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Abstract

Federated learning (FL) is a challenging setting for optimization due to the het-
erogeneity of the data across different clients which can cause a client drift phe-
nomenon. In fact, designing an algorithm for FL that is uniformly better than
simple centralized training has been a major open problem thus far. In this work,
we propose a general algorithmic framework, MIME, which i) mitigates client
drift and ii) adapts an arbitrary centralized optimization algorithm such as mo-
mentum and Adam to the cross-device federated learning setting. MIME uses a
combination of control-variates and server-level optimizer state (e.g. momentum)
at every client-update step to ensure that each local update mimics that of the cen-
tralized method run on i.i.d. data. We prove a reduction result showing that MIME
can translate the convergence of a generic algorithm in the centralized setting into
convergence in the federated setting. Moreover, we show that, when combined
with momentum-based variance reduction, MIME is provably faster than any cen-
tralized method—the first such result. We also perform a thorough experimental
exploration of MIME’s performance on real world datasets (implemented here).

1 Introduction

Federated learning (FL) is an increasingly important large-scale learning framework where the train-
ing data remains distributed over a large number of clients, which may be mobile phones or network
sensors [38, 37, 43, 44, 28]. A server then orchestrates the clients to train a single model, here re-
ferred to as a server model, without ever transmitting client data over the network, thereby providing
some basic levels of data privacy and security.

Two important settings are distinguished in FL [28, Table 1]: the cross-device and the cross-silo
settings. The cross-silo setting corresponds to a relatively small number of reliable clients, typically
organizations, such as medical or financial institutions. In contrast, in the cross-device federated
learning setting, the number of clients may be extremely large and include, for example, all 3.5 bil-
lion active android phones [25]. Thus, in that setting, we may never make even a single pass over
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the entire clients’ data during training. The cross-device setting is further characterized by resource-
poor clients communicating over a highly unreliable network. Together, the essential features of this
setting give rise to unique challenges not present in the cross-silo setting. In this work, we are inter-
ested in the more challenging cross-device setting, for which we will formalize and study stochastic
optimization algorithms. Importantly, recent advances in FL optimization, such as SCAFFOLD [32]
or FedDyn [1], are not anymore applicable since they are designed for the cross-silo setting.

The problem. The de facto standard algorithm for the cross-device setting is FEDAVG [43], which
performs multiple SGD updates on the available clients before communicating to the server. While
this approach can reduce the frequency of communication required, performing multiple steps on the
same client can lead to ‘over-fitting’ to its atypical local data, a phenomenon known as client drift
[32]. This in turn leads to slower convergence and can, somewhat counter-intuitively, require larger
total communication [69]. Despite significant attention received from the optimization community,
the communication complexity of heterogeneous cross-device has not improved upon that of simple
centralized methods, which take no local steps (aka SERVER-ONLY methods). Furthermore, algo-
rithmic innovations such as momentum [59, 14], adaptivity [35, 75, 77], and clipping [71, 72, 76] are
critical to the success of deep learning applications. The lack of a theoretical understanding of the
impact of multiple client steps has also hindered adapting these techniques in a principled manner
into the client updates, in order to replace the vanilla SGD update of FEDAVG.

To overcome such deficiencies, we propose a new framework, MIME, that mitigates client drift and
can adapt an arbitrary centralized optimization algorithm, e.g. SGD with momentum or Adam, to
the federated setting. In each local client update, MIME uses global optimizer state, e.g. momentum
or adaptive learning rates, and an SVRG-style correction to mimic the updates of the centralized
algorithm run on i.i.d. data. This optimizer state is computed only at the server level and kept fixed
throughout the local steps, thereby avoiding overfitting to the atypical local data of any single client.

Contributions. We summarize our main results below.

e MIME framework. We formalize the cross-device federated learning problem, and propose a
new framework MIME that can adapt arbitrary centralized algorithms to this setting.

e Convergence result. We prove a result showing that MIME successfully reduces client drift.
We also prove that the convergence of any generic algorithm in the centralized setting translates
convergence of its MIME version in the federated setting.

e Speed-up over centralized methods. By carefully tracking the bias introduced due to multiple
local steps, we prove that MIME with momentum-based variance reduction (MVR) can beat a
lower bound for centralized methods, thus breaking a fundamental barrier. This is the first such
result in FL, and also the first general result showing asymptotic speed-up due to local steps.

e Empirical validation. We propose a simpler variant, MIMELITE, with an empirical perfor-
mance similar to MIME. We report the results of thorough experimental analysis demonstrating
that both MIME and MIMELITE indeed converge faster than FEDAVG.

Related work. Analysis of FEDAVG: Much of the recent work in federated learning has focused
on analyzing FEDAVG. For identical clients, FEDAVG coincides with parallel SGD, for which [78]
derived an analysis with asymptotic convergence. Sharper and more refined analyses of the same
method, sometimes called local SGD, were provided by [56], and more recently by [57], [47],
[34], and [70], for identical functions. Their analysis was extended to heterogeneous clients in
[68, 74, 32, 34, 36]. [11] derived a tight characterization of FedAvg with quadratic functions and
demonstrated the sensitivity of the algorithm to both client and server step sizes. Matching upper
and lower bounds were recently given by [32] and [69] for general functions, proving that FEDAVG
can be slower than even SGD for heterogeneous data, due to the client-drift.

Comparison to SCAFFOLD: For the cross-silo setting where the number of clients is relatively low,
[32] proposed the SCAFFOLD algorithm, which uses control-variates (similar to SVRG) to correct for
client drift. However, their algorithm crucially relies on stateful clients which repeatedly participate
in the training process. FedDyn [1] reduces the communication requirements, but also requires
persistent stateful clients. In contrast, we focus on the cross-device setting where clients may be
visited only once during training and where they are stateless (and thus SCAFFOLD and FedDyn are
inapplicable). This is akin to the difference between the finite-sum (corresponding to cross-silo) and
stochastic (cross-device) settings in traditional centralized optimization [39].



Comparison to FedAvg and variants: [26] and [67] observed that using server momentum signifi-
cantly improves over vanilla FEDAVG. This idea was generalized by [49], who replaced the server
update with an arbitrary optimizer, e.g. Adam. However, these methods only modify the server up-
date while using SGD for the client updates. We henceforth refer to this meta algorithm as FedAvg.
FedAvgSGD, FedAvgMom, FedAvgAdam denote specific instantiations of the server optimizer in
FedAvg with SGD, Momentum or Adam. MIME, on the other hand, ensures that every local client
update resembles the optimizer e.g. MIME would apply momentum in every client update and not
just at the server level. Beyond this, [40] proposed to add a regularizer to ensure client updates
remain close. However, this may slow down convergence (cf. Fig. 5 and [32, 66]). Other orthogonal
directions which can be combined with MIME include tackling computation heterogeneity, where
some clients perform many more updates than others [606], improving fairness by modifying the
objective [44, 41], incorporating differential privacy [20, 2, 61], Byzantine adversaries [48, 65, 30],
secure aggregation [8, 24], etc. We defer additional discussion to the extensive survey by [28].

Momentum based variance reduction. Initial optimal methods for stochastic non-convex optimiza-
tion like SPIDER [17] and SARAH [46] required intermittently computing very large batch gra-
dients. Subsequently, it was shown that momentum based variance reduction (MVR) methods ob-
tained a similar optimal rate without needing such large batch gradient computations [62, 14]. Mo-
mentum is an exponential moving average of many stochastic gradients and so it has much smaller
variance than the stochastic gradients themselves. However, because these gradients are computed
at different parameters it also has a bias. MVR adds a small additional correction term which sig-
nificantly reduces this bias and provides improved rates.

2 Problem setup

This section formalizes the problem of cross-device federated learning [28]. Cross-device FL is
characterized by a large number of client devices like mobile phones which may potentially connect
to the server at most once. Due to their transient nature, it is not possible to store any state on the
clients, precluding an algorithm like SCAFFOLD. Furthermore, each client has only a few samples,
and there is wide heterogeneity in the samples across clients. Finally, communication is a major
bottleneck and a key metric for optimization in this setting is the number of communication rounds.

Thus, our objective will be to minimize the following quantity within the fewest number of client-
server communication rounds:

f(z )—EzNC[fz : Zfz$<zu}~ (D

Here, f; denotes the loss function of client ¢ and {Ci,l, ey sz} its local data. Since the number
of clients is extremely large, while the size of each local data is rather modest, we represent the
former as an expectation and the latter as a finite sum. In each round, the algorithm samples a
subset of clients (of size ) and performs some updates to the server model. Due to the transient
and heterogeneous nature of the clients, it is easy to see that the problem becomes intractable with
arbitrarily dissimilar clients. Thus, it is necessary to assume bounded dissimilarity across clients.

(A1) G?-BGYV or bounded inter-client gradient variance: there exists G > 0 such that
Eincl|Vfi(®) = VF(@)|P] < G?,

Next, we also characterize the variance in the Hessians.

(A2) 5-BHV or bounded Hessian variance: Almost surely, the loss function of any client 7 satisfies

IV2 fi(x;: Q) = V2 f ()| <0, Va.
This is in contrast to the usual smoothness assumption that can be stated as:
(A2%) L-smooth: |V2f;(z;()|| < L, Vz, as. for any i.

Note that if f;(x; () is L-smooth then (A2) is satisfied with § < 2L, and hence (A2) is weaker than
(A2*). In realistic examples we expect the clients to be similar and hence that § < L. In addition,
we assume that f () is bounded from below by f* and is L-smooth, as is standard.



3 Mime framework

In this section we describe how to adapt an arbitrary centralized optimizer (referred to as the “base”
optimizer) which may have internal state (e.g. momentum) to the federated learning problem (1)
while ensuring there is no client-drift. Algorithm 4 describes our framework. We develop two
variants, MIME and MIMELITE, which consist of three components i) a base optimizer we are
seeking to mimic, ii) the global (server) optimizer state computation, and iii) the local client updates.

. R R . Base optimizer. We assume the
Algorithm 1 RIS and [MimelLite centralized base optimizer we are im-

input: initial « and s, learning rate n and base optimizer itating can be decomposed into two

B=(U,YV) steps: an update step U which up-
for eachroundt =1, --- ;7T do dates the parameters x, and a opti-
sample subset S of clients mizer state update step V(-) which
communicate (x, s) to all clients i € S keeps track of global optimizer state

s. Each step of the base optimizer
B = (U,V) uses a gradient g to up-
on client ; € S in parallel do date the parameter x and the opti-
initialize local model y; < x mizer state s as follows:
fork=1,--- K do
sample mini-batch ¢ from local data

gi < Vfi(yi;¢) — Vfi(x;¢) + ¢ (Mime)
gi < Vfi(yi;¢) (MimeLite)

communicate c < ﬁ > jes Vfi(z) (only Mime)

x—x—nlg,s),

s V(g,s). (BASEOPT)

As an example, consider SGD with
momentum. The state here is the mo-

update y; < y; — (g, s) mentum m; and uses the following
end for update steps:
compute full local-batch gradient V f; ()
communicate (y;, V fi(x)) oy = a1 —1((1=B)Vfi(wi1)
end on client + B8my_q),
s V(ﬁ Yies VSi(x), s) (update optimizer m; = (1 — B)V fi(zi_1) + Srms_1 .
state) L Thus, SGD with momentum can be
T < 157 2jes ¥i (update server parameters) represented in the above generic form
end for with U(g,s) = (1 — B)g + Bs and

V(g,s) = (1 — B)g + Bs. Table 5
in Appendix shows how other algo-
rithms like Adam, Adagrad, etc. can be represented in this manner. We keep the update I/ to be
linear in the gradient g, whereas V can be more complicated. This implies that while the parame-
ter update step U is relatively resilient to receiving a biased gradient g while VV can be much more
sensitive.

Compute optimizer state globally, apply locally. When updating the optimizer state of the base
algorithm, we use only the gradient computed at the server parameters. Further, they remain fixed
throughout the local updates of the clients. This ensures that these optimizer state remain unbiased
and representative of the global function f(-). At the end of the round, the server performs

84 V(\?ﬂ >ies Vi), 8) )
Vi) =230 Vi@ G - (OPTSTATE)

n;

Note that we use full-batch gradients computed at the server parameters x, not client parameters y;.

Local client updates. Each client ¢ € S performs K updates using U/ of the base algorithm and

a minibatch gradient. There are two variants possible corresponding to MIME and MIMELITE
differentiated using colored boxes. Starting from y; < x, repeat the following K times

Yi < yi —n(gi, s) (CLIENTSTEP)

where g; < Vf;(y;;¢) for MIMELITE, and g; + Vf;(y;;¢) — V fi(z; ) + ﬁ > jes Vi)
for MIME. MIMELITE simply uses the local minibatch gradient whereas MIME uses an SVRG



style correction [27]. This is done to reduce the noise from sampling a local mini-batch. While
this correction yields faster rates in theory (and in practice for convex problems), in deep learning
applications we found that MIMELITE closely matches the performance of MIME.

Finally, there are two modifications made in practical FL: we weight all averages across the clients
by the number of datapoints n; [43], and we perform K epochs instead of K steps [66].

4 Theoretical analysis of Mime

Table 1 summarizes the rates of MIME (highlighted in blue) and MIMELITE (highlighted in green)
and compares them to SERVER-ONLY methods when using SGD, Adam and momentum methods as
the base algorithms. We will first examine the convergence of MIME and MIMELITE with a generic
base optimizer and show that its properties are preserved in the federated setting. We then examine a
specific momentum based base optimizer, and prove that Mime and MimeLite can be asymptotically
faster than the best server-only method. This is the first result to prove the usefulness of local steps
and demonstrate asymptotic speed-ups.

4.1 Convergence with a generic base optimizer

We will prove a generic reduction result demonstrating that if the underlying base algorithm con-
verges, and is robust to slight perturbations, then MIME and MIMELITE also preserve the conver-
gence of the algorithm when applied to the federated setting with additinoal local steps.

Theorem 1. Suppose that we have G? inter-client gradient variance (A1), L-smooth {f;} (A2%),
and o? intra-client gradient variance (A3). Further, suppose that the updater U of our base-
optimizer B = (U, V) satisfies i) linearity for a fixed state s: U(g1 + g2; 8) = U(g1; s) + U(g2; s),
and ii) Lipschitzness: ||U(g; s)|| < B||g|| for some B > 0. Then, running MIME or MIMELITE
with K local updates and step-size 1 is equivalent to running a centralized algorithm with step-size
n:=Kn< ﬁ, and updates

Ty < Tp—1 — ﬁu(gt + e aSt—l) s and

st < V(g¢, St—1) , where we have
an unbiased gradient Ei[g¢] = V f(x;_1), with variance bounded as

a?
5 MIME ,

2 2
¢ + 2.  MIMELITE .

Eillg: — Vf(®i)|? < {
and finally a small error bounded as

E¢llg:]|? MIME ,
B211/2ﬁ2 Et” €t H2 < E || 2 GQ o
tllgell* + G* + %  MIMELITE .

Here, we have proven that MIME and MIMELITE truly mimic the centralized base algorithm with
very small perturbations—the magnitude of e; is O(7?). The key to the result is the linearity of
the parameter update step U( - ; s). By separating the base optimizer into a very simple parameter
step U and a more complicated optimizer state update step ), we can ensure that commonly used
algorithms such as momentum, Adam, Adagrad, and others all satisfy this property. Armed with
this general reduction, we can easily obtain specific convergence results.

Corollary IT (Mime/MimeLite) with SGD). Given that the conditions in Theorem I are satisfied,
let us runI" rounds with K local steps using SGD as the base optimizer and output x®. This output
satisfies E||V f(z)||?> < e for F := f(zo) — f*, G* := G* + 0?/K and

o (-PL inequality: n = O (1), and

A(LG? | LF 1
. O(Le + 710g(€)> MIME |,
) A LG? LG LF 1
oL + 15 + T]og(z)> MIMELITE .
. _ s
e Non-convex: forn = O(\/%) and
O(LG2E | LE MIME |,
T — Se €
O Lg::zF + L:S_C/JQF + %) MIMELITE .



Table 1: Number of communication rounds required to reach ||V f(z)||? < e (log factors are ig-
nored) with S clients sampled each round. All analyses except SCAFFOLD assume G2 bounded
gradient dissimilarity (Al). All analyses assume L-smooth losses, except MimeLiteMVR and
MimeMVR, which only assume § bounded Hessian dissimilarity (A2). Convergence of SCAFFOLD
depends on the total number of clients /N which is potentially infinite. FEDAVG and MIMELITE are

slightly slower than the server-only methods due to additional drift terms in most cases. MIME is
the fastest and either matches or improves upon the optimal statistical rates (first term in the rates).
In fact, MimeM VR and MimeLiteM VR beat lower bounds for any server-only method when § < L.

Algorithm Non-convex u-PL inequality
2

SCAFFOLD? [32] (%) 3% % + %

SGD , ,
SERVER-ONLY [21] %32 + % l% + %
MimeLiteSGD= FedAvgSGD © L& 4 LG 4 L e+l -

: LG? L G? L
MimeSGD 52 aF " uSe aF m

ADAM L
SERVER-ONLY [75]° =75 -

: : be LVS _
MimeLiteAdam —G2/5
MimeAdam® ﬁ -

Momentum Variance Reduction (MVR) G I
SERVER-ONLY [14] T5é2 + < -
MimeLiteMVR? Aoto) | GPdo® 4 8

2
MimeMVR* % +<€ 44 _
2 2

SERVER-ONLY lower bound [5] Q(\/gLTCj/z + % + %) Q(%)

4 Num. clients (/V) can be same order as num. total rounds or even oo, making the bounds vacuous.
b Adam requires large batch-size S > G?/e to converge [50, 75]. Convergence of FedAdam with
client sampling is unknown ([49] only analyze with full client participation).

¢ Requires K > 02 /G? number of local updates. Typically, intra-client variance is small (02 < G2).
d Requires K > L /& number of local updates. Faster than the lower bound (and hence any SERVER-
ONLY algorithm) when § < L i.e. our methods can take advantage of Hessian similarity, whereas
SERVER-ONLY methods cannot. In worst case, § ~ L and all methods are comparable.

If we take a sufficient number of local steps K > G2/02, then we have G = O(G) in the above
rates. On comparing with the rates in Table 1 for SERVER-ONLY SGD, we see that MIME exactly
matches its rates. MIMELITE matches the asymptotic term but has a few higher order terms. Note
that when using SGD as the base optimizer, MIMELITE becomes exactly the same as FEDAVG and
hence has the same rate of convergence.

Corollary IIT (Mime/MimeLite) with Adam). Suppose that the conditions in Theorem I are satis-
fied, and further |V ; fi(x)| < H for any coordinate j € [d]. Then let us run T' rounds using Adam
as the base optimizer with K local steps, 31 = 0, g9 > 0, < €3/ K L(H +&¢), and any 33 € [0,1).
Output " chosen randomly from {x1, ...z} satisfies E||V f(x®)||* < € for
LF(H+ep)?
@) (753(6—(;2/5)) MIME Adam ,

O(LFQ((HJriégfs‘f) MIMELITE Adam .
EO €—

where F := f(xo) — f*, G? := G + 02 /K.

Note that here ¢y represents a small positive parameter used in Adam for regularization, and is
different from the error €. Similar to the SERVER-ONLY analysis of Adam [75], we assume 31 = 0



and that batch size is large enough such that S > G?/e. A similar analysis can also be carried out
for AdaGrad, and other novel variants of Adam [42].

4.2 Circumventing server-only lower bounds

The rates obtained above, while providing a safety-check, do not beat those of the SERVER-ONLY
approach. The previous best rates for cross-device FL correspond to MimeLiteSGD which is

2 2 . . .
(’)(LG 53 g) [34, 36, 69]. While, using a separate server-learning rate can remove the effect

Se2
of the second term [33], this at best matches the rate of SERVER-ONLY SGD O(Lsf; ). This is

significantly slower than simply using momentum based variance reduction (MVR) as in in the FL
setting (SERVER-ONLY MVR) which has a communication complexity of O(%) [14]. Thus,
even though the main reason for studying local-step methods was to improve the communication
complexity, none thus far show such improvement. The above difficulty of beating SERVER-ONLY
may not be surprising given the two sets of strong lower bounds known.

Necessity of local steps. Firstly, [5] show a gradient oracle lower bound of Q(ﬁ%ﬁ/?). This
matches the complexity of MVR, and hence at first glance it seems that SERVER-ONLY MVR is
optimal. However, the lower bound is really only on the number of gradients computed and not on
the number of clients sampled (sample complexity) [18], or number of rounds of communication
required. In particular, multiple local updates increases number of gradients computed without
needing additional communication offers us a potential way to side-step such lower bounds. A

careful analysis of the bias introduced as a result of such local steps is a key part of our analysis.

Necessity of 5-BHD. A second set of lower bounds directly study the number of communication
rounds required in heterogeneous optimization [6, 69]. These results prove that there exist settings
where local steps provide no advantage and SERVER-ONLY methods are optimal. This however con-
tradicts real world experimental evidence [43]. As before, the disparity arises due to the contrived
settings considered by the lower bounds. For distributed optimization (with full client participation)
and convex quadratic objectives, §-BHD (A2) was shown to be a sufficient [54, 51] and necessary
[6] condition to circumvent these lower bounds and yield highly performant methods. We simi-
larly leverage §-BHD (A2) to design novel methods which significantly extend prior results to i) all
smooth non-convex functions (not just quadratics), and ii) cross-device FL with client sampling.

‘We now state our convergence results with momentum based variance reduction (MVR) as the base-
algorithm since it is known to be optimal in the SERVER-ONLY setting.

Theorem IV. For L-smooth f with G? gradient dissimilarity (A1), § Hessian dissimilarity (A2)
and F := (f(x°) — f*), let us run MVR as the base algorithm for T rounds with K > L/§ local
steps and generate an output . This output satisfies E||V f (x®)||? < e for

. . 2q2/3
o MimeMVR : 1 = O(mln(ﬁ , (%)1/3)), momentum 3 =1 — (9((2639%), and
0GF G? 6F

7\/§63/2+§+ - ).

55 (GQ;KB)UB)), momentum 3 =1 — (’)((TgW), and

SGF G?  §F
A T=0(Gm++)

Here, we define G2 := G? + o and the expectation in E[|V f(z°")||? < e is taken both over the
sampling of the clients during the running of the algorithm, the sampling of the mini-batches in local
updates, and the choice of " (which is chosen randomly from the client iterates y;).

T=0(
o MimeLiteMVR : 1 = O (min(

Remarkably, the rates of our methods are independent of L and only depend on 4. Thus, when
d < Land 6 < I/s for MimeMVR and MimeLiteM VR, the rates beat the server only lower bound of

Q( \/g%ci/z) In fact, if the Hessian variance is small and ¢ ~ 0, our methods only need O(%/c) rounds

to communicate. Intuitively, our results show that local steps are very useful when heterogeneity
(represented by ¢) is smaller than optimization difficulty (captured by smoothness constant L).

MimeMVR uses a momentum parameter 3 of the order of (1 — O(TG?)~%/3) i.e. as T increases,
[ asymptotically approaches 1. In contrast, previous analyses of distributed momentum (e.g. [73])

prove rates of the form 5(572)62, which are worse than that of standard SGD by a factor of ﬁ
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Figure 1: Mime, MimeLite, FedAvg, Scaffold, , and with SGD+momentum

using 10 local epochs, run on EMNIST62 and a 2 hidden layer (300u-100) MLP. (Left) Mime and
MimeLite are nearly identical and outperform the rest (7x faster). (Center) Mime makes better
use of momentum than FedAvg, with a large increase in performance. (Right) Locally adapting
momentum slows down convergence and makes it more unstable.

Thus, ours is also the first result which theoretically showcases the usefulness of using large mo-
mentum in distributed and federated learning. While we only prove the utility of local steps for
MimeMVR, we believe our theory can be extended to other local update methods as well.

Our analysis is highly non-trivial and involves two crucial ingredients: i) computing the momentum
at the server level to ensure that it remains unbiased and then applying it locally during every client
update to reduce variance, and ii) carefully keeping track of the bias introduced via additional local
steps. Our experiments (Sec. 5) verify our theoretical insights are indeed applicable in deep learning
settings as well. See App. B for a proof sketch and App. G—H detailed proofs.

S Experimental analysis on real world datasets

We run experiments on natively federated datasets to confirm our theory and accurately measure
real world performance. Our main findings are i) MIME and MIMELITE consistently outperform
FEDAVG, and ii) momentum and adaptivity significantly improves performance.

5.1 Setup

Algorithms. We consider three (meta) algorithms: FEDAVG, MIME, and MIMELITE. Each of
these adapt four base optimizers: SGD, momentum, Adam, and Adagrad.

FEDAVG follows [49] who run multiple epochs of SGD on each client sampled, and then aggregate
the net client updates. This aggregated update is used as a pseudo-gradient in the base optimizer
(called server optimizer). The learning rate for the server optimizer is fixed to 1 as in [67]. This is
done to ensure all algorithms have the same number of hyper-parameters.

MIME and MIMELITE follow Algorithm 4 and also run a fixed number of epochs on the client. How-
ever, note that this requires communicating both the full local-batch gradient as well as the parameter
updates doubling the communication required to be sent by the client. For a fairer comparison, we
split the sampled clients in MIME and MIMELITE into two groups—the first communicates only full
local-batch gradient and the latter communicates only parameter updates. Thus, all methods have
equal client communication to the server. This variant retains the convergence guarantees up to
constants (details in the Appendix). We also run Loc-MIME where instead of keeping the global
optimizer state fixed, we update it locally within the client. The optimizer state is reset after the
round finishes. In all methods, aggregation is weighted by the number of samples on the clients.

Datasets and models. We run five simulations on three real-world federated datasets: EMNIST62
with i) a linear classifier, ii) an MLP, and iii) a CNN, iv) a charRNN on Shakespeare, and v) an
LSTM for next word prediction on StackOverflow, all accessed through Tensorflow Federated [60].
The learning rates were individually tuned and other optimizer hyper-parameters such as 5 for mo-
mentum, (31, 32, €9 for Adam and AdaGrad were left to their default values, unless explicitly stated
otherwise. We refer to Appendix C for additional setup details and discussion.

5.2 Ablation and comparative study
In order to study the different algorithms, we train a 2 hidden layer (30044-100) MLP on EMNIST62
with 10 local epochs for 1k rounds and use SGD+momentum (with tuned ) as the base optimizer.

Mime ~ MimeLite > FedAvg > SCAFFOLD > FedProx. Fig. 1 (left) shows MIME and
MIMELITE have nearly identical performance, and are about 7x faster than FedAvg. This implies



Table 2: Validation % accuracies after training for 1000 rounds. Best results for each dataset is
underlined and the best within each base optimizer is bolded. The number of clients sampled per
round has been reduced for MIME and MIMELITE to ensure all methods have equal client and
server communication. Final accuracies obtained by MIME and MIMELITE are competitive with
FEDAVG, especially with adaptive base optimizers. FEDAVG seems unstable with Adam.

EMNIST logistic EMNIST CNN Shakespeare StackOverflow

SGD FedAvgSGD 66.8 85.8 56.7 23.8
MimeLiteSGD 66.8 85.8 56.7 23.8
MimeSGD 674 853 56.1 12.5
MOMENTUM FedAvgMom 67.4 85.7 554 22.2
MimeLiteMom 67.4 86.0 49.8 19.9
MimeMom 67.5 85.9 53.6 19.3
ADAM FedAvgAdam 67.3 85.9 18.5 3.2
MimeLiteAdam 68.0 86.4 54.0 21.5
MimeAdam 68.0 86.6 54.1 22.8
ADAGRAD  FedAvgAdagrad 67.6 86.3 55.5 24.2
MimeLiteAdagrad  66.6 85.5 56.8 23.8
MimeAdagrad 67.4 86.3 571 14.7

our strategy of applying momentum to client updates is faster than simply using server momentum.
FedProx [40] uses an additional regularizer 4 tuned over [0.1, 0.5, 1] (z = 0 is the same as FedAvg).
Regularization does not seem to reduce client drift but still slows down convergence [66]. SCAF-
FOLD [32] is also slower than Mime and FedAvg in this setup. This is because in cross-device
setting with a large number of clients (N = 3.4k) means that each client is visited less than 6 times
during the entire training (20 clients per round for 1k rounds). This means that the correction term
utilized by SCAFFOLD uses control-variates which are quite stale (computed about 200 rounds ago)
which slows down the convergence. In contrast, the SVRG correction term in Mime is computed
using clients sampled in the current or previous rounds, and so is much more accurate.

With momentum > without momentum. Fig. 1 (center) examines the impact of momentum on
FedAvg and Mime. Momentum slightly improves the performance of FedAvg, whereas it has a
significant impact on the performance of Mime. This is also in line with our theory and confirms
that Mime’s strategy of applying it locally at every client update makes better use of momentum.

Fixed > locally updated optimizer state. Finally, we check how the performance of Mime
changes if instead of keeping the momentum fixed throughout a round, we let it change. The latter
is a way to combine global and local momentum. The momentum is reset at the end of the round
ignoring the changes the clients make to it. Fig. 1 (right) shows that this worsens the performance,
confirming that it is better to keep the global optimizer state fixed as predicted by our theory.

Together, the above observations validate all aspects of Mime (and MimeL.ite) design: compute
statistics at the server level, and apply them unchanged at every client update.

5.3 Large scale comparison with equal server and client communication

We perform a larger scale study closely matching the setup of [49]. For both MIME and MIMELITE,
only half the clients compute and transmit the updated parameters, and other half transmit the full
local-batch gradients. Hence, client to server communication cost is the same for all methods for
all clients. However, MIME and MIMELITE require sending additional optimization state to the
clients. Hence, we also reduce the number of clients sampled in each round to ensure sum total of
communication at each round is 40x model size for EMNIST and Shakespeare experiments, and
100 model size for the StackOverflow next word prediction experiment.

Since we only perform 1 local epoch, the hyper-parameters (e.g. epsilon for adaptive methods) are
more carefully chosen following [49], and MIME and MIMELITE use significantly fewer clients per
round, the difference between FEDAVG and MIME is smaller here. Table 2 summarizes the results.

For the image classification tasks of EMNIST62 logistic and EMNIST62 CNN, Mime and MimeLite
with Adam achieve the best performance. Using momentum (both with SGD and in Adam) signif-
icantly improves their performance. In contrast, FedAvgAdam is more unstable with worse perfor-
mance. This is because FedAvg is excessively sensitive to hyperparameters (cf. App. E).



We next consider the character prediction task on Shakespeare dataset, and next word prediction
on StackOverflow. Here, the momentum based methods (SGD+momentum and Adam) are slower
than their non-momentum counterparts (vanilla SGD and AdaGrad). This is because the mini-batch
gradients in these tasks are sparse, with the gradients corresponding to tokens not in the mini-batch
being zero. This sparsity structure is however destroyed when using momentum or Adam. For the
same reason, Mime which uses an SVRG correction also significantly increases the gradient density.

Discussion. For traditional tasks such as image classification, we observe that Mime (especially
with Adam) usually outperforms MimeLite which in turn outperforms FedAvg. These methods are
able to successfully leverage momentum and adaptivity to improve performance. For tasks where
the client gradients are sparse, the SVRG correction used by Mime hinders performance. Adapting
our techniques to work with sparse gradients (a la Yogi [75]) could lead to further improvements.
Also, note that we reduce communication by naively reducing the number of participating clients
per round. More sophisticated approaches to save on client communication including quantization
or sparsification [58, 3], or even novel algorithmic innovations [ | ] could be explored. Further, server
communication could be reduced using memory efficient optimizers e.g. AdaFactor [55] or SM3 [4].

6 Conclusion

Our work initiated a formal study of the cross-device federated learning problem and provided the-
oretically justified algorithms. We introduced a new framework MIME which overcomes the natural
client-heterogeneity in such a setting, and can adapt arbitrary centralized algorithms such as Adam
without additional hyper-parameters. We demonstrated the superiority of MIME via strong conver-
gence guarantees and empirical evaluations. Further, we proved that a particular instance of our
method, MimeMVR, beat centralized lower-bounds, demonstrating that additional local steps can
yield asymptotic improvements for the first time. We believe our analysis will be of independent
interest beyond the federated setting for understanding the sample complexity of non-convex opti-
mization, and for yielding improved analysis of decentralized optimization algorithms.
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A How momentum can help reduce client drift

W ]
FEDAVG updates MIME updates

Figure 2: Client-drift in FEDAVG (left) and MIME (right) is illustrated for 2 clients with 3 local steps
and momentum parameter 5 = 0.5. The local SGD updates of FEDAVG (shown using arrows for
client 1 and client2) move towards the average of client optima # which can be quite different
from the true . Server momentum m,; only speeds up the convergence to the
wrong point in this case. In contrast, MIME uses unbiased momentum computed at the server
parameter x; and applies it locally at every update. This keeps the updates of MIME closer to the
true .

In this section we examine the tension between reducing communication by running multiple client
updates each round, and degradation in performance due to client drift [32]. To simplify the dis-

cussion, we assume a single client is sampled each round and that clients use full-batch gradients.

Server-only approach. A simple way to avoid the issue of client drift is to take no local steps. We
sample a client ¢ ~ C and run SGD with momentum (Mom) with momentum parameter $ and step
size n:

@y = o1 — 1 ((1 = B)Vfi(zi1) + Brv_1),
my = (1= B)Vfi(zi—1) + fmy_1.
Here, the gradient V f; (@) is unbiased i.e. E[V f;(x+)] = V f(x:) and hence we are guaranteed

convergence. However, this strategy can be communication-intensive and we are likely to spend all
our time waiting for communication with very little time spent on computing the gradients.

2

FEDAVG approach. To reduce the overall communication rounds required, we need to make more
progress in each round of communication. The FedAvg meta algorithm utilizes a base optimizer, a
client learning rate and a server learning rate. Each client performs K local update steps of SGD
using the client learning rate and communicates the net update (difference between final and initial
parameters) to the server. This difference is then treated as a ‘pseudo-gradient’ and is input into the
optimizer (say momentum or Adam) to update the server parameters using the server learning rate.
When the base optimizer uses momentum, this momentum is computed at the server level using the
pseudo-gradients and is referred to as server momentum.

Starting from yy = x;_1, FEDAVG [43] runs multiple SGD steps on the sampled client i ~ C
Yr = Yr—1 — NV fi(yx—1) for k € [K], (3)

and then a pseudo-gradient g, = —(yx — ;) replaces V f;(x;—1) in the SGDm algorithm (2). This
is referred to as server-momentum since it is computed and applied only at the server level [26].
However, such updates give rise to client-drift resulting in performance worse than the naive server-
only strategy (2). This is because by using multiple local updates, (3) starts over-fitting to the local
client data, optimizing f;(x) instead of the actual global objective f(x). The net effect is that
FEDAVG moves towards an incorrect point (see Fig 2, left). If K is sufficiently large, approximately

Yy ~ x;, where x; := argmin f;(x)
= Biclgt] ~ (z¢ — Einclz]]) -

Further, the server momentum is based on g; and hence is also biased. Thus, it cannot correct for
the client drift. We next see how a different way of using momentum can mitigate client drift.
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Mime approach. FEDAVG experiences client drift because both the momentum and the client
updates are biased. To fix the former, we compute momentum using only global optimizer state as
in (2) using the sampled client i ~ C:

m; = (1 - B)Vfi(xi1)+ Bmy_y. 4)
To reduce the bias in the local updates, we will apply this unbiased momentum every step k € [K]:
Yr = Yr—1 — (L = B)Vfilyg—1) + Bmy—1). &)

Note that the momentum term is kept fixed during the local updates i.e. there is no local momentum
used, only global momentum is applied locally. Since m;_; is a moving average of unbiased gra-
dients computed over multiple clients, it intuitively is a good approximation of the general direction
of the updates. By taking a convex combination of the local gradient with m;_;, the update (5)
is potentially also less biased. In this way MIME combines the communication benefits of taking
multiple local steps and prevents client-drift (see Fig 2, right). Appendix B makes this intuition
precise.

B Proof sketch

In this section, we provide an intuition behind our proof of convergence of MimeMVR. There are
three main components: i) how momentum reduces the effect of client drift, ii) how local steps can
take advantage of Hessian similarity, and iii) why the SVRG correction improves constants.

Improving the statistical term via momentum. Intuitively, using momentum locally at every
client update reduces client drift by incorporating information about other clients from past rounds.
Assume that we sample a single client ¢; in round ¢ and that we use full-batch gradients. Also let the
local client update at step k round ¢ be of the form

Yy —ndg. (6)

The ideal choice of update is of course df = V f(y) but however this is unattainable. Instead,
MIME with momentum 3 = 1 — a uses d?°P™ = 1y, « aV fi(y) + (1 — a)m,_; where m;_; is
the momentum computed at the server. The variance of this update can then be bounded as

Ellni — V(y)|* S a”EIVfi(y) = VI@)I? + (1~ a) Elme—1 — VF(y)]?
~ a’G? + (1 —a)E|lm;_1 — Vf(x;_2)|]* ~ aG?.

The last step follows by unrolling the recursion on the variance of m. We also assumed that 7 is
small enough that y ~ a;_5. This way, momentum can reduce the variance of the update from
G? to (aG?) by using past gradients computed on different clients. Of course, this also introduces
additional bias into the update. To reduce this bias requires slightly modifying the momentum
algorithm similar to [14]. The full analysis is carried out in Appendix H.

Improving the optimization term via local steps. The optimization (second) term in Theorem IV
is Mj ;{' L In contrast, the optimization term of the server-only methods is L/e. Since in most cases
0 < L, the former can be significantly smaller than the latter. This rate also suggests that the best
choice of number of local updates is L /4 i.e. we should perform more client updates when they have

more similar Hessians. This generalizes results of [32] from quadratics to all functions.

This improvement is due to a careful analysis of the bias in the gradients computed during the local
update steps. Note that for client parameters yj_1, the gradient E[V f;, (yx—1)] # E[Vf(yr-1)]
since y,_1 was also computed using the same loss function f;,. In fact, only the first gradient
computed at x;_1 is unbiased. Dropping the subscripts k£ and ¢, we can bound this bias as:

EVfily) = VIi(y)] = E[V/ily) - VSi(x) + V() - V[(y)] + E[Vi(x)] - V()
~V2fi(z)(y—x) ~V2f(x)(x—yi) =0 since unbiased
~ E[(V*fi(x) — V2 f(@))(y; — )] = 0E[(y; — x)].

Thus, the Hessian dissimilarity (A2) control the bias, and hence the usefulness of local updates.
This intuition can be made formal using Lemma 3. Note that this improved analysis is potentially
applicable to any local update methods and is not specific to Mime.
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Mini-batches via SVRG correction. In our previous discussion about momentum and local steps,
we assumed that the clients compute full batch gradients and that only one client is sampled per
round. However, in practice a large number (5) of clients are sampled and further the clients use
mini-batch gradients. The SVRG correction reduces this within-client variance since
G* G?
Var(V fi(yss O) = Vil@i Q) + iy Dies Vil@)) S Ly — ol + T ~ =

Here, we used the smoothness of f;(+;() and assumed that y; ~ x since we don’t move too far
within a single round. Thus, the SVRG correction allows us to use minibatch gradients in the local
updates while still ensuring that the variance is of the order G?/S. In practical deep learning, this
SVRG correction may not very effective [ | 5] and so can be dropped, though it is useful to derive the
optimal theoretical rates.

C Experimental setup

C.1 Description of ablation study

We train a 2 hidden layer MLP with 300u-100 neurons on the EMNIST62 (extended MNIST) dataset
[12]. The clients’ data is separated according to the original authors of the characters [10]. All
methods are augmented with momentum—Mime and MimeLite use momentum in the client updates,
and the others use server momentum. The momentum parameter is searched over 8 € [0, 0.9, 0.99].
For Adam, we fix 51 = 0.9, 83 = 0.99, and ¢ = 10~3. For both FedProx and SCAFFOLD, 8 = 0
(no server momentum) yielded the best performance. For FedAvg, Mime, and MimeLite 5 = 0.9
was the fastest. For FedProx, the regularization parameter p was searched over [0.1,0.5,1] and
1 = 0.1 had highest test accuracy.

C.2 Description of large scale experiments

We perform 4 tasks over 3 datasets: i) On the EMNIST62 dataset [12] we run a convex multi-class
(62 classes) logistic regression model, and ii) a convolution model with two CNN layers and two
dense layers and dropout. iii) On the SHAKESPEARE dataset, we train a single layer LSTM model
with state size of 256 and embedding size of 8 to predict the next character [43]. iv) Finally, on the
STACKOVERFLOW dataset [16], we train a next word prediction language model with embedding
size of 96, a LSTM layer of size 670, and a vocabulary size of 1000. In all cases we report the top-1
test accuracy in our experiments.

All datasets use the metadata indicating the original authors to separate them into multiple clients
yielding naturally partitioned datasets. Table 3 summarizes the statistics about the different
datasets. Note that the average number of rounds a client participates in (computed as sampled
clients x number of rounds/number of clients) provides an indication of how much of the training
data is seen with SHAKESPEARE being closest to the cross-silo setting and STACKOVERFLOW rep-
resenting the most cross-device in nature.

Table 3: Details about the datasets used and experiment setting.
EMNIST62 SHAKESPEARE STACKOVERFLOW

Clients 3,400 715 342,477
Examples 671,585 16,068 135,818,730
Batch size 10 10 10

Number of local epochs 1 1 1

Total number of rounds 1000 1000 1000

Avg. rounds each client participates 5.9 28 0.15

We use Tensorflow federated datasets [00] to generate the datasets. Our federated learning simula-
tion code is written in FedJAX [52, 53] and is open-sourced at github.cm/google/fedjax (see
documentation). Black and white was reversed in EMNIST62 (i.e. subtracted from 1) to make them
similar to MNIST. The preprocessing for SHAKESPEARE and STACKOVERFLOW datasets exactly
matches that of [49].
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Table 4: Effective number of sampled clients.
Total Comm. EMNIST62 SHAKESPEARE STACKOVERFLOW

FedAvg 2% 20 20 50
MimeLiteMom Hx 8 8 20
MimeLiteAdagrad 5x 8 8 20
MimeLiteAdam 6% 6 6 16
MimeMom 6% 6 6 16
MimeAdagrad 6% 6 6 16
MimeAdam X 5 5 14

C.3 Practicality of experiments

In the experiments we only cared about the number of communication rounds, ignoring that MIME
actually needs twice the number of bits per round and that the SERVER-ONLY methods have a much
smaller computational requirement. This is standard in the federated learning setting as introduced
by [43] and is justified because most of the time in cross-device FL is spent in establishing connec-
tions with devices rather than performing useful work such as communication or computation. In
other words, latency and not bandwidth or computation are critical in cross device FL. However, one
can certainly envision cases where this is not true. Incorporating communication compression strate-
gies [58, 3, 33, 64] or client-model compression strategies [9, 19, 22] into our MIME framework can
potentially address such issues and are important future research directions.

Regarding the algorithms evaluated, we chose not to include MVR as a base optimizer. This is
because it is not a popular choice is practice even in the centralized setting, and serves more as a
theoretical stand in to explain the benefit of the simpler SGD with momentum algorithm. Hence, we
wouldn’t expect MimeM VR to perform better than MimeMom. In general, our goal was to “mimic”
centralized methods — methods which have better empirical performance (momentum and Adam)
we showed also perform well in the federated setting when combined with Mime, and similarly
methods which have better theoretical rates (MVR) have good rates with Mime as well.

Further, as we noted previously, we believe both the datasets and the tasks being studied here are
close to real world settings since they contain natural heterogeneity. We now discuss our choice of
other parameters in the experiment setup (number of training rounds, sampled clients, batch-size,
etc.) Each round of federated learning takes 3 mins in the real world and is relatively independent
of the size of communication [7] implying that training 1000 rounds takes 2 days even for small
models. In contrast, running a centralized simulation takes about 15 mins. This underscores the
importance of ensuring that the algorithms for federated learning converge in as few rounds as
possible, as well as have very easy to set default hyper-parameters. Thus, in our experimental setup
we keep all parameters other than the learning rate to their default values. In practice, this learning
rate can be set by set using a small centralized dataset on the server (as in [23]). Thus, it is crucial
for federated frameworks to be able to translate algorithms which work well in centralized settings
directly to the federated setting without additinal hyper-parameter tuning. The choice of batch size
being 10 was made both keeping in mind the limited memory available to each client as well as
to match prior work. Finally, while we limit ourselves to sampling 20-50 workers per round due
to computational constraints, in real world FL thousands of devices are often available for training
simultaneously each round [7]. They also note that the probability of each of these devices being
available has clear patterns and is far from uniform sampling. Conducting a large scale experimental
study which mimics these alternate forms of heterogeneity is an important direction for future work.

C.4 Hyperparameter search

We run two hyper-parameter sweeps in our experiments: first a light setup which is reported in
the main paper, and one we believe reflects the real world performance, and second a heavy tuning
setting to showcase the performance of the methods as we vary the hyper-parameters.

Light-sweep setting (9x). For all Momentum methods, we pick momentum 8 = 0.9. For Adam

methods, we fix 5, = 0.9 and B2 = 0.99, and ey = 1 x 10~ 7. For Adagrad we use the default
initialization value of 0.1 and use g9 = 1 x 10~7. None of the algorithms use weight decay, clipping
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etc. The learning rate is then tuned to obtain the best test accuracy. For all experiments, unless
explicitly mentioned otherwise, the learning rate is searched over a grid (9x):

nel,1x107%%1x1071,1x 10755, 1 x1072,1 x 10725, 1 x 1073,1 x 10735, 1 x 1074].

The server learning rate for all methods is kept at its default value of 1.

Heavy-sweep setting (567 x). For all Momentum methods, we pick momentum 5 = 0.9. For
Adam methods, we fix 81 = 0.9 and 55 = 0.99. For Adagrad we use the default initialization value
of 0.1. None of the algorithms use weight decay, clipping etc. The learning rate is then tuned to
obtain the best test accuracy.

For all experiments, unless explicitly mentioned otherwise, the client learning rate is searched over
a grid (9x):

Netient € [1,1 % 107%% 1 x 1071, 1x1071°,1 x 1072,1 x 1072%,1 x 1073,1 x 10725, 1 x 1074].

Further, we also search for the server learning rate is searched over a grid (9x):

Nserver € [1 x 10,1 x 10°5, 1,1 x 1079° 1 x 1071, 1 x 10715, 1 x 107%,1 x 10721 x 1077].

Finally, for the adaptive methods such as Adam and Adagrad, we also tune the €y parameter over a
grid (7x):

g0 €[1,1x107,1x10721x 1072, 1 x107*,1x 10751 x107%,1 x 1077].

C.5 Comparison with previous results

As far as we are aware, [49] is the only prior work which conducts a systematic experimental study
of federated learning algorithms over multiple realistic datasets. The algorithms comparable across
the two works (e.g. FedAvgSGD, FedAvgMom, and FedAvgAdam) have qualitatively similar per-
formance except with one exception: FedAvgAdam consistently underperforms FedAvgMom. This
difference, as we show later, is because FedAvgAdam does not work with the default choices of
hyper-parameters such as € and requires additional tuning. As we explain in Section C.3, we chose
to keep these parameters to the default values of their centralized counterparts to compare methods
in a ‘low-tuning’ setting. We also point that while FedAvgAdam struggles to perform in this setup,
MimeAdam and MimeLiteAdam are very stable and even often outperform their SGD counterparts.

C.6 Additional algorithmic details

Table 5: Decomposing base algorithms into a parameter update ({/) and statistics tracking (V).

Algorithm Tracked statistics s Update step I/ Tracking step V
SGD - T —ng -
SGDm/Mom m xz—n((1-p8)g+ pm) m=(1-p)g+Bm
AdaGrad v T — #g v=g>+v

_ _ m = (1—p1)g+ pm
Adam m,v x €4_\/5((1 B)g+Bim) (1= B2)g° + Bav

20



D Additional Adam experiments

Adam methods on EMNIST62 Adam methods on EMNIST62
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Figure 3: Mime, MimeLite, FedAvg, and with Adam using 10 local epochs, run on

EMNIST62 and a 2 hidden layer (300u-100) MLP. (Left) Mime and MimelL.ite are nearly identical
and outperform FedAvg. (Right) Locally adapting Adam state slows down convergence and makes
it more unstable. Both these results are consistent with the earlier momentum results.
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Figure 4: Stability of adaptive methods with varying server learning: FedAvg (left), Mime (mid-
dle) and MimeLite (right) with Adam (top) and Adagrad (bottom) as base algorithms are run on
EMNIST62 with CNN. For each value of server learning rate (y-axis) and €( (z-axis), the client
learning rate was tuned over the 9 grid and the accuracy reported. The red box highlights the de-
fault configuration in a centralized setting. We see that FedAvgAdam is very sensitive to the server
learning rate and ¢, performing poorly in the default centralized parameter regimes. Mime and
MimelLite acheive their best performance with the centralized parameters. This justifies our claim
that Mime and MimeLite can adapt any centralized method with the same hyper-parameters and
only require tuning of a single learning rate. This, we believe, is crucial for real world deployment.
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Figure 5: Stability of non-adaptive methods with varying server learning: FedAvg, Mime and
MimeLite with SGD and momentum (8 = 0.9) as base algorithms are run on EMNIST62 with
CNN. For each value of server learning rate, the client learning rate was tuned over the 9x grid. The
momentum methods are more insensitive to the server learning rate than the SGD methods. Server
learning rate of 1 (default value) seems to work well for all methods.

F Technicalities

We examine some additional definitions and introduce some technical lemmas.

F.1 Assumptions and definitions

We make precise a few definitions and explain some of their implications. We first discuss the
two assumptions on the dissimilarity between the gradients (A1) and the Hessians (A2). Loosely,
these two quantities are an extension of the concepts of variance and smoothness which occur in
centralized SGD analysis to the federated learning setting. Just as the variance and smoothness
are completely orthogonal concepts, we can have settings where G2 (gradient dissimilarity) is large
while § (Hessian dissimilarity) is small, or vice-versa.

Our assumption about the bound on the G gradient dissimilarity can easily be extended to (G, B)
gradient dissimilarity used by [33]:

El[Vfi(@)|? < G+ B?|Vf(=)|. (7

All the proofs in the paper extend in a straightforward manner to the above weaker notion. Since
this notion does not present any novel technical challenge, we omit it in the rest of the proofs. Note
however that the above weaker notion can potentially capture the fact that by increasing the model
capacity, we can reduce G. In the extreme case, by taking a sufficiently over-parameterized model,
it is possible to make G' = 0 in certain settings [63]. However, this comes both at a cost of increased
resource requirements (i.e. higher memory and compute requirements per step) but can also result
in other constants increasing (e.g. B and L).

The second crucial definition we use in this work is that of § bounded Hessian dissimilarity (A2).
This has been used previously in the analyses of distributed [54, 6, 51] and federated learning [32],
but has been restricted to quadratics. Here, we show how to extend both the notion as well as the
analysis to general smooth functions. The main manner we will use this assumption is in Lemma 3
to claim that for any « and y the following holds:

EIVfi(y; Q) — Vfi(m;Q) + V(x) — Vi) <6y — | (8)

Here the expectation is over the choice of client ¢. To understand what the above condition means,
it is illuminating to define ¥;(z) = f;(z; () — f(2). Then, we can rewrite (A2) and (8) respectively
as

[V2W,(2)[| <6 and  E[VE(y) — V()| < 6*ly —=|>.

Thus (8) and (A2) are both different notions of smoothness of ¥, (x) (formal definition of smooth-
ness will follow soon). The latter definition closely matches the notion of squared-smoothness used
by [5] and is a promising relaxation of (A2). However, we run into some technical issues since in our
case the variable y can also be a random variable and depend on the choice of the client . Extending
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our results to this weaker notion of Hessian-similarity and proving tight non-convex lower bounds
is an exciting theoretical challenge.

Finally note that if the functions f;(; ) are assumed to be smooth as in [54, 6, 32], then ¥;((x) is
2 L-smooth. Thus, we always have that § < 2L. But, as shown in [54], it is possible to have § < L
if the data distribution amongst the clients is similar. Further, the lower bound from [6] proves that
Hessian-similarity is the crucial quantity capturing the number of rounds of communication required
for distributed/federated optimization.

We next define the terms smoothness and strong-convexity which we repeatedly use in the paper.

(A2%) f; is almost surely L-smooth and satisfies:

IVfi(®; Q) = VSi(y; Ol < Ll —yl|, forany z,y. ©)

The assumption (A2*) also implies the following quadratic upper bound on f;

fily) < Fi@) + (Vfila)y = 2) + Sy — ] (10

Further, if f; is twice-differentiable, (A2*) implies that || V2 f;(; ¢)|| < 3 for any x.

(A3) We assume that the intra-client gradient variance is bounded by o2. For any client i, the
following holds almost surely at any fixed «:

Ee.[Vfi(z; Q)] = Vfi(x), and E||Vfi(z;¢) - V()| < o”.

Note that we expect the intra-client variance to be smaller than inter-client variance and so
typically o2 < G2.

(A4) f satisfies the u-PL inequality [29] for u > 0 if:
IVf(@)? = 2u(f(x) - f*).

Note that PL-inequality is much weaker than the standard notion of strong-convexity, and in
fact is even satisfied by some non-convex functions [29].

F.2 Some technical lemmas

Now we cover some technical lemmas which are useful for computations later on. First, we state a
relaxed triangle inequality true for the squared ¢5 norm.

Lemma 1 (relaxed triangle inequality). Let {vy,..., v, } be T vectors in RY. Then the following are
true:

L JJoi + ;12 < (14 Q)llwill? + (1 + 1) oy |2 for any ¢ > 0, and
2. Xyl < 7 %
Proof. The proof of the first statement for any ¢ > 0 follows from the identity:
lvi +v;11* = (L + lwill® + (1 + DllvslI* = Vv + Zzvs]1*.

For the second inequality, we use the convexity of  — ||«||? and Jensen’s inequality

1 T 2 1 T 9

ZD v S;z;H”iH : -
i=

i=1
Next we state an elementary lemma about expectations of norms of random vectors.

Lemma 2 (separating mean and variance). Let {Zy, ..., =, } be T random variables in R? which are
not necessarily independent. First suppose that their mean is E[Z;] = &; and variance is bounded
as E[||Z; — &||?] < 02 Then, the following holds

I\Zqu ] < IIZ&H2 +7%0
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Now instead suppose that their conditional mean is E[Z;|Z;_1,...E1] = &; i.e. the variables {Z; —
&} form a martingale difference sequence, and the variance is bounded by E[|Z; — &||?] < 02 as
before. Then we can show the tighter bound

ENNY =il <21 &l + 20
1=1 i=1
Proof. For any random variable X, E[X?] = E[(X — E[X])?] + (E[X])? implying

E[”Z 2% = HZszz + E[”Z 2 — &%)
i=1 i=1 i=1

Expanding the above expression using relaxed triangle inequality (Lemma 1) proves the first claim:
END =i - &l <7 EllE: - &l"] < 7%
i=1 i=1

For the second statement, &; is not deterministic and depends on =;_1,...,=Z;. Hence we have to
resort to the cruder relaxed triangle inequality to claim

EID Sl < 2> &l + 2B =i - &)
1=1 =1 =1

and then use the tighter expansion of the second term:
EH|Z 2 —&lI°) = ZE[(Ez‘ -&) (B —¢)] = Z E[lIE: — &l°] < 70”.
i=1 i,j i

The cross terms in the above expression have zero mean since {Z; —¢; } form a martingale difference
sequence. O

F.3 Properties of functions with bounded Hessian dissimilarity
We now study two lemmas which hold for any functions which satisfy (A2) and (A3). The first is
closely related to the notion of smoothness (A2%).
Lemma 3 (similarity). The following holds for any two functions f;(-) and f(-) satisfying (A2) and
(A3), and any x,y:

IV fiy; Q) = Vfi(z;: Q) + V(@) = VI(y)|? < 8ly —=|?.

Proof. Consider the function ¥(z) := f;(2z;¢) — f(z). By the assumption (A2), we know that
[IV2¥(2)|| < 6 forall zi.e. ¥ is §-smooth. By standard arguments based on taking limits [45], this
implies that

VU (y) = V¥ (2)| < iy —=|.

Plugging back the definition of W into the above inequality proves the lemma. O

Next, we see how weakly-convex functions satisfy a weaker notion of “averaging does not hurt”.
This is used to get a handle on the effect of averaging of parameters in FedAvg.

Lemma 4 (averaging). Suppose f is §-weakly convex. Then, for any v > 0, and a sequence of
parameters {y; }ics and x:

1 ¥ _ o _ _ 1
5 2w sl =il 2 £(@) + e = gl where g = 13w
i€ES €S

Proof. Since f is §-weakly convex, ®(z) := f(z) + %||z — «||* is convex. This proves the claim
since Fll > ics ©(yi) > ©(y) by convexity. O
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G Convergence with a generic base optimizer

Let us rewrite the Mime and MimeL.ite updates using notation convenient for analysis. In each round

t, we sample clients S* such that |S?| = S. The server communicates the server parameters '~ ! as

well as the average gradient across the sampled clients ¢! defined as

1 _
¢t = 3 Z Vfi(z ). (11)
€St
Note that computing ¢! (required only by Mime but not by MimeLite) itself requires additional
communication. In this proof, we do not make any assumption on how ¢! is computed as long as it

is unbiased and is computed over S clients. In particular, it can either be computed on the sampled
St or a different set of an independent sampled clients S*.
Then each client i € S makes a copy y/, = «'~! and perform K local client updates. In each

local client update k& € [K], the client samples a dataset f ;; and
Yip = Yip1 — Uiyl ;G x) — Vi@ ¢ ) +¢58™1)  (Mime client update)
=Yin1 — MUV iy oo Gl s (MimeLite client update)
After K such local updates, the server then aggregates the new client parameters as

1
xt = 3 Z yf K (Update server parameters)
ieSt
st =V(ct, s, (Update server statistics)

G.1 Proof of Theorem I (generic reduction)

Computing server update.
Lemma 5 (Deviation from central update.). For a linear updater U the server update for Mime can

be written as
1
xt =z — iU (S % Vfi(z) + e ;st_1> ,

and for Mimelite is becomes
- 1 _
at =a't — iU xS D OViila;Gir) +€lis ]
i,k

for i) := Kn. The error is defined as €' = >oin(Viik—1:Gk) — Vi Gik))

Proof. Because the updater { is linear in its first parameter, we can rewrite the update to the server
for MimeLite as

K
_ 1 _
@'~ = S Z Z_nu(vf’i(yf,k—l;git,k);st Y

€St k=1
1 _
=nKU K—SZ};Vﬁ(yik_l;Cf,k);st !

We drop the dependence on ¢ when obvious from context and i by default sums over S and k over
[K] by default. Using our definition of e’ we have

_ 1 -
xt — ' = KU Kfszl;vfi(yf,kq;g,k)ést !

] (e gt
- nu KS ;sz(w,@,k) +e ) S

25



Now let us examine the update of Mime. Again assuming K is a multiple of epoch, we have
doin Viilmi¢ly) = K32, Vfi(z) = KSx. Hence,

K
1
- at Tt = o Y N UV ik Chy) = Vi) +esT

i€St k=1
=nKU(c+ e"; st_l)

= nKU(; zi:Vfi(w) +e; st_1> .

Thus we showed the lemma for both Mime and MimeLite. O

Lemma 6 (Defining error). For e' defined in Lemma 5, assuming all functions f;(-,() are L-
smooth, we have

2 2 2
Elle'||* < L?EL., where & = KSZEHym 1—z|°.

Proof. Using the smoothness of the individual functions and the definition of et,

1
Elle’||* = E||K75 (V filyim—1; Cir) — Vil Ga)) |1

ik

1
< %S ZEHVfi(yi,kfﬁ — Vfi(z; Gr)l|? < L*E .
ik

Henceforth, we will call 5% as the error, or as the client-drift following [32].

Bounding error in MimeLite. Now we will try bound the client drift £¢ for MimeLite.
Lemma 7 (MimeLite error). Suppose that all functions fi( -, () are L-smooth (A2%), 0% variance
(A3), and (A1) is satisfied, and the updater U has B-Lipschitz updates. Then using step-size 7 <
1
2BL’
1 2 2, o’
<E G

Proof. For K = 1, we have E||y;1 — x> < B*p*(G* + ¢%) + B?*n?E||Vf(x)||?. The lemma
is easily shown to be true. Assuming K > 2 henceforth, and starting from the client update of
MimeLite we have

Ellyix — /> = Ellyio—1 — nU(V fi(y} 13 ¢l p); 87 ) — x|
< E|yin—1 — UV fi(Ylp_1:8"") — z|* + B*n?o?

1 _
< (14 gy ) Bl — alP + K EIUV Ayt s P + B

IA

1+)Euhk1—MF+KB%FmVLwM;niVﬂ<MF+B%%2

(
(14 o ) Eloscs - =P
(1

IN

+2KB** |V fi(x)||* + 2K B> L*n* Ellys -1 — ||* + B*n*0”

14 ) Ellyix—1 — =||* + 2K B*n* E||V f(x)|* + 2K B*n*G* + B*n*o?
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Here we used the condition on our step size that ij = K7 < which implies that 2K B2L?n? <

K—l . Unrolling this recursion, we have

2LB ’

K k
Ellyir — z||> < 2KB*n*E|Vf(z)|? + 2K B>p*G* + B*n’0 Z<1+> .
k=1

k
Note that (1 + %) < 9. Averaging then over k and 7, we get

& < IBK*B**E||Vf(z)|* + 18K*B*n*G? + 9K B*n*o”
Finally, recalling that 7 = K7 finishes the lemma. O

Bounding error in Mime. Next we will try bound the client drift £ for Mime. The additional
SVRG correction term used in Mime improves the bound on the error.

Lemma 8 (Mime Error). Suppose that all functions f;( -, () are L-smooth (A2%), o? variance (A3),
and (A1) is satisfied, and the updater U has B-Lipschitz updates. Then using step-size 11 <

2BL’
) 2
K 252
E" <18B*i°E Eiv’ﬂ‘”)
Proof. For K = 1, the Mime update loos like
Ellyii —2|* = n*Elu(e; s |12
<n’B*E|c|®.
Assuming K > 2 henceforth, and starting from the client update of Mime we have
Elyir — /> = Ellyin—1 — nd(Vfi(yir—1;¢p) — Viila; () + 55871 —af?
1
< (14 g ) Bl - al?
+ K? EJU(V fi(yin-13Gp) = Vil G i) + 5872
1
< (14 gy ) Bl = ol + KB EIVAlpiari ) — Vhlascli + ¢
< (141 E| 2
- i1 — T
< K_1 Yik—1

+ 2Kn*B*E||V fi(yik-1; ¢ ) — Vil ¢ )1 + 2Kn° B> E||c!||?

1
< <1 + 7t 2Kn232L2) Ellyin_1 — =|* + 2Kn?B?E||c"||?

2
< (14 5 ) Bl = ol 2602 Bl

Here we used the condition on our step size that ij = K7 < which implies that 2K B2L?n? <

. Unrolling this recursion, we have

2LB’
K—l

K k
2
s - @ < 2K B B! Z<1 sh) S BRBPER,

k
Note that (1 + %) < 9. Averaging then over k and ¢, recalling that 7 = K1 get

&l < 18B*H*E||c'?.
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Putting it together (Theorem I).
Lemma 9. The updates of Mime and MimelLite for g* satisfying E[g'] = V f(z'~1), and we have
forn < ﬁ

=z —iU(c + el st

st =V(c'; ).
Where, we have

1 E ” ”2 < E”CtH2 Lol ’
———m—s e
srrzE S = Y g p(@h)|2 + G2 + 2 MIMELITE .

2K
Proof. Now, combining Lemmas 5, 6, shows that running Mime or MimelL.ite is equivalent to
. ﬁU(gt + et;st—l)
st — V(gt;st—l)’

where for Mime we use

1 . _ _ G?
Ghime = g O Vfi(@) with Elghyn] = V(@) and Ellghune — V(@' < =
and for MimeLite we use
ot = e S V(@5 Co) with Elglne] = V(1) and Ellglgme— ¥ f(at P < St 2
IMimeLite — KS i\ L5 Gi k) WL IMimel = Y an GMime T =g KS .

ik

This shows the first part of the theorem. For the second part of the theorem, using the bound from
Lemma 8 for Mime,

Ele!|| < L?&L < 18L*B*7*E||c'||?.
For MimeLite, we will instead use the bound from Lemma 7,

2 9L2B2%20? o2
t < p2et o - 2322 (2 21322 ~2 .
E”eMlmethe” — L gK + KS — 18L*B n E”Vf(il? )” + 18L"B n G + K + KS

O

Note that the Lemma we proved here is slightly stronger than the theorem in the main section (up to
constants which were suppressed).

G.2 Convergence of MimeSGD and MimeLiteSGD (Corollary II)

Theorem I shows that Mime and MimeLite mimic a centralized algorithm quite closely up to error
O(7?). Then, analyzing the sensitivity of the base algorithm to such perturbation yields specific
rates of convergence. We perform such an analysis using SGD as our base optimizer.

Properties of SGD as the base optimizer:

e s’ is empty i.e. there are no global statistics used.
e U(g;s'~1)=gforanygand B = 1.

With this in mind, we proceed.

Lemma 10 (Progress in one round). Given that f is L-smooth, and for any step-size n < m
for B > 1 we have
t t—1 n t—1\2 | = o2 LT°G?
f(@') < f(= )—ZEHVJ"(%‘ )+ 7E|le”| t—5 -
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Proof. Starting from the update equation and the smoothness of f, we have
L
Ef(@) <Ef@h) +E(Vf(@' )2’ —a'™) + S Ella’ —a' |
t—1 ~ t—1y\(12 ~ t—1 t Lﬁ? t t)2
=Ef(@) BV )" +0(Vi(@™"),e) + —-Elc + €
_ 7 _ 7 2 Lip? 2Ly
<Ef(@™") = JE[VA@? + Jle' 2 + S Elle!|? + - Ellef?

_ 7 2L7? _ 2L72G?
<ese - (1- 2 )evse 1>||2+< 7+ 1) el + 2L

Using the bound on the step size that 77 < -+ yields the lemma. O

1
>y
One round progress for MimeSGD. Next, we specialize the convergence rate for Mime.

Lemma 11. Suppose f is a L-smooth function satisfying PL-inequality for u > 0 (u = 0 corre-
sponds to the general case). Running MimeSGD for n < ﬁ satisfies

- B i B . o BLPG?
GEIVI@DIP < (-8 (@)~ ) = () - ) + =g

Proof. Recall from Lemma 9 that for Mime,
1 L2B2~2 2
Ellet|? < 1812 B2 Elje!|? < 18L2B% E|V /) + T

Combining this with Lemma 10 yields the following progress for Mime

(Li? + 18L2B%73)G?
S

@) < s - (5 - 182255 ) E AP +

3Li2G2
'

< f(a'Y) ”EHW( I

Here, we used the bound on the step size that 7 < 535 implies 18L2B%j? < L. Now using

PL-inequality, we can write

3L2G2
.
This yields the lemma. ]

f(wt)—f*éf(wt‘l)—f*—%ﬁ(f( - f*)—*EIIVf O+

We are now ready to derive the convergence rate.

Convergence rate of MimeSGD on general non-convex functions. Set ¢ = 0in Lemma 11 and
sum over ¢

I 16(f(z%) — f*)  48LiG?
3LG2(f(x°) — f*) | 192BL(f(x°) — f*)
= 16\/ ST + T :

The final step used a step-size of 7 = min( T 15 ‘W) Here, we used " = 7

where 7 is uniformly at random chosen in [T].
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Convergence rate of MimeSGD on PL-inequality. Multiply Lemma 11 by (1 — %)T_t and sum
over ¢

T T

AT — B _ . 16 f wtfl _f*
Z(]‘ _ %)T tEHVf(ZBt 1)”2 < Z(l N %W)T (t—1) ( ( _ ) )
t=1 t=1 77
—(1— L)Tft 16(f($) f*) ( o L)T t48LnG2
8 77 8 S
w16 @) = ) N - ASLAG?
<@- ?) + Z o ? g
t=1

Output °" = x” where 7 is chosen with probability proportional to (1 — %)T’t. Then, this yields

i\ 16(f (%) — f*)  48LiG* _ ([ o? uT

outy 12 ~ (1 _ #n\T < v rx . .

e e el e R e

Using an appropriate step-size 7 yields the final rate (see Lemma 1 of [32]).

One round progress for MimeLiteSGD. Next, we specialize the convergence rate for MimeLite.

Lemma 12. Suppose f is a L-smooth function satisfying PL-inequality for p > 0 (u = 0 corre-
sponds to the general case). Running MimeLiteSGD for 1 < ﬁ satisfies

Li?G?

n GEIVAEHI? < A-E) (@) =)= (f(@") - )+ —g—+I8L* B (G* + 0*/K) .

Proof. Recall from Lemma 9 that,
9L232 ~2 2
Ellet|? < 18L2B%2 E||ct||? < 18L2B2j? E|V f(2!~1)||? + 18L2 B2 G2 + #

Combining this with Lemma 10 yields the following progress for Mime

flah) < flath) - (Z - 18L232ﬁ3> E[Vf(x™HI” + LG s12p i’ (G? + 0*/K)

_ 7l _ Li2G? -
< J(@') - LEIV@ P + T + 18L2B% (G + 0%/K) .

Here, we used the bound on the step size that 77 <
PL-inequality, we can write

fla) = f=(f") - f) <

575 implies 18L2B27*> < . Now using

] i Li?G?
- B = ) - EEIVIETIP + T 18BN (G + oK)
This yields the lemma. O

We are now ready to derive the convergence rate.

Convergence rate of MimeLiteSGD on general non-convex functions. Define G* = G2 +
0?/K. Set y1 = 0 in Lemma 12 and sum over ¢

T ~
1 _ 16(f(x%) — f*)  16L7G? e
- E t—1\12 < ) L232 272
F BNV < SR R oy

< 16, [LEVEN 1) gy (LU = 1) P 192BLUE) - 1)
< ST + T + T .

The final step used an appropriate step-size of 7, see Lemma 2 of [32]. Here, we used " = 7

where 7 is uniformly at random chosen in [T]. Finally note that if K > G2 , then G? < 2G2.
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Convergence rate of MimeLiteSGD on PL-inequality. Multiply Lemma 12 by (1 — %)T_t and
sum over ¢

T T
B 16 f m15—1 _ f*
Z(l_%)T tEva t1H2 Z %T(t 1) (( ~) )
t=1 t—1 n
_(1_L)T t1 (f(wt)_f*)
8 ~
n
d - 16LiG? .
+ 3 (1 - ayT (” + 288L2B2172G2)
t=1
N 0y _ £*
S(]__%)Tlfs(f(w) f )
n
d 16 L7G? .
+3 (1 amyT- ( —+ 288L2B2ﬁ2G2> .
t=1
Output °" = x™ where 7 is chosen with probability proportional to (1 — %ﬁ)T_t. Then, this yields

with appropriate step-size 7} yields the final rate (see Lemma 1 of [32]).

~[o® LGP T
E|Vf(z*)]? < O(ZT e T L(f(x") — f*)exp(lgBLD :

G.3 Convergence of MimeAdam and MimeLiteAdam (Corollary III)

We will largely follow the convergence analysis of [75] for the analysis of Adam. A crucial differ-
ence between their setting and ours is that in our algorithm we use the global statistics (second order

moment) corresponding to ¢ — 1 i.e. Vo'~ instead of Vvt where the \/- operator is applied element
wise. Practically, this does not make a significant difference since the discount (momentum) factor
for the second momentum is very large. Theoretically however, this difference simplifies our proof
significantly removing otherwise hard to handle stochastic dependencies.

In this section, we will use Adam as our base optimizer with €y > 0 parameter for stability and
B1 = 0 (i.e. RMSProp). This is identical to the setting in the centralized algorithm analyzed by [75].
The properties of our base optimizer are then:

e st = v’ whichisa running average estimate of the second moment and satisfies v* > 0.
o U(g;v'i™t) = m+ for any g. This update for any v*~* is B-Lipschitz for B = _-.

In this sub-section, all operations on vectors (multiplication, division, addition, comparison) are
applied element-wise with appropriate broad-casting.

One round progress of Adam.
Lemma 13 (Effective step-sizes). Suppose that |V ; f;(x)| < H. Then Adam has effective step-sizes

1
H+¢g

1
g<U(giv'™") < —g.
€o

Proof. Recall that v! = Bav!™! + (1 — B2)(c!)? starting from v° = 0. Thus for any ¢ > 0, we have

vt > 0 and hence Vvi~1 4 9 > &q. For the other side, recall that v? is updated with centralized
stochastic gradients ¢’ = + >, V f;().

I\ 0)

Further,
[v']; = Bo[v' 1] + (1 = Bo)[€']] < Bafv'H]; + (1 — B2)H? < H?.
Hence vvi—1 +e9 < H + . O
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Lemma 14 (One round progress). For one round of Adam with error €' in the update U and using
c! for update V, we have

4(H—|— 0)

7((H +€0) +eo/(H + 0))
2e2

Li?G?

E f(a') <Ef(a')- =
0

IV £ ()12 + Elle[|*+

Proof. Starting from Lemma 13 and the smoothness of f, we have

E f(a) < E fla™) ~ HE(V S @), E(c + )]+ 20 Eu(et + oot )

B b+ et Li?
<Ef(z™Y) — GE(V act_l,E{c}+ Ellt(c! + et; vt 1)|12
_ . _ Vi(xt=1t) + et
<Ef(z'™") —HE(V mtl,{ Ec+t2
SEf(@T) - nE(Vf(x") N )+ 22 | |
<Ef(a') - | Vf(' )~ nE(V ), ﬁet )+ L Ellc’ +e'|]?
= H+50 Ut 1 +50
- I - n(H + o) e'
< t—1y i—1ypz . N 0 2, P
SES@ )~ gy V@I TR P Tl + ]
_ 7] Li? i(H + eo) + 2Li? Li?G?
<E t—1y _ n . t=1y)12 4 Ellet|I2
<Ef) (2(H+5 - IV s+ TSR e 4 LT
_ H+Eo) +€0/(H+80)) L’ﬁ2G2
<E f(gt-! t=1y12 4 (( Ellet !
SEF@') ~ e 19/ DI+ - e+ “gz
Here we used our bound on the step-size that 77 < m. O

Convergence of MimeAdam.

Lemma 15. Suppose that assumpnons AI-(A3) hold and further |V f;(x)| < H. Then, running

MimeAdam with step-size 1 < we have

12L(H+s )’

= L(H + &)> — 1) 2G?

Combining Lemma 14 with the bound on e? from Lemma 9 we get,

~ ~2 2
E f(a!) <Ef(@) - —4(H+ SV £ty + L M0 ety 25
_ 9L ((H + £0) + 0/ (H + £0))
<Ef(a"") - m”vf( HIP+ ol Elle"||®
Li?G?
Sed
= 23
R BT R [
N Li2G? N 9L%73((H + o) + €0/ (H + £0))G?
Sed Seg
-1 n 18L%7° (H + o) —1y(2
<Ere )~ (e I )
Li?G?  18L%P(H + ¢9)G?
M Se% Sed
t—1 t— 2 ﬁGz
<Ef(z )*m”vf( HIZ + m~
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To simplify computations, here we assumed we assumed (H + )2 > &q without loss of generality.
2

If this is not true, we can replace H by max(H, /g — £¢). Assuming 77 < m, we have
18L%72% (H +¢0) < 1

g = 8(H+eo)"
the lemma.

Rearranging the terms and substituting the bounds on the step-size yields

Convergence of MimeLiteAdam.
Lemma 16. Suppose that assumptions AI—(A3) hold and further |V ; f;(x)| < H. Then, running
2

MimeLiteAdam with step-size 1) < W&{Jrao)’ we have for G?:=G*+ o?/K,
T -
1 _ 96LV/S(H + £0)%(f(z0) — f*) = 2G?
= E t—1y\12 < /-~
T 2 EIVI I < o —
Combining Lemma 14 with the bound on e’ from Lemma 9 we get for G? := G? + ¢ /K,
_ N _ n(H + €o) Li?G?
E < E t—1y n V(i 1))2 ( Ellet||2
f(a) < E S gy IV @I+ T Bl 4 T
<E t—1y n Vf(xt=1)|2
<ES@ )~ ey I
18L27%(H + ¢ _ 18L27°(H + £0)(G?)  Lij*G?
+ n (4 0) E”vf(wt 1)”2+ / ( - O)( )+ ] >
€5 €5 Seg
~ ~é2
<E f(zt1) — n V(21|12 + n
<ES@ )~ gy IV e e

Again as before to simplify computations, here we assumed (H + £¢)? > ¢ without loss of gener-
2

ality. If this is not true, we can replace H by max(H, /g — €¢). Assuming 7) < m, we

. Rearranging the terms and substituting the bounds on the step-size

252
18L~°7 E;HJF&O) <

1
have < 5S(HTe)

yields the lemma.

H Circumventing server-only lower bounds

In this section we see how to use momentum based variance reduction [ 14, 62] to reduce the variance
of the updates and improve convergence. It should be noted that MVR does not exactly fit the
MIME framework (BASEOPT) since it requires computing gradients at two points on the same batch.
However, it is straightforward to extend the idea of MIME to MVR as we will now do. We use MVR
as a theoretical justification for why the usual momentum works well in practice. An interesting
future direction would be to adapt the algorithm and analysis of [13], which does fit the framework
of MIME.

For the sake of convenience, we summarize the notation used in the proof in a table.

Table 6: Summary of all notation used in the MVR proofs

02,G?,and § intra-client gradient, inter-client gradient, and inter-client Hessian variance

n,a step-size, (1 — ) momentum parameters
T, t total number, index of communication rounds
K,k total number, index of client local update steps
St S,andi  sampled set, size, and index of clients in round ¢
x! aggregated server model after round ¢
m! server momentum computed affer round ¢
ct control variate of server after round ¢ (only MIME)
yf & model parameters of ¢th client in round t after step k
Cit’ & mini-batch data used by ith client in round ¢ and step %
d; & parameter update by ith client in round ¢, step k
e' error in momentum m! — V f(z!~1)

A At Ellyf , — o' 22 Ellat T — 2t 22 = AL
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H.1 Algorithm descriptions

Now, we formally describe the MIME MVR and MIMELITE MVR algorithms. In each round ¢, we
sample clients S? such that |S?| = S. The server communicates the server parameters '~ 1, the past

parameters ‘2, and the momentum m!~! term. MIME additionally uses a control variate ¢!~ ! as

we describe next.

Control variate in Mime. MIME uses an additional control variate ¢! ! to reduce the variance.
1
t—1 t—2
c :EZVfi(a: ). (12)
iest

Note that both ¢!~! and !~ use gradients and parameters from previous rounds (different from the
previous section). A naive implementation of this method requires two steps of communication per
round to implement this algorithm. Alternatively, we can reserve some clients in the previous round
for computing ¢!~! which can then be used in the current round, removing the need for two steps
of communication. In particular, it can be computed on a different set of an independent sampled

clients S*=1. In fact, all our theoretical results hold even if we use a single client to perform the
local updates and the rest of clients are used only to compute c¢'~! each round.

Local client updates. Then each client i € S* makes a copy y;, = «'~' and perform K local
client updates. In each local client update k € [K], the client samples a dataset Cf - MIME performs
the following update:

Yl =yl p 1 —nd;, , where
di = a(V iyl p_1; ) — Vi) + 7 + (1 —a)m'™! (13)
+ (1= a)(Vfi(y) j_1:Cr) — Vil i)

MIMELITE on the other hand uses a very similar but simpler update scheme which does not rely on
t—1.
c

Yiy =Yl p_1 —nd;, , where
dl = aVfiyle 1:¢)+ (1 —aym'! (14)
+ (1 —a)(Vfilyip1:Clr) — Vil ¢ L))

Server updates. After K such local updates, the server then aggregates the new client parameters
as
1
z' =3 D Y- as)
jest
The momentum term is updated at the end of the round for a > 0 as

m' = a(L Y, cs V@) + (1—a)m! = + (1 —a)(5 ¥,es V(@) = Viy(a'2) .

Mom correction
(16)
As we can see, the momentum update of MVR can be broken down into the usual Mom update, and
a correction. Intuitively, this correction term is very small since f; is smooth and x'~! ~ x!~2,

Another way of looking at the update (16) is to note that if all functions are identical i.e. f; = fi
for any j, k, then (16) just becomes the usual gradient descent. Thus MimeM VR tries to maintain an
exponential moving average of only the variance terms, reducing its bias. We refer to [14] for more
detailed explanation of MVR.

H.2 Bias in updates

The main difference in MimeMVR from the centralized versions of [62, 14] is the additional local
steps which are biased. In particular, for & > 1 the expected gradient E[V f;(y; )] # Vf(y;,)

because yf & also depends on the sample ¢. This bias is in fact the underlying cause of client drift
and controlling it is a crucial step for our analysis.
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Lemma 17 (Mime bias). For any values of  and y; where y; may depend on i, the following holds
for any client © almost surely given that (A1) and (A2) hold:

2
2

B[ Vi 0)+ 7 SO V@) - VA0~ V()| <20 Eslly—al + X
JjES

Proof. We can separate the noise from the rest of the terms and expand as
2

Ecs|[VAilwis Q) + % SOVS(@) - Vi) — Vi)

JjES

< 2Es|Vfiyis Q) + V(@) — Viil@i ) = V(yo)|® +2Es é S V(@) - Vi)

jES
5  2G2
<2Es||Vfilyis Q) + Vf(z) = Vii(x; () = V()™ + <
2 2
< 2Es Py~ + 2o
The first inequality used Young’s inequality, the second used (A1), and the last used (A2) in the form
of Lemma 3. O

We can perform a similar analysis of the bias of local updates encountered by MIMELITE.
Lemma 18 (MimeLite bias). For any values of x and y; where y; may depend on 1, the following
holds for any client i randomly chosen from C given that (A1), (A2) and (A3) hold:

EiclVfi(yisQ) — Vi)l? <20%Eillyi — 2] +2G* + o2

Proof. We can separate the noise from the rest of the terms and expand as
Ec,ill Vfilyis O) = V@) I” = Ecal Vilyis ) £ Vfilw) £ V(@) = V()|
<Ei||Vfily:) £ V(@) £ V() = V)| + o
< 26|V fi(y:) + Vf(x) = Vi) = V)l
+ 26|V fi(e) = Vf ()| +0°
< 2Ei|VSi(y:) + V(@) = VSi(@) = VI()|* +26° + 0
< 20%Eillyi — | +2G° + 07

The first inequality used (A3), the second used Young’s inequality, the third used (A1), and the last
used (A2) in the form of Lemma 3. O]

Note that the bias for MimeLite is very similar to that of Mime, except that Mime has dependence
of %2, whereas MimeLite has G? 4 2. Hence, the rate of convergence of MimeLite will depend
on G? wheras Mime will have the optimal dependency of G?/S. Hence, in the rest of the proof,

we will consider only Mime and simply replace G2 /.S with (G? + ¢2) to obtain the corresponding
results for MimeLite.

H.3 Change in each client update

Client update variance. Now we examine the variance of our update in each local step d ..

Lemma 19. For the client update (13), given (A1) and (A2), the following holds for any a € [0, 1]
where €' :=m' =V f(z'~") and A} ; = E|y}, — ='?|]*:

3a2G?

E||d§,k - Vf(yf,k—1)||2 < 3Ele"* + 352A§,k—1 + g
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Proof. Starting from the client update (13), we can rewrite it as
~ V(Y1) =01- a)e'™!
+ (Vfi(y;k—ﬁ Cztk) — Vfi(z'™? Cf,k)) - Vf(yf,k—ﬂ + Vf(wtfz))

& X Vi) - Vi)

JES?
We can use the relaxed triangle inequality Lemma 1 to claim
E||d§,k - Vf(yf,kfl)”z
= 3(1— ) Ele! 1|2
_ _ 2
+3(1 = a)?*[[(Vi(Wig—1: i) = VSile %G 0)) = (Vf(yiso1) = V(' ™2)|

2
32| 5 30 V') - Vi)
jESt

3a2G?
< BE[le ] + 307y poy — @' PP + ——.

S
The last inequality used the Hessian similarity Lemma 3 to bound the second term and the hetero-
geneity bound (A1) to bound the last term. Also, (1 —a)? < 1 since a € [0, 1]. O

Distance moved in each step. We show that the distance moved by a client in each step during
the client update can be controlled.

Lemma 20. For MimeMVR updates (13) with n < 6—11(5 and given (A1) and (A2), the following
holds

1 G? -
Alps (14 5 ) Alus + 182K 4 ISPREN P + PRIV I
wt—2||2'

where we define A} | :=E||y}, —

Proof. Starting from the MimeM VR update (13) and the relaxed triangle inequality with ¢ = 2K,

Ellyf, — ' 2|1* = Ellyix_y —ndfp — 2|
< (14 g ) Elvtas = @217 + (R 4 152 El
< (14 g ) Elvtas — o212 + 6K Bl - Vs )P
+ 6K E|Vf(y; 1)
< (14 g + 18500 ) Ellt s - o2
18K n%a’G?
+ 18K Elle!™|? + == + 6K [V £ (yly )
The last inequality used the update vanance bound Lemma 19. We can simplify the expression
further since n < 5 implies 18 K7?6? < L. O

Progress in one step. Now we can compute the progress made in each step.

Lemma 21. For any client update step with step size n < min( T 1995 K) and given that (A1), (A2)
hold, we have

9\ K~k 9\ K= (k=1)
Ef(yis) + 5(1 + K) Al <Ef(yip1)+ 5(1 + K) Al

3naG?

n _
— DI (gl + 3 Ele P 4+ 21

36



Proof. The assumption that f is L-smooth implies a quadratic upper bound (10).

L772
f(yfk) - f(yf,kq) < _77<Vf(yf,k71)v df’,k> + N dekHQ
U Ln? —n n
= _§||Vf(yf,kfl)”2 + — ||dfk;H2 + §Hd§,k - Vf(yf,kfl)”2 .

The second equality used the fact that for any a, b, —2ab = (a — b)?> — a? — b?. The second term
can be removed since < % Taking expectation on both sides and using the update variance bound
Lemma 19,

n 3na’G?
Ef(yf,k») —Ef(yir1) < 3 E||Vf(yf,k—1)H2+ 95
3n B 3nd?
+ 5 Elle’ 1> + ?Ag,k—l
n 3na’G?
< 3 E”Vf(yf,k—l)Hz + o5
3n _ 3162
+ 5 Elle"!|I* + TAg,k—l

Multiplying the distance bound Lemma 20 by & (1 + %) K% Note that for any K > land k € [K],
wehave 1 < (1 + %)K_k < 8. Then we get

2\*F 2\ * 1 G?
= L < il Z\AL 27 2
5<1+ K) ALy < 5<1+ K> (1+ )AL + 18 Ka* =

+ 180 K Elle’™|* + GWQKVf(yﬁ,k_l)HQ)

9 K—(k-1) , 5 9 K-k ,
< (5(1 + K> Azf7k71 — E (1 + K) Ai,kfl

14415 K a?G?
48PSR E|Vf(yl g )| + g + 1440 K Elle P
2 ot t 5 t 2 t 2
< 5<1 + K> A1 — EAz’,k-—l + 4806 K E[|V f(y; —1) |l

N 144n%5 K a?G?
S
Adding these two inequalities together yields

+ 14405 K E|e' Y2

o\ K-k o\ K—(-1)
Ef(yi) + 5(1 + K> Aby <Ef(Yig_1)+ 5<1 + K> Af g1

_ (g — 487)25K) E||Vf(yf,k—1)”2
n <32’7 + 144n25K) Elle"~"|?

3n

22
+ < + +1447726K> Ly

2

Using our bound on the step-size that n < ﬁ implies that nd K < 48%4. O

H.4 Change in each round

We now see how the quantities we defined change across rounds.
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Distance moved in a round.
Lemma 22. For MimeMVR updates (13) with n < 67}1(6 and given (A1) and (A2), the following
holds

54K%n%a?G?

A" < 54K?n*Elle' 12 + 5

1
xS Z 8K E||V f(y; u—1)II?

where we define A! := E||x? — !~ 1|2

Proof. Starting from the MimeM VR update (13) and following the proof of Lemma 20,

t—1||2 t—1H2

= EHyf,kfl - Udf,k -

1 _
(1 * QK) Ellyt sy — 2P+ (2K + P EldL P

E||yf,k -z

2K
+6En*EIV (i k1)l

<1+ )Enym 22

< (14 g ) Elvta s — a1 4 K Bl Vs )P

1ss e+ BT e g sy, e,
Note that &' = £ 3.5 y! ;- and so,
Ellat — 212
< *ZEH%K !~
ics

18K72a*G? 1\**
< ¢ DX (1srpEle P+ PR ok e st 1) (14 )

€S k

54K 2n%a’G? 1
<BAKPPElle P+ ————— + —= ) 18K*p*E[|Vf(y! .
< B4R Elle! T |* + = =5 Zk: 0 EIIV S (i)l
. . I\K—k
Here we used the inequality that for all k, (1 + f) <3. O

Server momentum variance. We compute the error of the server momentum m!~! defined as
el =m! — Vf(x'!~1). Its expected norm can be bounded as follows.

Lemma 23. For the momentum update (16), given (A1) and (A2), the following holds for any

n < 516[{ and 1 > a > 2592K2%5%n2,

2G2
S

Elle’|I* < (1 - F)Elle"™"|* + 236K252772E\\Vf(ym D7

7

Proof. Starting from the momentum update (16),

t

el =(1-a)e!

F-a) | g S (V@) - V@) - V@) + V)

JES?

+a % Z (V™) = Vi)

JjES?
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Now, the term e’~! does not have any information from round ¢ and hence is statistically indepen-
dent of the rest of the terms. Further, the rest of the terms have mean 0. Hence, we can separate out
the zero mean noise terms from the e’ ~! following Lemma 2 and then the relaxed triangle inequality
Lemma 1 to claim

Elle’||* < (1 —a)*Elle""|?

+2(1-ay ;jgt(vfj(mtl) V@) - Vi) + V@)
2
+2d° ;%;t(wj(mt—l) — V(')
2a°G?
@

< (L-a)Efe ™ +2(1 - a)?0% |z~ — 22| +

The inequality used the Hessian similarity Lemma 3 to bound the second term and the heterogeneity
bound (A1) to bound the last term. Finally, note that (1 — a)? < (1 —a) < 1 fora € [0,1]. We can
continue by bounding A*~! using Lemma 22.

2aG?
Ellef” < (1 - a) Elle! !> +267A" " 4 =5
2a%G?
< (1-a)Efle 2 + =5~
_ 108K262%n%aG? 1
+m&@ﬁ%EwtHP+———77——7+R§§:%K%%fﬂvﬂwkqmz

ik

< (1 — 23a)Ellet~12 3a*G? 1 36K252n2 E||V f(y! 2
< (1= BBl 2 + 2 ST B6K E S ()P
ik

Z)

The last step used our bound on the momentum parameter that 1 > a > 25921252 K2. Note that

n < ﬁ ensures that this set is non-empty. O

Progress in one round. Finally, we can compute the progress made in a round. Note that we need
a technical condition that f is d-weakly convex. However, this is only needed because we insist
on running the algorithm on S clients in parallel and then averaging their weights—the averaging
requires weak convexity to ensure that the loss doesn’t blow up. It has been experimentally observed
in [43] that with the right initialization, averaging of the parameters does not increase the loss value
and so weak convexity within this region might be vaalid. Finally note that if we instead simply run
the local updates on a single chosen client with all the rest only being used to compute ¢!~ !, we will
retain all convergence rates without needing weak-convexity.

Lemma 24. For any round of MimeMVR with step size n < rnin(%7 m) and momentum pa-

rameter a > 912172(52K 2. Then, given that (A1)~(A2) hold and f is §-weakly convex, we have

1 ¢ 2 t—1 . 1Tnad*K?G?
24KS E i <o —® Limao-n -G
24K S Z IV (Y-l < + k ’
ke[K],jesS?
where we define the sequence
9617 89
o= % Elf(z") — f]+ 3a Elle|I” + TAt.
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Proof. We start by summing over the progress in single client updates as in Lemma 21

2

2 K
TENVF(ylo)|? <Ef(yly) + 5(1 4 ) AL,
ke[K]

- Ef(yf,K) - 5A§,K
43K Ele Y2 + 73”](;202
<Ef(yjo) +80AL, —Ef(y; k) — 0L g
+3nK E|le!|* + 3UK;2G2
<Ef(z'™) +80A" - Ef(yl k) — 0AL
+3nKE|e 1% + SnKa?G

S
Recall that Af’ A

= Ellyj, — 22| and y! ) = '
Al ;= A'"!. Then by the averaging Lemma 4, we have

& S EF0l +o

: JK_SZE (yj.x)] + 9 Ellz""
jEeS? JjES

This gives the last step above, making

- ?J;KHQ
> E[f(2")] + 6 Ell"? — ||

So by averaging our inequality over the sampled clients, and diving our summation over the updates
by K, we get
n t 2
1KS > EIVAWwLl

ke[K],jeSt

_ _ 80
< L Elf(@ )]+ 3nEllet ) +

3na’G?
At 1 F E[f(il:t)} + T .
We can use the bound on A; from Lemma 22 to proceed as
n t 2
1KS Z E”vf(yi,k—l)”
ke[K],jeSt

_ 3na’G?
~ R ELf(@)] + 3nElet 7 + P
+ 7At—1 _ 875 t

432K 6n*a*G?
432K Ellet | + Ta

3 o5 O VMK B[V (yl )l
i,k
_ _ 4na®G?
< & ELf@' )] — % ELf(@)] +anElle P + =
8 «+1 80 4
+ —A +

6KS ZE”Vf yzk: 1)“2

The last step used the bound on the step size that n < m. Now, multiplying the error bound
Lemma 23 by gg—z gives

967 4 % 24n u 13naG?
o Elle'? < —— (1 - F)Elle"|* +

23a 23a

38 K252
: KSZ—EHWW DI,
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Adding this to the previously obtained bound yields
U by o (L 38K\ N
— E 4 <|l=+——|—=— E 4
s X EviehoPs (5 ) S e
ke[K],jeSt ke[K],jeSt
+ g Elf(a'™N)] - % Elf(=")]

96n _ 96n :
+ Sar Ellet 12 = L Ellet?

23
86 86
Af 1 7At
+ K K
4n
- FEf@)] - Efe)?

G2
. 2772 52 1 1 38K3%5%p? 1 p .
Since a > 912n*K*=0%, we have ; — (5 — =) = 55 Using this proves the lemma. [

a

H.5 Final convergence rates

Theorem V (Convergence of MimeMVR). Let us run MimeMVR with step size n =
N1/3
%, 86415[{, (65;%(}?2;;{&) and momentum parameter a = maX(153677262K2, %)
Then, given that (A1) and (A2) hold, we have
§GPFN\1/3  G* (L+0K)F
2
wor X X Y eVl <o () g R ).

te[T] ke[K] jeS?t

min

where we define F := f(x°) — f*.

Proof. Unroll the one round progress Lemma 24 and average over 1" rounds to get

0 T 2
w5r X 2 Sl < 2O T R

t€ [T ke[K] jeSt
Recall that we defined

96 86
@' = FE[f(@) - £+ L Ellef |+ A"
Hence, ®7" > 0. Further, note that by definition A° = 0 and E||eg]|? := E||m° — Vf(z?)||%. [14]
show that by using time-varying step sizes, it is possible to directly control the error eg. Alterna-
tively, [62] use a large initial accumulation for the momentum term. For the sake of simplicity, we
will follow the latter approach. It is straightforward to extend our techniques to the time-varying
step-size case as well but with additional proof complexity. Note that either way, the total com-
plexity only changes by a factor of 2. Suppose that we run the algorithm for 27" rounds wherein

for the first T" rounds, we simpiy compute m?® = ﬁ ZtTil jest V(%) . With this, we have
eo = E|m® — Vf(z?)|? < g—T . Thus, we have for the first round ¢ = 1

961G?
23aTS

2° = LE[f(2") ~ ]+ oo B’ < L E[f(a") — ] +

Together, this gives

S Z Z ZE||fy1k 1||2

te[T] ke[K]ieS?t

24(£(2%) = *) | 96G* | 408aG?
KT al?S S

IN
3

The above equation holds for any choice of n < min(%, %6 415 K) and momentum parameter a >
9127262 K2. Set the momentum parameter as

1
a = max (91277262[(27 T)
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With this choice, we can simplify the rate of convergence as

24(f (%) — f*) N 96G? N 1664640252 K2G? N 408G?
nKT TS S ST

(1L (SUE) -\
=T T 8640K " \ 6936 K3T52G2 '
For this combination of step size 1 and a, the rate simplifies to

504G2 (F(&°) — f9)52G2\*  24(L + 8640 K)(f(z°) — f*)
TS +916( ST? ) * KT '

Now let us pick

This finishes the proof of the theorem. O

Theorem VI (Convergence of MimeLiteMVR). Let us run MimeLiteMVR with step size 1 =
min( 1, - ( (@) —f") )1/3 and momentum parameter a = max(1536 252 K2 l)
L’ 8646K > \ 6936 K3T62(G2+02) p = n T )

Then, given that (A1) and (A2%*) hold, we have

L Z S N EIVAWE 1)||2<O((W)1/3+G2+02+ (L+5K)F)’

T KT
tE [T) ke[K] jeSt

where we define F := f(x°) — f*.

Proof. The proof for MimeLiteMVR is identical to that of MimeMVR, except that as noted in
2
Lemma 18, the % term in Mime gets replaced by (G2 + o2) everywhere. Note that MimeLiteMVR

(Lemma 18) requires a weaker Hessian variance condition of || V2 f;(x) — V2 f(z)|| < & as opposed
to MimeMVR which needs || V2 fi(z;¢) — V2 f(x)|| < 4.

Note that the final convergence rates of MimeM VR and MimeLiteM VR both include the intermedi-
ate client parameters. To implement this algorithm would require additional communication where
in each round a random client parameter in {y ,, ...,y x} is communicated to the server. How-
ever, as is common in non-convex stochastic analysis, we expect the last iterate to converge at a
similar rate as well in practice.

I Algorithm pseudocodes

Algorithm 2 FedAvg framework

input: initial = and s, server learning rate 74, client learning rate 7;, and base optimizer B =
U, V)
for eachroundt =1,--- ,T do
sample subset S of clients
communicate x to all clients i € S
on client ; € S in parallel do
initialize local model y; < x
fork=1,--- ,Kdo
sample mini-batch ¢ from local data
update y; < y; —mV fi(yi; Q)
end for
communicate y;
end on client
compute aggregate pseudo-gradient g <+ ﬁ Y ies(T —ys)
x < n4U(g,s) (update server parameters)
s < V(g,s) (update optimizer state)
end for
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Algorithm 3 MimeMom and MimeLiteMom

input: initial =, and hyperparameters 1, 8. optional 7, (default = 1)
initialize m < 0, ¢ <+ 0
for eachroundt =1,--- ,7T do
sample subset S of clients
communicate (x,s = m) and ¢ (only Mime) to all clientsi € S
on client i € S in parallel do
initialize local model y; < @
fork=1,--- ,Kdo
sample mini-batch ¢ from local data
gi < Vfi(yi;¢) — Vfi(x; () + ¢ (Mime)
gi < Vfi(yi:¢) (MimeLite)
update using server momentum y; < y; — n((1 — 81)g; + f1m)
end for
compute full local-batch gradient V f; ()
communicate (y;, V f;(z))
end on client
compute € ¢ 57 X es Vfi(2)
m < ((1 — f1)e+ fim) (update server momentum)
T x— ngﬁ > ics(® —y;i) (update server parameters)
end for

Algorithm 4 MimeAdam and MimeLiteAdam

input: initial z, and hyperparameters 7, 51, 32, €. optional 1, (default = 1)
initialize m < 0, v < 0, ¢ < 0
for eachroundt =1,--- ,T do
sample subset S of clients
communicate (x,s = (m,v)) and ¢ (only Mime) to all clients i € S
on client ; € S in parallel do
initialize local model y; + x
fork=1,---,Kdo
sample mini-batch ¢ from local data
gi < Vfi(yi¢) — Vfi(x; () + ¢ (Mime)
g; < Vfi(yi; C) (Mlmethe)
update y; < y; — n((1 — B1)gi + Sim)/ (Vo +€0)(1 — 1))
end for
compute full local-batch gradient V f;(x)
communicate (y;, V f;(x))
end on client
compute ¢ < ﬁ Yics VSi(x)
m <« (1= Br)e+ pim)/(1 - )
v (L= o) + Bv) /(1 — 5)
T X — g TaT > ics(® —y;) (update server parameters)
end for
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Algorithm 5 MimeMVR pseudocode

input: initial 2°, learning rate n
initialize c® < 0, m® < 0
for eachroundt =1,--- ,T do
sample subset S of clients
communicate '~ !, =2 m?~1 ¢~ ltoallclientsi € S
on client ; € S in parallel do
initialize local model y! , + @'~
fork=1,--- ,Kdo
sample mini-batch ¢}, from local data
compute SVRG gradient g} ,  V fi(y! ,_1;¢} ) — V(a5 ¢ ) + 7!
compute corrected momentum df , < ag; . +(1—a)m'~"+(1—a)(V fi(y} ,_1; ¢l p) —
V(x5 )
update yj ;, =y, —nd;,
end for
compute full local-batch gradients V f;(z!~1), V f; (! ~2)
communicate (y! ., Vf;(z'~1), V fi(x'~?))
end on client
compute new aggregate pseudo-gradient ¢! < ﬁ dies V fi(xt=h

1

compute old aggregate pseudo-gradient &t I‘%\ Yies Vii(z'?)
update server momentum m! < ac’ + (1 —a)m!=! + (1 — a)(c! — &)
update server parameters !t I«%\ Zie sYik

end for
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