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Abstract

We introduce the definition of language recog-
nition with weighted automata, a generalization
of the classical definition of recognition with un-
weighted acceptors. We show that, with our def-
inition of recognition, weighted automata can
be used to recognize a class of languages that
strictly includes regular languages. The class of
languages accepted depends on the weight set
which has the algebraic structure of a semir-
ing. We give a generic linear time algorithm
for recognition with weighted automata and
describe examples with various weight sets il-
lustrating the recognition of several classes of
context-free languages. We prove, in particu-
lar, that the class of languages equivalent to
the language of palindromes can be recognized
by weighted automata over the (+,-)-semiring,
and that the class of languages equivalent to the
Dyck language of first order D" can be recog-
nized by weighted automata over the real trop-
ical semiring.

1 Introduction

Finite automata are used in many applications
to build high-performance tools. But the recog-
nition power of finite automata is limited to reg-
ular languages (Kleene, 1956). Many applica-
tions require more powerful devices to describe
context-free or context-sensitive languages. We
show that weighted automata can be used as
such devices.

Our study of language recognition with
weighted automata is motivated by several ob-
servations. First, weighted automata are cur-
rently used successfully in many applications
such as text and speech processing (Mobhri,
1997).  Secondly, our definition of language
recognition with weighted automata does not
require writing new code: exactly the same al-

gorithms as those used for manipulating and
combining automata and transducers in ap-
plications such as speech processing can be
used for recognition of context-free languages
with weighted automata. Finally, these al-
gorithms are based on the general theory of
rational power series, which can be realized
by weighted automata (Schiitzenberger, 1961;
Eilenberg, 1974; Berstel and Reutenauer, 1988).
Investigating the recognition power of weighted
automata is equivalent to determining that of
rational power series.

We introduce the definition of language recog-
nition with weighted automata and show that
it can be used to recognize a class of languages
that strictly includes regular languages. The
main idea behind the use of weighted automata
for recognition of context-free languages is to
exploit the additional information paths weights
or multiplicities contain, just as stacks store ad-
ditional information in the case of pushdown-
automata.

The class of languages accepted depends on
the weight set which has the algebraic structure
of a semiring. We give a generic linear time al-
gorithm for recognition with weighted automata
and describe examples with various weight sets
illustrating the recognition of several classes of
context-free languages. We prove, in particu-
lar, that the class of languages equivalent to
the language of palindromes can be recognized
by weighted automata over the (+,-)-semiring,
and that the class of languages equivalent to the
Dyck language of first order D{* can be recog-
nized by weighted automata over the tropical
semiring.

2 Weighted automata

Weighted automata are more general devices
than unweighed automata in that their transi-



tions are labeled with weights in addition to the
usual alphabet symbols. For various operations
to be well-defined, the weight set needs to have
the algebraic structure of a semiring.

Definition 1 A system (K, 4, ®,0,1) is a right
semiring if:

1. (K, ®,0) is a commutative monoid with 0
as the identity element for @,

2. (K, @,1) is a monoid with 1 as the identity
element for ©,

3. ® right distributes over @&: Va,b,c €
K (a&b)oc= (000 (b,

4. g is an annihilator for @: Va € K,a @ 0=
0®a=0.

Left semirings are defined in a similar way by
replacing right distributivity with left distribu-
tivity. (K, &,®,0,1) is a semiring if both left
and right distributivity hold. As an example,
(N,4,-,0,1) is a semiring defined on the set of
nonnegative integers N.

A Weighted automaton over the semiring K
is a T-tuple A = (X,Q,1,F,FE,\ p) where ¥
is the finite alphabet of the automaton, @) is a
finite set of states, I C () the set of initial states,
F C ) the set of final states, ¥ C Q x X xKxQ
a finite set of transitions, A : I — K the initial
weight function mapping [ to K, and p: FF — K
the final weight function mapping F to K.

Given a transition e € F, we denote by i[e]
its (input) label, w[e] its weight, p[e] its origin
(or previous state) and nle] its destination state
(or next state). Given a state ¢ € ), we denote
by FElq] the set of transitions leaving ¢, and by
ET[q] the set of transitions entering q.

A path m = e;---e; in A is an element of
E* with consecutive transitions: nle;_1] = p[e;],
t = 2,...,k. We extend n, and p to paths by
setting: n[r] = nlex], and p[r] = ple1]. We
denote by P(q,q’) the set of paths from ¢ to ¢'.
P can be extended to subsets R C Q@ R’ C Q,
by:

PR, k)= |J Plgq)

g€Rq'ER'
The labeling function ¢ and the weight function
w can also be extended to paths by defining the
label of a path as the concatenation of the labels
of its constituent transitions, and the weight of

a path as the @-product of the weights of its
constituent transitions:

ilea] - - -ifex]
wlr] = wle]] @@ wleg]

Given a string « € ¥*, we denote by Il(z) the
set of paths from I to F' labeled with z:

H(z)={re P(I,F):ir]=2a}

The output weight associated by A to an input
string « € X* is:

Ae= @ Aplr) @ wlz] @ p(nlr])

well(z)

If (z) =0, A - is defined to be 0.

These definitions can be easily generalized to
include the case of weighted automata with e-
transitions.

3 Language recognition with
weighted automata

3.1 Definition

The definition of language recognition with un-
weighted automata is classical. A string z is
said to be recognized or accepted by A if there
exists a path from an initial state to a final state
labeled with x: TI(z) # (. There exists a simple
algorithm for testing for the emptiness of 1I(xz)
(Aho, Hopcroft, and Ullman, 1974). It can be
viewed as a special case of the intersection, or
composition algorithm for automata. Indeed,
the input string = can be represented by a sim-
ple linear automaton, X (z). Thus, the empti-
ness of lI(z) is equivalent to that of the inter-
section automaton A N X (z). We introduce a
definition of language recognition with weighted
automata which can be viewed as a generaliza-
tion of the classical recognition with unweighted
automata.

Definition 2 Let J C K be a subset of K. We
say that a string @ € X" is J-recognized or J-
accepted by the weighted automaton A if A-x €
J.

The definition is a generalization of recogni-
tion with unweighted automata. Indeed, un-
weighted automata can be viewed as weighted
automata over the boolean semiring B =



({0,1},Vv,A,0,1). Classical recognition with
unweighted automata is then equivalent to J-
recognition with J = {1}.

In what follows, we can assume without loss
of generality that the weighted automaton A
admits no e-transition cycle since a general e-
removal algorithm can be used to construct

an equivalent automaton with no e-transition
(Mohri, Pereira, and Riley, 1999).

3.2 Algorithm

We now present a generic recognition algorithm
with weighted automata. Given a string «,
recognition with a weighted automaton A can
be done in two steps:

1. computation of A -z,

2. membership test A-z € J.

The following proposition shows that the cost
of the first step of the algorithm is similar to
that of the classical recognition with unweighted
automata. It can be performed in time linear
with respect to the length of z.

Proposition 1 Let A = (3,Q,1,F, E, X, p) be
a weighted automaton over the semiring K.
Then there exists an algorithm for computing
A-x for any x € X* in time O(|Al-|z|-(Te+Tg)),
where Ty, represents the cost of the sum opera-
tion of the semiring, and Tg that of multiplica-
tion.

Proof. As mentioned previously, x can be rep-
resented by a linear acceptor X(z) in time
O(]z|). Using the general composition (or in-
tersection) algorithm for weighted automata
(Mohri, Pereira, and Riley, 1996), we can com-
pute Ao X (z) in time O(|A]-|X (2)]), that is
in O(|A| - |#|) since the number of transitions
of X (x) is equal to the length of z. By def-
inition of composition, the successful paths in
the weighted automaton Ao X (z) are all labeled
with &, and the @-sum of the weights of all these
paths is exactly A - z.

The computation of the sum of the weights of
all paths from a fixed source state to all other
states, or to the set of final states, can be done
using an algorithm that is a generalization of
the classical single-source shortest-paths algo-
rithms to the case of directed graphs weighted
over a semiring (Mohri, 1998). We denote by

GSD the function computed by this generalized
single-source shortest-distance algorithm. In
the case of acyclic graphs, the algorithm works
with any (right) semiring. Its complexity
is linear in the size of the input graph, and
the cost of the semiring operations. Since
A admits no e-transition cycle, the weighted
automaton A o X (z) is acyclic. Thus, the total
cost of the algorithm for computing A - 2 is

O(lA] - || - (T + T)). o

Note that the algorithms used in the proof
of the proposition, composition and generic
single-source shortest-distance algorithm, are
already used in various applications for ma-
nipulating weighted automata. Following the
proof of the proposition, the procedure for
recognition with weighted automata can be
described by the following formula:

GSD(Ao X (z)) e J

The complexity of the second stage of the algo-
rithm depends on the subset J. If we assume
that an equality test can be performed in con-
stant time in the semiring K, then membership
can be tested in constant time for any finite sub-
set J. In particular, when J is reduced to a single
element, the membership test can be performed
in constant time.

In the following, we will be focusing on spe-
cific cases where J is reduced to a single element.
It should be clear though that the recognition
power of weighted automata can be increased
by considering larger or more complex subsets.
This does not necessarily imply a more costly
membership test. For an example of this fact,
consider the case K = R, and J = R, the test
is reduced to: A -z > 0 which can still be per-
formed in constant time.

3.3 Extension by composition with
finite-state transducers and
intersection with regular languages

This section shows that once a language I has
been shown to be recognizable by weighted au-
tomata over a semiring K, then several classes
of languages are also recognizable by the same
devices and with the same time complexity.

Let 7 be a transduction from ¥* to A* and
let Y C A*, we define 771(Y) by:

THY) = {r e X ir() C V)



We say that a language L' is an inverse rational
image of language I if there exists a rational
transduction 7 such that:

L)y =1

When further I is a rational inverse of L', L
and L' are said to be equivalent. !

Recognition can be extended to other lan-
guages by composition with finite-state trans-
ducers and intersection with finite automata.

Proposition 2 Let L C X* be a language J-
recognizable with a weighted automaton A =
(3,Q,1,F,E, X p) over the semiring K.

1. If L' C A* is an inverse rational image of
L C Y*, then L' is J-recognizable;

2. Let R a be regular language, then there ex-
ists a weighted automaton A’ J-recognizing
L'=LNR.

Proof. Let 7 be a rational transduction such
that 771(L) = L/, and let T be a finite-state
transducer realizing 7. Then if 2’ € L', 7(x) C
L. Conversely, let 2/ € A* and assume that
7(z) C L, then 771(7(2)) C L’ which implies
el

Thus 2’ € L' iff 7(z) C L, that is iff
GSD(A o 7 (T o X (2'))) € J where m(T") is
the automaton obtained by projection of the
transducer 7' over the input labels. This is
equivalent to: GSD(A o T o X(a)) € J since
input or output labels do not affect the single-
source shortest-distance algorithm. Hence it is
also equivalent to: GSD(my(AoT)o X (2)) €J
where 79 is the output projection for transduc-
ers. Thus, A" = m2(AoT) is a weighted automa-
ton J-recognizing I’. This proves the first part
of the proposition.

Let R be a regular language and let A’ be a
finite automaton accepting K. Then, clearly,
v €L'=LNRiff2 € Rand GSD(A4oX (2)) € J.
Thus, @ € L' iff GSD((AN A") o X(x)) € J.
AN A (or Ao A’) J-recognizes L'. U

Recall that the cylinder generated by L is the
set of languages L' such that L' = ¢~1(L) with
¢ a morphism or I/ = L N R with R regular
(Berstel, 1979).

!Note that this notion of rational equivalence does not
coincide with the classical notion of (rationally) equiva-
lent languages described by (Berstel, 1979).

Proposition 3 Let L C X* be a language J-
recognizable with a weighted automaton A =
(3,Q,1,F, E, X, p) over the semiring K. Then:

1. Any language equivalent to L is J-

recognizable;

2. Let L' C X* and ¢ be a morphism such that
L' = ¢~ (L), then L' is J-recognizable;

3. Any language L' that belongs to the cylinder
generated by L is J-recognizable.

Proof. The first two statements are direct con-
sequences of proposition 2. By definition, if L’
is a language equivalent to L, then L’ is an in-
verse rational image of L. Also, any morphism
¢ is a rational transduction and 2’ € ¢~1(L) iff
o(z') € L.

The result just proved combined with propo-
sition 2, shows that the cylinder generated by
L is also J-recognizable. (]

The proposition shows in particular that if L
can be recognized with weighted automata, then
any language in the cylinder generated by L
can be recognized with the same running time
complexity. This result can be easily general-
ized: cylinders preserve recognition complex-
ity for any recognition algorithm used (Berstel,
1979).

We will use proposition 3 in the following to
extend our recognition results for a language L
to the class of languages equivalent to L or to
the cylinder generated by L.

Note that the rational image of a J-
recognizable language can also be recognized us-
ing the same algorithms, but the corresponding
procedure does not preserve the complexity of
recognition of L. Recall that a language L' is
said to be a rational image of L if there exists
a rational transduction 7 such that (L) = L.
If L is J-recognized with a weighted automa-
ton A then L’ can be recognized using the fol-
lowing property: = € L' iff 7712’y N L # 0.
Let T be the inverse of a transducer realizing 7,
then @ € L' iff there exists a string « such that
m(AoTo X (a") -x e].

4 Semiring of real numbers

In this section we show that the class of context-
free languages equivalent to the language of
palindromes or to the symmetric language of
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Figure 1: Weighted automaton computing the
integer value of binary numbers, ¥ = {a,b},
a = 0, b = 1. Initial states are represented
by bold circles, final states by double circles.
Inside each circle, the first number indicates the
state number, the second, at final states only,
the value of the final weight function p at that
state.

second order can be efficiently recognized with
weighted automata over the semiring of real
numbers R = (R, +,-,0,1).

Let & = |X| be the size of the alphabet, we
can order the elements of ¥ in an arbitrary way,
and write: ¥ = {0, ..., k—1} by identifying each
element ap of the alphabet with its rank k. A
string @ = x¢ - - -, can thus be considered as a
number in base k. We denote by (z) its integer

value:
n

(z) = Z z k"
=0
Our construction of a weighted automaton rec-
ognizing palindromes is based on that of one
that computes the integer value of an input
string.

Proposition 4 There exists a weighted au-
tomaton A = (3,Q,1,F,E X\ p) over the
semiring of real numbers such that for any
string © € X%, A- 2z = (x).

Proof. 1Indeed, consider the power series S de-

fined by:

B

S = Y (3)*(ia;) (kX)~

=1

S is clearly a rational power series as a sum
of products of the rational power series: X%,
ia;, and (kX)*. Thus S can be realized by a
weighted automaton A (Schiitzenberger, 1961).
Figure 1 shows that weighted automaton for the
case k = 2.

b/2 b/l

Figure 2: Other example of a weighted automa-
ton computing the integer value of binary num-

bers, ¥ = {a,b},a =0,b=1.

Let @ = 2g...x, be astring. Since A realizes
S, we have: A-z = (5, z). Adding 0 to S doesn’t

change its definition, thus we can write:

—_

S = ’ (3)"(ia;) (kX)”

B

-
Il
=]

By definition of the product of power series:

k—1
(S,2) =" D (S, u)(ias, i) (kS v)

1=0 ua,v=x

where the second sum runs over all possible de-
compositions of the string x into a prefix u fol-
lowed by a; followed by a suffix v. Thus:

k

(5.0) = 33 1Mkl

-1
1=0 ua,v=x

k—1 n
SIS W
1=0 xr;=a; 7=0
This proves the proposition. L]
Note that there are weighted automata

other than the one described in the proof of
the proposition which have the same property.
Figure 2 shows another weighted automaton
that also computes integer values of input
strings in base 2.

Let = be a string over the alphabet X, and
denote by z! its mirror image. Note that in the
computation of the integer value () of z, lead-
ing 0’s are ignored. However, if two strings «
and 2’ have the same integer values (z) = (2')
and have the same lengths |z| = [2'|, then they
are necessarily equal. Thus, since a string and



Figure 3: Weighted automaton recognizing palindromes in the semiring of real numbers, ¥ = {a, b}.

its mirror image have the same length, = is a
palindrome iff (z) = (2f). This is the charac-
terization that we use to construct a weighted
automaton recognizing palindromes.

Theorem 1 Let ¥ be a finite alphabet. Then
the class of languages equivalent to the language
of palindromes and the cylinder generated by
the language of palindromes can be 0-recognized
by weighted automata over the semiring of real
numbers.

Proof. By proposition 4, there exists a
weighted automaton B computing the integer
values of strings defined over the alphabet .
We denote by B the reverse automaton of
B. B is obtained from B by reversing the
direction of the transitions, exchanging initial
states and final states, and exchanging the ini-
tial weight function and the final weight func-
tion. Now define the weighted automaton A by:

A=B- BE

A can be constructed by taking the sum (or
union) of B and —B*f. By construction, for any
string #, A+ 2 = (z) — (2F). Hence, A-2 =10
iff  is a palindrome. Thus, the language of
palindromes can be 0-recognized by a weighted
automaton over the semiring of real numbers.

By proposition 3, this result can be extended
to the class of languages equivalent to the
language of palindromes, and to the cylinder
generated by this language. This ends the
proof of the theorem. L]

Using the recognition algorithm presented in
the previous section, A can recognize palin-
dromes in time linear in the length of the in-
put string. Figure 3 shows the weighted au-
tomaton A constructed in the proof of the the-
orem for the case ¥ = {a,b}. A similar result
holds for the symmetric language of second or-
der S;. Let ¥ = {a,b,a,b}. For any string
T = x5 -2, € {a,b}*, we denote by T the
string defined by: = = ;, ---7;,. Recall that
So is defined by:

Sy =427 : 2 € {a,b}"}

S5 is a generator of the cone of linear languages
Lin.

Theorem 2 Let ¥ be a finite alphabet. Then
the class of languages equivalent to the symmet-
ric language of second order Sy and the cylinder
generated by Sy can be 0-recognized by weighted
automata over the semiring of real numbers.

Proof. We introduce two new symbols ag and
@, By proposition 4, there exists a weighted
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Figure 4: Weighted automaton over the real
tropical semiring recognizing D/*.

automaton Bf(ag,a,b) computing the integer
values of strings defined over the alphabet
{ap, a,b}. Strings over this alphabet can thus be
considered as numbers in base 3 with aq corre-
sponding to 0. Let C' be a weighted automaton
realizing {@, b}*. C associates 1 to any string
over the alphabet {@,b}*.

Similarly, by proposition 4, there exists a
weighted automaton B(@y,@,b) computing in-
teger values of strings defined over the alphabet
{@y, @, b}, and we define C' as the weighted au-
tomaton realizing {a,b}*. Then the automaton

A defined by:
A = B(ag, a,b) - C — (B(@,@,b) - C)*

0-recognizes 5. Indeed, by definition of
Blag, a,b), Blag,a,b)C associates to a string
over 3 its integer value by ignoring po-
tential final symbols in {@,b}*.  Similarly,
(B(@, @, b)C), associates to the reverse of a
string over X its integer value by ignoring po-
tential initial symbols over {a, b}*. Clearly, by
definition of Sg, a string belongs to Sy iff these
two integer values are equal (note that there is
no leading 0 in the computation of these integers
since ag and @g are not in ¥). By proposition 3,
this result extends to the cylinder generated by
S5 as well as to the class of languages equivalent

to 52. l:‘

5 Real tropical semiring

Weighted automata over the tropical semiring
T = (RU{oo}, min, +, 00,0) are used in many
text and speech processing applications (Mohri,
1997). The weights are often interpreted as neg-
ative log of probabilities, thus they are added
along the paths, and given an input string «, the
corresponding output weight is the minimum of
the weights of all the paths labeled with a since
the Viterbi approximation is used.

This section shows that the same weighted
automata currently used in various applications

b/-1

Figure 5: Weighted automaton over the real
tropical semiring O-recognizing the language

S1 = {a"b" : n € N}.

can be used to recognize efficiently a class of
context-free languages that includes the Dyck
language of first order (Berstel, 1979). Note
that the composition algorithm used for lan-
guage recognition with these weighted automata
is exactly the one used in speech processing
applications, and that the generic shortest-
distance algorithm coincides with the classical
single-source shortest-paths algorithm here.

We first give a combinatorial characterization
of the strings of the Dyck language of first order
Di. This will be used to construct directly a
weighted automaton recognizing D/*.

Recall that the Dyck language of first order is
the set of strings with well-formed parentheses.
We denote by a the left parenthesis and by b the
right parenthesis. Thus, aabb and aababdb belong
to D", while abba or aabbba do not. Given a
string  over the alphabet ¥ = {a, b}, we denote
by |z|, the number of a’s in 2 and by |z|, the
number of b’s, and we define ||z|| by:

2]l = [z]a = |2[s

Given a string u, we write v <,  when u is a
prefix of x.

Lemma 1 Let x be a string over the alphabet
Y = {a,b}. Then x belongs to DY iff:

Jmin ([Jur]] = flugll) = 0
1U2=T

Proof. We will use for the proof a classical

property of D} (Berstel, 1979): = € D, iff

|z|| = 0 and |[Ju|| > 0 for any prefix u of .
Note that for any decomposition of x into a

prefix u; and suffix ug, ||z|| = [Ju1]|+||uz|]. Thus
Juall = fluzl] = 2l[ur ]} = [l]]-

Assume first that @ € D7, then ||z|| = 0 and
[[ua|| = 0. Thus: [lua]] = fluzf] = 2[jus]] > 0, and
|ut]l — |||l = ||z|| = 0 for uy = w and uy = e.



al(1, 0)

€/(0, 0)

b/(0, 1)

c/(-1, -1)

Figure 6: Weighted automaton over the RZ%tropical semiring (0,0)-recognizing the language

{a"b™c" : n € N}.

Conversely, assume that ming, ,,—(||u1]|] —

||[uzl]) = 0. In particular, (u; = €, up = 2):
—|lz|| > 0, and (w1 = 2, uz = €): ||z|| > 0,
hence ||z]| = 0. Thus for any decomposition
Uty = T,

2|l = fluall = lluel|

Hence [Jui|| > 0 for any prefix uy of z. This
ends the proof of the lemma. L]

We use the lemma to construct a weighted au-
tomaton 0-recognizing Df*.

Theorem 3 Let ¥ = {a,b}. Then the class
of languages equivalent to the language of well-
formed parentheses DY* over the alphabet X
and the cylinder generated by D{* can be 0-
recognized by weighted automata over the real
tropical semiring.

Proof. Consider the power series S defined by:
S=(a—b)"b—-a)

S is clearly rational as a product of two ratio-
nal power series. Thus, it can be realized by a
weighted automaton. Figure 4 shows a weighted
automaton A representing S. By definition of
the product of power series in the tropical semir-
ing, for any string z:

Az = (S,2) = min ((a=b)",u1)+((b—a)”, uz)
Ul U=

Thus: A+ = (5,2) = mituyupma (fur | - |Juzl):

By proposition 3, the result can be extended

to the languages equivalent to D} and to the

cylinder generated by D{*. This ends the proof
of the theorem. [

Thus the weighted automaton of figure 4 can
be used to recognize D" in linear time. There

are other classes of languages that can be recog-
nized similarly by weighted automata over the
tropical semiring. A simpler example is that of
the context-free language 57 = {a”b" : n € N}.
Clearly, it is O-recognized by the weighted au-
tomaton of figure 5.

6 Conclusion

A new definition of language recognition with
weighted automata was given. A generic linear
time algorithm for language recognition with
weighted automata was also presented: the al-
gorithm is generic in the sense that it works with
any right semiring. Several classes of context-
free languages (the class of languages equivalent
to the language of palindromes, the class of lan-
guages equivalent to Sq, the class of languages
equivalent to D", and the class of languages
equivalent to Sy) were proved to be recogniz-
able in linear time with this algorithm.

Weighted automata can be used to recognize
languages of higher order. Since the cross prod-
uct of two semirings is a semiring, weighted au-
tomata over cross products can also be used.

An example that illustrates both these points
is the recognition of S3 = {a"b"¢" : n € N}.
The cross product of the real-tropical semiring
by itself, is a semiring called the R%tropical
semiring. One can easily construct a weighted
automaton over the R%tropical semiring (0, 0)-
recognizing Ss. Figure 6 shows that weighted
automaton. It can be used to recognize that
language in time linear in the size of the input
string using the generic recognition algorithm
presented in previous sections. S3 can also be
directly recognized by weighted automata over
the semiring of real numbers using prime num-
bers, or by weighted automata over the tropical
semiring using rational numbers.
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