
STRING-MATCHING WITH AUTOMATA

Mehryar Mohri
AT&T Bell Laboratories
600 Mountain Avenue

Murray Hill, NJ 07974, U.S.A.
E-mail: mohri@research.att.com

Received December 1995. Revised February 1997.

Abstract

We present an algorithm to search in a text for the patterns of a regular
set. Unlike many classical algorithms, we assume that the input of the
algorithm is a deterministic automaton and not a regular expression. Our
algorithm is based on the notion of failure function and mainly consists of
efficiently constructing a new deterministic automaton. This construction
is shown to be efficient. In particular, its space complexity is linear in the
size of the obtained automaton.

Keywords: Finite automata, pattern-matching, strings.
CR Classification: F.1.1, F.2.0, F.2.2, F.4.3.

1 Introduction

Pattern-matching consists of finding the occurrences of a set of strings in a text.
Two general approaches have been used to perform this task given a regular
expression r describing the patterns. Both require a preprocessing stage, which
consists of constructing an automaton representing the set described by the
regular expression A∗r, where A is the alphabet of the text. This automaton is
then used to recognize occurrences of the patterns in a text t (see (Aho et al.,
1986), (Aho, 1990), and (Crochemore and Rytter, 1994) for a general survey of
string-matching).

The first approach aims to construct a non-deterministic automaton, while
the second yields a deterministic one. The choice between these methods de-
pends on time-space tradeoffs. In general, the construction of a non-deterministic
automaton corresponding to A∗r is linear in time and space (O(|r|)), but its use
in recognition is quadratic (O(|r| · |t|)). The preprocessing in the determinis-
tic case, namely the construction of the automaton, is exponential in time and
space (O(2|r|)), but the recognition of the patterns in a text t is then linear
(O(|t|)).

1

In the particular case where the set of patterns is finite, more efficient algo-
rithms have been designed. Aho and Corasick (1975) gave an algorithm (AC for
short) allowing one to find occurrences of n patterns Pi (0 ≤ i ≤ n) in a text in
linear time (O(|t|)). Their algorithm is based on an efficient construction of an
automaton recognizing (A∗(P1 + · · ·+ Pn)) represented with a failure function.
It can be considered as a generalization of the well-known algorithm of Knuth
et al. (1977) used in string-matching to multi-pattern matching. The complexity
of the construction of the automaton required in AC is linear in time and space
in the sum of the lengths of all patterns, more precisely in O(log |A| ·

∑n
i=1 |Pi|),

where A is the alphabet of the patterns. Commentz-Walter (1979) gave an algo-
rithm which is the extension of the Boyer-Moore algorithm (Boyer and Moore,
1977) to the case of a finite set of strings. The complexity of her algorithm
is quadratic though more efficient in practice than AC for shorts strings (Aho,
1990). Crochemore et al. (1993) gave a linear time version of this algorithm
combining the use of the AC automaton with that of a suffix automaton.

The input to all these algorithms is a regular expression describing the set of
patterns to search for. Here, we are concerned with the problem of searching for
a set of patterns in the case where this set is directly given by a deterministic
automaton. Although in many practical uses, such as those supported by tools
in the Unix operating system, regular expressions are a very convenient way
of representing the patterns, there are many other applications, especially in
natural language processing (Mohri, 1997), in which such a representation does
not seem appropriate. Indeed, in those applications the deterministic automaton
representing the patterns may have been obtained as a result of complex prepro-
cessing. Besides, in most applications to that field the size of automata exceeds
a hundred states and can reach millions. Thus, users cannot conveniently pro-
vide the corresponding regular expressions as the input of a pattern-matching
algorithm.

In the following, we describe algorithms that help search a text for the
patterns given by a deterministic automaton G. More precisely, we indicate
how to construct a deterministic automaton representing the language A∗L(G),
where L(G) represents the language recognized by G. This automaton can be
used to determine whether t contains a pattern of L(G). Our representation
of this automaton is such that it also helps to identify easily the occurrences
of the patterns found in t. We do not impose any preprocessing of the text.
There exists a sublinear average time algorithm for searching for any regular
expression in a preprocessed text represented by a Patricia tree (Baeza-Yates
and Gonnet, 1989).

Constructing a deterministic automaton representing A∗L(G) from G can
be done by adding loops labeled with elements of the alphabet A to the initial
state and then use the classical powerset construction to obtain a deterministic
automaton (Aho et al., 1986). However, the size of the alphabet A can be very
large in some applications and this may lead to deterministic automata with a
huge number of transitions. In some natural language processing problems, for
instance, A is the size of the whole dictionary of inflected forms of a natural
language. It may reach several hundreds of thousands for languages such as

2

English or French. Moreover, in other applications, such as error correction,
the alphabet itself may not be known because it could depend on the text
under consideration. Thus, one would like to provide a representation of the
deterministic automaton that is independent of the alphabet and such that its
number of transitions be as small as possible.

The problem of an efficient determinization of automata has been discussed
by Perrin (1990) and Crochemore and Rytter (1994). In case G represents a
single string, one can provide a linear time linear space deterministic automaton
representing A∗L(G) using failure functions (Knuth et al., 1977). In the follow-
ing we extend the use of failure functions to the general case. In some cases the
number of states of the minimal automaton representing A∗L(G) is exponential
in the size of G. Hence, in what follows we are mainly concerned with com-
plexities depending on the size of the resulting automaton. Notice that typical
examples of such blow-up cases are those corresponding to languages such as
(a+ b)∗a(a+ b)n, so they are of the shape A∗L(G).

We first present an algorithm to compute the desired deterministic automa-
ton from an acyclic automaton G, hence one representing a finite set of patterns.
This algorithm can be considered as an extension of the AC algorithm to the case
of automata. We then generalize the algorithm to deal with any deterministic
automaton G.

2 Case of acyclic automata

We consider here a deterministic automaton G = (V, i, F,A, δ) with set of states
V , initial state i ∈ V , set of final states F ⊆ V , A a finite alphabet and δ the
state transition function mapping V × A to V . For any p ∈ V , we denote by
Trans[p] the set of transitions leaving p, and for any t in Trans[p] we denote by
t.v the state reached by t, and by t.l its label. E stands for the set of transitions
of G. In this section, we assume that the automaton G is acyclic.

2.1 Algorithm

Our algorithm is close to the AC algorithm. Indeed, as in that algorithm we
define a failure function s associating with each state q of G the longest proper
suffix of the strings leading to q that is also prefix of the strings accepted by
G. However, since we deal with automata, several distinct strings may reach
the same state q. These strings might have longest proper suffixes, prefixes of
strings of L(G), that lead to different states when read from the initial state.
To deal with such cases and make it possible to define s, we gradually transform
the initial automaton G. Each state q is duplicated as many times as necessary
such that we have a single possible default state associated with each state.

Figure 1 and Figure 2 illustrate this construction in a particular case. At
each state of the automaton of Figure 2, the first number refers to q and the
second one following the slash to the default state s(q). The state 2 of G has

3

been duplicated so as to take into account the different possible default states
(0 and 1).

0	

1	
a

b
2	

d

a

b

c 3	
d

Figure 1: Automaton G.

0/0	

1/0	
a

b
2/0	d

c

4/1	a

b

3/2	d

d

Figure 2: Deterministic automaton representing A∗L(G).

The use of the resulting automaton in recognition is the same as usual except
that at a given state q (q 6= i), if the input symbol a corresponds to none of
the transitions leaving q, a failure transition is made, that is the current state
of the automaton becomes the default one s(q).

In order to compute the failure function and duplicate states whenever nec-
essary we use a breadth-first traversal of G so that states of level l be visited
before those of level l+ 1. This is motivated by the fact that for q 6= i, the level
of s(q) is strictly less than that of q. More precisely, using the definition of s it
is easy to prove the following:

∀q, d[q] ≤ 1, s[q] = i (1)

∀q, d[q] ≥ 2, s[δ(q, a)] = i if (∀k, δ(sk[q], a) undefined)

∀q, d[q] ≥ 2, s[δ(q, a)] = δ(sk[q], a) otherwise,

k minimum such that δ(sk[q], a) is defined

where d[q] denotes the level of q. Thus, a breadth-first traversal guarantees
that s(q) can be computed following this process. Figure 3 gives a pseudocode
for the algorithm Acyclic-Matcher computing a deterministic automaton
recognizing A∗L(G) from G.

We denote here by Undefined a constant different from all states of G. A
first-in first-out queue Q is used for managing the set of states to visit at each
step according to a breadth-first search. The level of each state is computed
and stored in the array d. The level computation is only useful in the case of

4

Acyclic-Matcher(G)
1 for each p ∈ V
2 do s[p]← Undefined
3 f [p]← p
4 s[i]← i
5 d[i]← 0
6 Q← {i}
7 while Q 6= ∅
8 do p← head[Q]
9 for each t ∈ Trans[p]
10 do q ← s[p]
11 while (q 6= i) and (δ(q, t.l) not defined)
12 do q ← s[q]
13 if (p 6= i) and (δ(q, t.l) defined)
14 then q ← δ(q, t.l)
15 if (s[t.v] = Undefined)
16 then s[t.v]← q
17 d[t.v]← d[p] + 1
18 if (q ∈ F)
19 then F ← F ∪ {t.v}
20 List-Insert(list[t.v], t.v)
21 Enqueue(Q, t.v)
22 else if (there exists r ∈ list[f [t.v]] such that s[r] = q)
23 then t.v ← r
24 else if (f [q] 6= t.v)
25 then r ← Copy-State(t.v) . copy of t.v with same

transitions using f
26 s[r]← q
27 f [r]← f [t.v]
28 d[r]← d[p] + 1
29 if (f [t.v] ∈ F)
30 then F ← F ∪ {r}
31 List-Insert(list[f [t.v]], r)
32 t.v ← r
33 Enqueue(Q, r)
34 else t.v ← q
35 Dequeue(Q)

Figure 3: Algorithm for the construction from G2 of a deterministic automaton
for A∗L(G2), the acyclic case.

cyclic automata examined in the next section.

The algorithm gradually modifies G by computing the default states at each
step and by duplicating states whenever necessary. The duplication is performed
by the function Copy-State which creates a new state q′ copy of q with the
same transitions as those q originally had. Since transitions leaving q may have
been changed because of other previous duplications, for each state q we need to
keep track of the original state of G which q is a copy of. This is done through
the function f . Initially, f [q] = q for all q since no copy has been done. So,
when copying q, function Copy-State creates a new state q′ with transitions
δ(q′, t.l) = f [t.v] for each t ∈ Trans[q]. In order to limit duplications to what
is actually necessary, the list of duplicated states of each state q is stored in
list[q]. Only if none of the elements of list[q] has the desired default state is the

5

state q duplicated. Notice also that in case the default state is a copy of q itself
no duplication is necessary (condition of line 24). Besides copying transitions,
Copy-State makes the new state a final state if the original state is final.

Theorem 1. Let G be an acyclic deterministic automaton. This algorithm,
Acyclic-Matcher, computes correctly a representation of a deterministic au-
tomaton recognizing A∗L(G).

Proof. The loop of lines 7-34 corresponds to a dynamic breadth-first traversal
of G. Each state p is enqueued exactly once in Q and corresponds to one or
more prefixes of strings of L(G). Since the automaton is acyclic, the number
of these prefixes is finite. Thus, the loop of lines 7-34 terminates. The loop of
lines 9-33 is executed exactly out− degree(p) times for each state p.

Lines 10-14 of the algorithm compute the default state q for each state t.v
reached by a transition from state p as previously described. The termination
of the loop of lines 11-12 is ensured since for p 6= i the level of s(p) is strictly
less than that of p.

The algorithm terminates since all loops do. Final states of the resulting
automaton are either final states of the initial automaton, or those whose default
states are final (lines 18-19 and 29-30). Hence, they correspond exactly to those
paths from the initial state to these states which have a suffix in L(G).

The resulting automaton accepts exactly A∗L(G). Indeed, the definition of
s ensures that the state p reached after reading an input string w corresponds
to a path labeled with the longest suffix w′ of w which is a prefix of L(G). w is
in A∗L(G) iff w′ has a suffix in L(G), that is iff p is a final state. This ends the
proof of the theorem.

Notice that the recognition is independent of the alphabet of the string
to recognize. Although the construction of an automaton following Acyclic-
Matcher only involves the alphabet of the strings represented by G, the re-
sulting automaton recognizes A∗L(G), for any A containing the alphabet of
G.

2.2 Complexity and optimization

Thanks to the use of a failure function, the space complexity of the algorithm
Acyclic-Matcher is linear in the size of the obtained automaton. Indeed, the
size of the queue Q does not exceed the number of states V ′ of the resulting
automaton since each state is exactly enqueued once. The total size of the lists
list[q] involved in the algorithm is also bounded by V ′ since two distinct lists
have no element in common. The required size of the arrays s, f and d is equal
to V ′. Thus, the space complexity of Acyclic-Matcher is in O(|V ′| + |E′|),
where E′ is the set of transitions of the resulting automaton.

This is an interesting advantage of this algorithm especially in the case of
automata containing more than several hundred thousands of states or transi-
tions such as those involved in some natural language applications. The naive
determinization algorithm applying the classical powerset construction to the

6

automaton G provided with a loop labeled with all elements of A at the initial
state is quadratic with respect to the number of states V ” it generates. Indeed,
in that algorithm each of the states of the result is represented by a subset of
V ”. The size of each subset is less than |V ”|, hence the algorithm is in O(|V ”|2).
This size is in fact bounded by |V | since the elements of the subset all belong
to the initial automaton. There exists k such that: k · log |V ”| ≤ |V | ≤ |V ”|.
However, to be consistent with other expressions, we give complexities in terms
of the sizes of the resulting automaton. The sum of the sizes of all subsets is
indeed equivalent to |V ”|2 even in simple cases such as A∗an.

Another advantage of the algorithm Acyclic-Matcher is that it allows
one to save the space required for the representation of many transitions which
need to be explicitly indicated in the case of the naive algorithm, thanks to the
use of the failure function.

In general, even if the initial automaton G is minimal, the result of the algo-
rithm Acyclic-Matcher is not the minimal deterministic acceptor of A∗L(G).
For example, the application of this algorithm to the minimal automaton of the
set X = a(a+ b+ c) + bc(a+ b) + cc does not provide the minimal acceptor of
A∗X.

Notice that in any case the result of Acyclic-Matcher still recognizes the
language L(G) when used in the usual way without taking advantage of the
failure function. But this is not necessarily the case for the minimal acceptor
representing A∗L(G). Since it also represents L(G), the result of the algorithm
constitutes a single device allowing one not only to know whether a given text
contains a pattern of L(G) but also to identify the occurrences of these patterns.
Indeed, if a final state is reached while reading a prefix t′ of a text t using the
representation corresponding to A∗L(G), then |t′| corresponds to the ending
position of some patterns of L(G). Then reading the reverse string t′R of t′

from the reached state to the initial state in reverse using this automaton and
the final states yields the list of all occurrences of the patterns ending at that
position.

2.3 Complexity of the use of the resulting automaton

As in the case of the AC algorithm, this automaton offers linear time recognition.
Indeed, each time a failure transition is made, the level of the control state of the
automaton decreases. At most n forward transitions are made when processing
a string of length n. Since the level of the state reached after processing this
string is positive, the total number of failure or forward transitions is bounded
by 2n.

Using the same argument, it can be easily shown that the total number
of failure transitions made in the algorithm Acyclic-Matcher to compute s
along each path from the initial state to a state with no leaving transition is
bounded by the length of this path. So, if we assume that the test at line 22 is
done in constant time O(1), and that the insertions of lines 20 and 31 as well are
in O(1) on the average using perfect hashing methods (see (Aho and Lee, 1986)
and (Dietzfelbinger et al., 1988)), then on the average the time complexity of

7

the algorithm is O(log |A| ·L) where L is the sum of the lengths of all the strings
recognized by G. The log |A| factor corresponds to the cost of searching for a
transition. In all these complexities |A| can be replaced with min{|A|, emax},
where emax denotes the maximum out-degree of all states.

The algorithm has the same average complexity as the algorithm AC. How-
ever, one would like here to describe the complexity in terms of the size of the
automaton since L might be exponentially larger than V ′. The complexity of
the algorithm AC is in O(|V ′|2 · log |A|), if |V ′| denotes the number of nodes
or edges of the trie representing the finite set of patterns. Indeed, at most |V ′|
failure transitions are made for the computation of each default state.

a

a

a

a

b1

b2

b3

bn−1

bn

Figure 4: Quadratic complexity of the AC algorithm.

We do not prove here that the best measure of the complexity of the AC algo-
rithm is quadratic. There are cases where the quadratic complexity is reached,
but one might find a simple way of improving the AC algorithm to avoid those
cases, or consider that the complexity is quadratic with respect to the size of the
alphabet. The case of the sets of patterns described by the regular expression
an(b1 + · · ·+ bm) where the alphabet contains {a, b1, . . . , bm} clearly leads to a
quadratic complexity since the corresponding trie would have n+m transitions
and the failure states computation would require m(n−1) steps. The case of the
sets {ab1, aab2, ..., anbn} with an alphabet containing {a, b1, . . . , bn} also leads
to a quadratic complexity. The corresponding trie has 2n transitions and the
failure states computation requires about n(n− 1)/2 steps.

Indeed, the computation of the failure state when considering the transition
bi (Figure 4), 1 ≤ i ≤ n, requires examining the failure states of the state
reached by ai. There is no transition by bi at those states. Hence, the search
requires examining the transitions at all those i states.

The complexity of the algorithm Acyclic-Matcher is similar. It is in
O(|E′| · |V ′| · log |A|) where E′ denotes the final number of transitions. Indeed,
the loop of lines 9-33 is performed exactly |E′| times, the number of failure

8

transitions at each step is bounded by |V ′|, and the size of the lists considered
at line 22 is bounded by |V ′|. In fact it is easy to prove that the number of
failure transitions is even bounded by |V |. Recall that the complexity of the
classical powerset construction is O(|V ”|2 · |V |2 · |A| · log |A|), where V ” is the set
of states of the deterministic automaton it yields. Also, notice that if a better
analysis of the AC algorithm gives a better complexity, it would also lead to a
better complexity for our algorithm since it works in a very close way.

In practice, a simple modification of the algorithm allows one to speed up
the construction. Rather than computing s for each adjacent state t.v of p
independently, one can compute them during a single series of failure transitions.
Default states are successively examined from the state s[p] until each state t.v is
assigned the value of the initial state or that of a state admitting the transition
t.l, intermediate results being stored in an array of size |A|.

Also, once the automaton is constructed, the failure function s of the ob-
tained automaton can be replaced with an optimized one r which avoids un-
necessary failure transitions in a way similar to what is described for the AC
algorithm (Aho, 1990).

3 The general case

We consider here the general case of a deterministic automaton G not necessarily
acyclic. The algorithm presented in the previous section does not apply in the
general case. Indeed, if G contains cycles, there are states which can be reached
by an infinite number of paths starting at the initial state. In some cases, the
paths reaching these states have distinct longest proper suffixes prefixes of L(G).
They correspond to the definition of distinct failure states. Using the algorithm
of the previous section can then lead to the creation of infinitely many copies of
such states. Figure 5 and Figure 6 illustrate this case.

0	 1	
a

2	
b

3	a 4	b

6	

a

5	
c

b

Figure 5: Cyclic automaton G.

0/0	 1/0	
a

2/0	
b

3/1	
a

4/2	
b

5/0	c

6/3	

a

7/4	
b

8/6	
a

9/7	
b b

Figure 6: Blow-up in the determinization.

9

The first states of the automaton obtained applying the algorithm of the
previous section to the automaton of Figure 5 are shown in Figure 6. They
indicate the endless creation of new states corresponding for instance to new
suffixes of (ab)2((ab)2)∗ that are prefixes of L(G). In the following, we explain
how to modify this algorithm, using the same failure function, to avoid the
endless creation of states and to obtain a deterministic automaton such as that
of Figure 7 which represents A∗L(G) .

0/0	 1/0	
a

2/0	
b

3/1	a

4/2	b

6/3	

a

5/0	
c

b

Figure 7: Deterministic automaton representing A∗L(G).

3.1 Algorithm

The general algorithm is an extension of the algorithm described in the previous
section. It is based on the use of the same failure function s, and therefore
uses the same breadth-first search order to define the resulting deterministic
automaton. However, the duplication of states is here avoided in some cases.
In fact, in those cases, which can only occur when the transition considered is
a back edge or a cross edge in the sense of a breadth-first traversal, the original
transition is modified in such a way that the destination state is no more a copy
of the original destination state but some other state. This allows us to avoid
the blow-up illustrated by the example above. For the sake of clarity, we give
the complete pseudocode of the general algorithm here (Figure 8), though it
only slightly differs from the acyclic case.

The determinization we describe here has specific properties. It can be
thought of as a powerset construction, though the sets are not explicitly con-
structed. The failure function s helps us to abbreviate the definition of each
set.

For any string u ∈ A∗, we define spL(G)(u) as the set of suffixes of u which
are also prefixes of L(G), and for any state p the set of its failure states S(p) =
{p, s(p), . . . , snp(p) = i}. We show by recurrence on |u| and by examining all
alternatives in the algorithm that the strings of spL(G)(u) reach one of the states
of S(p), (δ(i, u) = p):

∀v ∈ A∗, v ∈ spL(G)(u)⇔ δ(i, v) ∈ S(p) (2)

10

The condition clearly holds for u = ε, since S(i) = {i}. Consider a transition
(p, a, p′) at line 9 of the algorithm, and let u be a string reaching p. Assume
that the condition holds for all v ∈ A∗, |v| ≤ |u|. The state q defined in 11-14
is the one reached by the longest proper suffix w of ua prefix of L(G). Since
w ≤ |u|, we have:

∀v ∈ A∗, v ∈ spL(G)(w)⇔ δ(i, v) ∈ S(q) (3)

Now we need to show that in the resulting automaton, the destination state of
the transition by a from p is a state p′′ such that:

∀v ∈ A∗, v ∈ spL(G)(ua)⇔ δ(i, v) ∈ (S(q) ∪ {p′′}) (4)

This is clearly true if the destination state p′′ is p′ or if it is defined at lines 23
or 32, since then by construction s(p′′) = q (see lines 16, 22, and 26). The only
other case is that of line 34 where p′′ is defined to be q. The condition 4 is then
realized too. This proves the assertion 2.

Lemma 2. Assume that the algorithm Matcher yields a finite-state automaton
G′. Then G′ recognizes exactly A∗L(G).

11

Matcher(G)
1 for each p ∈ V
2 do s[p]← Undefined
3 f [p]← p
4 s[i]← i
5 d[i]← 0
6 Q← {i}
7 while Q 6= ∅
8 do p← head[Q]
9 for each t ∈ Trans[p]
10 do q ← s[p]
11 while (q 6= i) and (δ(q, t.l) not defined)
12 do q ← s[q]
13 if (p 6= i) and (δ(q, t.l) defined)
14 then q ← δ(q, t.l)
15 if (s[t.v] = Undefined)
16 then s[t.v]← q
17 d[t.v]← d[p] + 1
18 if (q ∈ F)
19 then F ← F ∪ {t.v}
20 List-Insert(list[t.v], t.v)
21 Enqueue(Q, t.v)
22 else if (there exists r ∈ list[f [t.v]] such that s[r] = q)
23 then t.v ← r
24 else if ((f [q] 6= t.v) and ((d[t.v] ≥ d[p]) or

(t.v 6∈ {f [s(q)], f [s2(q)], . . . , f [sk(q)] = i}))
25 then r ← Copy-State(t.v) . copy of t.v with same

transitions using f
26 s[r]← q
27 f [r]← f [t.v]
28 d[r]← d[p] + 1
29 if (f [t.v] ∈ F)
30 then F ← F ∪ {r}
31 List-Insert(list[f [t.v]], r)
32 t.v ← r
33 Enqueue(Q, r)
34 else t.v ← q
35 Dequeue(Q)

Figure 8: Algorithm for the construction from G2 of a deterministic automaton
for A∗L(G2), the general case.

Proof. Consider a state p ofG′, and let w be a string reaching p. In the algorithm
p is made final iff there exists q ∈ S(p) such that q be a copy of a final state of the
original automaton G. Using the assertion 2 and the fact that by construction
the states of G′ are all accessible, this is equivalent to the existence of a string v
in spL(G)(w)∩L(G). Thus w is recognized by G′ iff it admits a suffix v ∈ L(G).
This proves the lemma.

Denote by V ′ the set of states of the result, for each state p ∈ V ′, by f(p)
the state p is a copy of, and consider the mapping Ψ defined by:

Ψ : V ′ −→ W

q 7−→ (f(q), f(s(q)), . . . , f(snq (i)) = i)

12

where W is the set of tuples made of elements of V with repetitions. Notice
that the size of such tuple can be infinite. The following lemma will help us to
prove the correctness of the algorithm.

Lemma 3. The number of states of the result of Matcher is finite.

Proof. To prove this assertion, we show that Ψ is injective and that its image
is finite.
Ψ is injective. Indeed, let (q, q′) be in V ′2, Ψ(q) = Ψ(q′) implies nq = nq′ :

∀i, 0 ≤ i ≤ nq, f(si(q)) = f(si(q′)) (5)

Recall that snq (q) = snq′ (q′) = i, and consider the states snq−1(q) and snq′−1(q′).
They are copies of the same state: f(snq−1(q)) = f(snq′−1(q′)). Since the algo-
rithm is such that no copy is made when states have the same failure states,

[s(snq−1(q)) = s(snq′−1(q′)) = i]⇒ [snq−1(q) = snq′−1(q′)] (6)

Using the same arguments, a direct recurrence leads to s(q) = s(q′) and q = q′.
We now show that for all p ∈ V ′, the number of elements of Ψ(p) is less than
|V |. Indeed, assume that there exists a state p such that Ψ(p) has strictly more
than |V | elements. Then, there exist two indices k1 and k2, 1 ≤ k1 < k2 ≤ np,
such that sk1(p) and sk2(p) are copies of the same states: f(sk1(p)) = f(sk2(p)).
We have sk2−k1(sk1(p)) = sk2(p), and by definition of s, the level of sk2(p)
is less than that of sk1(p): d[sk2(p)] < d[sk1(p)]. Hence, the state sk1(p) has
been created as a copy of f(sk2(p)) when considering a back edge or a cross
edge (d[t.v] < d[p] using the notation of Figure 8). But t.v = f(sk2(p)) =
f(sk2−k1(sk1(p))), thus the conditions of line 24 of the algorithm do not hold
with q = sk1(p). This contradicts the fact that sk1(p) has been created as a copy
of f(sk2(p)). Hence, for any state p, Ψ(p) has |V | or less than |V | elements. The
image of Ψ is included in 2|V | and is finite. Since Ψ is injective, this implies
that the number of states of the result is finite.

Using the two previous lemmas we can now prove the following theorem.

Theorem 4. Let G be a deterministic automaton. The algorithm of Figure 8,
Matcher, computes correctly a representation of a deterministic automaton
recognizing A∗L(G).

Proof. Lemma 3 shows that the algorithm terminates. By lemma 2, we know
that the resulting automaton represents exactly A∗L(G) using the failure func-
tion s. This proves the theorem.

3.2 Complexity

Using the same arguments as in the acyclic case, one can easily prove that the
space complexity of the algorithm is linear in the size of the resulting automaton
O(|V ′| + |E′|), thanks to the use of a failure function. The time complexity of
the algorithm is O(|E′| · |V ′| · log |A|) since the number of default transitions

13

made at line 12 or for the condition of line 24 is bounded by the total number
of final states V , and since the size of the lists of line 22 is bounded by |V ′|.
While in the powerset construction, at a given state {q1, . . . , qm} and for a given
letter, one needs to consult each state qi to find possible transitions leaving
this state labeled with that letter, this occurs only in the worst case using
Matcher. Indeed, only if the default state of qm admits no transition by the
considered letter is the following state considered, etc. Also, thanks to the use
of a failure function, not all the transitions created in the naive algorithm need
to be constructed here.

4 Conclusion

The construction of an automaton representing A∗L(G) is needed in many prob-
lems of lexical and syntactic analysis, and in speech processing. In particular,
they are very useful when dealing with local grammars represented by automata
or transducers (Mohri, 1994).

We have fully implemented the algorithms described in the previous sec-
tions. Results in practical cases in natural language processing show them to
be very efficient. We used an implementation of our algorithm to improve a
version of a program close to the Unix command sed. On large texts, it turned
out to be 4 times faster than those obtained with the Unix command without
having recourse to any optimization. Also, this algorithm allowed us to suc-
cessfully determinize automata arising in speech processing for which the naive
powerset construction was computationally intractable. The resulting sizes of
the determinized automata exceed 1.5 million states in those cases.

Although we did not show it here, these algorithms can be easily adapted so
as to create according to the lazy transition evaluation technique described by
Aho (1990) just that deterministic automaton needed to match a given text.

Acknowledgements

A preliminary version of this paper appeared in the Proceedings of CPM’95,
Springer-Verlag, LNCS 937, 1995. Submission of this paper in final form to the
Nordic Journal of Computing was invited in view of the strong endorsement
contained in the conference reviews.

I thank Maxime Crochemore for several discussions on this work, and Fer-
nando Pereira for helpful comments on an earlier draft of this paper.

14

References

A. Aho and D. Lee. Storing a dynamic sparse table. In Proceedings of the 27th
Annual IEEE Symposium on Foundations of Computer Science, pages 55–60,
1986.

A. V. Aho. Algorithms for finding patterns in strings. In J. V. Leuwen, edi-
tor, Handbook of Theoretical Computer Science, Volume A: Algorithms and
Complexity, pages 255–300. Elsevier, Amsterdam, 1990.

A. V. Aho and M. J. Corasick. Efficient string matching: An aid to bibliographic
search. Communication of the Association for Computing Machinery, 18 (6):
333–340, 1975.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques and
Tools. Addison Wesley, 1986.

R. A. Baeza-Yates and G. H. Gonnet. Efficient text searching of regular ex-
pressions. In Proceedings of the 16th International Colloquium on Automata,
Languages and Programming, ICALP ’89, volume Lecture Notes in Computer
Science, Springer-Verlag, Berlin, pages 46–62, 1989.

R. Boyer and J. Moore. A fast string-searching algorithm. Communication of
ACM, 20:762–772, 1977.

B. Commentz-Walter. A string matching algorithm fast on the average. Au-
tomata, Languages and Programming, Lecture Notes in Computer Science,
Springer-Verlag, Berlin:118–132, 1979.

M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq,
W. Plandowski, and W. Rytter. Fast multi-pattern matching. Technical
Report IGM 93-3, Institut Gaspard Monge, 1993.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. M. A. D. Heide, H. Rohnert, and
R. E. Tarjan. Dynamic perfect hashing: upper and lower bounds. In Pro-
ceedings of the 29th Annual IEEE Symposium on Foundations of Computer
Science, pages 524–531, 1988.

D. Knuth, J. M. Jr, and V. Pratt. Fast pattern matching in strings. SIAM
Journal of Comput. Syst. Sci., 6:323–350, 1977.

M. Mohri. Syntactic analysis by local grammars automata: an efficient al-
gorithm. In Proceedings of the International Conference on Computational
Lexicography (COMPLEX 94). Linguistic Institute, Hungarian Academy of
Science: Budapest, Hungary, 1994.

M. Mohri. Finite-state transducers in language and speech processing. Compu-
tational Linguistics, 23:1–42, 1997.

15

D. Perrin. Finite automata. In J. V. Leuwen, editor, Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics, pages 1–57.
Elsevier, Amsterdam, 1990.

16

	Introduction
	Case of acyclic automata
	Algorithm
	Complexity and optimization
	Complexity of the use of the resulting automaton

	The general case
	Algorithm
	Complexity

	Conclusion

