphasize that the learner has no knowledge of the target
domain, including whether the target domain is a mixture of source domains.

2 Probability model – Complementary results

In previous work, the following general theorem was shown in the probability model, for
which no assumption was made about the conditional probabilities of the source distributions.

Theorem 1 (Distinct conditionals; arbitrary target) For any δ > 0, there exist η > 0 and
z ∈∆ such that the following inequality holds for any α > 1 and arbitrary target distribution
DT :

L(DT , hηz) ≤ [(ε + δ)dα(DT ∥ D)]
α−1
α
M

1
α .

In practice, however, the source distributions Dk are not known. Instead, we need to resort to
estimates D̂k of the source distributions that can be derived using various density estimation
methods such as kernel density estimation. The following provides a guarantee for this more
realistic scenario that depends on the maximum Rényi divergence between an estimate and a
true source distributions.

Theorem 2 (Distinct conditionals; arbitrary target; distribution estimates) For any δ >
0, there exist η > 0 and z ∈ ∆ such that the following inequality holds for any α > 1 and
arbitrary target distribution DT :

L(DT , ĥηz) ≤ [(ε̂ + δ)dβ(DT ∥ D̂)]
β−1

β
M

1
β ,
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where ε̂ =maxk∈[p][εdα(D̂k ∥ Dk)]
α−1
α M

1
α , and D̂ = {∑pk=1 λkD̂k∶λ ∈∆}.

Proof For any predictor k ∈ [p] and any β > 1, by Hölder’s inequality, the following holds:

L(D̂k, hk) = ∑
(x,y)∈X×Y

D̂k(x, y)`(h(x, y))

= ∑
(x,y)∈X×Y

[ D̂k(x, y)
Dk(x, y)

α−1
α

][Dk(x, y)
α−1
α `(h(x, y))]

≤ [ ∑
(x,y)

D̂k(x, y)α
Dk(x, y)α−1

]
1
α

[ ∑
(x,y)

Dk(x, y)`(h(x, y))
α

α−1 ]
α−1
α

= dα(D̂k ∥ Dk)
α−1
α [ ∑

(x,y)
Dk(x, y)`(h(x, y))

α
α−1 ]

α−1
α

≤ dα(D̂k ∥ Dk)
α−1
α [ ∑

(x,y)
Dk(x, y)`(h(x, y))M

1
α−1 ]

α−1
α

= [dα(D̂k ∥ Dk)L(Dk, hk)]
α−1
α
M

1
α

≤ [dα(D̂k ∥ Dk) ε]
α−1
α
M

1
α .

Then, using ε̂ in lieu of ε in Theorem 1, for any δ > 0, there exist η > 0 and z ∈∆ such that
the following inequality holds:

L(DT , hηz) ≤ [(ε̂ + δ)dβ(DT ∥ D̂)]
β−1

β
M

1
β .

This completes the proof. ⊓⊔

This results depends on the divergence between the target distribution DT and the family of
mixtures of estimates D̂ks of the source distributions. Instead, we will present a guarantee
that depends only that the divergence between DT and the family of mixtures of the true
source distributions Dks.

Theorem 3 (Distinct conditionals; arbitrary target; distribution estimates) For any
δ > 0, there exist η > 0 and z ∈∆, such that the following inequality holds for any α,β > 1,
γ ∈ (0,1) and arbitrary target distribution DT :

L(DT , ĥηz) ≤ [(ε̂ + δ)d
β−γ

β−1

β

γ

(DT ∥ D)max
k∈[p]

d β−γ

1−γ

(Dk ∥ D̂k)]
β−1

β

M
1
β .

where ε̂ =maxk∈[p] [εdα(D̂k ∥ Dk)]
α−1
α
M

1
α , and D = {∑pk=1 λkDk∶λ ∈∆}.
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Proof By (Hoffman et al., 2021)[Lemma 8], for any D̂λ = ∑pk=1 λkD̂k, λ ∈∆,

dβ−1β (DT ∥ D̂λ) ≤ dβ−γβ

γ

(DT ∥ Dλ)dβ−1β−γ

1−γ

(Dλ ∥ D̂λ)

= dβ−γβ

γ

(DT ∥ Dλ) exp{(β − 1)D β−γ

1−γ

(Dλ ∥ D̂λ)}

≤ dβ−γβ

γ

(DT ∥ Dλ) exp{(β − 1)max
k∈[p]

D β−γ

1−γ

(Dk ∥ D̂k)}

(joint quasi-convexity wrt first argument of D β−γ

1−γ

)

= dβ−γβ

γ

(DT ∥ Dλ)max
k∈[p]

dβ−1β−γ

1−γ

(Dk ∥ D̂k).

Plugging in this inequality in the inequality of Theorem 2 yields:

L(DT , ĥηz) ≤ [(ε̂ + δ)d
β−γ

β−1

β

γ

(DT ∥ Dλ)max
k∈[p]

d β−γ

1−γ

(Dk ∥ D̂k)]
β−1

β

M
1
β .

Taking the infimum over λ ∈∆ of the right-hand side gives

L(DT , ĥηz) ≤ [(ε̂ + δ)d
β−γ

β−1

β

γ

(DT ∥ D)max
k∈[p]

d β−γ

1−γ

(Dk ∥ D̂k)]
β−1

β

M
1
β .

This concludes the proof. ⊓⊔

3 Conclusion

The theoretical results presented in this note complement those given in (Hoffman et al.,
2021) and overall provide an exhaustive analysis of the problem of multiple-source adaptation
and algorithmic solutions. The proof concepts and tools introduced are likely to be useful in
the analysis of other related problems.
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