
Breaking the centralized barrier for cross-device
federated learning∗

Sai Praneeth Karimireddy
EPFL

sai.karimireddy@epfl.ch

Martin Jaggi
EPFL

martin.jaggi@epfl.ch

Satyen Kale
Google Research

satyenkale@google.com

Mehryar Mohri
Google Research

mohri@google.com

Sashank J. Reddi
Google Research

sashank@google.com

Sebastian U. Stich
EPFL

sebastian.stich@epfl.ch

Ananda Theertha Suresh
Google Research

theertha@google.com

Abstract

Federated learning (FL) is a challenging setting for optimization due to the het-
erogeneity of the data across different clients which can cause a client drift phe-
nomenon. In fact, designing an algorithm for FL that is uniformly better than
simple centralized training has been a major open problem thus far. In this work,
we propose a general algorithmic framework, MIME, which i) mitigates client
drift and ii) adapts an arbitrary centralized optimization algorithm such as mo-
mentum and Adam to the cross-device federated learning setting. MIME uses a
combination of control-variates and server-level optimizer state (e.g. momentum)
at every client-update step to ensure that each local update mimics that of the cen-
tralized method run on i.i.d. data. We prove a reduction result showing that MIME
can translate the convergence of a generic algorithm in the centralized setting into
convergence in the federated setting. Moreover, we show that, when combined
with momentum-based variance reduction, MIME is provably faster than any cen-
tralized method–the first such result. We also perform a thorough experimental
exploration of MIME’s performance on real world datasets (implemented here).

1 Introduction

Federated learning (FL) is an increasingly important large-scale learning framework where the train-
ing data remains distributed over a large number of clients, which may be mobile phones or network
sensors [38, 37, 43, 44, 28]. A server then orchestrates the clients to train a single model, here re-
ferred to as a server model, without ever transmitting client data over the network, thereby providing
some basic levels of data privacy and security.

Two important settings are distinguished in FL [28, Table 1]: the cross-device and the cross-silo
settings. The cross-silo setting corresponds to a relatively small number of reliable clients, typically
organizations, such as medical or financial institutions. In contrast, in the cross-device federated
learning setting, the number of clients may be extremely large and include, for example, all 3.5 bil-
lion active android phones [25]. Thus, in that setting, we may never make even a single pass over

∗This work was also appears under the alternative title “Mime: Mimicking Centralized Stochastic Algo-
rithms in Federated Learning” [31].

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://fedjax.readthedocs.io/en/latest/fedjax.algorithms.html#module-fedjax.algorithms.mime

the entire clients’ data during training. The cross-device setting is further characterized by resource-
poor clients communicating over a highly unreliable network. Together, the essential features of this
setting give rise to unique challenges not present in the cross-silo setting. In this work, we are inter-
ested in the more challenging cross-device setting, for which we will formalize and study stochastic
optimization algorithms. Importantly, recent advances in FL optimization, such as SCAFFOLD [32]
or FedDyn [1], are not anymore applicable since they are designed for the cross-silo setting.

The problem. The de facto standard algorithm for the cross-device setting is FEDAVG [43], which
performs multiple SGD updates on the available clients before communicating to the server. While
this approach can reduce the frequency of communication required, performing multiple steps on the
same client can lead to ‘over-fitting’ to its atypical local data, a phenomenon known as client drift
[32]. This in turn leads to slower convergence and can, somewhat counter-intuitively, require larger
total communication [69]. Despite significant attention received from the optimization community,
the communication complexity of heterogeneous cross-device has not improved upon that of simple
centralized methods, which take no local steps (aka SERVER-ONLY methods). Furthermore, algo-
rithmic innovations such as momentum [59, 14], adaptivity [35, 75, 77], and clipping [71, 72, 76] are
critical to the success of deep learning applications. The lack of a theoretical understanding of the
impact of multiple client steps has also hindered adapting these techniques in a principled manner
into the client updates, in order to replace the vanilla SGD update of FEDAVG.

To overcome such deficiencies, we propose a new framework, MIME, that mitigates client drift and
can adapt an arbitrary centralized optimization algorithm, e.g. SGD with momentum or Adam, to
the federated setting. In each local client update, MIME uses global optimizer state, e.g. momentum
or adaptive learning rates, and an SVRG-style correction to mimic the updates of the centralized
algorithm run on i.i.d. data. This optimizer state is computed only at the server level and kept fixed
throughout the local steps, thereby avoiding overfitting to the atypical local data of any single client.

Contributions. We summarize our main results below.
• MIME framework. We formalize the cross-device federated learning problem, and propose a

new framework MIME that can adapt arbitrary centralized algorithms to this setting.
• Convergence result. We prove a result showing that MIME successfully reduces client drift.

We also prove that the convergence of any generic algorithm in the centralized setting translates
convergence of its MIME version in the federated setting.

• Speed-up over centralized methods. By carefully tracking the bias introduced due to multiple
local steps, we prove that MIME with momentum-based variance reduction (MVR) can beat a
lower bound for centralized methods, thus breaking a fundamental barrier. This is the first such
result in FL, and also the first general result showing asymptotic speed-up due to local steps.

• Empirical validation. We propose a simpler variant, MIMELITE, with an empirical perfor-
mance similar to MIME. We report the results of thorough experimental analysis demonstrating
that both MIME and MIMELITE indeed converge faster than FEDAVG.

Related work. Analysis of FEDAVG: Much of the recent work in federated learning has focused
on analyzing FEDAVG. For identical clients, FEDAVG coincides with parallel SGD, for which [78]
derived an analysis with asymptotic convergence. Sharper and more refined analyses of the same
method, sometimes called local SGD, were provided by [56], and more recently by [57], [47],
[34], and [70], for identical functions. Their analysis was extended to heterogeneous clients in
[68, 74, 32, 34, 36]. [11] derived a tight characterization of FedAvg with quadratic functions and
demonstrated the sensitivity of the algorithm to both client and server step sizes. Matching upper
and lower bounds were recently given by [32] and [69] for general functions, proving that FEDAVG
can be slower than even SGD for heterogeneous data, due to the client-drift.

Comparison to SCAFFOLD: For the cross-silo setting where the number of clients is relatively low,
[32] proposed the SCAFFOLD algorithm, which uses control-variates (similar to SVRG) to correct for
client drift. However, their algorithm crucially relies on stateful clients which repeatedly participate
in the training process. FedDyn [1] reduces the communication requirements, but also requires
persistent stateful clients. In contrast, we focus on the cross-device setting where clients may be
visited only once during training and where they are stateless (and thus SCAFFOLD and FedDyn are
inapplicable). This is akin to the difference between the finite-sum (corresponding to cross-silo) and
stochastic (cross-device) settings in traditional centralized optimization [39].

2

Comparison to FedAvg and variants: [26] and [67] observed that using server momentum signifi-
cantly improves over vanilla FEDAVG. This idea was generalized by [49], who replaced the server
update with an arbitrary optimizer, e.g. Adam. However, these methods only modify the server up-
date while using SGD for the client updates. We henceforth refer to this meta algorithm as FedAvg.
FedAvgSGD, FedAvgMom, FedAvgAdam denote specific instantiations of the server optimizer in
FedAvg with SGD, Momentum or Adam. MIME, on the other hand, ensures that every local client
update resembles the optimizer e.g. MIME would apply momentum in every client update and not
just at the server level. Beyond this, [40] proposed to add a regularizer to ensure client updates
remain close. However, this may slow down convergence (cf. Fig. 5 and [32, 66]). Other orthogonal
directions which can be combined with MIME include tackling computation heterogeneity, where
some clients perform many more updates than others [66], improving fairness by modifying the
objective [44, 41], incorporating differential privacy [20, 2, 61], Byzantine adversaries [48, 65, 30],
secure aggregation [8, 24], etc. We defer additional discussion to the extensive survey by [28].

Momentum based variance reduction. Initial optimal methods for stochastic non-convex optimiza-
tion like SPIDER [17] and SARAH [46] required intermittently computing very large batch gra-
dients. Subsequently, it was shown that momentum based variance reduction (MVR) methods ob-
tained a similar optimal rate without needing such large batch gradient computations [62, 14]. Mo-
mentum is an exponential moving average of many stochastic gradients and so it has much smaller
variance than the stochastic gradients themselves. However, because these gradients are computed
at different parameters it also has a bias. MVR adds a small additional correction term which sig-
nificantly reduces this bias and provides improved rates.

2 Problem setup

This section formalizes the problem of cross-device federated learning [28]. Cross-device FL is
characterized by a large number of client devices like mobile phones which may potentially connect
to the server at most once. Due to their transient nature, it is not possible to store any state on the
clients, precluding an algorithm like SCAFFOLD. Furthermore, each client has only a few samples,
and there is wide heterogeneity in the samples across clients. Finally, communication is a major
bottleneck and a key metric for optimization in this setting is the number of communication rounds.

Thus, our objective will be to minimize the following quantity within the fewest number of client-
server communication rounds:

f(x) = Ei∼C
[
fi(x) :=

1

ni

ni∑
ν=1

fi(x; ζi,ν)
]
. (1)

Here, fi denotes the loss function of client i and {ζi,1, . . . , ζi,ni} its local data. Since the number
of clients is extremely large, while the size of each local data is rather modest, we represent the
former as an expectation and the latter as a finite sum. In each round, the algorithm samples a
subset of clients (of size S) and performs some updates to the server model. Due to the transient
and heterogeneous nature of the clients, it is easy to see that the problem becomes intractable with
arbitrarily dissimilar clients. Thus, it is necessary to assume bounded dissimilarity across clients.

(A1) G2-BGV or bounded inter-client gradient variance: there exists G ≥ 0 such that

Ei∼C [‖∇fi(x)−∇f(x)‖2] ≤ G2 , ∀x .

Next, we also characterize the variance in the Hessians.

(A2) δ-BHV or bounded Hessian variance: Almost surely, the loss function of any client i satisfies

‖∇2fi(x; ζ)−∇2f(x)‖ ≤ δ , ∀x .
This is in contrast to the usual smoothness assumption that can be stated as:

(A2*) L-smooth: ‖∇2fi(x; ζ)‖ ≤ L , ∀x , a.s. for any i.

Note that if fi(x; ζ) is L-smooth then (A2) is satisfied with δ ≤ 2L, and hence (A2) is weaker than
(A2*). In realistic examples we expect the clients to be similar and hence that δ � L. In addition,
we assume that f(x) is bounded from below by f? and is L-smooth, as is standard.

3

3 Mime framework

In this section we describe how to adapt an arbitrary centralized optimizer (referred to as the “base”
optimizer) which may have internal state (e.g. momentum) to the federated learning problem (1)
while ensuring there is no client-drift. Algorithm 4 describes our framework. We develop two
variants, MIME and MIMELITE, which consist of three components i) a base optimizer we are
seeking to mimic, ii) the global (server) optimizer state computation, and iii) the local client updates.

Algorithm 1 Mime and MimeLite

input: initial x and s, learning rate η and base optimizer
B = (U ,V)
for each round t = 1, · · · , T do

sample subset S of clients
communicate (x, s) to all clients i ∈ S
communicate c← 1

|S|
∑
j∈S ∇fj(x) (only Mime)

on client i ∈ S in parallel do
initialize local model yi ← x
for k = 1, · · · ,K do

sample mini-batch ζ from local data
gi ← ∇fi(yi; ζ)−∇fi(x; ζ) + c (Mime)

gi ← ∇fi(yi; ζ) (MimeLite)
update yi ← yi − ηU(gi, s)

end for
compute full local-batch gradient∇fi(x)
communicate (yi,∇fi(x))

end on client
s ← V

(
1
|S|
∑
i∈S ∇fi(x), s

)
(update optimizer

state)
x← 1

|S|
∑
i∈S yi (update server parameters)

end for

Base optimizer. We assume the
centralized base optimizer we are im-
itating can be decomposed into two
steps: an update step U which up-
dates the parameters x, and a opti-
mizer state update step V(·) which
keeps track of global optimizer state
s. Each step of the base optimizer
B = (U ,V) uses a gradient g to up-
date the parameter x and the opti-
mizer state s as follows:
x← x− η U(g, s) ,

s← V(g, s) .
(BASEOPT)

As an example, consider SGD with
momentum. The state here is the mo-
mentum mt and uses the following
update steps:

xt = xt−1 − η ((1− β)∇fi(xt−1)

+ βmt−1) ,

mt = (1− β)∇fi(xt−1) + βmt−1 .

Thus, SGD with momentum can be
represented in the above generic form
with U(g, s) = (1 − β)g + βs and
V(g, s) = (1 − β)g + βs. Table 5
in Appendix shows how other algo-

rithms like Adam, Adagrad, etc. can be represented in this manner. We keep the update U to be
linear in the gradient g, whereas V can be more complicated. This implies that while the parame-
ter update step U is relatively resilient to receiving a biased gradient g while V can be much more
sensitive.

Compute optimizer state globally, apply locally. When updating the optimizer state of the base
algorithm, we use only the gradient computed at the server parameters. Further, they remain fixed
throughout the local updates of the clients. This ensures that these optimizer state remain unbiased
and representative of the global function f(·). At the end of the round, the server performs

s← V
(

1
|S|
∑
i∈S ∇fi(x), s

)
,

∇fi(x) = 1
ni

∑ni

ν=1∇fi(x; ζi,ν) . (OPTSTATE)

Note that we use full-batch gradients computed at the server parameters x, not client parameters yi.

Local client updates. Each client i ∈ S performs K updates using U of the base algorithm and
a minibatch gradient. There are two variants possible corresponding to MIME and MIMELITE
differentiated using colored boxes. Starting from yi ← x, repeat the following K times

yi ← yi − ηU(gi, s) (CLIENTSTEP)

where gi ← ∇fi(yi; ζ) for MIMELITE, and gi ← ∇fi(yi; ζ)−∇fi(x; ζ) + 1
|S|
∑
j∈S ∇fj(x)

for MIME. MIMELITE simply uses the local minibatch gradient whereas MIME uses an SVRG

4

style correction [27]. This is done to reduce the noise from sampling a local mini-batch. While
this correction yields faster rates in theory (and in practice for convex problems), in deep learning
applications we found that MIMELITE closely matches the performance of MIME.

Finally, there are two modifications made in practical FL: we weight all averages across the clients
by the number of datapoints ni [43], and we perform K epochs instead of K steps [66].

4 Theoretical analysis of Mime

Table 1 summarizes the rates of MIME (highlighted in blue) and MIMELITE (highlighted in green)
and compares them to SERVER-ONLY methods when using SGD, Adam and momentum methods as
the base algorithms. We will first examine the convergence of MIME and MIMELITE with a generic
base optimizer and show that its properties are preserved in the federated setting. We then examine a
specific momentum based base optimizer, and prove that Mime and MimeLite can be asymptotically
faster than the best server-only method. This is the first result to prove the usefulness of local steps
and demonstrate asymptotic speed-ups.

4.1 Convergence with a generic base optimizer

We will prove a generic reduction result demonstrating that if the underlying base algorithm con-
verges, and is robust to slight perturbations, then MIME and MIMELITE also preserve the conver-
gence of the algorithm when applied to the federated setting with additinoal local steps.
Theorem I. Suppose that we have G2 inter-client gradient variance (A1), L-smooth {fi} (A2*),
and σ2 intra-client gradient variance (A3). Further, suppose that the updater U of our base-
optimizer B = (U ,V) satisfies i) linearity for a fixed state s: U(g1 + g2; s) = U(g1; s) + U(g2; s),
and ii) Lipschitzness: ‖U(g; s)‖ ≤ B‖g‖ for some B ≥ 0. Then, running MIME or MIMELITE
with K local updates and step-size η is equivalent to running a centralized algorithm with step-size
η̃ := Kη ≤ 1

2LB , and updates

xt ← xt−1 − η̃ U(gt + et , st−1) , and

st ← V(gt, st−1) , where we have
an unbiased gradient Et[gt] = ∇f(xt−1), with variance bounded as

Et‖gt −∇f(xt−1)‖2 ≤

{
G2

S MIME ,
G2

S + σ2

KS MIMELITE .

and finally a small error bounded as

1
B2L2η̃2 Et‖ et ‖2 ≤

{
Et‖gt‖2 MIME ,
Et‖gt‖2 +G2 + σ2

K MIMELITE .

Here, we have proven that MIME and MIMELITE truly mimic the centralized base algorithm with
very small perturbations—the magnitude of et is O(η̃2). The key to the result is the linearity of
the parameter update step U(· ; s). By separating the base optimizer into a very simple parameter
step U and a more complicated optimizer state update step V , we can ensure that commonly used
algorithms such as momentum, Adam, Adagrad, and others all satisfy this property. Armed with
this general reduction, we can easily obtain specific convergence results.
Corollary II ((Mime/MimeLite) with SGD). Given that the conditions in Theorem I are satisfied,
let us run T rounds withK local steps using SGD as the base optimizer and output xout. This output
satisfies E‖∇f(xout)‖2 ≤ ε for F := f(x0)− f?, G̃2 := G2 + σ2/K and

• µ-PL inequality: η = Õ
(

1
µKT

)
, and

T =

Õ
(
LG2

µSε + LF
µ log

(
1
ε

))
MIME ,

Õ
(
LG̃2

µSε + LG̃
µ
√
ε

+ LF
µ log

(
1
ε

))
MIMELITE .

• Non-convex: for η = O
(√

FS
LG̃2TK2

)
, and

T =

O
(
LG2F
Sε2 + LF

ε

)
MIME ,

O
(
LG̃2F
Sε2 + L2G̃F

ε3/2
+ LF

ε

)
MIMELITE .

5

Table 1: Number of communication rounds required to reach ‖∇f(x)‖2 ≤ ε (log factors are ig-
nored) with S clients sampled each round. All analyses except SCAFFOLD assume G2 bounded
gradient dissimilarity (A1). All analyses assume L-smooth losses, except MimeLiteMVR and
MimeMVR, which only assume δ bounded Hessian dissimilarity (A2). Convergence of SCAFFOLD
depends on the total number of clientsN which is potentially infinite. FEDAVG and MIMELITE are
slightly slower than the server-only methods due to additional drift terms in most cases. MIME is
the fastest and either matches or improves upon the optimal statistical rates (first term in the rates).
In fact, MimeMVR and MimeLiteMVR beat lower bounds for any server-only method when δ � L.

Algorithm Non-convex µ-PL inequality

SCAFFOLDa [32]
(
N
S

) 2
3 L
ε

N
S

+ L
µ

SGD
SERVER-ONLY [21] LG2

Sε2
+ L

ε
G2

µSε
+ L

µ

MimeLiteSGD≡ FedAvgSGD c LG2

Sε2
+ L2G

ε3/2
+ L

ε
G2

µSε
+ LG

µ
√
ε

+ L
µ

MimeSGD LG2

Sε2
+ L

ε
G2

µSε
+ L

µ

ADAM
SERVER-ONLY [75]b L

ε−G2/S
–

MimeLiteAdambc L
√
S

ε−G2/S
–

MimeAdamb L
ε−G2/S

–

Momentum Variance Reduction (MVR)
SERVER-ONLY [14] LG√

Sε3/2
+ L

ε
–

MimeLiteMVRd δ(G+σ)

ε3/2
+ G2+σ2

ε
+ δ

ε
–

MimeMVRd δG√
Sε3/2

+ G2

Sε
+ δ

ε
–

SERVER-ONLY lower bound [5] Ω
(

LG√
Sε3/2

+ G2

Sε
+ L

ε

)
Ω
(
G2

Sε

)
a Num. clients (N) can be same order as num. total rounds or even∞, making the bounds vacuous.
b Adam requires large batch-size S ≥ G2/ε to converge [50, 75]. Convergence of FedAdam with
client sampling is unknown ([49] only analyze with full client participation).
c RequiresK ≥ σ2/G2 number of local updates. Typically, intra-client variance is small (σ2 . G2).
d RequiresK ≥ L/δ number of local updates. Faster than the lower bound (and hence any SERVER-
ONLY algorithm) when δ � L i.e. our methods can take advantage of Hessian similarity, whereas
SERVER-ONLY methods cannot. In worst case, δ ≈ L and all methods are comparable.

If we take a sufficient number of local steps K ≥ G2/σ2, then we have G̃ = O(G) in the above
rates. On comparing with the rates in Table 1 for SERVER-ONLY SGD, we see that MIME exactly
matches its rates. MIMELITE matches the asymptotic term but has a few higher order terms. Note
that when using SGD as the base optimizer, MIMELITE becomes exactly the same as FEDAVG and
hence has the same rate of convergence.

Corollary III ((Mime/MimeLite) with Adam). Suppose that the conditions in Theorem I are satis-
fied, and further |∇jfi(x)| ≤ H for any coordinate j ∈ [d]. Then let us run T rounds using Adam
as the base optimizer withK local steps, β1 = 0, ε0 > 0, η ≤ ε20/KL(H+ε0), and any β2 ∈ [0, 1).
Output xout chosen randomly from {x1, . . .xT } satisfies E‖∇f(xout)‖2 ≤ ε for

T =


O
(
LF (H+ε0)

2

ε20(ε−G̃2/S)

)
MIME Adam ,

O
(
LF (H+ε0)

2
√
S

ε20(ε−G̃2/S)

)
MIMELITE Adam .

where F := f(x0)− f?, G̃2 := G2 + σ2/K.

Note that here ε0 represents a small positive parameter used in Adam for regularization, and is
different from the error ε. Similar to the SERVER-ONLY analysis of Adam [75], we assume β1 = 0

6

and that batch size is large enough such that S ≥ G2/ε. A similar analysis can also be carried out
for AdaGrad, and other novel variants of Adam [42].

4.2 Circumventing server-only lower bounds

The rates obtained above, while providing a safety-check, do not beat those of the SERVER-ONLY
approach. The previous best rates for cross-device FL correspond to MimeLiteSGD which is
O(LG

2

Sε2 + L2G
ε3/2

) [34, 36, 69]. While, using a separate server-learning rate can remove the effect
of the second term [33], this at best matches the rate of SERVER-ONLY SGD O(LG

2

Sε2). This is
significantly slower than simply using momentum based variance reduction (MVR) as in in the FL
setting (SERVER-ONLY MVR) which has a communication complexity of O(LG√

Sε3/2
) [14]. Thus,

even though the main reason for studying local-step methods was to improve the communication
complexity, none thus far show such improvement. The above difficulty of beating SERVER-ONLY
may not be surprising given the two sets of strong lower bounds known.

Necessity of local steps. Firstly, [5] show a gradient oracle lower bound of Ω(LG√
Sε3/2

). This
matches the complexity of MVR, and hence at first glance it seems that SERVER-ONLY MVR is
optimal. However, the lower bound is really only on the number of gradients computed and not on
the number of clients sampled (sample complexity) [18], or number of rounds of communication
required. In particular, multiple local updates increases number of gradients computed without
needing additional communication offers us a potential way to side-step such lower bounds. A
careful analysis of the bias introduced as a result of such local steps is a key part of our analysis.

Necessity of δ-BHD. A second set of lower bounds directly study the number of communication
rounds required in heterogeneous optimization [6, 69]. These results prove that there exist settings
where local steps provide no advantage and SERVER-ONLY methods are optimal. This however con-
tradicts real world experimental evidence [43]. As before, the disparity arises due to the contrived
settings considered by the lower bounds. For distributed optimization (with full client participation)
and convex quadratic objectives, δ-BHD (A2) was shown to be a sufficient [54, 51] and necessary
[6] condition to circumvent these lower bounds and yield highly performant methods. We simi-
larly leverage δ-BHD (A2) to design novel methods which significantly extend prior results to i) all
smooth non-convex functions (not just quadratics), and ii) cross-device FL with client sampling.

We now state our convergence results with momentum based variance reduction (MVR) as the base-
algorithm since it is known to be optimal in the SERVER-ONLY setting.
Theorem IV. For L-smooth f with G2 gradient dissimilarity (A1), δ Hessian dissimilarity (A2)
and F := (f(x0) − f?), let us run MVR as the base algorithm for T rounds with K ≥ L/δ local
steps and generate an output xout. This output satisfies E‖∇f(xout)‖2 ≤ ε for
• MimeMVR : η = O

(
min

(
1
δK , (SF

G2TK3)1/3
))

, momentum β = 1−O(δ2S2/3

(TG2)2/3
), and

T = O
(δGF√

Sε3/2
+
G2

Sε
+
δF

ε

)
.

• MimeLiteMVR : η = O
(

min
(

1
δK , (F

Ĝ2TK3
)1/3

))
, momentum β = 1−O(δ2

(TĜ2)2/3
), and

T = O
(δĜF
ε3/2

+
Ĝ2

ε
+
δF

ε

)
.

Here, we define Ĝ2 := G2 + σ2 and the expectation in E‖∇f(xout)‖2 ≤ ε is taken both over the
sampling of the clients during the running of the algorithm, the sampling of the mini-batches in local
updates, and the choice of xout (which is chosen randomly from the client iterates yi).

Remarkably, the rates of our methods are independent of L and only depend on δ. Thus, when
δ ≤ L and δ ≤ L/S for MimeMVR and MimeLiteMVR, the rates beat the server only lower bound of
Ω(LG√

Sε3/2
). In fact, if the Hessian variance is small and δ ≈ 0, our methods only needO(1/ε) rounds

to communicate. Intuitively, our results show that local steps are very useful when heterogeneity
(represented by δ) is smaller than optimization difficulty (captured by smoothness constant L).

MimeMVR uses a momentum parameter β of the order of (1 − O(TG2)−2/3) i.e. as T increases,
β asymptotically approaches 1. In contrast, previous analyses of distributed momentum (e.g. [73])
prove rates of the form G2

S(1−β)ε2 , which are worse than that of standard SGD by a factor of 1
1−β .

7

0 200 400 600 800 1000
0.66

0.76

0.86

ac
cu

ra
cy

Momentum methods

Mime
MimeLite
FedAvg
Scaffold
FedProx

0 200 400 600 800 1000

Impact of momentum

FedAvg, = 0.9
Mime, = 0.9
FedAvg, = 0
Mime, = 0

0 200 400 600 800 1000

Fixed vs. local momemntum

Mime
Loc-Mime

Figure 1: Mime, MimeLite, FedAvg, Scaffold, FedProx, and Loc-Mime with SGD+momentum
using 10 local epochs, run on EMNIST62 and a 2 hidden layer (300u-100) MLP. (Left) Mime and
MimeLite are nearly identical and outperform the rest (7× faster). (Center) Mime makes better
use of momentum than FedAvg, with a large increase in performance. (Right) Locally adapting
momentum slows down convergence and makes it more unstable.

Thus, ours is also the first result which theoretically showcases the usefulness of using large mo-
mentum in distributed and federated learning. While we only prove the utility of local steps for
MimeMVR, we believe our theory can be extended to other local update methods as well.

Our analysis is highly non-trivial and involves two crucial ingredients: i) computing the momentum
at the server level to ensure that it remains unbiased and then applying it locally during every client
update to reduce variance, and ii) carefully keeping track of the bias introduced via additional local
steps. Our experiments (Sec. 5) verify our theoretical insights are indeed applicable in deep learning
settings as well. See App. B for a proof sketch and App. G–H detailed proofs.

5 Experimental analysis on real world datasets

We run experiments on natively federated datasets to confirm our theory and accurately measure
real world performance. Our main findings are i) MIME and MIMELITE consistently outperform
FEDAVG, and ii) momentum and adaptivity significantly improves performance.

5.1 Setup
Algorithms. We consider three (meta) algorithms: FEDAVG, MIME, and MIMELITE. Each of
these adapt four base optimizers: SGD, momentum, Adam, and Adagrad.
FEDAVG follows [49] who run multiple epochs of SGD on each client sampled, and then aggregate
the net client updates. This aggregated update is used as a pseudo-gradient in the base optimizer
(called server optimizer). The learning rate for the server optimizer is fixed to 1 as in [67]. This is
done to ensure all algorithms have the same number of hyper-parameters.
MIME and MIMELITE follow Algorithm 4 and also run a fixed number of epochs on the client. How-
ever, note that this requires communicating both the full local-batch gradient as well as the parameter
updates doubling the communication required to be sent by the client. For a fairer comparison, we
split the sampled clients in MIME and MIMELITE into two groups–the first communicates only full
local-batch gradient and the latter communicates only parameter updates. Thus, all methods have
equal client communication to the server. This variant retains the convergence guarantees up to
constants (details in the Appendix). We also run Loc-MIME where instead of keeping the global
optimizer state fixed, we update it locally within the client. The optimizer state is reset after the
round finishes. In all methods, aggregation is weighted by the number of samples on the clients.

Datasets and models. We run five simulations on three real-world federated datasets: EMNIST62
with i) a linear classifier, ii) an MLP, and iii) a CNN, iv) a charRNN on Shakespeare, and v) an
LSTM for next word prediction on StackOverflow, all accessed through Tensorflow Federated [60].
The learning rates were individually tuned and other optimizer hyper-parameters such as β for mo-
mentum, β1, β2, ε0 for Adam and AdaGrad were left to their default values, unless explicitly stated
otherwise. We refer to Appendix C for additional setup details and discussion.

5.2 Ablation and comparative study
In order to study the different algorithms, we train a 2 hidden layer (300µ-100) MLP on EMNIST62
with 10 local epochs for 1k rounds and use SGD+momentum (with tuned β) as the base optimizer.

Mime ≈ MimeLite > FedAvg > SCAFFOLD > FedProx. Fig. 1 (left) shows MIME and
MIMELITE have nearly identical performance, and are about 7× faster than FedAvg. This implies

8

Table 2: Validation % accuracies after training for 1000 rounds. Best results for each dataset is
underlined and the best within each base optimizer is bolded. The number of clients sampled per
round has been reduced for MIME and MIMELITE to ensure all methods have equal client and
server communication. Final accuracies obtained by MIME and MIMELITE are competitive with
FEDAVG, especially with adaptive base optimizers. FEDAVG seems unstable with Adam.

EMNIST logistic EMNIST CNN Shakespeare StackOverflow

SGD FedAvgSGD 66.8 85.8 56.7 23.8
MimeLiteSGD 66.8 85.8 56.7 23.8
MimeSGD 67.4 85.3 56.1 12.5

MOMENTUM FedAvgMom 67.4 85.7 55.4 22.2
MimeLiteMom 67.4 86.0 49.8 19.9
MimeMom 67.5 85.9 53.6 19.3

ADAM FedAvgAdam 67.3 85.9 18.5 3.2
MimeLiteAdam 68.0 86.4 54.0 21.5
MimeAdam 68.0 86.6 54.1 22.8

ADAGRAD FedAvgAdagrad 67.6 86.3 55.5 24.2
MimeLiteAdagrad 66.6 85.5 56.8 23.8
MimeAdagrad 67.4 86.3 57.1 14.7

our strategy of applying momentum to client updates is faster than simply using server momentum.
FedProx [40] uses an additional regularizer µ tuned over [0.1, 0.5, 1] (µ = 0 is the same as FedAvg).
Regularization does not seem to reduce client drift but still slows down convergence [66]. SCAF-
FOLD [32] is also slower than Mime and FedAvg in this setup. This is because in cross-device
setting with a large number of clients (N = 3.4k) means that each client is visited less than 6 times
during the entire training (20 clients per round for 1k rounds). This means that the correction term
utilized by SCAFFOLD uses control-variates which are quite stale (computed about 200 rounds ago)
which slows down the convergence. In contrast, the SVRG correction term in Mime is computed
using clients sampled in the current or previous rounds, and so is much more accurate.
With momentum > without momentum. Fig. 1 (center) examines the impact of momentum on
FedAvg and Mime. Momentum slightly improves the performance of FedAvg, whereas it has a
significant impact on the performance of Mime. This is also in line with our theory and confirms
that Mime’s strategy of applying it locally at every client update makes better use of momentum.
Fixed > locally updated optimizer state. Finally, we check how the performance of Mime
changes if instead of keeping the momentum fixed throughout a round, we let it change. The latter
is a way to combine global and local momentum. The momentum is reset at the end of the round
ignoring the changes the clients make to it. Fig. 1 (right) shows that this worsens the performance,
confirming that it is better to keep the global optimizer state fixed as predicted by our theory.

Together, the above observations validate all aspects of Mime (and MimeLite) design: compute
statistics at the server level, and apply them unchanged at every client update.

5.3 Large scale comparison with equal server and client communication
We perform a larger scale study closely matching the setup of [49]. For both MIME and MIMELITE,
only half the clients compute and transmit the updated parameters, and other half transmit the full
local-batch gradients. Hence, client to server communication cost is the same for all methods for
all clients. However, MIME and MIMELITE require sending additional optimization state to the
clients. Hence, we also reduce the number of clients sampled in each round to ensure sum total of
communication at each round is 40× model size for EMNIST and Shakespeare experiments, and
100× model size for the StackOverflow next word prediction experiment.
Since we only perform 1 local epoch, the hyper-parameters (e.g. epsilon for adaptive methods) are
more carefully chosen following [49], and MIME and MIMELITE use significantly fewer clients per
round, the difference between FEDAVG and MIME is smaller here. Table 2 summarizes the results.
For the image classification tasks of EMNIST62 logistic and EMNIST62 CNN, Mime and MimeLite
with Adam achieve the best performance. Using momentum (both with SGD and in Adam) signif-
icantly improves their performance. In contrast, FedAvgAdam is more unstable with worse perfor-
mance. This is because FedAvg is excessively sensitive to hyperparameters (cf. App. E).

9

We next consider the character prediction task on Shakespeare dataset, and next word prediction
on StackOverflow. Here, the momentum based methods (SGD+momentum and Adam) are slower
than their non-momentum counterparts (vanilla SGD and AdaGrad). This is because the mini-batch
gradients in these tasks are sparse, with the gradients corresponding to tokens not in the mini-batch
being zero. This sparsity structure is however destroyed when using momentum or Adam. For the
same reason, Mime which uses an SVRG correction also significantly increases the gradient density.

Discussion. For traditional tasks such as image classification, we observe that Mime (especially
with Adam) usually outperforms MimeLite which in turn outperforms FedAvg. These methods are
able to successfully leverage momentum and adaptivity to improve performance. For tasks where
the client gradients are sparse, the SVRG correction used by Mime hinders performance. Adapting
our techniques to work with sparse gradients (à la Yogi [75]) could lead to further improvements.
Also, note that we reduce communication by naı̈vely reducing the number of participating clients
per round. More sophisticated approaches to save on client communication including quantization
or sparsification [58, 3], or even novel algorithmic innovations [1] could be explored. Further, server
communication could be reduced using memory efficient optimizers e.g. AdaFactor [55] or SM3 [4].

6 Conclusion
Our work initiated a formal study of the cross-device federated learning problem and provided the-
oretically justified algorithms. We introduced a new framework MIME which overcomes the natural
client-heterogeneity in such a setting, and can adapt arbitrary centralized algorithms such as Adam
without additional hyper-parameters. We demonstrated the superiority of MIME via strong conver-
gence guarantees and empirical evaluations. Further, we proved that a particular instance of our
method, MimeMVR, beat centralized lower-bounds, demonstrating that additional local steps can
yield asymptotic improvements for the first time. We believe our analysis will be of independent
interest beyond the federated setting for understanding the sample complexity of non-convex opti-
mization, and for yielding improved analysis of decentralized optimization algorithms.

References
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N What-

mough, and Venkatesh Saligrama. Federated learning based on dynamic regularization. In
International Conference on Learning Representations, 2021.

[2] Naman Agarwal, Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and Brendan McMa-
han. cpSGD: Communication-efficient and differentially-private distributed SGD. In Proceed-
ings of NeurIPS, pages 7575–7586, 2018.

[3] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. In Advances in Neu-
ral Information Processing Systems (NeurIPS), 2017.

[4] Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory-efficient adaptive opti-
mization. arXiv preprint arXiv:1901.11150, 2019.

[5] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake
Woodworth. Lower bounds for non-convex stochastic optimization. arXiv preprint
arXiv:1912.02365, 2019.

[6] Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning
and optimization. In Advances in neural information processing systems, pages 1756–1764,
2015.

[7] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan McMahan,
et al. Towards federated learning at scale: System design. arXiv preprint arXiv:1902.01046,
2019.

[8] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 1175–1191. ACM, 2017.

10

[9] Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar. Expand-
ing the reach of federated learning by reducing client resource requirements. arXiv preprint
arXiv:1812.07210, 2018.

[10] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMahan, Virginia
Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

[11] Zachary Charles and Jakub Konečnỳ. On the outsized importance of learning rates in local
update methods. arXiv preprint arXiv:2007.00878, 2020.

[12] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extend-
ing mnist to handwritten letters. In 2017 International Joint Conference on Neural Networks
(IJCNN), pages 2921–2926. IEEE, 2017.

[13] Ashok Cutkosky and Harsh Mehta. Momentum improves normalized SGD. arXiv preprint
arXiv:2002.03305, 2020.

[14] Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex
SGD. In Advances in Neural Information Processing Systems, pages 15210–15219, 2019.

[15] Aaron Defazio and Léon Bottou. On the ineffectiveness of variance reduced optimization
for deep learning. In Advances in Neural Information Processing Systems, pages 1753–1763,
2019.

[16] Stack Exchange. Stack exchange data dump. https: // archive. org/ details/
stackexchange , 2021.

[17] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. In Advances in Neural
Information Processing Systems, pages 689–699, 2018.

[18] Dylan J Foster, Ayush Sekhari, Ohad Shamir, Nathan Srebro, Karthik Sridharan, and Blake
Woodworth. The complexity of making the gradient small in stochastic convex optimization.
In Conference on Learning Theory, pages 1319–1345. PMLR, 2019.

[19] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. International Conference on Learning Representations (ICLR), 2019.

[20] Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A
client level perspective. arXiv preprint arXiv:1712.07557, 2017.

[21] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[22] Jenny Hamer, Mehryar Mohri, and Ananda Theertha Suresh. FedBoost: Communication-
efficient algorithms for federated learning. In 37th International Conference on Machine
Learning (ICML), 2020.

[23] Andrew Hard, Kurt Partridge, Cameron Nguyen, Niranjan Subrahmanya, Aishanee Shah, Pai
Zhu, Ignacio Lopez Moreno, and Rajiv Mathews. Training keyword spotting models on non-iid
data with federated learning. arXiv preprint arXiv:2005.10406, 2020.

[24] Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. Secure byzantine-robust machine learn-
ing. arXiv preprint arXiv:2006.04747, 2020.

[25] Arne Holst. Smartphone users worldwide 2016-2021. Statista https: // web. archive.
org/ web/ 20210608080335/ https: // www. statista. com/ statistics/ 330695/
number-of-smartphone-users-worldwide/ , 2019.

[26] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[27] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. In Advances in neural information processing systems, pages 315–323, 2013.

11

https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://web.archive.org/web/20210608080335/https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://web.archive.org/web/20210608080335/https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://web.archive.org/web/20210608080335/https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

[28] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977,
2019.

[29] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

[30] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine
robust optimization. In 38th International Conference on Machine Learning (ICML), 2021.

[31] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Se-
bastian U Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algo-
rithms in federated learning. arXiv preprint arXiv:2008.03606, 2020.

[32] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich,
and Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for on-device
federated learning. In 37th International Conference on Machine Learning (ICML), 2020.

[33] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U. Stich, and Martin Jaggi. Error feed-
back fixes SignSGD and other gradient compression schemes. In 36th International Confer-
ence on Machine Learning (ICML), 2019.

[34] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local SGD on
indentical and heterogeneous data. In Proceedings of AISTATS, 2020.

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[36] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U Stich.
A unified theory of decentralized SGD with changing topology and local updates. In 37th
International Conference on Machine Learning (ICML), 2020.

[37] Jakub Konečnỳ, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Feder-
ated optimization: Distributed machine learning for on-device intelligence. arXiv preprint
arXiv:1610.02527, 2016.

[38] Jakub Konečnỳ, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency.
arXiv preprint arXiv:1610.05492, 2016.

[39] Lihua Lei and Michael Jordan. Less than a single pass: Stochastically controlled stochastic
gradient. In AISTATS, pages 148–156, 2017.

[40] Tian Li, Anit Kumar Sahu, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia
Smith. On the convergence of federated optimization in heterogeneous networks. arXiv
preprint arXiv:1812.06127, 2018.

[41] Tian Li, Maziar Sanjabi, and Virginia Smith. Fair resource allocation in federated learning.
arXiv preprint arXiv:1905.10497, 2019.

[42] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao,
and Jiawei Han. On the variance of the adaptive learning rate and beyond. arXiv preprint
arXiv:1908.03265, 2019.

[43] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings
of AISTATS, pages 1273–1282, 2017.

[44] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. arXiv
preprint arXiv:1902.00146, 2019.

[45] Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

12

[46] Lam M. Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Stochastic recursive gradient
algorithm for nonconvex optimization. arXiv preprint arXiv:1705.07261, 2017.

[47] Kumar Kshitij Patel and Aymeric Dieuleveut. Communication trade-offs for synchronized
distributed SGD with large step size. In 33rd Conference on Neural Information Processing
Systems (NeurIPS), 2019.

[48] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated
learning. arXiv preprint arXiv:1912.13445, 2019.

[49] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

[50] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.
International Conference on Learning Representations (ICLR), 2018.

[51] Sashank J. Reddi, Jakub Konečnỳ, Peter Richtárik, Barnabás Póczós, and Alex Smola. Aide:
Fast and communication efficient distributed optimization. arXiv preprint arXiv:1608.06879,
2016.

[52] Jae Hun Ro, Ananda Theertha Suresh, and Ke Wu. FedJAX: Federated learning simulation
with JAX, 2020.

[53] Jae Hun Ro, Ananda Theertha Suresh, and Ke Wu. Fedjax: Federated learning simulation with
jax. arXiv preprint arXiv:2108.02117, 2021.

[54] Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization
using an approximate newton-type method. In International conference on machine learning,
pages 1000–1008, 2014.

[55] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

[56] Sebastian U. Stich. Local SGD converges fast and communicates little. International Confer-
ence on Learning Representations (ICLR), 2019.

[57] Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Bet-
ter rates for SGD with delayed gradients and compressed communication. arXiv preprint
arXiv:1909.05350, 2019.

[58] Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and H. Brendan McMahan. Distributed
mean estimation with limited communication. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pages 3329–3337. JMLR. org, 2017.

[59] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of ini-
tialization and momentum in deep learning. In International conference on machine learning,
pages 1139–1147, 2013.

[60] TFF. Tensorflow federated datasets. https: // www. tensorflow. org/ federated/ api_
docs/ python/ tff/ simulation/ datasets , 2020.

[61] Om Thakkar, Swaroop Ramaswamy, Rajiv Mathews, and Françoise Beaufays. Understanding
unintended memorization in federated learning. arXiv preprint arXiv:2006.07490, 2020.

[62] Quoc Tran-Dinh, Nhan H. Pham, Dzung T. Phan, and Lam M. Nguyen. Hybrid stochas-
tic gradient descent algorithms for stochastic nonconvex optimization. arXiv preprint
arXiv:1905.05920, 2019.

[63] Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of SGD for
over-parameterized models and an accelerated perceptron. arXiv preprint arXiv:1810.07288,
2018.

13

https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets

[64] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gra-
dient compression for distributed optimization. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[65] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal,
Jy-yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes, you really
can backdoor federated learning. arXiv preprint arXiv:2007.05084, 2020.

[66] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the
objective inconsistency problem in heterogeneous federated optimization. arXiv preprint
arXiv:2007.07481, 2020.

[67] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. SlowMo: Improving
communication-efficient distributed sgd with slow momentum. International Conference on
Learning Representations (ICLR), 2020.

[68] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian Makaya, Ting He,
and Kevin Chan. Adaptive federated learning in resource constrained edge computing systems.
IEEE Journal on Selected Areas in Communications, 37(6):1205–1221, 2019.

[69] Blake Woodworth, Kumar Kshitij Patel, and Nathan Srebro. Minibatch vs local SGD for
heterogeneous distributed learning. arXiv preprint arXiv:2006.04735, 2020.

[70] Blake Woodworth, Kumar Kshitij Patel, Sebastian U Stich, Zhen Dai, Brian Bullins, H Bren-
dan McMahan, Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD?
In 37th International Conference on Machine Learning (ICML), 2020.

[71] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.
arXiv preprint arXiv:1708.03888, 2017.

[72] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xi-
aodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for
deep learning: Training bert in 76 minutes. In International Conference on Learning Repre-
sentations, 2019.

[73] Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient
momentum sgd for distributed non-convex optimization. arXiv preprint arXiv:1905.03817,
2019.

[74] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted SGD with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 5693–5700, 2019.

[75] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive
methods for nonconvex optimization. In Advances in neural information processing systems,
pages 9793–9803, 2018.

[76] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning
Representations, 2020.

[77] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J Reddi,
Sanjiv Kumar, and Suvrit Sra. Why ADAM beats SGD for attention models. arXiv preprint
arXiv:1912.03194, 2019.

[78] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic
gradient descent. In Advances in neural information processing systems, pages 2595–2603,
2010.

14

Supplementary material for MIME

Contents of Appendix

A How momentum can help reduce client drift 16

B Proof sketch 17

C Experimental setup 18

C.1 Description of ablation study . 18

C.2 Description of large scale experiments . 18

C.3 Practicality of experiments . 19

C.4 Hyperparameter search . 19

C.5 Comparison with previous results . 20

C.6 Additional algorithmic details . 20

D Additional Adam experiments 21

E Stability of methods to hyper-parameters 21

F Technicalities 22

F.1 Assumptions and definitions . 22

F.2 Some technical lemmas . 23

F.3 Properties of functions with bounded Hessian dissimilarity 24

G Convergence with a generic base optimizer 25

G.1 Proof of Theorem I (generic reduction) . 25

G.2 Convergence of MimeSGD and MimeLiteSGD (Corollary II) 28

G.3 Convergence of MimeAdam and MimeLiteAdam (Corollary III) 31

H Circumventing server-only lower bounds 33

H.1 Algorithm descriptions . 34

H.2 Bias in updates . 34

H.3 Change in each client update . 35

H.4 Change in each round . 37

H.5 Final convergence rates . 41

I Algorithm pseudocodes 42

15

A How momentum can help reduce client drift

x?

x?1

x?2

xt
mt

xt+1
xt

xt+1

mt

FEDAVG updates MIME updates

Figure 2: Client-drift in FEDAVG (left) and MIME (right) is illustrated for 2 clients with 3 local steps
and momentum parameter β = 0.5. The local SGD updates of FEDAVG (shown using arrows for
client 1 and client2) move towards the average of client optima x?

1+x?
2

2 which can be quite different
from the true global optimum x?. Server momentum mt only speeds up the convergence to the
wrong point in this case. In contrast, MIME uses unbiased momentum computed at the server
parameter xt and applies it locally at every update. This keeps the updates of MIME closer to the
true optimum x?.
In this section we examine the tension between reducing communication by running multiple client
updates each round, and degradation in performance due to client drift [32]. To simplify the dis-
cussion, we assume a single client is sampled each round and that clients use full-batch gradients.

Server-only approach. A simple way to avoid the issue of client drift is to take no local steps. We
sample a client i ∼ C and run SGD with momentum (Mom) with momentum parameter β and step
size η:

xt = xt−1 − η ((1− β)∇fi(xt−1) + βmt−1) ,

mt = (1− β)∇fi(xt−1) + βmt−1 .
(2)

Here, the gradient ∇fi(xt) is unbiased i.e. E[∇fi(xt)] = ∇f(xt) and hence we are guaranteed
convergence. However, this strategy can be communication-intensive and we are likely to spend all
our time waiting for communication with very little time spent on computing the gradients.

FEDAVG approach. To reduce the overall communication rounds required, we need to make more
progress in each round of communication. The FedAvg meta algorithm utilizes a base optimizer, a
client learning rate and a server learning rate. Each client performs K local update steps of SGD
using the client learning rate and communicates the net update (difference between final and initial
parameters) to the server. This difference is then treated as a ‘pseudo-gradient’ and is input into the
optimizer (say momentum or Adam) to update the server parameters using the server learning rate.
When the base optimizer uses momentum, this momentum is computed at the server level using the
pseudo-gradients and is referred to as server momentum.

Starting from y0 = xt−1, FEDAVG [43] runs multiple SGD steps on the sampled client i ∼ C

yk = yk−1 − η∇fi(yk−1) for k ∈ [K] , (3)

and then a pseudo-gradient g̃t = −(yK −xt) replaces∇fi(xt−1) in the SGDm algorithm (2). This
is referred to as server-momentum since it is computed and applied only at the server level [26].
However, such updates give rise to client-drift resulting in performance worse than the naı̈ve server-
only strategy (2). This is because by using multiple local updates, (3) starts over-fitting to the local
client data, optimizing fi(x) instead of the actual global objective f(x). The net effect is that
FEDAVG moves towards an incorrect point (see Fig 2, left). If K is sufficiently large, approximately

yK x?i , where x?i := arg min
x

fi(x)

⇒ Ei∼C [g̃t] (xt − Ei∼C [x
?
i]) .

Further, the server momentum is based on g̃t and hence is also biased. Thus, it cannot correct for
the client drift. We next see how a different way of using momentum can mitigate client drift.

16

Mime approach. FEDAVG experiences client drift because both the momentum and the client
updates are biased. To fix the former, we compute momentum using only global optimizer state as
in (2) using the sampled client i ∼ C:

mt = (1− β)∇fi(xt−1) + βmt−1 . (4)

To reduce the bias in the local updates, we will apply this unbiased momentum every step k ∈ [K]:

yk = yk−1 − η((1− β)∇fi(yk−1) + βmt−1) . (5)

Note that the momentum term is kept fixed during the local updates i.e. there is no local momentum
used, only global momentum is applied locally. Since mt−1 is a moving average of unbiased gra-
dients computed over multiple clients, it intuitively is a good approximation of the general direction
of the updates. By taking a convex combination of the local gradient with mt−1, the update (5)
is potentially also less biased. In this way MIME combines the communication benefits of taking
multiple local steps and prevents client-drift (see Fig 2, right). Appendix B makes this intuition
precise.

B Proof sketch

In this section, we provide an intuition behind our proof of convergence of MimeMVR. There are
three main components: i) how momentum reduces the effect of client drift, ii) how local steps can
take advantage of Hessian similarity, and iii) why the SVRG correction improves constants.
Improving the statistical term via momentum. Intuitively, using momentum locally at every
client update reduces client drift by incorporating information about other clients from past rounds.
Assume that we sample a single client it in round t and that we use full-batch gradients. Also let the
local client update at step k round t be of the form

y ← y − ηdk . (6)

The ideal choice of update is of course d?k = ∇f(y) but however this is unattainable. Instead,
MIME with momentum β = 1− a uses dSGDm

k = m̃k ← a∇fi(y) + (1− a)mt−1 where mt−1 is
the momentum computed at the server. The variance of this update can then be bounded as

E‖m̃k −∇f(y)‖2 . a2 E‖∇fit(y)−∇f(y)‖2 + (1− a) E‖mt−1 −∇f(y)‖2

≈ a2G2 + (1− a) E‖mt−1 −∇f(xt−2)‖2 ≈ aG2 .

The last step follows by unrolling the recursion on the variance of m. We also assumed that η is
small enough that y ≈ xt−2. This way, momentum can reduce the variance of the update from
G2 to (aG2) by using past gradients computed on different clients. Of course, this also introduces
additional bias into the update. To reduce this bias requires slightly modifying the momentum
algorithm similar to [14]. The full analysis is carried out in Appendix H.

Improving the optimization term via local steps. The optimization (second) term in Theorem IV
is δK+L

εK . In contrast, the optimization term of the server-only methods is L/ε. Since in most cases
δ � L, the former can be significantly smaller than the latter. This rate also suggests that the best
choice of number of local updates is L/δ i.e. we should perform more client updates when they have
more similar Hessians. This generalizes results of [32] from quadratics to all functions.

This improvement is due to a careful analysis of the bias in the gradients computed during the local
update steps. Note that for client parameters yk−1, the gradient E[∇fit(yk−1)] 6= E[∇f(yk−1)]
since yk−1 was also computed using the same loss function fit . In fact, only the first gradient
computed at xt−1 is unbiased. Dropping the subscripts k and t, we can bound this bias as:

E[∇fi(y)−∇f(y)] = E[∇fi(y)−∇fi(x)︸ ︷︷ ︸
≈∇2fi(x)(y−x)

+∇f(x)−∇f(yi)︸ ︷︷ ︸
≈∇2f(x)(x−yi)

] + Ei[∇fi(x)]−∇f(x)︸ ︷︷ ︸
=0 since unbiased

≈ E[(∇2fi(x)−∇2f(x))(yi − x)] ≈ δ E[(yi − x)] .

Thus, the Hessian dissimilarity (A2) control the bias, and hence the usefulness of local updates.
This intuition can be made formal using Lemma 3. Note that this improved analysis is potentially
applicable to any local update methods and is not specific to Mime.

17

Mini-batches via SVRG correction. In our previous discussion about momentum and local steps,
we assumed that the clients compute full batch gradients and that only one client is sampled per
round. However, in practice a large number (S) of clients are sampled and further the clients use
mini-batch gradients. The SVRG correction reduces this within-client variance since

Var
(
∇fi(yi; ζ)−∇fi(x; ζ) + 1

|S|
∑
i∈S ∇fi(x)

)
. L2‖yi − x‖2 +

G2

S
≈ G2

S
.

Here, we used the smoothness of fi(·; ζ) and assumed that yi ≈ x since we don’t move too far
within a single round. Thus, the SVRG correction allows us to use minibatch gradients in the local
updates while still ensuring that the variance is of the order G2/S. In practical deep learning, this
SVRG correction may not very effective [15] and so can be dropped, though it is useful to derive the
optimal theoretical rates.

C Experimental setup

C.1 Description of ablation study

We train a 2 hidden layer MLP with 300u-100 neurons on the EMNIST62 (extended MNIST) dataset
[12]. The clients’ data is separated according to the original authors of the characters [10]. All
methods are augmented with momentum–Mime and MimeLite use momentum in the client updates,
and the others use server momentum. The momentum parameter is searched over β ∈ [0, 0.9, 0.99].
For Adam, we fix β1 = 0.9, β2 = 0.99, and ε = 10−3. For both FedProx and SCAFFOLD, β = 0
(no server momentum) yielded the best performance. For FedAvg, Mime, and MimeLite β = 0.9
was the fastest. For FedProx, the regularization parameter µ was searched over [0.1, 0.5, 1] and
µ = 0.1 had highest test accuracy.

C.2 Description of large scale experiments

We perform 4 tasks over 3 datasets: i) On the EMNIST62 dataset [12] we run a convex multi-class
(62 classes) logistic regression model, and ii) a convolution model with two CNN layers and two
dense layers and dropout. iii) On the SHAKESPEARE dataset, we train a single layer LSTM model
with state size of 256 and embedding size of 8 to predict the next character [43]. iv) Finally, on the
STACKOVERFLOW dataset [16], we train a next word prediction language model with embedding
size of 96, a LSTM layer of size 670, and a vocabulary size of 1000. In all cases we report the top-1
test accuracy in our experiments.

All datasets use the metadata indicating the original authors to separate them into multiple clients
yielding naturally partitioned datasets. Table 3 summarizes the statistics about the different
datasets. Note that the average number of rounds a client participates in (computed as sampled
clients×number of rounds/number of clients) provides an indication of how much of the training
data is seen with SHAKESPEARE being closest to the cross-silo setting and STACKOVERFLOW rep-
resenting the most cross-device in nature.

Table 3: Details about the datasets used and experiment setting.
EMNIST62 SHAKESPEARE STACKOVERFLOW

Clients 3,400 715 342,477
Examples 671,585 16,068 135,818,730
Batch size 10 10 10
Number of local epochs 1 1 1
Total number of rounds 1000 1000 1000
Avg. rounds each client participates 5.9 28 0.15

We use Tensorflow federated datasets [60] to generate the datasets. Our federated learning simula-
tion code is written in FedJAX [52, 53] and is open-sourced at github.cm/google/fedjax (see
documentation). Black and white was reversed in EMNIST62 (i.e. subtracted from 1) to make them
similar to MNIST. The preprocessing for SHAKESPEARE and STACKOVERFLOW datasets exactly
matches that of [49].

18

github.cm/google/fedjax
https://fedjax.readthedocs.io/en/latest/fedjax.algorithms.html#module-fedjax.algorithms.mime

Table 4: Effective number of sampled clients.
Total Comm. EMNIST62 SHAKESPEARE STACKOVERFLOW

FedAvg 2× 20 20 50
MimeLiteMom 5× 8 8 20
MimeLiteAdagrad 5× 8 8 20
MimeLiteAdam 6× 6 6 16
MimeMom 6× 6 6 16
MimeAdagrad 6× 6 6 16
MimeAdam 7× 5 5 14

C.3 Practicality of experiments

In the experiments we only cared about the number of communication rounds, ignoring that MIME
actually needs twice the number of bits per round and that the SERVER-ONLY methods have a much
smaller computational requirement. This is standard in the federated learning setting as introduced
by [43] and is justified because most of the time in cross-device FL is spent in establishing connec-
tions with devices rather than performing useful work such as communication or computation. In
other words, latency and not bandwidth or computation are critical in cross device FL. However, one
can certainly envision cases where this is not true. Incorporating communication compression strate-
gies [58, 3, 33, 64] or client-model compression strategies [9, 19, 22] into our MIME framework can
potentially address such issues and are important future research directions.

Regarding the algorithms evaluated, we chose not to include MVR as a base optimizer. This is
because it is not a popular choice is practice even in the centralized setting, and serves more as a
theoretical stand in to explain the benefit of the simpler SGD with momentum algorithm. Hence, we
wouldn’t expect MimeMVR to perform better than MimeMom. In general, our goal was to “mimic”
centralized methods – methods which have better empirical performance (momentum and Adam)
we showed also perform well in the federated setting when combined with Mime, and similarly
methods which have better theoretical rates (MVR) have good rates with Mime as well.

Further, as we noted previously, we believe both the datasets and the tasks being studied here are
close to real world settings since they contain natural heterogeneity. We now discuss our choice of
other parameters in the experiment setup (number of training rounds, sampled clients, batch-size,
etc.) Each round of federated learning takes 3 mins in the real world and is relatively independent
of the size of communication [7] implying that training 1000 rounds takes 2 days even for small
models. In contrast, running a centralized simulation takes about 15 mins. This underscores the
importance of ensuring that the algorithms for federated learning converge in as few rounds as
possible, as well as have very easy to set default hyper-parameters. Thus, in our experimental setup
we keep all parameters other than the learning rate to their default values. In practice, this learning
rate can be set by set using a small centralized dataset on the server (as in [23]). Thus, it is crucial
for federated frameworks to be able to translate algorithms which work well in centralized settings
directly to the federated setting without additinal hyper-parameter tuning. The choice of batch size
being 10 was made both keeping in mind the limited memory available to each client as well as
to match prior work. Finally, while we limit ourselves to sampling 20–50 workers per round due
to computational constraints, in real world FL thousands of devices are often available for training
simultaneously each round [7]. They also note that the probability of each of these devices being
available has clear patterns and is far from uniform sampling. Conducting a large scale experimental
study which mimics these alternate forms of heterogeneity is an important direction for future work.

C.4 Hyperparameter search

We run two hyper-parameter sweeps in our experiments: first a light setup which is reported in
the main paper, and one we believe reflects the real world performance, and second a heavy tuning
setting to showcase the performance of the methods as we vary the hyper-parameters.

Light-sweep setting (9×). For all Momentum methods, we pick momentum β = 0.9. For Adam
methods, we fix β1 = 0.9 and β2 = 0.99, and ε0 = 1× 10−7. For Adagrad we use the default
initialization value of 0.1 and use ε0 = 1× 10−7. None of the algorithms use weight decay, clipping

19

etc. The learning rate is then tuned to obtain the best test accuracy. For all experiments, unless
explicitly mentioned otherwise, the learning rate is searched over a grid (9×):

η ∈ [1, 1× 10−0.5, 1× 10−1, 1× 10−1.5, 1× 10−2, 1× 10−2.5, 1× 10−3, 1× 10−3.5, 1× 10−4] .

The server learning rate for all methods is kept at its default value of 1.

Heavy-sweep setting (567×). For all Momentum methods, we pick momentum β = 0.9. For
Adam methods, we fix β1 = 0.9 and β2 = 0.99. For Adagrad we use the default initialization value
of 0.1. None of the algorithms use weight decay, clipping etc. The learning rate is then tuned to
obtain the best test accuracy.

For all experiments, unless explicitly mentioned otherwise, the client learning rate is searched over
a grid (9×):

ηclient ∈ [1, 1× 10−0.5, 1× 10−1, 1× 10−1.5, 1× 10−2, 1× 10−2.5, 1× 10−3, 1× 10−3.5, 1× 10−4] .

Further, we also search for the server learning rate is searched over a grid (9×):

ηserver ∈ [1× 101, 1× 100.5, 1, 1× 10−0.5, 1× 10−1, 1× 10−1.5, 1× 10−2, 1× 10−2.5, 1× 10−3] .

Finally, for the adaptive methods such as Adam and Adagrad, we also tune the ε0 parameter over a
grid (7×):

ε0 ∈ [1, 1× 10−1, 1× 10−2, 1× 10−3, 1× 10−4, 1× 10−5, 1× 10−6, 1× 10−7] .

C.5 Comparison with previous results

As far as we are aware, [49] is the only prior work which conducts a systematic experimental study
of federated learning algorithms over multiple realistic datasets. The algorithms comparable across
the two works (e.g. FedAvgSGD, FedAvgMom, and FedAvgAdam) have qualitatively similar per-
formance except with one exception: FedAvgAdam consistently underperforms FedAvgMom. This
difference, as we show later, is because FedAvgAdam does not work with the default choices of
hyper-parameters such as ε and requires additional tuning. As we explain in Section C.3, we chose
to keep these parameters to the default values of their centralized counterparts to compare methods
in a ‘low-tuning’ setting. We also point that while FedAvgAdam struggles to perform in this setup,
MimeAdam and MimeLiteAdam are very stable and even often outperform their SGD counterparts.

C.6 Additional algorithmic details

Table 5: Decomposing base algorithms into a parameter update (U) and statistics tracking (V).
Algorithm Tracked statistics s Update step U Tracking step V
SGD – x− ηg –

SGDm/Mom m x− η((1− β)g + βm) m = (1− β)g + βm

AdaGrad v x− η
ε+
√
v
g v = g2 + v

Adam m,v x− η
ε+
√
v

((1− β1)g + β1m)
m = (1− β1)g + β1m
v = (1− β2)g2 + β2v

20

D Additional Adam experiments

0 200 400 600 800 1000
rounds

0.7

0.78

0.86

ac
cu

ra
cy

Adam methods on EMNIST62

FedAvgAdam
MimeAdam
MimeLiteAdam

0 200 400 600 800 1000
rounds

0.70

0.78

0.86

ac
cu

ra
cy

Adam methods on EMNIST62

MimeAdam
Loc-MimeAdam

Figure 3: Mime, MimeLite, FedAvg, and Loc-Mime with Adam using 10 local epochs, run on
EMNIST62 and a 2 hidden layer (300u-100) MLP. (Left) Mime and MimeLite are nearly identical
and outperform FedAvg. (Right) Locally adapting Adam state slows down convergence and makes
it more unstable. Both these results are consistent with the earlier momentum results.

E Stability of methods to hyper-parameters

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
epsilon (10X)

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

se
rv

er
_lr

 (
10

X
)

85.4 85.4 85.5 85.1 84.2 80.7 64.7

86.6 86.7 86.4 86.4 85.8 84.0 76.6

86.3 86.4 86.5 86.7 86.3 85.1 81.8

82.2 82.8 84.5 85.9 85.8 85.5 83.7

70.6 72.5 68.8 85.9 85.9 85.9 85.4

5.1 5.1 5.2 79.4 85.9 85.7 85.3

5.6 5.6 5.2 5.6 85.9 85.9 84.5

5.6 5.6 5.6 5.6 5.6 85.8 85.7

5.3 5.6 5.1 5.3 5.6 85.7 86.0
70

72

74

76

78

80

82

84

86

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
epsilon (10X)

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

se
rv

er
_lr

 (
10

X
)

86.6 86.4 86.6 86.4 86.0 84.1 80.3

86.6 86.5 86.5 86.4 85.9 84.6 82.7

87.0 87.0 86.9 86.6 86.4 85.1 84.4

87.2 87.1 87.2 87.1 86.6 86.0 85.3

87.2 87.0 87.2 87.1 86.5 85.7 85.4

87.2 87.0 87.2 87.0 86.6 85.9 85.7

87.2 87.1 87.1 86.9 86.6 86.5 86.5

87.1 87.1 87.0 87.1 86.6 86.4 86.1

5.6 5.6 5.6 71.8 83.0 86.2 85.5
70

72

74

76

78

80

82

84

86

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
epsilon (10X)

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

se
rv

er
_lr

 (
10

X
)

86.1 86.0 86.0 85.3 84.8 84.2 80.4

86.1 86.2 86.0 85.9 85.0 84.1 82.7

86.5 86.5 86.3 86.3 85.8 84.9 84.3

86.7 86.6 86.6 86.6 86.1 85.4 85.1

86.6 86.7 86.5 86.3 86.1 85.4 85.4

86.6 86.5 86.6 86.2 86.1 85.0 85.1

86.6 86.3 86.8 86.7 86.1 85.1 85.7

86.6 86.2 86.5 86.5 85.9 85.6 86.1

83.7 84.3 83.6 84.7 84.4 84.7 85.9
70

72

74

76

78

80

82

84

86

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
epsilon (10X)

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

se
rv

er
_lr

 (
10

X
)

48.0 48.0 47.9 48.0 48.0 47.4 44.3

64.1 64.1 64.1 64.1 64.0 63.6 60.6

76.3 76.3 76.4 76.3 76.3 76.1 73.9

81.9 81.9 81.9 81.9 81.8 81.7 80.8

84.6 83.8 84.5 84.6 83.9 83.7 83.0

85.8 85.8 85.7 85.6 85.8 85.7 85.3

86.1 85.6 85.7 85.3 85.5 85.5 86.0

84.4 84.5 84.3 84.4 84.7 84.9 84.6

85.0 85.2 84.3 84.4 84.9 85.1 84.5
70

72

74

76

78

80

82

84

86

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
epsilon (10X)

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

se
rv

er
_lr

 (
10

X
)

39.0 39.0 39.0 39.0 38.8 38.8 37.7

51.2 51.1 51.1 51.2 51.1 51.2 50.8

70.8 70.7 70.9 70.8 70.9 70.8 69.9

80.3 80.2 80.3 80.2 80.2 80.1 79.9

83.1 81.9 81.2 82.5 83.7 82.8 83.4

85.1 85.1 84.9 84.9 85.0 85.0 85.3

86.3 86.3 86.3 86.5 86.3 86.6 86.1

85.5 85.6 85.7 85.6 85.5 85.8 85.5

85.2 85.2 85.1 85.3 85.2 85.1 85.3
70

72

74

76

78

80

82

84

86

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
epsilon (10X)

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

se
rv

er
_lr

 (
10

X
)

37.5 37.3 37.4 37.3 37.3 37.2 35.7

50.8 50.7 50.7 50.7 50.6 50.7 50.1

66.9 66.9 66.9 66.9 66.9 66.7 66.2

77.2 77.2 77.1 77.1 77.1 77.1 76.9

81.8 81.8 81.8 81.7 81.8 81.8 81.7

84.6 84.6 84.6 84.4 84.4 84.5 84.4

85.9 85.8 85.8 85.8 86.0 85.9 86.0

85.3 84.9 84.6 84.9 84.9 85.0 85.0

84.0 83.5 83.3 83.6 84.0 83.9 83.9
70

72

74

76

78

80

82

84

86

Figure 4: Stability of adaptive methods with varying server learning: FedAvg (left), Mime (mid-
dle) and MimeLite (right) with Adam (top) and Adagrad (bottom) as base algorithms are run on
EMNIST62 with CNN. For each value of server learning rate (y-axis) and ε0 (x-axis), the client
learning rate was tuned over the 9× grid and the accuracy reported. The red box highlights the de-
fault configuration in a centralized setting. We see that FedAvgAdam is very sensitive to the server
learning rate and ε0, performing poorly in the default centralized parameter regimes. Mime and
MimeLite acheive their best performance with the centralized parameters. This justifies our claim
that Mime and MimeLite can adapt any centralized method with the same hyper-parameters and
only require tuning of a single learning rate. This, we believe, is crucial for real world deployment.

21

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
server_lr (10X)

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

method
FedAvgMom
MimeMom
MimeLiteMom
FedAvgSGD
MimeSGD

Figure 5: Stability of non-adaptive methods with varying server learning: FedAvg, Mime and
MimeLite with SGD and momentum (β = 0.9) as base algorithms are run on EMNIST62 with
CNN. For each value of server learning rate, the client learning rate was tuned over the 9× grid. The
momentum methods are more insensitive to the server learning rate than the SGD methods. Server
learning rate of 1 (default value) seems to work well for all methods.

F Technicalities

We examine some additional definitions and introduce some technical lemmas.

F.1 Assumptions and definitions

We make precise a few definitions and explain some of their implications. We first discuss the
two assumptions on the dissimilarity between the gradients (A1) and the Hessians (A2). Loosely,
these two quantities are an extension of the concepts of variance and smoothness which occur in
centralized SGD analysis to the federated learning setting. Just as the variance and smoothness
are completely orthogonal concepts, we can have settings where G2 (gradient dissimilarity) is large
while δ (Hessian dissimilarity) is small, or vice-versa.

Our assumption about the bound on the G gradient dissimilarity can easily be extended to (G,B)
gradient dissimilarity used by [33]:

Ei‖∇fi(x)‖2 ≤ G2 +B2‖∇f(x)‖2 . (7)

All the proofs in the paper extend in a straightforward manner to the above weaker notion. Since
this notion does not present any novel technical challenge, we omit it in the rest of the proofs. Note
however that the above weaker notion can potentially capture the fact that by increasing the model
capacity, we can reduce G. In the extreme case, by taking a sufficiently over-parameterized model,
it is possible to make G = 0 in certain settings [63]. However, this comes both at a cost of increased
resource requirements (i.e. higher memory and compute requirements per step) but can also result
in other constants increasing (e.g. B and L).

The second crucial definition we use in this work is that of δ bounded Hessian dissimilarity (A2).
This has been used previously in the analyses of distributed [54, 6, 51] and federated learning [32],
but has been restricted to quadratics. Here, we show how to extend both the notion as well as the
analysis to general smooth functions. The main manner we will use this assumption is in Lemma 3
to claim that for any x and y the following holds:

E‖∇fi(y; ζ)−∇fi(x; ζ) +∇f(x)−∇f(y)‖2 ≤ δ2‖y − x‖2 . (8)

Here the expectation is over the choice of client i. To understand what the above condition means,
it is illuminating to define Ψi(z) = fi(z; ζ)− f(z). Then, we can rewrite (A2) and (8) respectively
as

‖∇2Ψi(z)‖ ≤ δ and E‖∇Ψi(y)−∇Ψi(x)‖2 ≤ δ2‖y − x‖2 .
Thus (8) and (A2) are both different notions of smoothness of Ψi(x) (formal definition of smooth-
ness will follow soon). The latter definition closely matches the notion of squared-smoothness used
by [5] and is a promising relaxation of (A2). However, we run into some technical issues since in our
case the variable y can also be a random variable and depend on the choice of the client i. Extending

22

our results to this weaker notion of Hessian-similarity and proving tight non-convex lower bounds
is an exciting theoretical challenge.

Finally note that if the functions fi(x; ζ) are assumed to be smooth as in [54, 6, 32], then Ψi((x) is
2L-smooth. Thus, we always have that δ ≤ 2L. But, as shown in [54], it is possible to have δ � L
if the data distribution amongst the clients is similar. Further, the lower bound from [6] proves that
Hessian-similarity is the crucial quantity capturing the number of rounds of communication required
for distributed/federated optimization.

We next define the terms smoothness and strong-convexity which we repeatedly use in the paper.

(A2*) fi is almost surely L-smooth and satisfies:

‖∇fi(x; ζ)−∇fi(y; ζ)‖ ≤ L‖x− y‖ , for any x,y . (9)

The assumption (A2*) also implies the following quadratic upper bound on fi

fi(y) ≤ fi(x) + 〈∇fi(x),y − x〉+
L

2
‖y − x‖2 . (10)

Further, if fi is twice-differentiable, (A2*) implies that ‖∇2fi(x; ζ)‖ ≤ β for any x.
(A3) We assume that the intra-client gradient variance is bounded by σ2. For any client i, the

following holds almost surely at any fixed x:

Eζi [∇fi(x; ζ)] = ∇fi(x) , and Eζi‖∇fi(x; ζ)−∇fi(x)‖2 ≤ σ2 .

Note that we expect the intra-client variance to be smaller than inter-client variance and so
typically σ2 ≤ G2.

(A4) f satisfies the µ-PL inequality [29] for µ > 0 if:

‖∇f(x)‖2 ≥ 2µ(f(x)− f?) .

Note that PL-inequality is much weaker than the standard notion of strong-convexity, and in
fact is even satisfied by some non-convex functions [29].

F.2 Some technical lemmas

Now we cover some technical lemmas which are useful for computations later on. First, we state a
relaxed triangle inequality true for the squared `2 norm.
Lemma 1 (relaxed triangle inequality). Let {v1, . . . ,vτ} be τ vectors in Rd. Then the following are
true:

1. ‖vi + vj‖2 ≤ (1 + c)‖vi‖2 + (1 + 1
c)‖vj‖2 for any c > 0, and

2. ‖
∑τ
i=1 vi‖2 ≤ τ

∑τ
i=1‖vi‖2.

Proof. The proof of the first statement for any c > 0 follows from the identity:

‖vi + vj‖2 = (1 + c)‖vi‖2 + (1 + 1
c)‖vj‖2 − ‖

√
cvi + 1√

c
vj‖2 .

For the second inequality, we use the convexity of x→ ‖x‖2 and Jensen’s inequality∥∥∥∥1

τ

τ∑
i=1

vi

∥∥∥∥2 ≤ 1

τ

τ∑
i=1

∥∥vi∥∥2 .
Next we state an elementary lemma about expectations of norms of random vectors.
Lemma 2 (separating mean and variance). Let {Ξ1, . . . ,Ξτ} be τ random variables in Rd which are
not necessarily independent. First suppose that their mean is E[Ξi] = ξi and variance is bounded
as E[‖Ξi − ξi‖2] ≤ σ2. Then, the following holds

E[‖
τ∑
i=1

Ξi‖2] ≤ ‖
τ∑
i=1

ξi‖2 + τ2σ2 .

23

Now instead suppose that their conditional mean is E[Ξi|Ξi−1, . . .Ξ1] = ξi i.e. the variables {Ξi−
ξi} form a martingale difference sequence, and the variance is bounded by E[‖Ξi − ξi‖2] ≤ σ2 as
before. Then we can show the tighter bound

E[‖
τ∑
i=1

Ξi‖2] ≤ 2‖
τ∑
i=1

ξi‖2 + 2τσ2 .

Proof. For any random variable X , E[X2] = E[(X − E[X])2] + (E[X])2 implying

E[‖
τ∑
i=1

Ξi‖2] = ‖
τ∑
i=1

ξi‖2 + E[‖
τ∑
i=1

Ξi − ξi‖2] .

Expanding the above expression using relaxed triangle inequality (Lemma 1) proves the first claim:

E[‖
τ∑
i=1

Ξi − ξi‖2] ≤ τ
τ∑
i=1

E[‖Ξi − ξi‖2] ≤ τ2σ2 .

For the second statement, ξi is not deterministic and depends on Ξi−1, . . . ,Ξ1. Hence we have to
resort to the cruder relaxed triangle inequality to claim

E[‖
τ∑
i=1

Ξi‖2] ≤ 2‖
τ∑
i=1

ξi‖2 + 2 E[‖
τ∑
i=1

Ξi − ξi‖2]

and then use the tighter expansion of the second term:

E[‖
τ∑
i=1

Ξi − ξi‖2] =
∑
i,j

E
[
(Ξi − ξi)>(Ξj − ξj)

]
=
∑
i

E
[
‖Ξi − ξi‖2

]
≤ τσ2 .

The cross terms in the above expression have zero mean since {Ξi−ξi} form a martingale difference
sequence.

F.3 Properties of functions with bounded Hessian dissimilarity

We now study two lemmas which hold for any functions which satisfy (A2) and (A3). The first is
closely related to the notion of smoothness (A2*).
Lemma 3 (similarity). The following holds for any two functions fi(·) and f(·) satisfying (A2) and
(A3), and any x,y:

‖∇fi(y; ζ)−∇fi(x; ζ) +∇f(x)−∇f(y)‖2 ≤ δ2‖y − x‖2 .

Proof. Consider the function Ψ(z) := fi(z; ζ) − f(z). By the assumption (A2), we know that
‖∇2Ψ(z)‖ ≤ δ for all z i.e. Ψ is δ-smooth. By standard arguments based on taking limits [45], this
implies that

‖∇Ψ(y)−∇Ψ(x)‖ ≤ δ‖y − x‖ .
Plugging back the definition of Ψ into the above inequality proves the lemma.

Next, we see how weakly-convex functions satisfy a weaker notion of “averaging does not hurt”.
This is used to get a handle on the effect of averaging of parameters in FedAvg.
Lemma 4 (averaging). Suppose f is δ-weakly convex. Then, for any γ ≥ δ, and a sequence of
parameters {yi}i∈S and x:

1

|S|
∑
i∈S

f(yi) +
γ

2
‖x− yi‖2 ≥ f(ȳ) +

γ

2
‖x− ȳ‖2 , where ȳ :=

1

|S|
∑
i∈S

yi .

Proof. Since f is δ-weakly convex, Φ(z) := f(z) + γ
2 ‖z − x‖

2 is convex. This proves the claim
since 1

|S|
∑
i∈S Φ(yi) ≥ Φ(ȳ) by convexity.

24

G Convergence with a generic base optimizer

Let us rewrite the Mime and MimeLite updates using notation convenient for analysis. In each round
t, we sample clients St such that |St| = S. The server communicates the server parameters xt−1 as
well as the average gradient across the sampled clients ct defined as

ct =
1

S

∑
i∈St

∇fi(xt−1) . (11)

Note that computing ct (required only by Mime but not by MimeLite) itself requires additional
communication. In this proof, we do not make any assumption on how ct is computed as long as it
is unbiased and is computed over S clients. In particular, it can either be computed on the sampled
St or a different set of an independent sampled clients S̃t.
Then each client i ∈ St makes a copy yti,0 = xt−1 and perform K local client updates. In each
local client update k ∈ [K], the client samples a dataset ζti,k and

yti,k = yti,k−1 − ηU(∇fi(yti,k−1; ζti,k)−∇fi(xt−1; ζti,k) + ct; st−1) (Mime client update)

= yti,k−1 − ηU(∇fi(yti,k−1; ζti,k); st−1) . (MimeLite client update)
After K such local updates, the server then aggregates the new client parameters as

xt =
1

S

∑
i∈St

yti,K (Update server parameters)

st = V(ct, st−1) . (Update server statistics)

G.1 Proof of Theorem I (generic reduction)

Computing server update.
Lemma 5 (Deviation from central update.). For a linear updater U the server update for Mime can
be written as

xt = xt−1 − η̃U

(
1

S

∑
i

∇fi(x) + et ; st−1

)
,

and for MimeLite is becomes

xt = xt−1 − η̃U

 1

KS

∑
i,k

∇fi(x; ζi,k) + et ; st−1

 ,

for η̃ := Kη. The error is defined as et = 1
KS

∑
i,k(∇fi(yi,k−1; ζi,k)−∇fi(x; ζi,k))

Proof. Because the updater U is linear in its first parameter, we can rewrite the update to the server
for MimeLite as

xt − xt−1 =
1

S

∑
i∈St

K∑
k=1

−ηU(∇fi(yti,k−1; ζti,k); st−1)

= ηKU

 1

KS

∑
i,k

∇fi(yti,k−1; ζti,k); st−1


We drop the dependence on t when obvious from context and i by default sums over St and k over
[K] by default. Using our definition of et we have

xt − xt−1 = ηKU

 1

KS

∑
i,k

∇fi(yti,k−1; ζti,k); st−1


= η̃U

 1

KS

∑
i,k

∇fi(x; ζi,k) + et; st−1

 .

25

Now let us examine the update of Mime. Again assuming K is a multiple of epoch, we have∑
i,k∇fi(x; ζti,k) = K

∑
i∇fi(x) = KSx. Hence,

xt − xt−1 =
1

S

∑
i∈St

K∑
k=1

−ηU(∇fi(yi,k−1; ζti,k)−∇fi(x; ζti,k) + c; st−1)

= ηKU
(
c+ et; st−1

)
= ηKU

(
1

S

∑
i

∇fi(x) + et; st−1

)
.

Thus we showed the lemma for both Mime and MimeLite.

Lemma 6 (Defining error). For et defined in Lemma 5, assuming all functions fi(· , ζ) are L-
smooth, we have

E‖et‖2 ≤ L2EtK , where EtK :=
1

KS

∑
i,k

E‖yi,k−1 − x‖2 .

Proof. Using the smoothness of the individual functions and the definition of et,

E‖et‖2 = E‖ 1

KS

∑
i,k

(∇fi(yi,k−1; ζi,k)−∇fi(x; ζi,k))‖2

≤ 1

KS

∑
i,k

E‖∇fi(yi,k−1)−∇fi(x; ζi,k)‖2 ≤ L2EtK .

Henceforth, we will call EtK as the error, or as the client-drift following [32].

Bounding error in MimeLite. Now we will try bound the client drift Et for MimeLite.

Lemma 7 (MimeLite error). Suppose that all functions fi(· , ζ) are L-smooth (A2*), σ2 variance
(A3), and (A1) is satisfied, and the updater U has B-Lipschitz updates. Then using step-size η̃ ≤

1
2BL ,

1

18B2η̃2
EK ≤ E‖∇f(x)‖2 +G2 +

σ2

2K
.

Proof. For K = 1, we have E‖yi,1 − x‖2 ≤ B2η2(G2 + σ2) + B2η2 E‖∇f(x)‖2. The lemma
is easily shown to be true. Assuming K ≥ 2 henceforth, and starting from the client update of
MimeLite we have

E‖yi,k − x‖2 = E‖yi,k−1 − ηU(∇fi(yti,k−1; ζti,k); st−1)− x‖2

≤ E‖yi,k−1 − ηU(∇fi(yti,k−1; st−1)− x‖2 +B2η2σ2

≤
(

1 +
1

K − 1

)
E‖yi,k−1 − x‖2 +Kη2 E‖U(∇fi(yti,k−1; st−1)‖2 +B2η2σ2

≤
(

1 +
1

K − 1

)
E‖yi,k−1 − x‖2 +KB2η2 E‖∇fi(yi,k−1)±∇fi(x)‖2 +B2η2σ2

≤
(

1 +
1

K − 1

)
E‖yi,k−1 − x‖2

+ 2KB2η2 E‖∇fi(x)‖2 + 2KB2L2η2 E‖yi,k−1 − x‖2 +B2η2σ2

≤
(

1 +
2

K − 1

)
E‖yi,k−1 − x‖2 + 2KB2η2 E‖∇f(x)‖2 + 2KB2η2G2 +B2η2σ2 .

26

Here, we used the condition on our step size that η̃ = Kη ≤ 1
2LB , which implies that 2KB2L2η2 ≤

1
K−1 . Unrolling this recursion, we have

E‖yi,k − x‖2 ≤
(
2KB2η2 E‖∇f(x)‖2 + 2KB2η2G2 +B2η2σ2

) K∑
k=1

(
1 +

2

K − 1

)k
.

Note that
(

1 + 2
K−1

)k
≤ 9. Averaging then over k and i, we get

EtK ≤ 18K2B2η2 E‖∇f(x)‖2 + 18K2B2η2G2 + 9KB2η2σ2 .

Finally, recalling that η̃ = Kη finishes the lemma.

Bounding error in Mime. Next we will try bound the client drift Et for Mime. The additional
SVRG correction term used in Mime improves the bound on the error.

Lemma 8 (Mime Error). Suppose that all functions fi(· , ζ) are L-smooth (A2*), σ2 variance (A3),
and (A1) is satisfied, and the updater U has B-Lipschitz updates. Then using step-size η̃ ≤ 1

2BL ,

EK ≤ 18B2η̃2 E

∥∥∥∥∥ 1

S

∑
i

∇if(x)

∥∥∥∥∥
2

.

Proof. For K = 1, the Mime update loos like

E‖yi,1 − x‖2 = η2 E‖U
(
c; st−1

)
‖2

≤ η2B2 E‖c‖2 .

Assuming K ≥ 2 henceforth, and starting from the client update of Mime we have

E‖yi,k − x‖2 = E‖yi,k−1 − ηU(∇fi(yi,k−1; ζti,k)−∇fi(x; ζti,k) + ct; st−1)− x‖2

≤
(

1 +
1

K − 1

)
E‖yi,k−1 − x‖2

+Kη2 E‖U(∇fi(yi,k−1; ζti,k)−∇fi(x; ζti,k) + ct; st−1)‖2

≤
(

1 +
1

K − 1

)
E‖yi,k−1 − x‖2 +Kη2B2 E‖∇fi(yi,k−1; ζti,k)−∇fi(x; ζti,k) + ct‖2

≤
(

1 +
1

K − 1

)
E‖yi,k−1 − x‖2

+ 2Kη2B2 E‖∇fi(yi,k−1; ζti,k)−∇fi(x; ζti,k)‖2 + 2Kη2B2 E‖ct‖2

≤
(

1 +
1

K − 1
+ 2Kη2B2L2

)
E‖yi,k−1 − x‖2 + 2Kη2B2 E‖ct‖2

≤
(

1 +
2

K − 1

)
E‖yi,k−1 − x‖2 + 2Kη2B2 E‖ct‖2 .

Here, we used the condition on our step size that η̃ = Kη ≤ 1
2LB , which implies that 2KB2L2η2 ≤

1
K−1 . Unrolling this recursion, we have

E‖yi,k − x‖2 ≤ 2KB2η2 E‖ct‖2
K∑
k=1

(
1 +

2

K − 1

)k
≤ 18K2B2η2 E‖ct‖2 .

Note that
(

1 + 2
K−1

)k
≤ 9. Averaging then over k and i, recalling that η̃ = Kη get

EtK ≤ 18B2η̃2 E‖ct‖2 .

27

Putting it together (Theorem I).
Lemma 9. The updates of Mime and MimeLite for gt satisfying E[gt] = ∇f(xt−1), and we have
for η̃ ≤ 1

2BL

xt = xt−1 − η̃U(ct + et; st−1)

st = V(ct; st−1) .

Where, we have

1
18B2L2η̃2 Et‖ et ‖2 ≤

{
E‖ct‖2 MIME ,
E‖∇f(xt)‖2 +G2 + σ2

2K MIMELITE .

Proof. Now, combining Lemmas 5, 6, shows that running Mime or MimeLite is equivalent to

xt = xt−1 − η̃U(gt + et; st−1)

st = V(gt; st−1) ,

where for Mime we use

gtMime =
1

S

∑
i

∇fi(x) with E[gtMime] = ∇f(xt−1) and E‖gtMime −∇f(xt−1)‖2 ≤ G2

S
.

and for MimeLite we use

gtMimeLite =
1

KS

∑
i,k

∇fi(x; ζi,k) with E[gtMime] = ∇f(xt−1) and E‖gtMime−∇f(xt−1)‖2 ≤ G2

S
+
σ2

KS
.

This shows the first part of the theorem. For the second part of the theorem, using the bound from
Lemma 8 for Mime,

E‖et‖ ≤ L2EtK ≤ 18L2B2η̃2 E‖ct‖2 .

For MimeLite, we will instead use the bound from Lemma 7,

E‖etMimeLite‖ ≤ L2EtK +
σ2

KS
≤ 18L2B2η̃2 E‖∇f(xt)‖2 + 18L2B2η̃2G2 +

9L2B2η̃2σ2

K
+

σ2

KS
.

Note that the Lemma we proved here is slightly stronger than the theorem in the main section (up to
constants which were suppressed).

G.2 Convergence of MimeSGD and MimeLiteSGD (Corollary II)

Theorem I shows that Mime and MimeLite mimic a centralized algorithm quite closely up to error
O(η̃2). Then, analyzing the sensitivity of the base algorithm to such perturbation yields specific
rates of convergence. We perform such an analysis using SGD as our base optimizer.

Properties of SGD as the base optimizer:

• st is empty i.e. there are no global statistics used.
• U(g; st−1) = g for any g and B = 1.

With this in mind, we proceed.

Lemma 10 (Progress in one round). Given that f is L-smooth, and for any step-size η̃ ≤ 1
2(B+2)L

for B ≥ 1 we have

f(xt) ≤ f(xt−1)− η̃

4
E‖∇f(xt−1)‖2 + η̃ E‖et‖2 +

Lη̃2G2

S
.

28

Proof. Starting from the update equation and the smoothness of f , we have

E f(xt) ≤ E f(xt−1) + E〈∇f(xt−1),xt − xt−1〉+
L

2
E‖xt − xt−1‖2

= E f(xt−1)− η̃ E‖∇f(xt−1)‖2 + η̃〈∇f(xt−1), et〉+
Lη̃2

2
E‖ct + et‖2

≤ E f(xt−1)− η̃

2
E‖∇f(xt−1)‖2 +

η̃

2
‖et‖2 +

2Lη̃2

2
E‖ct‖2 +

2Lη̃2

2
E‖et‖2

≤ E f(xt−1)−
(
η̃

2
− 2Lη̃2

2

)
E‖∇f(xt−1)‖2 +

(
Lη̃2 +

η̃

2

)
E‖et‖2 +

2Lη̃2G2

2S
.

Using the bound on the step size that η̃ ≤ 1
4L yields the lemma.

One round progress for MimeSGD. Next, we specialize the convergence rate for Mime.

Lemma 11. Suppose f is a L-smooth function satisfying PL-inequality for µ ≥ 0 (µ = 0 corre-
sponds to the general case). Running MimeSGD for η̃ ≤ 1

12BL satisfies

η̃

16
E‖∇f(xt−1)‖2 ≤ (1− µη̃

8)(f(xt−1)− f?)− (f(xt)− f?) +
3Lη̃2G2

S
.

Proof. Recall from Lemma 9 that for Mime,

E‖et‖2 ≤ 18L2B2η̃2 E‖ct‖2 ≤ 18L2B2η̃2 E‖∇f(xt−1)‖2 +
18L2B2η̃2G2

S
.

Combining this with Lemma 10 yields the following progress for Mime

f(xt) ≤ f(xt−1)−
(
η̃

4
− 18L2B2η̃3

)
E‖∇f(xt−1)‖2 +

(Lη̃2 + 18L2B2η̃3)G2

S

≤ f(xt−1)− η̃

8
E‖∇f(xt−1)‖2 +

3Lη̃2G2

S
.

Here, we used the bound on the step size that η̃ ≤ 1
12LB implies 18L2B2η̃2 ≤ 1

8 . Now using
PL-inequality, we can write

f(xt)− f? ≤ f(xt−1)− f? − µη̃

8
(f(xt−1)− f?)− η̃

16
E‖∇f(xt−1)‖2 +

3Lη̃2G2

S
.

This yields the lemma.

We are now ready to derive the convergence rate.

Convergence rate of MimeSGD on general non-convex functions. Set µ = 0 in Lemma 11 and
sum over t

1

T

T∑
t=1

E‖∇f(xt−1)‖2 ≤ 16(f(x0)− f?)
η̃T

+
48Lη̃G2

S

≤ 16

√
3LG2(f(x0)− f?)

ST
+

192BL(f(x0)− f?)
T

.

The final step used a step-size of η̃ = min

(
1

12BL ,
1
4L ,
√

S(f(x0)−f?)
3LTG2

)
. Here, we used xout = xτ

where τ is uniformly at random chosen in [T].

29

Convergence rate of MimeSGD on PL-inequality. Multiply Lemma 11 by (1− µη̃
8)T−t and sum

over t
T∑
t=1

(1− µη̃
8)T−t E‖∇f(xt−1)‖2 ≤

T∑
t=1

(1− µη̃
8)T−(t−1)

16(f(xt−1)− f?)
η̃

− (1− µη̃
8)T−t

16(f(xt)− f?)
η̃

+ (1− µη̃
8)T−t

48Lη̃G2

S

≤ (1− µη̃
8)T

16(f(x0)− f?)
η̃

+

T∑
t=1

(1− µη̃
8)T−t

48Lη̃G2

S
.

Output xout = xτ where τ is chosen with probability proportional to (1− µη̃
8)T−t. Then, this yields

E‖∇f(xout)‖2 ≤ (1−µη̃8)T
16(f(x0)− f?)

η̃
+

48Lη̃G2

S
≤ Õ

(
σ2

µT
+ L(f(x0)− f?) exp

(
− µT

12BL

))
.

Using an appropriate step-size η̃ yields the final rate (see Lemma 1 of [32]).

One round progress for MimeLiteSGD. Next, we specialize the convergence rate for MimeLite.

Lemma 12. Suppose f is a L-smooth function satisfying PL-inequality for µ ≥ 0 (µ = 0 corre-
sponds to the general case). Running MimeLiteSGD for η̃ ≤ 1

12BL satisfies

η̃

16
E‖∇f(xt−1)‖2 ≤ (1− µη̃

8)(f(xt−1)−f?)−(f(xt)−f?)+
Lη̃2G2

S
+18L2B2η̃3

(
G2 + σ2/K

)
.

Proof. Recall from Lemma 9 that,

E‖et‖2 ≤ 18L2B2η̃2 E‖ct‖2 ≤ 18L2B2η̃2 E‖∇f(xt−1)‖2 + 18L2B2η̃2G2 +
9L2B2η̃2σ2

K
.

Combining this with Lemma 10 yields the following progress for Mime

f(xt) ≤ f(xt−1)−
(
η̃

4
− 18L2B2η̃3

)
E‖∇f(xt−1)‖2 +

Lη̃2G2

S
+ 18L2B2η̃3

(
G2 + σ2/K

)
≤ f(xt−1)− η̃

8
E‖∇f(xt−1)‖2 +

Lη̃2G2

S
+ 18L2B2η̃3

(
G2 + σ2/K

)
.

Here, we used the bound on the step size that η̃ ≤ 1
12LB implies 18L2B2η̃2 ≤ 1

8 . Now using
PL-inequality, we can write

f(xt)− f?−(f(xt−1)− f?) ≤

− µη̃

8
(f(xt−1)− f?)− η̃

16
E‖∇f(xt−1)‖2 +

Lη̃2G2

S
+ 18L2B2η̃3

(
G2 + σ2/K

)
.

This yields the lemma.

We are now ready to derive the convergence rate.

Convergence rate of MimeLiteSGD on general non-convex functions. Define G̃2 = G2 +
σ2/K. Set µ = 0 in Lemma 12 and sum over t

1

T

T∑
t=1

E‖∇f(xt−1)‖2 ≤ 16(f(x0)− f?)
η̃T

+
16Lη̃G2

S
+ 288L2B2η̃2G̃2

≤ 16

√
LG2(f(x0)− f?)

ST
+ 84

(
LG̃(f(x0)− f?)

T

)2/3

+
192BL(f(x0)− f?)

T
.

The final step used an appropriate step-size of η̃, see Lemma 2 of [32]. Here, we used xout = xτ

where τ is uniformly at random chosen in [T]. Finally note that if K ≥ σ2

G2 , then G̃2 ≤ 2G2.

30

Convergence rate of MimeLiteSGD on PL-inequality. Multiply Lemma 12 by (1− µη̃
8)T−t and

sum over t
T∑
t=1

(1− µη̃
8)T−t E‖∇f(xt−1)‖2 ≤

T∑
t=1

(1− µη̃
8)T−(t−1)

16(f(xt−1)− f?)
η̃

− (1− µη̃
8)T−t

16(f(xt)− f?)
η̃

+

T∑
t=1

(1− µη̃
8)T−t

(
16Lη̃G2

S
+ 288L2B2η̃2G̃2

)
≤ (1− µη̃

8)T
16(f(x0)− f?)

η̃

+

T∑
t=1

(1− µη̃
8)T−t

(
16Lη̃G2

S
+ 288L2B2η̃2G̃2

)
.

Output xout = xτ where τ is chosen with probability proportional to (1− µη̃
8)T−t. Then, this yields

with appropriate step-size η̃ yields the final rate (see Lemma 1 of [32]).

E‖∇f(xout)‖2 ≤ Õ

(
σ2

µT
+
L2G̃2

µ2T 2
+ L(f(x0)− f?) exp

(
− µT

12BL

))
.

G.3 Convergence of MimeAdam and MimeLiteAdam (Corollary III)

We will largely follow the convergence analysis of [75] for the analysis of Adam. A crucial differ-
ence between their setting and ours is that in our algorithm we use the global statistics (second order
moment) corresponding to t−1 i.e.

√
vt−1 instead of

√
vt where the

√
· operator is applied element

wise. Practically, this does not make a significant difference since the discount (momentum) factor
for the second momentum is very large. Theoretically however, this difference simplifies our proof
significantly removing otherwise hard to handle stochastic dependencies.

In this section, we will use Adam as our base optimizer with ε0 > 0 parameter for stability and
β1 = 0 (i.e. RMSProp). This is identical to the setting in the centralized algorithm analyzed by [75].
The properties of our base optimizer are then:

• st = vt which is a running average estimate of the second moment and satisfies vt > 0.
• U(g;vt−1) = g√

vt−1+ε0
for any g. This update for any vt−1 is B-Lipschitz for B = 1

ε0
.

In this sub-section, all operations on vectors (multiplication, division, addition, comparison) are
applied element-wise with appropriate broad-casting.

One round progress of Adam.
Lemma 13 (Effective step-sizes). Suppose that |∇jfi(x)| ≤ H . Then Adam has effective step-sizes

1

H + ε0
g ≤ U(g;vt−1) ≤ 1

ε0
g .

Proof. Recall that vt = β2v
t−1 + (1− β2)(ct)2 starting from v0 = 0. Thus for any t ≥ 0, we have

vt ≥ 0 and hence
√
vt−1 + ε0 ≥ ε0. For the other side, recall that vt is updated with centralized

stochastic gradients ct = 1
S

∑
i∇fi(x).

[ct]j =
1

S

∑
i

[∇fi(x)]j ≤ H .

Further,
[vt]j = β2[vt−1]j + (1− β2)[ct]2j ≤ β2[vt−1]j + (1− β2)H2 ≤ H2 .

Hence
√
vt−1 + ε0 ≤ H + ε0.

31

Lemma 14 (One round progress). For one round of Adam with error et in the update U and using
ct for update V , we have

E f(xt) ≤ E f(xt−1)− η̃

4(H + ε0)
‖∇f(xt−1)‖2+

η̃((H + ε0) + ε0/(H + ε0))

2ε20
E‖et‖2+

Lη̃2G2

Sε20
.

Proof. Starting from Lemma 13 and the smoothness of f , we have

E f(xt) ≤ E f(xt−1)− η̃ E〈∇f(xt−1),Et[U
(
ct + et

)
]〉+

Lη̃2

2
E‖U

(
ct + et;vt−1

)
‖2

≤ E f(xt−1)− η̃ E〈∇f(xt−1),Et

[
ct + et√
vt−1 + ε0

]
〉+

Lη̃2

2
E‖U

(
ct + et;vt−1

)
‖2

≤ E f(xt−1)− η̃ E〈∇f(xt−1),

[
∇f(xt−1) + et√

vt−1 + ε0

]
〉+

Lη̃2

2ε20
E‖ct + et‖2

≤ E f(xt−1)− η̃

H + ε0
‖∇f(xt−1)‖2 − η̃ E〈∇f(xt−1),

et√
vt−1 + ε0

〉+
Lη̃2

2ε20
E‖ct + et‖2

≤ E f(xt−1)− η̃

2(H + ε0)
‖∇f(xt−1)‖2 +

η̃(H + ε0)

2
E‖ et√

vt−1 + ε0
‖2 +

Lη̃2

2ε20
E‖ct + et‖2

≤ E f(xt−1)−
(

η̃

2(H + ε0)
− Lη̃2

ε20

)
‖∇f(xt−1)‖2 +

η̃(H + ε0) + 2Lη̃2

2ε20
E‖et‖2 +

Lη̃2G2

Sε20

≤ E f(xt−1)− η̃

4(H + ε0)
‖∇f(xt−1)‖2 +

η̃((H + ε0) + ε0/(H + ε0))

2ε20
E‖et‖2 +

Lη̃2G2

Sε20

Here we used our bound on the step-size that η̃ ≤ ε0
4L(H+ε0)

.

Convergence of MimeAdam.
Lemma 15. Suppose that assumptions A1–(A3) hold and further |∇jfi(x)| ≤ H . Then, running

MimeAdam with step-size η̃ ≤ ε20
12L(H+ε0)

, we have

1

T

T∑
t=1

E‖∇f(xt−1)‖2 ≤ 96L(H + ε0)2(f(x0)− f?)
ε20T

+
2G2

S
.

Combining Lemma 14 with the bound on et from Lemma 9 we get,

E f(xt) ≤ E f(xt−1)− η̃

4(H + ε0)
‖∇f(xt−1)‖2 +

η̃((H + ε0) + ε0/(H + ε0))

2ε20
E‖et‖2 +

Lη̃2G2

Sε20

≤ E f(xt−1)− η̃

4(H + ε0)
‖∇f(xt−1)‖2 +

9L2η̃3((H + ε0) + ε0/(H + ε0))

ε40
E‖ct‖2

+
Lη̃2G2

Sε20

≤ E f(xt−1)−
(

η̃

4(H + ε0)
− 9L2η̃3((H + ε0) + ε0/(H + ε0))

ε40

)
‖∇f(xt−1)‖2

+
Lη̃2G2

Sε20
+

9L2η̃3((H + ε0) + ε0/(H + ε0))G2

Sε40

≤ E f(xt−1)−
(

η̃

4(H + ε0)
− 18L2η̃3(H + ε0)

ε40

)
‖∇f(xt−1)‖2

+
Lη̃2G2

Sε20
+

18L2η̃3(H + ε0)G2

Sε40

≤ E f(xt−1)− η̃

8(H + ε0)
‖∇f(xt−1)‖2 +

η̃G2

4S(H + ε0)
.

32

To simplify computations, here we assumed we assumed (H + ε0)2 ≥ ε0 without loss of generality.
If this is not true, we can replace H by max(H,

√
ε0 − ε0). Assuming η̃ ≤ ε20

12L(H+ε0)
, we have

18L2η̃2(H+ε0)
ε40

≤ 1
8(H+ε0)

. Rearranging the terms and substituting the bounds on the step-size yields
the lemma.

Convergence of MimeLiteAdam.
Lemma 16. Suppose that assumptions A1–(A3) hold and further |∇jfi(x)| ≤ H . Then, running

MimeLiteAdam with step-size η̃ ≤ ε20
12L
√
S(H+ε0)

, we have for G̃2 := G2 + σ2/K,

1

T

T∑
t=1

E‖∇f(xt−1)‖2 ≤ 96L
√
S(H + ε0)2(f(x0)− f?)

ε20T
+

2G̃2

S
.

Combining Lemma 14 with the bound on et from Lemma 9 we get for G̃2 := G2 + σ2/K,

E f(xt) ≤ E f(xt−1)− η̃

4(H + ε0)
‖∇f(xt−1)‖2 +

η̃(H + ε0)

ε20
E‖et‖2 +

Lη̃2G2

Sε20

≤ E f(xt−1)− η̃

4(H + ε0)
‖∇f(xt−1)‖2

+
18L2η̃3(H + ε0)

ε40
E‖∇f(xt−1)‖2 +

18L2η̃3(H + ε0)(G̃2)

ε40
+
Lη̃2G2

Sε20

≤ E f(xt−1)− η̃

8(H + ε0)
‖∇f(xt−1)‖2 +

η̃G̃2

4S(H + ε0)

Again as before to simplify computations, here we assumed (H + ε0)2 ≥ ε0 without loss of gener-
ality. If this is not true, we can replace H by max(H,

√
ε0 − ε0). Assuming η̃ ≤ ε20

12L(H+ε0)
√
S

, we

have 18L2η̃2(H+ε0)
ε40

≤ 1
8S(H+ε0)

. Rearranging the terms and substituting the bounds on the step-size
yields the lemma.

H Circumventing server-only lower bounds

In this section we see how to use momentum based variance reduction [14, 62] to reduce the variance
of the updates and improve convergence. It should be noted that MVR does not exactly fit the
MIME framework (BASEOPT) since it requires computing gradients at two points on the same batch.
However, it is straightforward to extend the idea of MIME to MVR as we will now do. We use MVR
as a theoretical justification for why the usual momentum works well in practice. An interesting
future direction would be to adapt the algorithm and analysis of [13], which does fit the framework
of MIME.

For the sake of convenience, we summarize the notation used in the proof in a table.

Table 6: Summary of all notation used in the MVR proofs
σ2, G2, and δ intra-client gradient, inter-client gradient, and inter-client Hessian variance

η, a step-size, (1− β) momentum parameters
T , t total number, index of communication rounds
K, k total number, index of client local update steps

St, S, and i sampled set, size, and index of clients in round t
xt aggregated server model after round t
mt server momentum computed after round t
ct control variate of server after round t (only MIME)
yti,k model parameters of ith client in round t after step k
ζti,k mini-batch data used by ith client in round t and step k
dti,k parameter update by ith client in round t, step k
et error in momentummt −∇f(xt−1)

∆t
i,k, ∆t−1 E‖yti,k − xt−2‖2, E‖xt−1 − xt−2‖2 = ∆t

i,0

33

H.1 Algorithm descriptions

Now, we formally describe the MIME MVR and MIMELITE MVR algorithms. In each round t, we
sample clients St such that |St| = S. The server communicates the server parameters xt−1, the past
parameters xt−2, and the momentum mt−1 term. MIME additionally uses a control variate ct−1 as
we describe next.

Control variate in Mime. MIME uses an additional control variate ct−1 to reduce the variance.

ct−1 =
1

S

∑
i∈St

∇fi(xt−2) . (12)

Note that both ct−1 andmt−1 use gradients and parameters from previous rounds (different from the
previous section). A naive implementation of this method requires two steps of communication per
round to implement this algorithm. Alternatively, we can reserve some clients in the previous round
for computing ct−1 which can then be used in the current round, removing the need for two steps
of communication. In particular, it can be computed on a different set of an independent sampled
clients S̃t−1. In fact, all our theoretical results hold even if we use a single client to perform the
local updates and the rest of clients are used only to compute ct−1 each round.

Local client updates. Then each client i ∈ St makes a copy yti,0 = xt−1 and perform K local
client updates. In each local client update k ∈ [K], the client samples a dataset ζti,k. MIME performs
the following update:

yti,k = yti,k−1 − ηdti,k , where

dti,k = a(∇fi(yti,k−1; ζti,k)−∇fi(xt−1; ζti,k) + ct−1) + (1− a)mt−1

+ (1− a)(∇fi(yti,k−1; ζti,k)−∇fi(xt−1; ζti,k)) .

(13)

MIMELITE on the other hand uses a very similar but simpler update scheme which does not rely on
ct−1:

yti,k = yti,k−1 − ηdti,k , where

dti,k = a∇fi(yti,k−1; ζti,k) + (1− a)mt−1

+ (1− a)(∇fi(yti,k−1; ζti,k)−∇fi(xt−1; ζti,k)) .

(14)

Server updates. After K such local updates, the server then aggregates the new client parameters
as

xt =
1

S

∑
j∈St

ytj,K . (15)

The momentum term is updated at the end of the round for a ≥ 0 as

mt = a(1
S

∑
j∈St ∇fj(xt−1)) + (1− a)mt−1︸ ︷︷ ︸

Mom

+ (1− a)(1
S

∑
j∈St ∇fj(xt−1)−∇fj(xt−2))︸ ︷︷ ︸

correction

.

(16)
As we can see, the momentum update of MVR can be broken down into the usual Mom update, and
a correction. Intuitively, this correction term is very small since fi is smooth and xt−1 ≈ xt−2.
Another way of looking at the update (16) is to note that if all functions are identical i.e. fj = fk
for any j, k, then (16) just becomes the usual gradient descent. Thus MimeMVR tries to maintain an
exponential moving average of only the variance terms, reducing its bias. We refer to [14] for more
detailed explanation of MVR.

H.2 Bias in updates

The main difference in MimeMVR from the centralized versions of [62, 14] is the additional local
steps which are biased. In particular, for k ≥ 1 the expected gradient E[∇fi(yti,k)] 6= ∇f(yti,k)

because yti,k also depends on the sample i. This bias is in fact the underlying cause of client drift
and controlling it is a crucial step for our analysis.

34

Lemma 17 (Mime bias). For any values of x and yi where yi may depend on i, the following holds
for any client i almost surely given that (A1) and (A2) hold:

ES,ζ

∥∥∥∥∥∥∇fi(yi; ζ) +
1

|S|
∑
j∈S
∇fj(x)−∇fi(x; ζ) − ∇f(yi)

∥∥∥∥∥∥
2

≤ 2δ2 ES‖yi − x‖2 +
2G2

S
.

Proof. We can separate the noise from the rest of the terms and expand as

Eζ,S

∥∥∥∥∥∥∇fi(yi; ζ) +
1

|S|
∑
j∈S
∇fj(x)−∇fi(x; ζ)−∇f(yi)

∥∥∥∥∥∥
2

≤ 2 ES‖∇fi(yi; ζ) +∇f(x)−∇fi(x; ζ)−∇f(yi)‖2 + 2 ES

∥∥∥∥∥∥ 1

|S|
∑
j∈S
∇fj(x)−∇f(x)

∥∥∥∥∥∥
2

≤ 2 ES‖∇fi(yi; ζ) +∇f(x)−∇fi(x; ζ)−∇f(yi)‖2 +
2G2

S

≤ 2 ES δ
2‖yi − x‖2 +

2G2

S
.

The first inequality used Young’s inequality, the second used (A1), and the last used (A2) in the form
of Lemma 3.

We can perform a similar analysis of the bias of local updates encountered by MIMELITE.
Lemma 18 (MimeLite bias). For any values of x and yi where yi may depend on i, the following
holds for any client i randomly chosen from C given that (A1), (A2) and (A3) hold:

Ei,ζ‖∇fi(yi; ζ) − ∇f(yi)‖2 ≤ 2δ2 Ei‖yi − x‖2 + 2G2 + σ2 .

Proof. We can separate the noise from the rest of the terms and expand as

Eζ,i‖∇fi(yi; ζ)−∇f(yi)‖2 = Eζ,i‖∇fi(yi; ζ)±∇fi(x)±∇f(x)−∇f(yi)‖2

≤ Ei‖∇fi(yi)±∇fi(x)±∇f(x)−∇f(yi)‖2 + σ2

≤ 2 Ei‖∇fi(yi) +∇f(x)−∇fi(x)−∇f(yi)‖2

+ 2 Ei‖∇fi(x)−∇f(x)‖2 + σ2

≤ 2 Ei‖∇fi(yi) +∇f(x)−∇fi(x)−∇f(yi)‖2 + 2G2 + σ2

≤ 2δ2 Ei‖yi − x‖2 + 2G2 + σ2 .

The first inequality used (A3), the second used Young’s inequality, the third used (A1), and the last
used (A2) in the form of Lemma 3.

Note that the bias for MimeLite is very similar to that of Mime, except that Mime has dependence
of G2

S , whereas MimeLite has G2 + σ2. Hence, the rate of convergence of MimeLite will depend
on G2 wheras Mime will have the optimal dependency of G2/S. Hence, in the rest of the proof,
we will consider only Mime and simply replace G2/S with (G2 + σ2) to obtain the corresponding
results for MimeLite.

H.3 Change in each client update

Client update variance. Now we examine the variance of our update in each local step dti,k.

Lemma 19. For the client update (13), given (A1) and (A2), the following holds for any a ∈ [0, 1]
where et := mt −∇f(xt−1) and ∆t

i,k := E‖yti,k − xt−2‖2:

E‖dti,k −∇f(yti,k−1)‖2 ≤ 3 E‖et−1‖2 + 3δ2∆t
i,k−1 +

3a2G2

S
.

35

Proof. Starting from the client update (13), we can rewrite it as

dti,k −∇f(yti,k−1) = (1− a)et−1

+
(
∇fi(yti,k−1; ζti,k)−∇fi(xt−2; ζti,k))−∇f(yti,k−1) +∇f(xt−2)

)
+ a

 1

S

∑
j∈St

∇fj(xt−2)−∇f(xt−2)

 .

We can use the relaxed triangle inequality Lemma 1 to claim

E‖dti,k −∇f(yti,k−1)‖2

= 3(1− a)2 E‖et−1‖2

+ 3(1− a)2
∥∥(∇fi(yti,k−1; ζti,k)−∇fi(xt−2; ζti,k))− (∇f(yti,k−1)−∇f(xt−2))

∥∥2
+ 3a2

∥∥∥∥∥∥ 1

S

∑
j∈St

∇fj(xt−2)−∇f(xt−2)

∥∥∥∥∥∥
2

≤ 3 E‖et−1‖2 + 3δ2‖yti,k−1 − xt−2‖2 +
3a2G2

S
.

The last inequality used the Hessian similarity Lemma 3 to bound the second term and the hetero-
geneity bound (A1) to bound the last term. Also, (1− a)2 ≤ 1 since a ∈ [0, 1].

Distance moved in each step. We show that the distance moved by a client in each step during
the client update can be controlled.
Lemma 20. For MimeMVR updates (13) with η ≤ 1

6Kδ and given (A1) and (A2), the following
holds

∆t
i,k ≤

(
1 +

1

K

)
∆t
i,k−1 + 18η2Ka2

G2

S
+ 18η2K E‖et−1‖2 + 6η2K‖∇f(yti,k−1)‖2 ,

where we define ∆t
i,k := E‖yti,k − xt−2‖2.

Proof. Starting from the MimeMVR update (13) and the relaxed triangle inequality with c = 2K,

E‖yti,k − xt−2‖2 = E‖yti,k−1 − ηdti,k − xt−2‖2

≤
(

1 +
1

2K

)
E‖yti,k−1 − xt−2‖2 + (2K + 1)η2 E‖dti,k‖2

≤
(

1 +
1

2K

)
E‖yti,k−1 − xt−2‖2 + 6Kη2 E‖dti,k −∇f(yti,k−1)‖2

+ 6Kη2 E‖∇f(yti,k−1)‖2

≤
(

1 +
1

2K
+ 18Kη2δ2

)
E‖yti,k−1 − xt−2‖2

+ 18Kη2 E‖et−1‖2 +
18Kη2a2G2

S
+ 6Kη2 E‖∇f(yti,k−1)‖2 .

The last inequality used the update variance bound Lemma 19. We can simplify the expression
further since η ≤ 1

6Kδ implies 18Kη2δ2 ≤ 1
2K .

Progress in one step. Now we can compute the progress made in each step.
Lemma 21. For any client update step with step size η ≤ min

(
1
L ,

1
192δK

)
and given that (A1), (A2)

hold, we have

E f(yti,k) + δ

(
1 +

2

K

)K−k
∆t
i,k ≤ E f(yti,k−1) + δ

(
1 +

2

K

)K−(k−1)
∆t
i,k−1

− η

4
E‖∇f(yti,k−1)‖2 + 3η E‖et−1‖2 +

3ηa2G2

S
.

36

Proof. The assumption that f is L-smooth implies a quadratic upper bound (10).

f(yti,k)− f(yti,k−1) ≤ −η〈∇f(yti,k−1),dti,k〉+
Lη2

2
‖dti,k‖2

= −η
2
‖∇f(yti,k−1)‖2 +

Lη2 − η
2

‖dti,k‖2 +
η

2
‖dti,k −∇f(yti,k−1)‖2 .

The second equality used the fact that for any a, b, −2ab = (a − b)2 − a2 − b2. The second term
can be removed since η ≤ 1

L . Taking expectation on both sides and using the update variance bound
Lemma 19,

E f(yti,k)− E f(yti,k−1) ≤ −η
2

E‖∇f(yti,k−1)‖2 +
3ηa2G2

2S

+
3η

2
E‖et−1‖2 +

3ηδ2

2
∆t
i,k−1

≤ −η
2

E‖∇f(yti,k−1)‖2 +
3ηa2G2

2S

+
3η

2
E‖et−1‖2 +

3ηδ2

2
∆t
i,k−1

Multiplying the distance bound Lemma 20 by δ
(
1 + 2

K

)K−k
. Note that for anyK ≥ 1 and k ∈ [K],

we have 1 ≤
(
1 + 2

K

)K−k ≤ 8. Then we get

δ

(
1 +

2

K

)K−k
∆t
i,k ≤ δ

(
1 +

2

K

)K−k((
1 +

1

K

)
∆t
i,k−1 + 18η2Ka2

G2

S

+ 18η2K E‖et−1‖2 + 6η2K‖∇f(yti,k−1)‖2
)

≤ δ
(

1 +
2

K

)K−(k−1)
∆t
i,k−1 −

δ

K

(
1 +

2

K

)K−k
∆t
i,k−1

+ 48η2δK E‖∇f(yti,k−1)‖2 +
144η2δKa2G2

S
+ 144η2δK E‖et−1‖2

≤ δ
(

1 +
2

K

)K−(k−1)
∆t
i,k−1 −

δ

K
∆t
i,k−1 + 48η2δK E‖∇f(yti,k−1)‖2

+
144η2δKa2G2

S
+ 144η2δK E‖et−1‖2 .

Adding these two inequalities together yields

E f(yti,k) + δ

(
1 +

2

K

)K−k
∆t
i,k ≤ E f(yti,k−1) + δ

(
1 +

2

K

)K−(k−1)
∆t
i,k−1

−
(η

2
− 48η2δK

)
E‖∇f(yti,k−1)‖2

+

(
3η

2
+ 144η2δK

)
E‖et−1‖2

+

(
3η

2
+ +144η2δK

)
a2G2

S
.

Using our bound on the step-size that η ≤ 1
192δK implies that ηδK ≤ 1

48∗4 .

H.4 Change in each round

We now see how the quantities we defined change across rounds.

37

Distance moved in a round.
Lemma 22. For MimeMVR updates (13) with η ≤ 1

6Kδ and given (A1) and (A2), the following
holds

∆t ≤ 54K2η2 E‖et−1‖2 +
54K2η2a2G2

S
+

1

KS

∑
i,k

18K2η2 E‖∇f(yti,k−1)‖2 ,

where we define ∆t := E‖xt − xt−1‖2.

Proof. Starting from the MimeMVR update (13) and following the proof of Lemma 20,

E‖yti,k − xt−1‖2 = E‖yti,k−1 − ηdti,k − xt−1‖2

≤
(

1 +
1

2K

)
E‖yti,k−1 − xt−1‖2 + (2K + 1)η2 E‖dti,k‖2

≤
(

1 +
1

2K

)
E‖yti,k−1 − xt−1‖2 + 6Kη2 E‖dti,k −∇f(yti,k−1)‖2

+ 6Kη2 E‖∇f(yti,k−1)‖2

≤
(

1 +
1

K

)
E‖yti,k−1 − xt−1‖2

+ 18Kη2 E‖et−1‖2 +
18Kη2a2G2

S
+ 6Kη2 E‖∇f(yti,k−1)‖2 .

Note that xt = 1
S

∑
i∈S y

t
i,K and so,

E‖xt − xt−1‖2

≤ 1

S

∑
i∈S

E‖yti,K − xt−1‖2

≤ 1

S

∑
i∈S

∑
k

(
18Kη2 E‖et−1‖2 +

18Kη2a2G2

S
+ 6Kη2 E‖∇f(yti,k−1)‖2

)(
1 +

1

K

)K−k
≤ 54K2η2 E‖et−1‖2 +

54K2η2a2G2

S
+

1

KS

∑
i,k

18K2η2 E‖∇f(yti,k−1)‖2 .

Here we used the inequality that for all k,
(
1 + 1

K

)K−k ≤ 3.

Server momentum variance. We compute the error of the server momentum mt−1 defined as
et = mt −∇f(xt−1). Its expected norm can be bounded as follows.

Lemma 23. For the momentum update (16), given (A1) and (A2), the following holds for any
η ≤ 1

51δK and 1 ≥ a ≥ 2592K2δ2η2,

E‖et‖2 ≤ (1− 23a
24) E‖et−1‖2 +

3a2G2

S
+

1

KS

∑
i,k

36K2δ2η2 E‖∇f(yti,k−1)‖2 .

Proof. Starting from the momentum update (16),

et = (1− a)et−1

+ (1− a)

 1

S

∑
j∈St

(∇fj(xt−1)−∇fj(xt−2))−∇f(xt−1) +∇f(xt−2)


+ a

 1

S

∑
j∈St

(∇fj(xt−1)−∇f(xt−1)

 .

38

Now, the term et−1 does not have any information from round t and hence is statistically indepen-
dent of the rest of the terms. Further, the rest of the terms have mean 0. Hence, we can separate out
the zero mean noise terms from the et−1 following Lemma 2 and then the relaxed triangle inequality
Lemma 1 to claim

E‖et‖2 ≤ (1− a)2 E‖et−1‖2

+ 2(1− a)2

∥∥∥∥∥∥ 1

S

∑
j∈St

(∇fj(xt−1)−∇fj(xt−2))−∇f(xt−1) +∇f(xt−2)

∥∥∥∥∥∥
2

+ 2a2

∥∥∥∥∥∥ 1

S

∑
j∈St

(∇fj(xt−1)−∇f(xt−1)

∥∥∥∥∥∥
2

≤ (1− a)2 E‖et−1‖2 + 2(1− a)2δ2‖xt−1 − xt−2‖2 +
2a2G2

S
.

The inequality used the Hessian similarity Lemma 3 to bound the second term and the heterogeneity
bound (A1) to bound the last term. Finally, note that (1− a)2 ≤ (1− a) ≤ 1 for a ∈ [0, 1]. We can
continue by bounding ∆t−1 using Lemma 22.

E‖et‖2 ≤ (1− a) E‖et−1‖2 + 2δ2∆t−1 +
2a2G2

S

≤ (1− a) E‖et−1‖2 +
2a2G2

S

+ 108K2δ2η2 E‖et−1‖2 +
108K2δ2η2a2G2

S
+

1

KS

∑
i,k

36K2δ2η2 E‖∇f(yti,k−1)‖2

≤ (1− 23a
24) E‖et−1‖2 +

3a2G2

S
+

1

KS

∑
i,k

36K2δ2η2 E‖∇f(yti,k−1)‖2 .

The last step used our bound on the momentum parameter that 1 ≥ a ≥ 2592η2δ2K2. Note that
η ≤ 1

51δK ensures that this set is non-empty.

Progress in one round. Finally, we can compute the progress made in a round. Note that we need
a technical condition that f is δ-weakly convex. However, this is only needed because we insist
on running the algorithm on S clients in parallel and then averaging their weights—the averaging
requires weak convexity to ensure that the loss doesn’t blow up. It has been experimentally observed
in [43] that with the right initialization, averaging of the parameters does not increase the loss value
and so weak convexity within this region might be vaalid. Finally note that if we instead simply run
the local updates on a single chosen client with all the rest only being used to compute ct−1, we will
retain all convergence rates without needing weak-convexity.

Lemma 24. For any round of MimeMVR with step size η ≤ min
(
1
L ,

1
864δK

)
and momentum pa-

rameter a ≥ 912η2δ2K2. Then, given that (A1)–(A2) hold and f is δ-weakly convex, we have

η

24KS

∑
k∈[K],j∈St

E‖∇f(yti,k−1)‖2 ≤ Φt−1 − Φt +
17ηaδ2K2G2

S
,

where we define the sequence

Φt := 1
K E[f(xt)− f?] +

96η

23a
E‖et‖2 +

8δ

K
∆t .

39

Proof. We start by summing over the progress in single client updates as in Lemma 21

∑
k∈[K]

η

4
E‖∇f(yti,0)‖2 ≤ E f(yti,0) + δ

(
1 +

2

K

)K
∆t
i,0

− E f(yti,K)− δ∆t
i,K

+ 3ηK E‖et−1‖2 +
3ηKa2G2

S
≤ E f(yti,0) + 8δ∆t

i,0 − E f(yti,K)− δ∆t
i,K

+ 3ηK E‖et−1‖2 +
3ηKa2G2

S

≤ E f(xt−1) + 8δ∆t−1 − E f(yti,K)− δ∆t
i,K

+ 3ηK E‖et−1‖2 +
3ηKa2G2

S
.

Recall that ∆t
i,k = E‖yti,k − xt−2‖2 and yti,0 = xt−1. This gives the last step above, making

∆t
i,0 = ∆t−1. Then by the averaging Lemma 4, we have

1

S

∑
j∈St

E[f(ytj,K)] + δ∆t
j,K =

1

S

∑
j∈S

E[f(ytj,K)] + δ E‖xt−2 − ytj,K‖2

≥ E[f(xt)] + δ E‖xt−2 − xt‖2 .

So by averaging our inequality over the sampled clients, and diving our summation over the updates
by K, we get

η

4KS

∑
k∈[K],j∈St

E‖∇f(yti,k−1)‖2

≤ 1
K E[f(xt−1)] + 3η E‖et−1‖2 +

8δ

K
∆t−1 − 1

K E[f(xt)] +
3ηa2G2

S
.

We can use the bound on ∆t from Lemma 22 to proceed as

η

4KS

∑
k∈[K],j∈St

E‖∇f(yti,k−1)‖2

≤ 1
K E[f(xt−1)]− 1

K E[f(xt)] + 3η E‖et−1‖2 +
3ηa2G2

S

+
8δ

K
∆t−1 − 8δ

K
∆t

+ 432Kδη2 E‖et−1‖2 +
432Kδη2a2G2

S
+

1

KS

∑
i,k

144Kδη2 E‖∇f(yti,k−1)‖2

≤ 1
K E[f(xt−1)]− 1

K E[f(xt)] + 4η E‖et−1‖2 +
4ηa2G2

S

+
8δ

K
∆t−1 − 8δ

K
∆t +

η

6KS

∑
i,k

E‖∇f(yti,k−1)‖2

The last step used the bound on the step size that η ≤ 1
864δK . Now, multiplying the error bound

Lemma 23 by 96η
23a gives

96η

23a
E‖et‖2 ≤ 4 ∗ 24η

23a
(1− 23a

24) E‖et−1‖2 +
13ηaG2

S
+

1

KS

∑
i,k

38K2δ2η3

a
E‖∇f(yti,k−1)‖2 .

40

Adding this to the previously obtained bound yields

η

4KS

∑
k∈[K],j∈St

E‖∇f(yti,k−1)‖2 ≤
(

1

6
+

38K2δ2η2

a

)
η

KS

∑
k∈[K],j∈St

E‖∇f(yti,k−1)‖2

+ 1
K E[f(xt−1)]− 1

K E[f(xt)]

+
96η

23a
E‖et−1‖2 − 96η

23a
E‖et‖2

+
8δ

K
∆t−1 − 8δ

K
∆t

− 1
K E[f(xt)]− 4η

a
E‖et‖2

+
(
13ηa+ 3ηa2

)G2

S
.

Since a ≥ 912η2K2δ2, we have 1
4 −

(
1
6 −

38K2δ2η2

a

)
≥ 1

24 . Using this proves the lemma.

H.5 Final convergence rates

Theorem V (Convergence of MimeMVR). Let us run MimeMVR with step size η =

min

(
1
L ,

1
864δK ,

(
S(f(x0)−f?)
6936K3Tδ2G2

)1/3)
and momentum parameter a = max

(
1536η2δ2K2, 1

T

)
.

Then, given that (A1) and (A2) hold, we have

1

KST

∑
t∈[T]

∑
k∈[K]

∑
j∈St

E‖∇f(yti,k−1)‖2 ≤ O
((δ2G2F

ST 2

)1/3
+
G2

ST
+

(L+ δK)F

KT

)
,

where we define F := f(x0)− f?.

Proof. Unroll the one round progress Lemma 24 and average over T rounds to get

1

KST

∑
t∈[T]

∑
k∈[K]

∑
j∈St

E‖f(yti,k−1)‖2 ≤ 24(Φ0 − ΦT)

ηT
+

408aG2

S
.

Recall that we defined

Φt := 1
K E[f(xt)− f?] +

96η

23a
E‖et‖2 +

8δ

K
∆t .

Hence, ΦT ≥ 0. Further, note that by definition ∆0 = 0 and E‖e0‖2 := E‖m0 −∇f(x0)‖2. [14]
show that by using time-varying step sizes, it is possible to directly control the error e0. Alterna-
tively, [62] use a large initial accumulation for the momentum term. For the sake of simplicity, we
will follow the latter approach. It is straightforward to extend our techniques to the time-varying
step-size case as well but with additional proof complexity. Note that either way, the total com-
plexity only changes by a factor of 2. Suppose that we run the algorithm for 2T rounds wherein
for the first T rounds, we simply compute m0 = 1

T0S

∑T0

t=1

∑
j∈St ∇fj(x0) . With this, we have

e0 = E‖m0 −∇f(x0)‖2 ≤ G2

ST . Thus, we have for the first round t = 1

Φ0 = 1
K E[f(x0)− f?] +

96η

23a
E‖e0‖2 ≤ 1

K E[f(x0)− f?] +
96ηG2

23aTS
.

Together, this gives

1

KST

∑
t∈[T]

∑
k∈[K]

∑
i∈St

E‖f(yti,k−1)‖2 ≤ 24(f(x0)− f?)
ηKT

+
96G2

aT 2S
+

408aG2

S
.

The above equation holds for any choice of η ≤ min
(
1
L ,

1
864δK

)
and momentum parameter a ≥

912η2δ2K2. Set the momentum parameter as

a = max

(
912η2δ2K2,

1

T

)

41

With this choice, we can simplify the rate of convergence as

24(f(x0)− f?)
ηKT

+
96G2

TS
+

166464η2δ2K2G2

S
+

408G2

ST
.

Now let us pick

η = min

(
1

L
,

1

864δK
,

(
S(f(x0)− f?)
6936K3Tδ2G2

)1/3
)
.

For this combination of step size η and a, the rate simplifies to

504G2

TS
+ 916

(
(f(x0)− f?)δ2G2

ST 2

)1/3

+
24(L+ 864δK)(f(x0)− f?)

KT
.

This finishes the proof of the theorem.

Theorem VI (Convergence of MimeLiteMVR). Let us run MimeLiteMVR with step size η =

min

(
1
L ,

1
864δK ,

(
(f(x0)−f?)

6936K3Tδ2(G2+σ2)

)1/3)
and momentum parameter a = max

(
1536η2δ2K2, 1

T

)
.

Then, given that (A1) and (A2*) hold, we have

1

KST

∑
t∈[T]

∑
k∈[K]

∑
j∈St

E‖∇f(yti,k−1)‖2 ≤ O
((δ2(G2 + σ2)F

T 2

)1/3
+
G2 + σ2

T
+

(L+ δK)F

KT

)
,

where we define F := f(x0)− f?.

Proof. The proof for MimeLiteMVR is identical to that of MimeMVR, except that as noted in
Lemma 18, the G2

S term in Mime gets replaced by (G2 +σ2) everywhere. Note that MimeLiteMVR
(Lemma 18) requires a weaker Hessian variance condition of ‖∇2fi(x)−∇2f(x)‖ ≤ δ as opposed
to MimeMVR which needs ‖∇2fi(x; ζ)−∇2f(x)‖ ≤ δ.

Note that the final convergence rates of MimeMVR and MimeLiteMVR both include the intermedi-
ate client parameters. To implement this algorithm would require additional communication where
in each round a random client parameter in {yti,1, . . . ,yti,K} is communicated to the server. How-
ever, as is common in non-convex stochastic analysis, we expect the last iterate to converge at a
similar rate as well in practice.

I Algorithm pseudocodes

Algorithm 2 FedAvg framework

input: initial x and s, server learning rate ηg , client learning rate ηl, and base optimizer B =
(U ,V)
for each round t = 1, · · · , T do

sample subset S of clients
communicate x to all clients i ∈ S
on client i ∈ S in parallel do

initialize local model yi ← x
for k = 1, · · · ,K do

sample mini-batch ζ from local data
update yi ← yi − ηl∇fi(yi; ζ)

end for
communicate yi

end on client
compute aggregate pseudo-gradient g ← 1

|S|
∑
i∈S(x− yi)

x← ηgU(g, s) (update server parameters)
s← V(g, s) (update optimizer state)

end for

42

Algorithm 3 MimeMom and MimeLiteMom

input: initial x, and hyperparameters η, β. optional ηg (default = 1)
initializem← 0, c← 0
for each round t = 1, · · · , T do

sample subset S of clients
communicate (x, s = m) and c (only Mime) to all clients i ∈ S
on client i ∈ S in parallel do

initialize local model yi ← x
for k = 1, · · · ,K do

sample mini-batch ζ from local data
gi ← ∇fi(yi; ζ)−∇fi(x; ζ) + c (Mime)

gi ← ∇fi(yi; ζ) (MimeLite)
update using server momentum yi ← yi − η((1− β1)gi + β1m)

end for
compute full local-batch gradient∇fi(x)
communicate (yi,∇fi(x))

end on client
compute c← 1

|S|
∑
i∈S ∇fi(x)

m← ((1− β1)c+ β1m) (update server momentum)
x← x− ηg 1

|S|
∑
i∈S(x− yi) (update server parameters)

end for

Algorithm 4 MimeAdam and MimeLiteAdam

input: initial x, and hyperparameters η, β1, β2, ε0. optional ηg (default = 1)
initializem← 0, v ← 0, c← 0
for each round t = 1, · · · , T do

sample subset S of clients
communicate (x, s = (m,v)) and c (only Mime) to all clients i ∈ S
on client i ∈ S in parallel do

initialize local model yi ← x
for k = 1, · · · ,K do

sample mini-batch ζ from local data
gi ← ∇fi(yi; ζ)−∇fi(x; ζ) + c (Mime)

gi ← ∇fi(yi; ζ) (MimeLite)
update yi ← yi − η((1− β1)gi + β1m)/

(
(
√
v + ε0)(1− βt1)

)
end for
compute full local-batch gradient∇fi(x)
communicate (yi,∇fi(x))

end on client
compute c← 1

|S|
∑
i∈S ∇fi(x)

m← ((1− β1)c+ β1m)/(1− βt1)
v ← ((1− β2)c2 + β2v)/(1− βt2)
x← x− ηg 1

|S|
∑
i∈S(x− yi) (update server parameters)

end for

43

Algorithm 5 MimeMVR pseudocode

input: initial x0, learning rate η
initialize c0 ← 0,m0 ← 0
for each round t = 1, · · · , T do

sample subset S of clients
communicate xt−1,xt−2,mt−1, ct−1 to all clients i ∈ S
on client i ∈ S in parallel do

initialize local model yti,0 ← xt−1

for k = 1, · · · ,K do
sample mini-batch ζti,k from local data
compute SVRG gradient gti,k ← ∇fi(yti,k−1; ζti,k)−∇fi(xt−1; ζti,k) + ct−1

compute corrected momentum dti,k ← agti,k+(1−a)mt−1+(1−a)(∇fi(yti,k−1; ζti,k)−
∇fi(xt−1; ζti,k))

update yti,k = yti,k−1 − ηdti,k
end for
compute full local-batch gradients∇fi(xt−1),∇fi(xt−2)
communicate (yti,K ,∇fi(xt−1),∇fi(xt−2))

end on client
compute new aggregate pseudo-gradient ct ← 1

|S|
∑
i∈S ∇fi(xt−1)

compute old aggregate pseudo-gradient c̃t ← 1
|S|
∑
i∈S ∇fi(xt−2)

update server momentummt ← act + (1− a)mt−1 + (1− a)(ct − c̃t)
update server parameters xt ← 1

|S|
∑
i∈S y

t
i,K

end for

44

	How momentum can help reduce client drift
	Proof sketch
	Experimental setup
	Description of ablation study
	Description of large scale experiments
	Practicality of experiments
	Hyperparameter search
	Comparison with previous results
	Additional algorithmic details

	Additional Adam experiments
	Stability of methods to hyper-parameters
	Technicalities
	Assumptions and definitions
	Some technical lemmas
	Properties of functions with bounded Hessian dissimilarity

	Convergence with a generic base optimizer
	Proof of Theorem I (generic reduction)
	Convergence of MimeSGD and MimeLiteSGD (Corollary II)
	Convergence of MimeAdam and MimeLiteAdam (Corollary III)

	Circumventing server-only lower bounds
	Algorithm descriptions
	Bias in updates
	Change in each client update
	Change in each round
	Final convergence rates

	Algorithm pseudocodes

