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Abstract

We present an extensive study of H-consistency bounds for multi-class classifi-
cation. These are upper bounds on the target loss estimation error of a predictor
in a hypothesis set H, expressed in terms of the surrogate loss estimation error
of that predictor. They are stronger and more significant guarantees than Bayes-
consistency, H-calibration or H-consistency, and more informative than excess
error bounds derived for H being the family of all measurable functions. We give
a series of new H-consistency bounds for surrogate multi-class losses, including
max losses, sum losses, and constrained losses, both in the non-adversarial and
adversarial cases, and for different differentiable or convex auxiliary functions
used. We also prove that no non-trivial H-consistency bound can be given in some
cases. To our knowledge, these are the first H-consistency bounds proven for the
multi-class setting. Our proof techniques are also novel and likely to be useful in
the analysis of other such guarantees.

1 Introduction

The loss functions optimized by learning algorithms are often distinct from the original one specified
for a task. This is typically because optimizing the original loss is computationally intractable or
because it does not admit some favorable properties of differentiability or smoothness. As an example,
the loss function minimized by the support vector machine (SVM) algorithm is the hinge loss (Cortes
and Vapnik, 1995) or the one associated to AdaBoost is the exponential loss (Schapire and Freund,
2012), both distinct from the binary classification loss used as a benchmark in applications. But, what
learning guarantees can we rely on when using a surrogate loss? This is a fundamental question in
learning theory that directly relates to the design of algorithms.

The standard property of Bayes-consistency, which has been shown to hold for several surrogate
losses (Zhang, 2004a,b; Bartlett, Jordan, and McAuliffe, 2006; Tewari and Bartlett, 2007; Steinwart,
2007), does not supply a sufficient guarantee, since it only ensures that, asymptotically, near optimal
minimizers of the surrogate excess loss nearly optimally minimize the target excess error. Moreover,
this asymptotic property only holds for the full family of measurable functions, which of course is
distinct from the more restricted hypothesis set used by a learning algorithm. In fact, it has been
shown by Long and Servedio (2013), both theoretically and empirically, that for some hypothesis sets
and distributions, the expected error of an algorithm minimizing a Bayes-consistent loss is bounded
below by a positive constant, while that of an algorithm minimizing an inconsistent loss goes to zero.
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This suggests that a hypothesis set-dependent notion of H-consistency is more pertinent to the study
of consistency for learning (Long and Servedio, 2013), which has been used by Kuznetsov et al.
(2014); Cortes et al. (2016a,b) and Zhang and Agarwal (2020) and more generally by Awasthi, Frank,
Mao, Mohri, and Zhong (2021a) in an extensive study of both binary classification and adversarial
binary classification losses, as defined in (Goodfellow et al., 2014; Madry et al., 2017; Tsipras et al.,
2018; Carlini and Wagner, 2017). Nevertheless, H-consistency remains an asymptotic property and
does not provide guarantees for approximate surrogate loss minimizers that rely on finite samples.

Awasthi, Mao, Mohri, and Zhong (2022) recently presented a series of results providing H-consistency
bounds in binary classification. These are upper bounds on the target loss estimation error of a
predictor in a hypothesis set H, expressed in terms of the surrogate loss estimation error of that
predictor. These guarantees are significantly stronger than the H-calibration or H-consistency
properties studied by Awasthi et al. (2021a). They are also more informative than similar excess
error bounds derived in the literature, which correspond to the special case where H is the family
of all measurable functions (Zhang, 2004a; Bartlett et al., 2006; Mohri et al., 2018). Combining
H-consistency bounds with existing surrogate loss estimation bounds directly yields finite sample
bounds on the estimation error for the original loss. See Appendix C for a more detailed discussion.

This paper presents an extensive study of H-consistency bounds for multi-class classification. We
show in Section 4.1 that, in general, no non-trivial H-consistency bounds can be derived for multi-
class max losses such as those of Crammer and Singer (2001), when used with a convex loss auxiliary
function such as the hinge loss. On the positive side, we prove multi-class H-consistency bounds for
max losses under a realizability assumption and give multi-class H-consistency bounds using as an
auxiliary function the ρ-margin loss, without requiring a realizability assumption. For sum losses, that
is multi-class losses such as that of Weston and Watkins (1998), we give a series of results, including
a negative result when using as auxiliary function the hinge-loss, and H-consistency bounds when
using the exponential loss, the squared hinge-loss, and the ρ-margin loss (Section 4.2). We also
present a series of results for the so-called constrained losses, such as the loss function adopted
by Lee et al. (2004) in the analysis of multi-class SVM. Here, we prove multi-class H-consistency
bounds when using as an auxiliary function the hinge-loss, the squared hinge-loss, the exponential
loss, and the ρ-margin loss (Section 4.3). We further give multi-class adversarial H-consistency
bounds for all three of the general multi-class losses just mentioned (max losses, sum losses and
constrained losses) in Section 5.

We are not aware of any prior H-consistency bound derived in the multi-class setting, even in the
special case of H being the family of all measurable functions, whether in the non-adversarial or
adversarial setting. All of our results are novel, including our proof techniques. Our results are
given for the hypothesis set H being the family of all measurable functions, the family of linear
functions, or the family of one-hidden-layer ReLU neural networks. The binary classification results
of Awasthi et al. (2022) do not readily extend to the multi-class setting since the study of calibration
and conditional risk is more complex, the form of the surrogate losses is more diverse, and in general
the analysis is more involved and requires entirely novel proof techniques in the multi-class setting
(see Section 3 for a more detailed discussion of this point).

We give a detailed discussion of related work in Appendix A. We start with the introduction of several
multi-class definitions, as well as key concepts and definitions related to the study of H-consistency
bounds (Section 2).

2 Preliminaries

We consider the familiar multi-class classification scenario with c ≥ 2 classes. We denote by X the
input space and by Y = {1, . . . , c} the set of classes or categories. Let H be a hypothesis set of
functions mapping from X × Y to R. The label h(x) associated by a hypothesis h ∈ H to x ∈ X is
the one with the largest score: h(x) = argmaxy∈Y h(x, y) with an arbitrary but fixed deterministic
strategy used for breaking ties. For simplicity, we fix that strategy to be the one selecting the label
with the highest index under the natural ordering of labels. See Appendix B for a more detailed
discussion of this choice.

The margin ρh(x, y) of a hypothesis h ∈H for a labeled example (x, y) ∈ X × Y is defined by

ρh(x, y) = h(x, y) −max
y′≠y

h(x, y′),
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that is the difference between the score assigned to (x, y) and that of the runner-up. Given a
distribution D over X × Y and a loss function `∶H × X × Y → R, the generalization error of a
hypothesis h ∈H and the minimal generalization error are defined as follows:

R`(h) = E
(x,y)∼D

[`(h,x, y)] and R∗
`,H = inf

h∈H
R`(h).

The goal in multi-class classification is to select a hypothesis h ∈H with small generalization error
with respect to the multi-class 0/1 loss defined, for any h ∈ H, by `0−1(h,x, y) = 1h(x)≠y. In the
adversarial scenario, the goal is to select a hypothesis h ∈H with small adversarial generalization
error defined, for any γ ∈ (0,1) and p ∈ [1,+∞], by R`γ (h) = E(x,y)∼D[`γ(h,x, y)], where

`γ(h,x, y) = sup
x′∶∥x−x′∥p≤γ

1ρh(x′,y)≤0 = 1infx′ ∶∥x−x′∥p≤γ
ρh(x′,y)≤0,

is the adversarial multi-class 0/1 loss. More generally, the adversarial generalization error and
minimal adversarial generalization error for a loss function `(h,x, y) are defined as follows:

R̃̀(h) = E
(x,y)∼D

[̃̀(h,x, y)] and R∗
̃̀,H

= inf
h∈H

R̃̀(h),

where ̃̀(h,x, y) = supx′∶∥x−x′∥p≤γ `(h,x
′, y) is the supremum-based counterpart of `.

For a distribution D over X × Y, we define, for any x ∈ X, p(x) = (p(x,1), . . . , p(x, c)), where
p(x, y) =D(Y = y ∣X = x) is the conditional probability of Y = y given X = x. We can then write
the generalization error as R`(h) = EX[C`(h,x)], where C`(h,x) is the conditional `-risk defined
by C`(h,x) = ∑y∈Y p(x, y)`(h,x, y). We will denote by P a set of distributions D over X×Y and by
Pall the set of all such distributions. For convenience, we define ymax by ymax = argmaxy∈Y p(x, y).
When there is a tie, we pick the label with the highest index under the natural ordering of labels.

The minimal conditional `-risk is denoted by C∗`,H(x) = infh∈H C`(h,x). We also use the following
shorthand for the gap ∆C`,H(h,x) = C`(h,x) − C∗`,H(x) and call ∆C`,H(h,x)1∆C`,H(h,x)>ε the
conditional ε-regret for `. For convenience, we also define, for any vector τ = (τ1, . . . , τc) in the
probability simplex of Rc, C`(h,x, τ) = ∑y∈Y τy `(h,x, y), C∗`,H(x, τ) = infh∈H C`(h,x, τ) and
∆C`,H(h,x, τ) = C`(h,x, τ) − C∗`,H(x, τ). Thus, we have ∆C`,H(h,x, p(x)) = ∆C`,H(h,x). For
any ε > 0, we will denote by [t]ε the ε-truncation of t ∈ R defined by t1t>ε. Thus, the conditional
ε-regret can be rewritten as [∆C`,H(h,x)]ε.
For a hypothesis set H and distribution D, we also define the (`,H)-minimizability gap as M`,H =
R∗
`,H − EX[C∗`,H(x)], that is the difference between the best-in class error and the expectation of

the minimal conditional `-risk. This is a key quantity appearing in our bounds that we cannot hope
to estimate or minimize. Its value only depends on the distribution D and the hypothesis set H. As
an example, when H is the family of all measurable functions, then the minimizability gap for the
multi-class 0/1 loss is zero for any distribution D.

3 General theorems

The general form of the H-consistency bounds that we are seeking for a surrogate loss `1 of a target
loss `2 is R`2(h) − R∗

`2,H
≤ f(R`1(h) − R∗

`1,H
) for all h ∈ H, for some non-decreasing function

f . To derive such bounds for surrogate multi-class losses, we draw on the following two general
theorems, which show that, under some conditions, the target loss estimation error can be bounded
by some functional form of the surrogate loss estimation error involving minimizability gaps.
Theorem 1 (Distribution-dependent Ψ-bound). Assume that there exists a convex function
Ψ∶R+ → R with Ψ(0) ≥ 0 and ε ≥ 0 such that the following holds for all h ∈ H, x ∈ X and
D ∈ P: Ψ([∆C`2,H(h,x)]ε) ≤ ∆C`1,H(h,x). Then, for any hypothesis h ∈H and any distribution
D ∈ P,

Ψ(R`2(h) −R∗
`2,H +M`2,H) ≤ R`1(h) −R∗

`1,H +M`1,H +max{Ψ(0),Ψ(ε)}.
Theorem 2 (Distribution-dependent Γ-bound). Assume that there exists a concave function
Γ∶R+ → R and ε ≥ 0 such that the following holds for all h ∈ H, x ∈ X and D ∈ P:
[∆C`2,H(h,x)]ε ≤ Γ(∆C`1,H(h,x)). Then, for any hypothesis h ∈H and any distribution D ∈ P,

R`2(h) −R∗
`2,H ≤ Γ(R`1(h) −R∗

`1,H +M`1,H) −M`2,H + ε.
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The theorems show that, to derive such bounds for a specific hypothesis set and a set of distributions,
it suffices to verify that for the same hypothesis set and set of distributions, the conditional ε-regret
for the target loss can be upper bounded with the same functional form of the gap between the
conditional risk and minimal conditional risk of the surrogate loss. These results are similar to their
binary classification counterparts due to Awasthi et al. (2022). In particular, the conditional `-risk
C`(h,x) in our theorems is the multi-class generalization of their binary definition. The proofs are
similar and are included in Appendix E for completeness.

For a given hypothesis set H, the resulting bounds suggest three key ingredients for the choice of a
surrogate loss: (1) the functional form of the H-consistency bound, which is specified by the function
Ψ or Γ; (2) the smoothness of the loss and more generally its optimization virtues, as needed for
the minimization of R`1(h) − R∗

`1,H
; (3) and the approximation properties of the surrogate loss

function which determine the value of the minimizability gap M`1,H. Our quantitative H-consistency
bounds can help select the most favorable surrogate loss function among surrogate losses with good
optimization merits and comparable approximation properties.

In Section 4 and Section 5, we will apply Theorem 1 and Theorem 2 to the analysis of multi-class loss
functions and hypothesis sets widely used in practice. Here, we wish to first comment on the novelty
of our results and proof techniques. Let us emphasize that although the general tools of Theorems 1
and 2 are the multi-class generalization of that in (Awasthi et al., 2022), the binary classification
results of Awasthi et al. (2022) do not readily extend to the multi-class setting. This is true, even in
the classical study of Bayes-consistency, where the multi-class setting (Tewari and Bartlett, 2007)
does not readily follow the binary case (Bartlett et al., 2006) and required an alternative analysis and
new proofs. Note that, additionally, in the multi-class setting, surrogate losses are more diverse: we
will distinguish max losses, sum losses, and constrained losses and present an analysis for each loss
family with various auxiliary functions for each (see Section 4).

Proof techniques. More specifically, the need for novel proof techniques stems from the following.
To use Theorem 1 and Theorem 2, we need to find Ψ and Γ such that the inequality conditions in
these theorems hold. This requires us to characterize the conditional risk and the minimal conditional
risk of the multi-class zero-one loss function and the corresponding ones for diverse surrogate
loss functions in both the non-adversarial and adversarial scenario. Unlike the binary case, such a
characterization in the multi-class setting is very difficult. For example, for the constrained loss,
solving the minimal conditional risk given a hypothesis set is equivalent to solving a c-dimensional
constrained optimization problem, which does not admit an analytical expression. In contrast, in the
binary case, solving the minimal conditional risk is equivalent to solving a minimization problem for
a univariate function and the needed function Ψ can be characterized explicitly by the H-estimation
error transformation, as shown in (Awasthi et al., 2022). Unfortunately, such binary classification
transformation tools cannot be adapted to the multi-class setting. Instead, in our proof for the multi-
class setting, we adopt a new idea that avoids directly characterizing the explicit expression of the
minimal conditional risk.

For example, for the constrained loss, we leverage the condition of (Lee et al., 2004) that the scores
sum to zero, and appropriately choose a hypothesis h that differs from h only by its scores for
h(x) and ymax (see Appendix K). Then, we can upper bound the minimal conditional risk by the
conditional risk of h without having to derive the closed form expression of the minimal conditional
risk. Therefore, the conditional regret of the surrogate loss can be lower bounded by that of the
zero-one loss with an appropriate function Ψ. To the best of our knowledge, this proof idea and
technique are entirely novel. We believe that they can be used for the analysis of other multi-class
surrogate losses. Furthermore, all of our multi-class H-consistency results are new. Likewise, our
proofs of the H-consistency bounds for sum losses for the squared hinge loss and exponential loss
use similarly a new technique and idea, and so does the proof for the ρ-margin loss. Furthermore,
we also present an analysis of the adversarial scenario (see Section 5), for which the multi-class
proofs are also novel. Finally, our bounds in the multi-class setting are more general: for c = 2, we
recover the binary classification bounds of (Awasthi et al., 2022). Thus, our bounds benefit from the
same tightness guarantees shown by (Awasthi et al., 2022). A further analysis of the tightness of our
guarantees in the multi-class setting is left to future work.
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4 H-consistency bounds

In this section, we discuss H-consistency bounds in the non-adversarial scenario where the target loss
`2 is `0−1, the multi-class 0/1 loss. The lemma stated next characterizes the minimal conditional `0−1-
risk and the corresponding conditional ε-regret, which will be helpful for instantiating Theorems 1
and 2 in the non-adversarial scenario. For any x ∈ X, we will denote, by H(x) the set of labels
generated by hypotheses in H: H(x) = {h(x)∶h ∈H}.
Lemma 3. For any x ∈ X, the minimal conditional `0−1-risk and the conditional ε-regret for `0−1

can be expressed as follows:

C∗`0−1,H(x) = 1 − max
y∈H(x)

p(x, y)

[∆C`0−1,H(h,x)]ε = [ max
y∈H(x)

p(x, y) − p(x,h(x))]
ε

.

The proof of Lemma 3 is given in Appendix F. By Lemma 3, Theorems 1 and 2 can be instantiated
as Theorems 4 and 5 in the non-adversarial scenario as follows, where H-consistency bounds are
provided between the multi-class 0/1 loss and a surrogate loss `.
Theorem 4 (Non-adversarial distribution-dependent Ψ-bound). Assume that there exists a convex
function Ψ∶R+ → R with Ψ(0) ≥ 0 and ε ≥ 0 such that the following holds for all h ∈H, x ∈ X and
D ∈ P:

Ψ([ max
y∈H(x)

p(x, y) − p(x,h(x))]
ε

) ≤ ∆C`,H(h,x). (1)

Then, for any hypothesis h ∈H and any distribution D ∈ P, we have

Ψ(R`0−1(h) −R∗
`0−1,H +M`0−1,H) ≤ R`(h) −R∗

`,H +M`,H +max{Ψ(0),Ψ(ε)}. (2)

Theorem 5 (Non-adversarial distribution-dependent Γ-bound). Assume that there exists a con-
cave function Γ∶R+ → R and ε ≥ 0 such that the following holds for all h ∈H, x ∈ X and D ∈ P:

[ max
y∈H(x)

p(x, y) − p(x,h(x))]
ε

≤ Γ(∆C`,H(h,x)). (3)

Then, for any hypothesis h ∈H and any distribution D ∈ P, we have

R`0−1(h) −R∗
`0−1,H ≤ Γ(R`(h) −R∗

`,H +M`,H) −M`0−1,H + ε. (4)

In the following, we will apply Theorems 4 and 5 to study the H-consistency bounds for different
families of multi-class losses parameterized by various auxiliary functions, for several general
hypothesis sets. It is worth emphasizing that the form of the surrogate losses is more diverse in the
multi-class setting and each case requires a careful analysis and that the techniques used in the binary
case (Awasthi et al., 2022) do not apply and cannot be readily extended to our case.

Hypothesis sets. Let Bdp(r) = {z ∈ Rd ∣ ∥z∥p ≤ r} denote the d-dimensional `p-ball with radius
r, with p ∈ [1,+∞]. Without loss of generality, in the following, we choose X = Bdp(1). Let
p, q ∈ [1,+∞] be conjugate indices, that is 1

p
+ 1
q
= 1. In the following, we will specifically study

three families: the family of all measurable functions Hall, the family of linear hypotheses

Hlin = {(x, y) ↦ wy ⋅ x + by ∣ ∥wy∥q ≤W, ∣by ∣ ≤ B},

and that of one-hidden-layer ReLU networks defined by the following, where (⋅)+ = max(⋅,0):

HNN = {(x, y) ↦
n

∑
j=1

uy,j(wy,j ⋅ x + by,j)+ ∣ ∥uy∥1 ≤ Λ, ∥wy,j∥q ≤W, ∣by,j ∣ ≤ B}.

Multi-class loss families. We will study three broad families of multi-class loss functions: max
losses, sum losses and constrained losses, each parameterized by an auxiliary function Φ on R,
assumed to be non-increasing and non-negative. In particular, we will consider the following
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Figure 1: Left: auxiliary functions with ρ = 0.8. Right: H-consistency dependence between `0−1 and
Φcstnd with ρ = 0.8.

common auxiliary functions: the hinge loss Φhinge(t) = max{0,1 − t}, the squared hinge loss
Φsq−hinge(t) = max{0,1 − t}2, the exponential loss Φexp(t) = e−t, and the ρ-margin loss Φρ(t) =
min{max{0,1 − t/ρ},1}. Note that the first three auxiliary functions are convex, while the last one
is not. Figure 1 shows plots of these auxiliary functions.

We will say that a hypothesis set H is symmetric if there exists a family F of functions f mapping
from X to R such that {[h(x,1), . . . , h(x, c)]∶h ∈H} = {[f1(x), . . . , fc(x)]∶ f1, . . . , fc ∈ F} and
∣{f(x)∶ f ∈ F}∣ ≥ 2 for any x ∈ X. The hypothesis sets defined above (Hall, Hlin and HNN) are all
symmetric. Note that for a symmetric hypothesis set H, we have H(x) = Y.

We will say that a hypothesis set H is complete if the set of scores it generates spans R, that is,
{h(x, y)∶h ∈H} = R, for any (x, y) ∈ X × Y. The hypothesis sets defined above, Hall, Hlin and
HNN with B = +∞ are all complete.

4.1 Max losses

In this section, we discuss guarantees for max losses, that is loss functions that can be defined by the
application of an auxiliary function Φ to the margin ρh(x, y), as in (Crammer and Singer, 2001):

∀(x, y) ∈ X × Y, Φmax(h,x, y) = max
y′≠y

Φ(h(x, y) − h(x, y′)) = Φ(ρh(x, y)). (5)

i) Negative results. We first give negative results showing that max losses Φmax(h,x, y) with convex
and non-increasing auxiliary functions Φ do not admit useful H-consistency bounds for multi-class
classification (c > 2). The proof is given in Appendix G.
Theorem 6 (Negative results for convex Φ). Assume that c > 2. Suppose that Φ is convex and
non-increasing, and H satisfies there exist x ∈ X and h ∈ H such that ∣H(x)∣ ≥ 2 and h(x, y) are
equal for all y ∈ Y. If for a non-decreasing function f ∶R+ → R+, the following H-consistency bound
holds for any hypothesis h ∈H and any distribution D:

R`0−1(h) −R∗
`0−1,H ≤ f(RΦmax(h) −R∗

Φmax,H), (6)

then, f is lower bounded by 1
2

.

The condition on the hypothesis set in Theorem 6 is very general and all symmetric hypothesis sets
verify the condition, e.g. Hall, Hlin and HNN. It is also worth pointing out that when c = 2, that is,
in binary classification, Theorem 6 does not hold. Indeed, Awasthi et al. (2022) present a series of
results providing H-consistency bounds for convex Φ in the binary case. In the proof, we make use
of the assumption that c > 2 and thus are able to take a probability vector p(x) whose dimension is at
least three, which is crucial for the proof.

ii) Positive results without distributional assumptions. On the positive side, the max loss with the
non-convex auxiliary function Φ = Φρ admits H-consistency bounds.
Theorem 7 (H-consistency bound of Φmax

ρ ). Suppose that H is symmetric. Then, for any hypothesis
h ∈H and any distribution D,

R`0−1(h) −R∗
`0−1,H ≤

RΦmax
ρ

(h) −R∗
Φmax
ρ ,H +MΦmax

ρ ,H

min{1,
infx∈X suph∈H ρh(x,h(x))

ρ
}

−M`0−1,H. (7)

See Appendix G for the proof. Theorem 7 is very powerful since it only requires H to be symmetric.
We can use it to derive H-consistency bounds for Φmax

ρ with common symmetric hypothesis sets
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Table 1: H-consistency bounds for Φmax
ρ with common symmetric hypothesis sets.

Hypothesis set H-consistency bound of Φmax
ρ (Corollaries 18, 19 and 20)

Hall R`0−1(h) −R∗
`0−1,Hall

≤ RΦmax
ρ

(h) −R∗
Φmax
ρ ,Hall

Hlin R`0−1(h) −R∗
`0−1,Hlin

≤
RΦmax

ρ
(h)−R∗

Φmax
ρ ,Hlin

+MΦmax
ρ ,Hlin

min{1, 2Bρ }
−M`0−1,Hlin

HNN R`0−1(h) −R∗
`0−1,HNN

≤
RΦmax

ρ
(h)−R∗

Φmax
ρ ,HNN

+MΦmax
ρ ,HNN

min{1, 2ΛB
ρ }

−M`0−1,HNN

such as Hall, Hlin and HNN, as summarized in Table 1. The proofs with corresponding summarized
Corollaries 18, 19 and 20 are included in Appendix H. In the proofs, we characterize the term
infx∈X suph∈H ρh(x,h(x)) for each hypothesis set.

Note that by Theorem 6, there is no useful H-consistency bound for the max loss with Φ = Φhinge,
Φsq−hinge or Φexp in these cases. However, under the realizability assumption (Definition 8), we will
show that such bounds hold.

iii) Positive results with realizable distributions. We consider the H-realizability condition (Long
and Servedio, 2013; Kuznetsov et al., 2014; Cortes et al., 2016a,b; Zhang and Agarwal, 2020; Awasthi
et al., 2021a) which is defined as follows.
Definition 8 (H-realizability). A distribution D over X × Y is H-realizable if it labels points
according to a deterministic model in H, i.e., if ∃h ∈H such that P(x,y)∼D(ρh(x, y) > 0) = 1.

Theorem 9 (Realizable H-consistency bound of Φmax). Suppose that H is symmetric and complete,
and Φ is non-increasing and satisfies that limt→+∞ Φ(t) = 0. Then, for any hypothesis h ∈ H and
any H-realizable distribution D, we have

R`0−1(h) −R∗
`0−1,H ≤ RΦmax(h) −R∗

Φmax,H +MΦmax,H. (8)

See Appendix G for the proof. Long and Servedio (2013, Theorem 9) show that Φmax
hinge is realizable

H-consistent for any symmetric hypothesis set H that is closed under scaling. Since for any H-
realizable distribution, the assumption that H is closed under scaling implies that H is complete and
MΦmax,H = 0, Theorem 9 also yields a quantitative relationship in that case that is stronger than the
asymptotic consistency property of that previous work.

4.2 Sum losses

In this section, we discuss guarantees for sum losses, that is loss functions defined via a sum, as in
(Weston and Watkins, 1998):

Φsum(h,x, y) = ∑
y′≠y

Φ(h(x, y) − h(x, y′)). (9)

i) Negative results. We first give a negative result showing that when using as auxiliary function
the hinge-loss, the sum loss cannot benefit from any useful H-consistency guarantee. The proof is
deferred to Appendix J.
Theorem 10 (Negative results for hinge loss). Assume that c > 2. Suppose that H is symmetric and
complete. If for a non-decreasing function f ∶R+ → R+, the following H-consistency bound holds for
any hypothesis h ∈H and any distribution D:

R`0−1(h) −R∗
`0−1,H ≤ f(RΦsum

hinge
(h) −R∗

Φsum
hinge

,H), (10)

then, f is lower bounded by 1
6

.

ii) Positive results. We then complement this negative result with positive results when using the
exponential loss, the squared hinge-loss, and the ρ-margin loss, as summarized in Table 2. The proofs
with corresponding summarized Theorems 22, 23 and 24 are included in Appendix J for completeness.
For Φsum

ρ , the symmetry and completeness assumption can be relaxed to symmetry and the condition
that for any x ∈ X, there exists a hypothesis h ∈H such that ∣h(x, i) − h(x, j)∣ ≥ ρ for any i ≠ j ∈ Y,
as shown in Theorem 24. In the proof, we introduce an auxiliary Lemma 21 in Appendix I, which
would be helpful for lower bounding the conditional regret of Φsum

ρ with that of the multi-class 0/1
loss.
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Table 2: H-consistency bounds for sum losses with symmetric and complete hypothesis sets.
Sum loss H-consistency bound (Theorems 22, 23 and 24)

Φsum
sq−hinge R`0−1(h) −R∗

`0−1,H
≤ (RΦsum

sq−hinge
(h) −R∗

Φsum
sq−hinge

,H +MΦsum
sq−hinge

,H)
1
2 −M`0−1,H

Φsum
exp R`0−1(h) −R∗

`0−1,H
≤
√

2(RΦsum
exp

(h) −R∗
Φsum

exp ,H
+MΦsum

exp ,H)
1
2 −M`0−1,H

Φsum
ρ R`0−1(h) −R∗

`0−1,H
≤ RΦsum

ρ
(h) −R∗

Φsum
ρ ,H +MΦsum

ρ ,H −M`0−1,H

Table 3: H-consistency bounds for constrained losses with symmetric and complete hypothesis sets.
Constrained loss H-consistency bound (Theorems 25, 26, 27 and 28)

Φcstnd
hinge R`0−1(h) −R∗

`0−1,H
≤ RΦcstnd

hinge
(h) −R∗

Φcstnd
hinge

,H
+MΦcstnd

hinge
,H −M`0−1,H

Φcstnd
sq−hinge R`0−1(h) −R∗

`0−1,H
≤ (RΦcstnd

sq−hinge
(h) −R∗

Φcstnd
sq−hinge

,H
+MΦcstnd

sq−hinge
,H)

1
2

−M`0−1,H

Φcstnd
exp R`0−1(h) −R∗

`0−1,H
≤
√

2(RΦcstnd
exp

(h) −R∗
Φcstnd

exp ,H +MΦcstnd
exp ,H)

1
2 −M`0−1,H

Φcstnd
ρ R`0−1(h) −R∗

`0−1,H
≤ RΦcstnd

ρ
(h) −R∗

Φcstnd
ρ ,H +MΦcstnd

ρ ,H −M`0−1,H

4.3 Constrained losses

In this section, we discuss guarantees for constrained loss, that is loss functions defined via a
constraint, as in (Lee et al., 2004):

Φcstnd(h,x, y) = ∑
y′≠y

Φ(−h(x, y′)) (11)

with the constraint that∑y∈Y h(x, y) = 0. We present a series of positive results by proving multi-class
H-consistency bounds when using as an auxiliary function the hinge-loss, the squared hinge-loss,
the exponential loss, and the ρ-margin loss, as summarized in Table 3. As with the binary case
(Awasthi et al., 2022), the bound admits a linear dependency for Φcstnd

hinge and Φcstnd
ρ , in contrast

with a square-root dependency for Φcstnd
sq−hinge and Φcstnd

exp , as illustrated in Figure 1. The proofs with
corresponding summarized Theorems 25, 26, 27 and 28 are included in Appendix K for completeness.
For Φcstnd

ρ , the symmetric and complete assumption can be relaxed to be symmetric and satisfy that
for any x ∈ X, there exists a hypothesis h ∈H such that h(x, y) ≤ −ρ for any y ≠ ymax, as shown in
Theorem 28.

The main idea of the proofs in this section is to leverage the constraint condition of Lee et al. (2004)
that the scores sum to zero, and appropriately choose a hypothesis h that differs from h only by its
scores for h(x) and ymax. We can then upper bound the minimal conditional risk by the conditional
risk of h, without having to derive the closed form expression of the minimal conditional risk.

As shown by Steinwart (2007, Theorem 3.2), for the family of all measurable functions, the min-
imizability gaps vanish: M`0−1,Hall

= MΦsum,Hall
= MΦcstnd,Hall

= 0, for Φ = Φhinge, Φsq−hinge,
Φexp and Φρ. Therefore, when H =Hall, our quantitative bounds in Table 2 and Table 3 imply the
asymptotic consistency results of those multi-class losses in (Tewari and Bartlett, 2007), which shows
that our results are stronger and more significant. We also provide bounds for multi-class losses using
a non-convex auxiliary function, which are not studied in the previous work.

5 Adversarial H-consistency bounds

In this section, we analyze multi-class H-consistency bounds in the adversarial scenario (`2 = `γ).

For any x ∈ X, we denote by Hγ(x) the set of hypotheses h with a positive margin on the ball
of radius γ around x, Hγ(x) = {h ∈H ∶ infx′∶∥x−x′∥p≤γ ρh(x

′,h(x)) > 0}, and by Hγ(x) the set of
labels generated by these hypotheses, Hγ(x) = {h(x)∶h ∈Hγ(x)}. When H is symmetric, we
have Hγ(x) = Y iff Hγ(x) ≠ ∅. The following lemma characterizes the conditional ε-regret for
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adversarial 0/1 loss, which will be helpful for applying Theorem 1 and Theorem 2 to the adversarial
scenario.
Lemma 11. For any x ∈ X, the minimal conditional `γ-risk and the conditional ε-regret for `γ can
be expressed as follows:

C∗`γ ,H(x) = 1 − max
y∈Hγ(x)

p(x, y)1Hγ(x)≠∅

[∆C`γ ,H(h,x)]
ε
= {[maxy∈Hγ(x) p(x, y) − p(x,h(x))1h∈Hγ(x)]ε if Hγ(x) ≠ ∅

0 otherwise.

The proof of Lemma 11 is presented in Appendix F. By Lemma 11, Theorems 1 and 2 can be
instantiated as Theorems 12 and 13 in the adversarial scenario as follows, where H-consistency
bounds are provided between the adversarial multi-class 0/1 loss and a surrogate loss `.
Theorem 12 (Adversarial distribution-dependent Ψ-bound). Assume that there exists a convex
function Ψ∶R+ → R with Ψ(0) = 0 and ε ≥ 0 such that the following holds for all h ∈ H, x ∈
{x ∈ X ∶Hγ(x) ≠ ∅} and D ∈ P:

Ψ([ max
y∈Hγ(x)

p(x, y) − p(x,h(x))1h∈Hγ(x)]
ε

) ≤ ∆C`,H(h,x). (12)

Then, for any hypothesis h ∈H and any distribution D ∈ P, we have

Ψ(R`γ (h) −R∗
`γ ,H +M`γ ,H) ≤ R`(h) −R∗

`,H +M`,H +max{0,Ψ(ε)}. (13)

Theorem 13 (Adversarial distribution-dependent Γ-bound). Assume that there exists a non-
negative concave function Γ∶R+ → R and ε ≥ 0 such that the following holds for all h ∈ H,
x ∈ {x ∈ X ∶Hγ(x) ≠ ∅} and D ∈ P:

[ max
y∈Hγ(x)

p(x, y) − p(x,h(x))1h∈Hγ(x)]
ε

≤ Γ(∆C`,H(h,x)). (14)

Then, for any hypothesis h ∈H and any distribution D ∈ P, we have

R`γ (h) −R∗
`γ ,H ≤ Γ(R`(h) −R∗

`,H +M`,H) −M`γ ,H + ε. (15)

Next, we will apply Theorem 12 and Theorem 13 to study various hypothesis sets and adversarial
surrogate loss functions in Sections 5.1 for negative results and Section 5.2, 5.3, and 5.4 for positive
results. A careful analysis is presented in each case (see Appendix L, M, N and O).

5.1 Negative results for adversarial robustness

The following result rules out the H-consistency guarantee of multi-class losses with a convex
auxiliary function, which are commonly used in practice. The proof is given in Appendix L.
Theorem 14 (Negative results for convex functions). Fix c = 2. Suppose that Φ is convex and non-
increasing, and H contains 0 and satisfies the condition that there exists x ∈ X such that Hγ(x) ≠ ∅.
If for a non-decreasing function f ∶R+ → R+, the following H-consistency bound holds for any
hypothesis h ∈H and any distribution D:

R`γ (h) −R∗
`γ ,H ≤ f(R̃̀(h) −R∗

̃̀,H
), (16)

then, f is lower bounded by 1
2

, for ̃̀= Φ̃max, Φ̃sum and Φ̃cstnd.

Instead, we show in Sections 5.2, 5.3, and 5.4 that the max, sum and constrained losses using
as auxiliary function the non-convex ρ-margin loss admit favorable H-consistency bounds in the
multi-class setting, thereby significantly generalizing the binary counterpart in (Awasthi et al., 2022).

5.2 Adversarial max losses

We first consider the adversarial max loss Φ̃max defined as the supremum based counterpart of (5):

Φ̃max(h,x, y) = sup
x′∶∥x−x′∥p≤γ

Φ(ρh(x′, y)). (17)

For the adversarial max loss with Φ = Φρ, we can obtain H-consistency bounds as follows.

9



Theorem 15 (H-consistency bound of Φ̃max
ρ ). Suppose that H is symmetric. Then, for any hypoth-

esis h ∈H and any distribution D, we have

R`γ (h) −R∗
`γ ,H ≤

RΦ̃max
ρ

(h) −R∗

Φ̃max
ρ ,H

+MΦ̃max
ρ ,H

min{1,
infx∈{x∈X∶Hγ (x)≠∅}

suph∈Hγ (x) infx′ ∶∥x−x′∥p≤γ
ρh(x′,h(x))

ρ
}
−M`γ ,H. (18)

5.3 Adversarial sum losses

Next, we consider the adversarial sum loss Φ̃sum defined as the supremum based counterpart of (9):

Φ̃sum(h,x, y) = sup
x′∶∥x−x′∥p≤γ

∑
y′≠y

Φ(h(x′, y) − h(x′, y′)). (19)

Using the auxiliary Lemma 21 in Appendix I, we can obtain the H-consistency bound of Φ̃sum
ρ .

Theorem 16 (H-consistency bound of Φ̃sum
ρ ). Assume that H is symmetric and that for any

x ∈ X, there exists a hypothesis h ∈ H inducing the same ordering of the labels for any
x′ ∈ {x′∶ ∥x − x′∥p ≤ γ} and such that infx′∶∥x−x′∥p≤γ ∣h(x

′, i) − h(x′, j)∣ ≥ ρ for any i ≠ j ∈ Y.
Then, for any hypothesis h ∈H and any distribution D, the following inequality holds:

R`γ (h) −R∗
`γ ,H ≤ RΦ̃sum

ρ
(h) −R∗

Φ̃sum
ρ ,H

+MΦ̃sum
ρ ,H −M`γ ,H. (20)

5.4 Adversarial constrained loss

Similarly, we define the adversarial constrained loss Φ̃cstnd as supremum based counterpart of (11):

Φ̃cstnd(h,x, y) = sup
x′∶∥x−x′∥p≤γ

∑
y′≠y

Φ(−h(x′, y′)) (21)

with the constraint that ∑y∈Y h(x, y) = 0. For the adversarial constrained loss with Φ = Φρ, we can
obtain the H-consistency bound of Φ̃cstnd

ρ as follows.

Theorem 17 (H-consistency bound of Φ̃cstnd
ρ ). Suppose that H is symmetric and satisfies that

for any x ∈ X, there exists a hypothesis h ∈ H with the constraint ∑y∈Y h(x, y) = 0 such that
supx′∶∥x−x′∥p≤γ h(x

′, y) ≤ −ρ for any y ≠ ymax. Then, for any hypothesis h ∈H and any distribution,

R`γ (h) −R∗
`γ ,H ≤ RΦ̃cstnd

ρ
(h) −R∗

Φ̃cstnd
ρ ,H

+MΦ̃cstnd
ρ ,H −M`γ ,H. (22)

The proofs of Theorems 15, 16 and 17 are included in Appendix M, N and O respectively. These
results are significant since they apply to general hypothesis sets. In particular, symmetric hypothesis
sets Hall, Hlin and HNN with B = +∞ all verify the conditions of those theorems. When B < +∞,
the conditions in Theorems 16 and 17 can still be verified with a suitable choice of ρ, where we can
consider the hypotheses such that wy = 0 in Hlin and HNN, while Theorem 15 holds for any ρ > 0.

6 Conclusion

We presented a comprehensive study of H-consistency bounds for multi-class classification, including
the analysis of the three most commonly used families of multi-class surrogate losses (max losses, sum
losses and constrained losses) and including the study of surrogate losses for the adversarial robustness.
Our theoretical analysis helps determine which surrogate losses admit a favorable guarantee for a
given hypothesis set H. Our bounds can help guide the design of multi-class classification algorithms
for both the adversarial and non-adversarial settings. They also help compare different surrogate
losses for the same setting and the same hypothesis set. Of course, in addition to the functional form
of the H-consistency bound, the approximation property of a surrogate loss function combined with
the hypothesis set plays an important role.
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A Related work

The notions of Bayes-consistency (also known as consistency) and calibration have been well studied
not only with respect to the binary zero-one loss (Zhang, 2004a; Bartlett et al., 2006; Steinwart, 2007;
Mohri et al., 2018), but also with respect to the multi-class zero-one loss (Zhang, 2004b; Tewari and
Bartlett, 2007), the general multi-class losses (Ramaswamy and Agarwal, 2012; Narasimhan et al.,
2015; Ramaswamy and Agarwal, 2016), the multi-class SVMs (Chen and Sun, 2006; Chen and Xiang,
2006; Liu, 2007; Dogan et al., 2016), the multi-label losses (Gao and Zhou, 2011; Dembczynski et al.,
2012), the losses with a reject option (Ramaswamy et al., 2015), the ranking losses (Ravikumar et al.,
2011; Ramaswamy et al., 2013; Gao and Zhou, 2015; Uematsu and Lee, 2017), the cost sensitive
losses (Pires et al., 2013; Pires and Szepesvári, 2016), the structured losses (Ciliberto et al., 2016;
Osokin et al., 2017; Blondel, 2019), the proper losses (Agarwal and Agarwal, 2015; Williamson et al.,
2016) and the losses of ordinal regression (Pedregosa et al., 2017).

Bayes-consistency only holds for the full family of measurable functions, which of course is distinct
from the more restricted hypothesis set used by a learning algorithm. Therefore, a hypothesis set-
dependent notion of H-consistency has been proposed by Long and Servedio (2013) in the realizable
setting, used by Zhang and Agarwal (2020) for linear models, and generalized by Kuznetsov et al.
(2014) to the structured prediction case. Long and Servedio (2013) showed that there exists a case
where a Bayes-consistent loss is not H-consistent while inconsistent losses can be H-consistent.
Zhang and Agarwal (2020) further investigated the phenomenon in (Long and Servedio, 2013) and
showed that the situation of losses that are not H-consistent with linear models can be remedied
by carefully choosing a larger piecewise linear hypothesis set. Kuznetsov et al. (2014) proved
positive results for the H-consistency of several multi-class ensemble algorithms, as an extension of
H-consistency results in (Long and Servedio, 2013).

Recently, the notions of H-calibration and H-consistency have been used by Bao et al. (2020);
Awasthi et al. (2021a) in the study of adversarial binary classification losses, as defined in (Goodfellow
et al., 2014; Madry et al., 2017; Tsipras et al., 2018; Carlini and Wagner, 2017; Awasthi et al., 2023).
The calibration and consistency of adversarial losses present new challenges and require more careful
analysis. The work of Bao et al. (2020) showed that for the linear hypothesis set, convex margin
based losses are not calibrated with respect to the adversarial 0/1 loss. Instead, they proposed a class
of non-convex losses that could be calibrated under some necessary and sufficient conditions. The
work of Awasthi et al. (2021a) generalized the results in (Bao et al., 2020) to the nonlinear hypothesis
sets. They also pointed out that H-calibration and H-consistency are not equivalent in the adversarial
scenario by showing that no continuous surrogates can be H-consistent with linear models. They
further provided sufficient conditions guaranteeing H-consistency for H-calibrated surrogates.

Most recently, Awasthi et al. (2022) presented a series of results providing H-consistency bounds
in binary classification, for both the adversarial and non-adversarial settings. These guarantees are
significantly stronger than the H-calibration or H-consistency properties studied by Awasthi et al.
(2021a,b). They are also more informative than similar excess error bounds derived in the literature,
which correspond to the special case where H is the family of all measurable functions (Zhang,
2004a; Bartlett et al., 2006; Mohri et al., 2018). Our work significantly generalizes the results in
(Awasthi et al., 2022) to the multi-class setting, in both the adversarial and non-adversarial scenarios,
where the study of calibration and conditional risk is more complex, the form of the surrogate losses
is more diverse, and in general the analysis is more involved and entirely novel proof techniques
are required. As a by-product, our work contributes more significant results of consistency for the
insufficiently understood setting of adversarial robustness.
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B Discussion on multi-class 0/1 loss

The multi-class 0/1 loss can be defined in multiple ways, e.g. 1ρh(x,y)≤0, 1ρh(x,y)<0 and 1h(x)≠y

where h(x) = argmaxy∈Y h(x, y) with an arbitrary but fixed deterministic strategy used for breaking
ties. The counterparts of these three formulas in binary classification are 1yh(x)≤0, 1yh(x)<0 and
1sgn(h(x))≠y where sgn(0) is defined as +1 or −1. To be consistent with the literature on Bayes-
consistency (Bartlett et al., 2006; Tewari and Bartlett, 2007), in this paper we adopt the last formula
1h(x)≠y of multi-class 0/1 loss. Moreover, to be consistent with the binary case (Awasthi et al., 2022),
we assume that in case of a tie, h(x) is defined as the label with the highest index under the natural
ordering of labels. This assumption corresponds to the binary case where we always predict +1 in
case of a tie, that is, the case where the binary 0/1 loss is defined by 1sgn(h(x))≠y with sgn(0) = +1,
as in (Awasthi et al., 2022). Nevertheless, other deterministic strategies would lead to similar results.

C Discussion on finite sample bounds

Here, we discuss several ways to derive the finite sample bounds on the estimation error for the target
0/1 loss. One can directly derive estimation error bounds for the 0/1 loss, typically for Empirical
Risk Minimization (ERM), e.g. R`0−1

(hERM
S ) − R∗

`0−1,H
with hERM

S = argminh∈H R̂S(h) can be
upper-bounded using the standard generalization bounds, as shown in (Mohri et al., 2018). But, those
bounds would not say anything about the use of a surrogate loss.

An alternative is to use the excess error bound for the target 0/1 loss and split the excess error of the
surrogate loss into an estimation term and an approximation term, i.e. for some function f ∶R+ → R+,
the following inequality holds:

R`0−1(h) −R∗
`0−1,Hall

≤ f(R`sur(h) −R∗
`sur,H +R∗

`sur,H −R∗
`sur,Hall

).

Then, an estimation error bound for the surrogate loss can be used to upper bound R`sur(h)−R∗
`sur,H

,
as shown in (Bartlett et al., 2006). But, those bounds would not be an estimation error guarantee for
the target loss `0−1.

Finally, using the H-consistency bound proposed by Awasthi et al. (2022), that is, for some non-
decreasing function f ∶R+ → R+,

R`0−1(h) −R∗
`0−1,H ≤ f(R`sur(h) −R∗

`sur,H
),

we can directly derive the estimation error bound for the target 0/1 loss by upper bounding R`sur(h)−
R∗
`sur,H

with the estimation error bound for the surrogate loss. In conclusion, the H-consistency
bound is a useful tool to derive non-trivial finite sample bounds on the estimation error for the target
0/1 loss.

D Future work

While we presented a comprehensive study of H-consistency bounds for surrogate losses in multi-
class classification, which could help compare different surrogate losses for the same setting and
the same hypothesis set, the optimization property of a surrogate loss function combined with the
hypothesis set also plays an important role. Nevertheless, we believe our results in the paper can help
guide the design of multi-class classification algorithms for both the adversarial and non-adversarial
settings.
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E General H-consistency bounds

Theorem 1 (Distribution-dependent Ψ-bound). Assume that there exists a convex function
Ψ∶R+ → R with Ψ(0) ≥ 0 and ε ≥ 0 such that the following holds for all h ∈ H, x ∈ X and
D ∈ P: Ψ([∆C`2,H(h,x)]ε) ≤ ∆C`1,H(h,x). Then, for any hypothesis h ∈H and any distribution
D ∈ P,

Ψ(R`2(h) −R∗
`2,H +M`2,H) ≤ R`1(h) −R∗

`1,H +M`1,H +max{Ψ(0),Ψ(ε)}.

Proof. For any h ∈ H and D ∈ P, since Ψ(∆C`2,H(h,x)1∆C`2,H(h,x)>ε) ≤ ∆C`1,H(h,x),∀x ∈ X,
we can write

Ψ(R`2(h) −R∗
`2,H +M`2,H)

= Ψ(EX[C`2(h,x) − C∗`2,H(x)])
= Ψ(EX[∆C`2,H(h,x)])
≤ EX[Ψ(∆C`2,H(h,x))] (Jensen’s ineq.)
= EX[Ψ(∆C`2,H(h,x)1∆C`2,H(h,x)>ε +∆C`2,H(h,x)1∆C`2,H(h,x)≤ε)]
≤ EX[Ψ(∆C`2,H(h,x)1∆C`2,H(h,x)>ε) +Ψ(∆C`2,H(h,x)1∆C`2,H(h,x)≤ε)] (Ψ(0) ≥ 0)
≤ EX[∆C`1,H(h,x)] + sup

t∈[0,ε]

Ψ(t) (assumption)

= R`1(h) −R∗
`1,H +M`1,H +max{Ψ(0),Ψ(ε)}, (convexity of Ψ)

which proves the theorem.

Theorem 2 (Distribution-dependent Γ-bound). Assume that there exists a concave function
Γ∶R+ → R and ε ≥ 0 such that the following holds for all h ∈ H, x ∈ X and D ∈ P:
[∆C`2,H(h,x)]ε ≤ Γ(∆C`1,H(h,x)). Then, for any hypothesis h ∈H and any distribution D ∈ P,

R`2(h) −R∗
`2,H ≤ Γ(R`1(h) −R∗

`1,H +M`1,H) −M`2,H + ε.

Proof. For any h ∈ H and D ∈ P, since ∆C`2,H(h,x)1∆C`2,H(h,x)>ε ≤ Γ(∆C`1,H(h,x)),∀x ∈ X,
we can write

R`2(h) −R∗
`2,H +M`2,H

= EX[C`2(h,x) − C∗`2,H(x)]
= EX[∆C`2,H(h,x)]
= EX[∆C`2,H(h,x)1∆C`2,H(h,x)>ε +∆C`2,H(h,x)1∆C`2,H(h,x)≤ε]
≤ EX[Γ(∆C`1,H(h,x))] + ε (assumption)
≤ Γ(EX[∆C`1,H(h,x)]) + ε (concavity of Γ)
= Γ(R`1(h) −R∗

`1,H +M`1,H) + ε,

which proves the theorem.

F Non-adversarial and adversarial conditional regrets

Lemma 3. For any x ∈ X, the minimal conditional `0−1-risk and the conditional ε-regret for `0−1

can be expressed as follows:

C∗`0−1,H(x) = 1 − max
y∈H(x)

p(x, y)

[∆C`0−1,H(h,x)]ε = [ max
y∈H(x)

p(x, y) − p(x,h(x))]
ε

.
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Proof. By the definition, the conditional `0−1-risk can be expressed as follows:

C`0−1(h,x) = ∑
y∈Y

p(x, y)1h(x)≠y = 1 − p(x,h(x)). (23)

Since {h(x) ∶ h ∈H} = H(x), the minimal conditional `0−1-risk can be expressed as follows:

C∗`0−1,H(x) = 1 − max
y∈H(x)

p(x, y),

which proves the first part of the lemma. By the definition,

∆C`0−1,H(h,x) = C`0−1(h,x) − C∗`0−1,H(x) = max
y∈H(x)

p(x, y) − p(x,h(x)).

This leads to

[∆C`0−1,H(h,x)]ε = [ max
y∈H(x)

p(x, y) − p(x,h(x))]
ε

.

Lemma 11. For any x ∈ X, the minimal conditional `γ-risk and the conditional ε-regret for `γ can
be expressed as follows:

C∗`γ ,H(x) = 1 − max
y∈Hγ(x)

p(x, y)1Hγ(x)≠∅

[∆C`γ ,H(h,x)]
ε
= {[maxy∈Hγ(x) p(x, y) − p(x,h(x))1h∈Hγ(x)]ε if Hγ(x) ≠ ∅

0 otherwise.

Proof. By the definition, the conditional `γ-risk can be expressed as follows:

C`γ (h,x) = ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

1ρh(x′,y)≤0 = {1 − p(x,h(x)) h ∈Hγ(x)
1 otherwise.

(24)

When Hγ(x) = ∅, (24) implies that C∗`γ ,H(x) = 1. When Hγ(x) ≠ ∅, Hγ(x) is also non-empty. By
(24), y ∈ Yγ(x) if and only if there exists h ∈Hγ such that C`γ (h,x) = 1 − p(x, y). Therefore, the
minimal conditional `γ-risk can be expressed as follows:

C∗`γ ,H(x) = 1 − max
y∈Hγ(x)

p(x, y)1Hγ(x)≠∅,

which proves the first part of lemma. When Hγ(x) = ∅, C`γ (h,x) ≡ 1, which implies that
∆C`γ ,H(h,x) ≡ 0. When Hγ(x) ≠ ∅, Hγ(x) is also non-empty, for h ∈ Hγ(x), ∆C`γ ,H(h,x) =
1 − p(x,h(x)) − (1 −maxy∈Hγ(x) p(x, y)) = maxy∈Hγ(x) p(x, y) − p(x,h(x)); for h ∉ Hγ(x),
∆C`γ ,H(h,x) = 1 − (1 −maxy∈Hγ(x) p(x, y)) = maxy∈Hγ(x) p(x, y). Therefore,

∆C`γ ,H(h,x) = {maxy∈Hγ(x) p(x, y) − p(x,h(x))1h∈Hγ(x) Hγ(x) ≠ ∅
0 otherwise.

This leads to

[∆C`γ ,H(h,x)]
ε
= {[maxy∈Hγ(x) p(x, y) − p(x,h(x))1h∈Hγ(x)]ε Hγ(x) ≠ ∅

0 otherwise.

G Proof of negative results and H-consistency bounds for max losses Φmax

Theorem 6 (Negative results for convex Φ). Assume that c > 2. Suppose that Φ is convex and
non-increasing, and H satisfies there exist x ∈ X and h ∈ H such that ∣H(x)∣ ≥ 2 and h(x, y) are
equal for all y ∈ Y. If for a non-decreasing function f ∶R+ → R+, the following H-consistency bound
holds for any hypothesis h ∈H and any distribution D:

R`0−1(h) −R∗
`0−1,H ≤ f(RΦmax(h) −R∗

Φmax,H), (6)

then, f is lower bounded by 1
2

.
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Proof. Consider the distribution that supports on a singleton domain {x} with x satisfying that
∣H(x)∣ ≥ 2. Take y1 ∈ H(x) such that y1 ≠ c and y2 ∈ Y such that y2 ≠ y1, y2 ≠ c. We define p(x) as
p(x, y1) = p(x, y2) = 1

2
and p(x, y) = 0 for other y ∈ Y. Let h0 ∈H such that h0(x,1) = h0(x,2) =

. . . = h0(x, c). By Lemma 3 and the fact that y1 ∈ H(x), the minimal conditional `0−1-risk is

R∗
`0−1,H = C∗`0−1,H(x) = 1 − max

y∈H(x)
p(x, y) = 1 − p(x, y1) =

1

2
.

For h = h0, we have

R`0−1(h0) = C`0−1(h0, x) = ∑
y∈Y

p(x, y)1h0(x)≠y = 1 − p(x,h0(x)) = 1 − p(x, c) = 1.

For the max loss, the conditional Φmax-risk can be expressed as follows:

CΦmax(h,x) = ∑
y∈Y

p(x, y)Φ(ρh(x, y)) =
1

2
Φ(ρh(x, y1)) +

1

2
Φ(ρh(x, y2)).

If Φ is convex and non-increasing, we obtain for any h ∈H,

RΦmax(h) = CΦmax(h,x) = 1

2
Φ(ρh(x, y1)) +

1

2
Φ(ρh(x, y2))

≥ Φ(1

2
ρh(x, y1) +

1

2
ρh(x, y2)) (Φ is convex)

= Φ(1

2
(h(x, y1) + h(x, y2) −max

y≠y1

h(x, y) −max
y≠y2

h(x, y)))

≥ Φ(0), (Φ is non-increasing)
where both equality can be achieved by h0. Therefore,

R∗
Φmax,H = C∗Φmax,H(x) = RΦmax(h0) = Φ(0).

If (6) holds for some non-decreasing function f , then, we obtain for any h ∈H,

R`0−1(h) −
1

2
≤ f(RΦmax(h) −Φ(0)).

Let h = h0, then f(0) ≥ 1/2. Since f is non-decreasing, for any t ≥ 0, f(t) ≥ 1/2.

Theorem 7 (H-consistency bound of Φmax
ρ ). Suppose that H is symmetric. Then, for any hypothesis

h ∈H and any distribution D,

R`0−1(h) −R∗
`0−1,H ≤

RΦmax
ρ

(h) −R∗
Φmax
ρ ,H +MΦmax

ρ ,H

min{1,
infx∈X suph∈H ρh(x,h(x))

ρ
}

−M`0−1,H. (7)

Proof. By the definition, the conditional Φmax
ρ -risk can be expressed as follows:

CΦmax
ρ

(h,x) = ∑
y∈Y

p(x, y)Φρ(ρh(x, y))

= 1 − p(x,h(x)) +max{0,1 − ρh(x,h(x))
ρ

}p(x,h(x))

= 1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x))

(25)

Since H is symmetric, for any x ∈ X and y ∈ Y,

sup
h∈{h∈H∶h(x)=y}

ρh(x,h(x)) = sup
h∈H

ρh(x,h(x))

Therefore, the minimal conditional Φmax
ρ -risk can be expressed as follows:

C∗Φmax
ρ ,H(x) = 1 −min{1,

suph∈H ρh(x,h(x))
ρ

}max
y∈Y

p(x, y).
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By the definition and using the fact that H(x) = Y when H is symmetric, we obtain

∆CΦmax
ρ ,H(h,x) = CΦmax

ρ
(h,x) − C∗Φmax

ρ ,H(x)

= min{1,
suph∈H ρh(x,h(x))

ρ
}max
y∈Y

p(x, y) −min{1,
ρh(x,h(x))

ρ
}p(x,h(x))

≥ min{1,
suph∈H ρh(x,h(x))

ρ
}(max

y∈Y
p(x, y) − p(x,h(x)))

≥ min{1,
suph∈H ρh(x,h(x))

ρ
}∆C`0−1,H(h,x) (H(x) = Y)

≥ min{1,
suph∈H ρh(x,h(x))

ρ
}[∆C`0−1,H(h,x)]ε ([x]ε ≤ x)

≥ min{1,
infx∈X suph∈H ρh(x,h(x))

ρ
}[∆C`0−1,H(h,x)]ε

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric hypothesis set,
ε = 0 and

Ψ(t) = min{1,
infx∈X suph∈H ρh(x,h(x))

ρ
} t

in Theorem 4, or, equivalently, Γ(t) = Ψ−1(t) in Theorem 5, we obtain for any hypothesis h ∈H and
any distribution,

R`0−1(h) −R∗
`0−1,H ≤

RΦmax
ρ

(h) −R∗
Φmax
ρ ,H +MΦmax

ρ ,H

min{1,
infx∈X suph∈H ρh(x,h(x))

ρ
}

−M`0−1,H.

Theorem 9 (Realizable H-consistency bound of Φmax). Suppose that H is symmetric and complete,
and Φ is non-increasing and satisfies that limt→+∞ Φ(t) = 0. Then, for any hypothesis h ∈ H and
any H-realizable distribution D, we have

R`0−1(h) −R∗
`0−1,H ≤ RΦmax(h) −R∗

Φmax,H +MΦmax,H. (8)

Proof. Under the H-realizability assumption of distribution, for any x ∈ X, there exists y ∈ Y such
that p(x, y) = 1. Then, the conditional Φmax-risk can be expressed as follows:

CΦmax(h,x) = ∑
y∈Y

p(x, y)Φ(ρh(x, y))

= Φ(ρh(x, ymax)).
(26)

Since H is symmetric and complete, there exists h ∈H such that h(x) = ymax and we have

sup
h∈{h∈H∶h(x)=ymax}

ρh(x,h(x)) = sup
h∈H

ρh(x,h(x))

= sup
h∈H

(max
y∈Y

h(x, y) − max
y≠h(x)

h(x, y))

= +∞.
Thus, using the fact that limt→+∞ Φ(t) = 0, the minimal conditional Φmax-risk can be expressed as
follows:

C∗Φmax,H(x) = inf
h∈H

CΦmax(h,x)

= inf
h∈H

Φ(ρh(x,h(x)))

= Φ(sup
h∈H

ρh(x,h(x))) (Φ is non-increasing)

= 0 (limt→+∞ Φ(t) = 0)
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By the definition and using the fact that H(x) = Y when H is symmetric, we obtain

∆CΦmax,H(h,x) = CΦmax(h,x) − C∗Φmax,H(x)
= Φ(ρh(x, ymax))
≥ Φ(0)1ymax≠h(x) (Φ is non-increasing)

≥ max
y∈Y

p(x, y) − p(x,h(x))

= ∆C`0−1,H(h,x) (by Lemma 3 and H(x) = Y)
≥ [∆C`0−1,H(h,x)]ε ([t]ε ≤ t)

for any ε ≥ 0. Note that M`0−1,H = 0 under the realizability assumption. Therefore, taking P be the
set of H-realizable distributions, H be the symmetric and complete hypothesis set, ε = 0 and Ψ(t) = t
in Theorem 4, or, equivalently, Γ(t) = t in Theorem 5, we obtain for any hypothesis h ∈H and any
H-realizable distribution,

R`0−1(h) −R∗
`0−1,H ≤ RΦmax(h) −R∗

Φmax,H +MΦmax,H

H Proof of Hall,Hlin,HNN-consistency bounds for max ρ-margin loss Φmax
ρ

Corollary 18 (Hall-consistency bound of Φmax
ρ ). For any hypothesis h ∈Hall and any distribution,

R`0−1(h) −R∗
`0−1,Hall

≤ RΦmax
ρ

(h) −R∗
Φmax
ρ ,Hall

. (27)

Proof. For H = Hall, we have for all x ∈ X, suph∈Hall
ρh(x,h(x)) > ρ. Furthermore, as shown by

Steinwart (2007, Theorem 3.2), the minimizability gaps M`0−1,Hall
=MΦmax

ρ ,Hall
= 0. Therefore, by

Theorem 7, the Hall-consistency bound of Φmax
ρ can be expressed as follows:

R`0−1(h) −R∗
`0−1,Hall

≤ RΦmax
ρ

(h) −R∗
Φmax
ρ ,Hall

.

Corollary 19 (Hlin-consistency bound of Φmax
ρ ). For any hypothesis h ∈Hlin and any distribution,

R`0−1(h) −R∗
`0−1,Hlin

≤
RΦmax

ρ
(h) −R∗

Φmax
ρ ,Hlin

+MΦmax
ρ ,Hlin

min{1, 2B
ρ
}

−M`0−1,Hlin
, (28)

where M`0−1,Hlin
= R∗

`0−1,Hlin
− EX[1 −maxy∈Y p(x, y)] and MΦmax

ρ ,Hlin
= R∗

Φmax
ρ ,Hlin

−

EX[1 −min{1,
2(W ∥x∥p+B)

ρ
}maxy∈Y p(x, y)].

Proof. For H =Hlin, we have for all x ∈ X,

sup
h∈Hlin

ρh(x,h(x)) = sup
h∈Hlin

(max
y∈Y

h(x, y) − max
y≠h(x)

h(x, y))

= max
∥w∥q≤W,∣b∣≤B

(w ⋅ x + b) − min
∥w∥q≤W,∣b∣≤B

(w ⋅ x + b)

= 2(W ∥x∥p +B)

(29)

Thus, infx∈X suph∈Hlin
ρh(x,h(x)) = infx∈X 2(W ∥x∥p +B) = 2B. Since H = Hlin is symmetric,

by lemma 3, we have

M`0−1,Hlin
= R∗

`0−1,Hlin
−EX[1 −max

y∈Y
p(x, y)]. (30)
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By the definition, the conditional Φmax
ρ -risk can be expressed as follows:

CΦmax
ρ

(h,x) = ∑
y∈Y

p(x, y)Φρ(ρh(x, y))

= 1 − p(x,h(x)) +max{0,1 − ρh(x,h(x))
ρ

}p(x,h(x))

= 1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x))

Since Hlin is symmetric, for any x ∈ X and y ∈ Y,

sup
h∈{h∈Hlin∶h(x)=y}

ρh(x,h(x)) = sup
h∈Hlin

ρh(x,h(x)).

Thus, using (29), the minimal conditional Φmax
ρ -risk can be expressed as follows:

C∗Φmax
ρ ,Hlin

(x) = 1 −min{1,
suph∈Hlin

ρh(x,h(x))
ρ

}max
y∈Y

p(x, y)

= 1 −min

⎧⎪⎪⎨⎪⎪⎩
1,

2(W ∥x∥p +B)
ρ

⎫⎪⎪⎬⎪⎪⎭
max
y∈Y

p(x, y) (by (29))

Therefore, the (Φmax
ρ ,Hlin)-minimizability gap is

MΦmax
ρ ,Hlin

= R∗
Φmax
ρ ,Hlin

−EX
⎡⎢⎢⎢⎢⎣
1 −min

⎧⎪⎪⎨⎪⎪⎩
1,

2(W ∥x∥p +B)
ρ

⎫⎪⎪⎬⎪⎪⎭
max
y∈Y

p(x, y)
⎤⎥⎥⎥⎥⎦
. (31)

By Theorem 7, the Hlin-consistency bound of Φmax
ρ can be expressed as follows:

R`0−1(h) −R∗
`0−1,Hlin

≤
RΦmax

ρ
(h) −R∗

Φmax
ρ ,Hlin

+MΦmax
ρ ,Hlin

min{1, 2B
ρ
}

−M`0−1,Hlin
.

where M`0−1,Hlin
and MΦmax

ρ ,Hlin
are given by (30) and (31) respectively.

Corollary 20 (HNN-consistency bound of Φmax
ρ ). For any hypothesis h ∈ HNN and any distribu-

tion,

R`0−1(h) −R∗
`0−1,HNN

≤
RΦmax

ρ
(h) −R∗

Φmax
ρ ,HNN

+MΦmax
ρ ,HNN

min{1, 2ΛB
ρ

}
−M`0−1,HNN

, (32)

where M`0−1,HNN
= R∗

`0−1,HNN
− EX[1 −maxy∈Y p(x, y)] and MΦmax

ρ ,HNN
= R∗

Φmax
ρ ,HNN

−

EX[1 −min{1,
2Λ(W ∥x∥p+B)

ρ
}maxy∈Y p(x, y)].

Proof. For H =HNN, we have for all x ∈ X,

sup
h∈HNN

ρh(x,h(x)) = sup
h∈HNN

(max
y∈Y

h(x, y) − max
y≠h(x)

h(x, y))

= max
∥u∥1≤Λ,∥wj∥q≤W,∣bj ∣≤B

⎛
⎝
n

∑
j=1

uj(wj ⋅ x + bj)+
⎞
⎠
− min

∥u∥1≤Λ,∥wj∥q≤W,∣bj ∣≤B

⎛
⎝
n

∑
j=1

uj(wj ⋅ x + bj)+
⎞
⎠

= 2Λ(W ∥x∥p +B)

(33)

Thus, infx∈X suph∈HNN
ρh(x,h(x)) = infx∈X 2Λ(W ∥x∥p +B) = 2ΛB. Since H =HNN is symmet-

ric, by lemma 3, we have

M`0−1,HNN
= R∗

`0−1,HNN
−EX[1 −max

y∈Y
p(x, y)]. (34)
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By the definition, the conditional Φmax
ρ -risk can be expressed as follows:

CΦmax
ρ

(h,x) = ∑
y∈Y

p(x, y)Φρ(ρh(x, y))

= 1 − p(x,h(x)) +max{0,1 − ρh(x,h(x))
ρ

}p(x,h(x))

= 1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x))

Since HNN is symmetric, for any x ∈ X and y ∈ Y,

sup
h∈{h∈HNN∶h(x)=y}

ρh(x,h(x)) = sup
h∈HNN

ρh(x,h(x)).

Thus, using (33), the minimal conditional Φmax
ρ -risk can be expressed as follows:

C∗Φmax
ρ ,HNN

(x) = 1 −min{1,
suph∈HNN

ρh(x,h(x))
ρ

}max
y∈Y

p(x, y)

= 1 −min

⎧⎪⎪⎨⎪⎪⎩
1,

2Λ(W ∥x∥p +B)
ρ

⎫⎪⎪⎬⎪⎪⎭
max
y∈Y

p(x, y) (by (33))

Therefore, the (Φmax
ρ ,HNN)-minimizability gap is

MΦmax
ρ ,HNN

= R∗
Φmax
ρ ,HNN

−EX
⎡⎢⎢⎢⎢⎣
1 −min

⎧⎪⎪⎨⎪⎪⎩
1,

2Λ(W ∥x∥p +B)
ρ

⎫⎪⎪⎬⎪⎪⎭
max
y∈Y

p(x, y)
⎤⎥⎥⎥⎥⎦
. (35)

By Theorem 7, the HNN-consistency bound of Φmax
ρ can be expressed as follows:

R`0−1(h) −R∗
`0−1,HNN

≤
RΦmax

ρ
(h) −R∗

Φmax
ρ ,HNN

+MΦmax
ρ ,HNN

min{1, 2ΛB
ρ

}
−M`0−1,HNN

.

where M`0−1,HNN
and MΦmax

ρ ,HNN
are given by (34) and (35) respectively.

I Auxiliary Lemma for sum losses

Lemma 21. Fix a vector τ = (τ1, . . . , τc) in the probability simplex of Rc and any real values
a1 ≤ a2 ≤ ⋯ ≤ ac in increasing order. Then, for any permutation σ of the set {1, . . . , c},

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσ(1)
τσ(2)
⋮

τσ(c)

⎤⎥⎥⎥⎥⎥⎥⎦

≤

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τ[1]
τ[2]
⋮
τ[c]

⎤⎥⎥⎥⎥⎥⎥⎦

,

where we define τ[1], τ[2], . . . , τ[c] by sorting the probabilities {τy ∶ y ∈ {1, . . . , c}} in increasing
order.

Proof. For any permutation σ of the set {1, . . . , c}, we prove by induction. At the first step, if
σ(c) = [c], then let σ1 = σ. Otherwise, denote k1 ∈ {1, . . . , c − 1} such that σ(k1) = [c] and choose
σ1 to be the permutation that differs from σ only by permuting c and k1. Thus,

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσ(1)
τσ(2)
⋮

τσ(c)

⎤⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσ1(1)

τσ1(2)

⋮
τσ1(c)

⎤⎥⎥⎥⎥⎥⎥⎦

= ak1τ[c] + acτσ(c) − (ak1τσ(c) + acτ[c])

= (ak1 − ac)(τ[c] − τσ(c)) ≤ 0.
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At the second step, if σ1(c−1) = [c − 1], then let σ2 = σ1. Otherwise, denote k2 ∈ {1, . . . , c − 2} such
that σ1(k2) = [c − 1] and choose σ2 to be the permutation that differs from σ1 only by permuting
c − 1 and k2. Thus,

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσ1(1)

τσ1(2)

⋮
τσ1(c)

⎤⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσ2(1)

τσ2(2)

⋮
τσ2(c)

⎤⎥⎥⎥⎥⎥⎥⎦

= (ak2 − ac−1)(τ[c−1] − τσ1(c−1)) ≤ 0.

And so on, at the nth step, if σn−1(c − n + 1) = [c − n + 1], then let σn = σn−1. Otherwise, denote
kn ∈ {1, . . . , c − n} such that σn−1(kn) = [c − n + 1] and choose σn to be the permutation that differs
from σn−1 only by permuting c − n + 1 and kn. We have

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσn−1(1)

τσn−1(2)

⋮
τσn−1(c)

⎤⎥⎥⎥⎥⎥⎥⎦

≤

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσn(1)
τσn(2)
⋮

τσn(c)

⎤⎥⎥⎥⎥⎥⎥⎦

.

Finally, after c steps, we will obtain σc which satisfies σc(y) = [y] for any y ∈ {1, . . . , c}. Therefore,
we obtain

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσ(1)
τσ(2)
⋮

τσ(c)

⎤⎥⎥⎥⎥⎥⎥⎦

≤

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

τσ1(1)

τσ1(2)

⋮
τσ1(c)

⎤⎥⎥⎥⎥⎥⎥⎦

≤ . . . ≤

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

τσn(1)
τσn(2)
⋮

τσn(c)

⎤⎥⎥⎥⎥⎥⎥⎦

≤ . . . ≤

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τ[1]
τ[2]
⋮
τ[c]

⎤⎥⎥⎥⎥⎥⎥⎦
which proves the lemma.

J Proof of negative and H-consistency bounds for sum losses Φsum

By the definition, the conditional Φsum-risk can be expressed as follows:

CΦsum(h,x) = ∑
y∈Y

p(x, y) ∑
y′≠y

Φ(h(x, y) − h(x, y′))

= ∑
y∈Y

p(x, y) ∑
y′∈Y

Φ(h(x, y) − h(x, y′)) −Φ(0)
(36)

Theorem 10 (Negative results for hinge loss). Assume that c > 2. Suppose that H is symmetric and
complete. If for a non-decreasing function f ∶R+ → R+, the following H-consistency bound holds for
any hypothesis h ∈H and any distribution D:

R`0−1(h) −R∗
`0−1,H ≤ f(RΦsum

hinge
(h) −R∗

Φsum
hinge

,H), (10)

then, f is lower bounded by 1
6

.

Proof. Consider the distribution that supports on a singleton domain {x}. We define p(x) as
p(x,1) = 1

2
− ε, p(x,2) = 1

3
, p(x,3) = 1

6
+ ε and p(x, y) = 0 for other y ∈ Y, where 0 < ε < 1

6
.

Note p(x,1) > p(x,2) > p(x,3) > p(x, y) = 0, y /∈ {1,2,3}. Let h0 ∈ H such that h0(x,1) = 1,
h0(x,2) = 1, h0(x,3) = 0 and h0(x, y) = −1 for other y ∈ Y. By the completeness of H, the
hypothesis h is in H . By Lemma 3 and the fact that H(x) = Y when H is symmetric, the minimal
conditional `0−1-risk is

R∗
`0−1,H = C∗`0−1,H(x) = 1 −max

y∈Y
p(x, y) = 1 − p(x,1) = 1

2
+ ε.

For h = h0, we have

R`0−1(h0) = C`0−1(h0, x) = ∑
y∈Y

p(x, y)1h0(x)≠y = 1 − p(x,h0(x)) = 1 − p(x,2) = 2

3
.
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For the sum hinge loss, by (36), the conditional Φsum
hinge-risk can be expressed as follows:

CΦsum
hinge

(h,x) = ∑
y∈Y

p(x, y) ∑
y′≠y

max{0,1 + h(x, y′) − h(x, y)}

= ∑
y∈{1,2,3}

p(x, y) ∑
y′≠y

max{0,1 + h(x, y′) − h(x, y)}

≥ ∑
y∈{1,2,3}

p(x, y) ∑
y′≠y,y′∈{1,2,3}

max{0,1 + h(x, y′) − h(x, y)}

= (1

2
− ε)[max{0,1 + h(x,2) − h(x,1)} +max{0,1 + h(x,3) − h(x,1)}]

+ 1

3
[max{0,1 + h(x,1) − h(x,2)} +max{0,1 + h(x,3) − h(x,2)}]

+ (1

6
+ ε)[max{0,1 + h(x,1) − h(x,3)} +max{0,1 + h(x,2) − h(x,3)}]

= g(h).

Note CΦsum
hinge

(h0, x) = 3ε + 3
2

. Since 1
2
− ε > 1

3
> 1

6
+ ε, by Lemma 21, we have

inf
h∈H

g(h) = inf
h∈H∶h(x,1)≥h(x,2)≥h(x,3)

g(h).

When h(x,1) ≥ h(x,2) ≥ h(x,3), g(h) can be written as

g(h) = (1

2
− ε)[max{0,1 + h(x,2) − h(x,1)} +max{0,1 + h(x,3) − h(x,1)}]

+ 1

3
[(1 + h(x,1) − h(x,2)) +max{0,1 + h(x,3) − h(x,2)}]

+ (1

6
+ ε)[(1 + h(x,1) − h(x,3)) + (1 + h(x,2) − h(x,3))]

If h(x,1) − h(x,2) > 1, define the hypothesis h ∈H by

h(x, y) = {h(x,1) −
h(x,1)−h(x,2)−1

2
, if y = 1

h(x, y) otherwise.

By the completeness of H and some computation, the new hypothesis h is in H and satisfies that
g(h) < g(h). Similarly, if h(x,2) − h(x,3) > 1, define the hypothesis h ∈H by

h(x, y) = {h(x,2) −
h(x,2)−h(x,3)−1

2
, if y = 2

h(x, y) otherwise.

By the completeness of H and some computation, the new hypothesis h is in H and satisfies that
g(h) < g(h). Therefore,

inf
h∈H

g(h) = inf
h∈H∶h(x,1)≥h(x,2)≥h(x,3)

g(h) = inf
h∈H∶h(x,1)≥h(x,2)≥h(x,3), h(x,1)−h(x,2)≤1, h(x2)−h(x,3)≤1

g(h)

When h(x,1) ≥ h(x,2) ≥ h(x,3), h(x,1) − h(x,2) ≤ 1 and h(x2) − h(x,3) ≤ 1, g(h) can be
written as

g(h) = (1

2
− ε)[(1 + h(x,2) − h(x,1)) +max{0,1 + h(x,3) − h(x,1)}]

+ 1

3
[(1 + h(x,1) − h(x,2)) + (1 + h(x,3) − h(x,2))]

+ (1

6
+ ε)[(1 + h(x,1) − h(x,3)) + (1 + h(x,2) − h(x,3))]
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If h(x,1) − h(x,3) > 1, define the hypothesis h ∈H by

h(x, y) = {h(x,1) −
h(x,1)−h(x,3)−1

2
, if y = 1

h(x, y) otherwise.

By the completeness of H and some computation using the fact that 0 < ε < 1
6

, the new hypothesis h
is in H and satisfies that g(h) < g(h). Therefore,

inf
h∈H

g(h) = inf
h∈H∶h(x,1)≥h(x,2)≥h(x,3), h(x,1)−h(x,2)≤1, h(x2)−h(x,3)≤1, h(x,1)−h(x,3)≤1

g(h)

= inf
h∈H∶h(x,1)≥h(x,2)≥h(x,3), h(x,1)−h(x,2)≤1, h(x2)−h(x,3)≤1, h(x,1)−h(x,3)≤1

(3ε − 1

2
)(h(x,1) − h(x,3)) + 2

= 3ε + 3

2

Thus, we obtain for any h ∈H,

RΦsum
hinge

(h) = CΦsum
hinge

(h,x) ≥ g(h) ≥ 3ε + 3

2
= CΦsum

hinge
(h0, x)

Therefore,

R∗
Φsum

hinge
,H = C∗Φsum

hinge
,H(x) = RΦsum

hinge
(h0) = 3ε + 3

2
.

If (10) holds for some non-decreasing function f , then, we obtain for any h ∈H,

R`0−1(h) −
1

2
− ε ≤ f(RΦsum

hinge
(h) −RΦsum

hinge
(h0)).

Let h = h0, then f(0) ≥ 1/6−ε. Since f is non-decreasing, for any t ≥ 0 and 0 < ε < 1
6

, f(t) ≥ 1/6−ε.
Let ε→ 0, we obtain that f is lower bounded by 1

6
.

Theorem 22 (H-consistency bound of Φsum
sq−hinge). Suppose that H is symmetric and complete.

Then, for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ (RΦsum

sq−hinge
(h) −R∗

Φsum
sq−hinge

,H +MΦsum
sq−hinge

,H)
1
2 −M`0−1,H. (37)

Proof. For the sum squared hinge loss Φsum
sq−hinge, by (36), the conditional Φsum

sq−hinge-risk can be
expressed as follows:

CΦsum
sq−hinge

(h,x)

= ∑
y∈Y

p(x, y) ∑
y′≠y

max{0,1 + h(x, y′) − h(x, y)}2

= p(x, ymax) ∑
y′≠ymax

max{0,1 + h(x, y′) − h(x, y)}2 + ∑
y≠ymax

p(x, y) ∑
y′≠y

max{0,1 + h(x, y′) − h(x, y)}2

= p(x, ymax) ∑
y′≠ymax

max{0,1 + h(x, y′) − h(x, ymax)}2 + ∑
y≠ymax

p(x, y)max{0,1 + h(x, ymax) − h(x, y)}2

+ ∑
y≠ymax

p(x, y) ∑
y′/∈{ymax,y}

max{0,1 + h(x, y′) − h(x, y)}2

For any h ∈H, define the hypothesis hλ ∈H by

hλ(x, y) = {h(x, y) if y ≠ ymax

λ if y = ymax
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for any λ ∈ R. By the completeness of H, the new hypothesis hλ is in H. Therefore, the minimal
conditional Φsum

sq−hinge-risk satisfies that for any λ ∈ R,

C∗Φsum
sq−hinge

,H(x) ≤ CΦsum
sq−hinge

(hλ, x)

= p(x, ymax) ∑
y′≠ymax

max{0,1 + h(x, y′) − λ}2 + ∑
y≠ymax

p(x, y)max{0,1 + λ − h(x, y)}2

+ ∑
y≠ymax

p(x, y) ∑
y′/∈{ymax,y}

max{0,1 + h(x, y′) − h(x, y)}2

= ∑
y≠ymax

[p(x, ymax)max{0,1 + h(x, y) − λ}2 + p(x, y)max{0,1 + λ − h(x, y)}2]

+ ∑
y≠ymax

p(x, y) ∑
y′/∈{ymax,y}

max{0,1 + h(x, y′) − h(x, y)}2
.

Let h ∈H be a hypothesis such that h(x) ≠ ymax. By the definition and using the fact that H(x) = Y
when H is symmetric, we obtain

∆CΦsum
sq−hinge

,H(h,x) = CΦsum
sq−hinge

(h,x) − C∗Φsum
sq−hinge

,H(x)

≥ CΦsum
sq−hinge

(h,x) − CΦsum
sq−hinge

(hλ, x)

≥ p(x, ymax)max{0,1 + h(x,h(x)) − h(x, ymax)}2 + p(x,h(x))max{0,1 + h(x, ymax) − h(x,h(x))}2

− 4p(x, ymax)p(x,h(x))
p(x, ymax + p(x,h(x))

(taking supremum with respect to λ)

≥ p(x, ymax) + p(x,h(x)) −
4p(x, ymax)p(x,h(x))
p(x, ymax + p(x,h(x))

(h(x,h(x)) − h(x, ymax) ≥ 0)

= (p(x, ymax) − p(x,h(x)))2

p(x, ymax + p(x,h(x))

≥ (max
y∈Y

p(x, y) − p(x,h(x)))
2

(0 ≤ p(x, ymax) + p(x,h(x)) ≤ 1)

= (∆C`0−1,H(h,x))2 (by Lemma 3 and H(x) = Y)

≥ ([∆C`0−1,H(h,x)]ε)
2

([t]ε ≤ t)
for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric and complete
hypothesis set, ε = 0 and Ψ(t) = t2 in Theorem 4, or, equivalently, Γ(t) =

√
t in Theorem 5, we

obtain for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ (RΦsum

sq−hinge
(h) −R∗

Φsum
sq−hinge

,H +MΦsum
sq−hinge

,H)
1
2 −M`0−1,H.

Theorem 23 (H-consistency bound of Φsum
exp ). Suppose that H is symmetric and complete. Then,

for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤

√
2(RΦsum

exp
(h) −R∗

Φsum
exp ,H

+MΦsum
exp ,H)

1
2 −M`0−1,H. (38)

Proof. For the sum exponential loss Φsum
exp , by (36), the conditional Φsum

exp -risk can be expressed as
follows:
CΦsum

exp
(h,x) = ∑

y∈Y

p(x, y) ∑
y′≠y

exp(h(x, y′) − h(x, y))

= p(x, ymax) ∑
y′≠ymax

exp(h(x, y′) − h(x, ymax)) + ∑
y≠ymax

p(x, y) ∑
y′≠y

exp(h(x, y′) − h(x, y))

= p(x, ymax) ∑
y′≠ymax

exp(h(x, y′) − h(x, ymax)) + ∑
y≠ymax

p(x, y) exp(h(x, ymax) − h(x, y))

+ ∑
y≠ymax

p(x, y) ∑
y′/∈{ymax,y}

exp(h(x, y′) − h(x, y))
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For any h ∈H, define the hypothesis hλ ∈H by

hλ(x, y) = {h(x, y) if y ≠ ymax

λ if y = ymax

for any λ ∈ R. By the completeness of H, the new hypothesis hλ is in H. Therefore, the minimal
conditional Φsum

exp -risk satisfies that for any λ ∈ R,

C∗Φsum
exp ,H

(x) ≤ CΦsum
exp

(hλ, x)

= p(x, ymax)e−λ ∑
y′≠ymax

eh(x,y
′
) + ∑

y≠ymax

p(x, y) exp(λ − h(x, y))

+ ∑
y≠ymax

p(x, y) ∑
y′/∈{ymax,y}

exp(h(x, y′) − h(x, y))

= ∑
y≠ymax

[p(x, ymax)eh(x,y)e−λ + p(x, y)e−h(x,y)eλ]

+ ∑
y≠ymax

p(x, y) ∑
y′/∈{ymax,y}

exp(h(x, y′) − h(x, y)).

Let h ∈H be a hypothesis such that h(x) ≠ ymax. By the definition and using the fact that H(x) = Y
when H is symmetric, we obtain

∆CΦsum
exp ,H(h,x) = CΦsum

exp
(h,x) − C∗Φsum

exp ,H
(x)

≥ CΦsum
exp

(h,x) − CΦsum
exp

(hλ, x)

≥ (
√
p(x, ymax)eh(x,h(x))e−h(x,ymax) −

√
p(x,h(x))e−h(x,h(x))eh(x,ymax))

2

(taking supremum with respect to λ)

≥ (
√
p(x, ymax) −

√
p(x,h(x)))

2
(h(x,h(x)) ≥ h(x, ymax) and p(x,h(x)) ≤ p(x, ymax))

=
⎛
⎝

p(x, ymax) − p(x,h(x))√
p(x,h(x)) +

√
p(x, ymax)

⎞
⎠

2

≥ 1

2
(max
y∈Y

p(x, y) − p(x,h(x)))
2

(0 ≤ p(x, ymax) + p(x,h(x)) ≤ 1)

= 1

2
(∆C`0−1,H(h,x))2 (by Lemma 3 and H(x) = Y)

≥ 1

2
([∆C`0−1,H(h,x)]ε)

2
([t]ε ≤ t)

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric and complete
hypothesis set, ε = 0 and Ψ(t) = t2

2
in Theorem 4, or, equivalently, Γ(t) =

√
2t in Theorem 5, we

obtain for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤

√
2(RΦsum

exp
(h) −R∗

Φsum
exp ,H

+MΦsum
exp ,H)

1
2 −M`0−1,H.

Theorem 24 (H-consistency bound of Φsum
ρ ). Suppose that H is symmetric and satisfies that for

any x ∈ X, there exists a hypothesis h ∈ H such that ∣h(x, i) − h(x, j)∣ ≥ ρ for any i ≠ j ∈ Y. Then,
for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ RΦsum

ρ
(h) −R∗

Φsum
ρ ,H +MΦsum

ρ ,H −M`0−1,H. (39)

Proof. For any x ∈ X, we define p[1](x), p[2](x), . . . , p[c](x) by sorting the probabilities
{p(x, y) ∶ y ∈ Y} in increasing order. Similarly, for any x ∈ X and h ∈ H, we define
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h(x,{1}x), h(x,{2}x), . . . , h(x,{c}x) by sorting the scores {h(x, y) ∶ y ∈ Y} in increasing order.
In particular, we have

h(x,{1}x) = min
y∈Y

h(x, y), h(x,{c}x) = max
y∈Y

h(x, y), h(x,{i}x) ≤ h(x,{j}j), ∀i ≤ j.

If there is a tie for the maximum, we pick the label with the highest index under the natural ordering
of labels, i.e. {c}x = h(x). By the definition, the conditional Φsum

ρ -risk can be expressed as follows:

CΦsum
ρ

(h,x) = ∑
y∈Y

p(x, y) ∑
y′≠y

Φρ(h(x, y) − h(x, y′))

=
c

∑
i=1

p(x,{i}x)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h(x,{i}x) − h(x,{j}x)) +
c

∑
j=i+1

Φρ(h(x,{i}x) − h(x,{j}x))
⎤⎥⎥⎥⎦

=
c

∑
i=1

p(x,{i}x)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h(x,{i}x) − h(x,{j}x)) + c − i
⎤⎥⎥⎥⎦

(Φρ(t) = 1 for t ≤ 0)

By the assumption, there exists a hypotheses h ∈H such that ∣h(x, i) − h(x, j)∣ ≥ ρ for any i ≠ j ∈ Y.
Since H is symmetric, we can always choose h∗ among these hypotheses such that h∗ and p(x)
induce the same ordering of the labels, i.e. p(x,{k}x) = p[k](x) for any k ∈ Y. Then, we have
C∗Φsum

ρ ,H(x) ≤ CΦsum
ρ

(h∗, x)

=
c

∑
i=1

p(x,{i}x)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h∗(x,{i}x) − h
∗(x,{j}x)) + c − i

⎤⎥⎥⎥⎦

=
c

∑
i=1

p(x,{i}x)(c − i) (∣h∗(x, i) − h∗(x, j)∣ ≥ ρ for any i ≠ j and Φρ(t) = 0, ∀t ≥ ρ)

=
c

∑
i=1

p[i](x)(c − i) (h∗ and p(x) induce the same ordering of the labels)

= c −
c

∑
i=1

i p[i](x) (∑ci=1 p[i](x) = 1)

By the definition and using the fact that H(x) = Y when H is symmetric, we obtain
∆CΦsum

ρ ,H(h,x)
= CΦsum

ρ
(h,x) − C∗Φsum

ρ ,H(x)

=
c

∑
i=1

p(x,{i}x)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h(x,{i}x) − h(x,{j}x)) + c − i
⎤⎥⎥⎥⎦
− (c −

c

∑
i=1

i p[i](x))

≥
c

∑
i=1

p(x,{i}x)(c − i) − (c −
c

∑
i=1

i p[i](x)) (Φρ ≥ 0)

=
c

∑
i=1

i p[i](x) −
c

∑
i=1

i p(x,{i}x) (∑ci=1 p(x,{i}) = 1)

= max
y∈Y

p(x, y) − p(x,h(x)) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c − 1
c − 1
c − 2
⋮
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p[c](x)
p[c−1](x)
p[c−2](x)

⋮
p[1](x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c − 1
c − 1
c − 2
⋮
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(x,{c}x)
p(x,{c − 1}x)
p(x,{c − 2}x)

⋮
p(x,{1}x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(p[c](x) = maxy∈Y p(x, y) and {c}x = h(x))

≥ max
y∈Y

p(x, y) − p(x,h(x)) (by Lemma 21)

= ∆C`0−1,H(h,x) (by Lemma 3)
≥ [∆C`0−1,H(h,x)]ε ([t]ε ≤ t)

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric hypothesis
set, ε = 0 and Ψ(t) = t in Theorem 12, or, equivalently, Γ(t) = t in Theorem 5, we obtain for any
hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ RΦsum

ρ
(h) −R∗

Φsum
ρ ,H +MΦsum

ρ ,H −M`0−1,H.
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K Proof of H-consistency bounds for constrained losses Φcstnd

Recall that h(x) and ymax are defined by h(x) = argmaxy∈Y h(x, y) and ymax = argmaxy∈Y p(x, y).
If there is a tie, we pick the label with the highest index under the natural ordering of labels. The
main idea of the proofs in this section is to leverage the constraint condition of Lee et al. (2004) that
the scores sum to zero, and appropriately choose a hypothesis h that differs from h only for its scores
for h(x) and ymax. Then, we can upper bound the minimal conditional risk by the conditional risk of
h without requiring complicated computation of the minimal conditional risk. By the definition, the
conditional Φcstnd-risk can be expressed as follows:

CΦcstnd(h,x) = ∑
y∈Y

p(x, y) ∑
y′≠y

Φ(−h(x, y′))

= ∑
y∈Y

Φ(−h(x, y)) ∑
y′≠y

p(x, y′)

= ∑
y∈Y

(1 − p(x, y))Φ(−h(x, y))

(40)

Theorem 25 (H-consistency bound of Φcstnd
hinge). Suppose that H is symmetric and complete. Then,

for any hypothesis h ∈H and any distribution,
R`0−1(h) −R∗

`0−1,H ≤ RΦcstnd
hinge

(h) −R∗

Φcstnd
hinge

,H +MΦcstnd
hinge

,H −M`0−1,H. (41)

Proof. For the constrained hinge loss Φcstnd
hinge, by (40), the conditional Φcstnd

hinge-risk can be expressed
as follows:
CΦcstnd

hinge
(h,x) = ∑

y∈Y

(1 − p(x, y))max{0,1 + h(x, y)}

= ∑
y∈{ymax,h(x)}

(1 − p(x, y))max{0,1 + h(x, y)} + ∑
y/∈{ymax,h(x)}

(1 − p(x, y))max{0,1 + h(x, y)}

Let h ∈ H be a hypothesis such that h(x) ≠ ymax. For any x ∈ X, if h(x, ymax) ≤ −1, define the
hypothesis h ∈H by

h(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
h(x, ymax) if y = h(x)
h(x,h(x)) if y = ymax.

Otherwise, define the hypothesis h ∈H by

h(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
−1 if y = h(x)
h(x, ymax) + h(x,h(x)) + 1 if y = ymax.

By the completeness of H, the new hypothesis h is in H and satisfies that ∑y∈Y h(x, y) = 0. Since
∑y∈Y h(x, y) = 0, there must be non-negative scores. By definition of h(x) as a maximizer, we must
thus have h(x,h(x)) ≥ 0. Therefore, the minimal conditional Φcstnd

hinge-risk satisfies:

C∗Φcstnd
hinge

,H(x) ≤ CΦcstnd
hinge

(h,x)

= {(1 − p(x, ymax))(1 + h(x,h(x))) +∑y/∈{ymax,h(x)}(1 − p(x, y))(1 + h(x, y)) if h(x, ymax) ≤ −1

(1 − p(x, ymax))(h(x, ymax) + h(x,h(x)) + 2) +∑y/∈{ymax,h(x)}(1 − p(x, y))(1 + h(x, y)) otherwise.

By the definition and using the fact that H(x) = Y when H is symmetric, we obtain
∆CΦcstnd

hinge
,H(h,x) = CΦcstnd

hinge
(h,x) − C∗Φcstnd

hinge
,H(x)

≥ CΦcstnd
hinge

(h,x) − CΦcstnd
hinge

(h,x)
= (1 + h(x,h(x)))(p(x, ymax) − p(x,h(x)))
≥ max

y∈Y
p(x, y) − p(x,h(x)) (h(x,h(x)) ≥ 0)

= ∆C`0−1,H(h,x) (by Lemma 3 and H(x) = Y)
≥ [∆C`0−1,H(h,x)]ε ([t]ε ≤ t)
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for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric and complete
hypothesis set, ε = 0 and Ψ(t) = t in Theorem 4, or, equivalently, Γ(t) = t in Theorem 5, we obtain
for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ RΦcstnd

hinge
(h) −R∗

Φcstnd
hinge

,H +MΦcstnd
hinge

,H −M`0−1,H.

Theorem 26 (H-consistency bound of Φcstnd
sq−hinge). Suppose that H is symmetric and complete.

Then, for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ (RΦcstnd

sq−hinge
(h) −R∗

Φcstnd
sq−hinge

,H +MΦcstnd
sq−hinge

,H)
1
2

−M`0−1,H. (42)

Proof. For the constrained squared hinge loss Φcstnd
sq−hinge, by (40), the conditional Φcstnd

sq−hinge-risk can
be expressed as follows:

CΦcstnd
sq−hinge

(h,x) = ∑
y∈Y

(1 − p(x, y))max{0,1 + h(x, y)}2

= ∑
y∈{ymax,h(x)}

(1 − p(x, y))max{0,1 + h(x, y)}2 + ∑
y/∈{ymax,h(x)}

(1 − p(x, y))max{0,1 + h(x, y)}2

Let h ∈ H be a hypothesis such that h(x) ≠ ymax. For any x ∈ X, if h(x, ymax) ≤ −1, define the
hypothesis h ∈H by

h(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
h(x, ymax) if y = h(x)
h(x,h(x)) if y = ymax.

Otherwise, define the hypothesis h ∈H by

h(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
1−p(x,ymax)

2−p(x,ymax)−p(x,h(x))
(2 + h(x, ymax) + h(x,h(x))) − 1 if y = h(x)

1−p(x,h(x))
2−p(x,ymax)−p(x,h(x))

(2 + h(x, ymax) + h(x,h(x))) − 1 if y = ymax.

By the completeness of H, the new hypothesis h is in H and satisfies that ∑y∈Y h(x, y) = 0. Since
∑y∈Y h(x, y) = 0, there must be non-negative scores. By definition of h(x) as a maximizer, we must
thus have h(x,h(x)) ≥ 0. Therefore, the minimal conditional Φcstnd

sq−hinge-risk satisfies:

C∗Φcstnd
sq−hinge

,H(x) ≤ CΦcstnd
sq−hinge

(h,x)

=
⎧⎪⎪⎨⎪⎪⎩

(1 − p(x, ymax))(1 + h(x,h(x)))2 +∑y/∈{ymax,h(x)}(1 − p(x, y))(1 + h(x, y)) if h(x, ymax) ≤ −1
(1−p(x,ymax))(1−p(x,h(x)))(2+h(x,ymax)+h(x,h(x)))

2

2−p(x,ymax)−p(x,y)
+∑y/∈{ymax,h(x)}(1 − p(x, y))(1 + h(x, y)) otherwise.

By the definition and using the fact that H(x) = Y when H is symmetric, we obtain

∆CΦcstnd
sq−hinge

,H(h,x) = CΦcstnd
sq−hinge

(h,x) − C∗Φcstnd
sq−hinge

,H(x)

≥ CΦcstnd
sq−hinge

(h,x) − CΦcstnd
sq−hinge

(h,x)

= {(1 + h(x,h(x)))
2(p(x, ymax) − p(x,h(x))) if h(x, ymax) ≤ −1

g(1 − p(x, ymax),1 − p(x,h(x)),1 + h(x, ymax),1 + h(x,h(x))) otherwise

≥ (1 + h(x,h(x)))2(max
y∈Y

p(x, y) − p(x,h(x)))
2

(property of g and p(x, ymax) ≤ 1)

≥ (max
y∈Y

p(x, y) − p(x,h(x)))
2

(h(x,h(x)) ≥ 0)

= (∆C`0−1,H(h,x))2 (by Lemma 3 and H(x) = Y)

≥ ([∆C`0−1,H(h,x)]ε)
2

([t]ε ≤ t)
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for any ε ≥ 0, where g(x, y,α, β) = x2α2
+y2β2

−2xyαβ
x+y

≥ β2(x − y)2 when 0 ≤ x ≤ y ≤ 1, x + y ≥ 1

and 1 ≤ α ≤ β. Therefore, taking P be the set of all distributions, H be the symmetric and complete
hypothesis set, ε = 0 and Ψ(t) = t2 in Theorem 4, or, equivalently, Γ(t) =

√
t in Theorem 5, we

obtain for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ (RΦcstnd

sq−hinge
(h) −R∗

Φcstnd
sq−hinge

,H +MΦcstnd
sq−hinge

,H)
1
2

−M`0−1,H.

Theorem 27 (H-consistency bound of Φcstnd
exp ). Suppose that H is symmetric and complete. Then,

for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤

√
2(RΦcstnd

exp
(h) −R∗

Φcstnd
exp ,H +MΦcstnd

exp ,H)
1
2 −M`0−1,H. (43)

Proof. For the constrained exponential loss Φcstnd
exp , by (40), the conditional Φcstnd

exp -risk can be
expressed as follows:

CΦcstnd
exp

(h,x) = ∑
y∈Y

(1 − p(x, y)) exp(h(x, y))

= ∑
y∈{ymax,h(x)}

(1 − p(x, y)) exp(h(x, y)) + ∑
y/∈{ymax,h(x)}

exp(h(x, y))

Let h ∈H be a hypothesis such that h(x) ≠ ymax. For any x ∈ X, define the hypothesis hµ ∈H by

hµ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
h(x, ymax) + µ if y = h(x)
h(x,h(x)) − µ if y = ymax

for any µ ∈ R. By the completeness of H, the new hypothesis hµ is in H and satisfies that
∑y∈Y hµ(x, y) = 0. Since∑y∈Y h(x, y) = 0, there must be non-negative scores. By definition of h(x)
as a maximizer, we must thus have h(x,h(x)) ≥ 0. Therefore, the minimal conditional Φcstnd

exp -risk
satisfies that for any µ ∈ R,

C∗Φcstnd
exp ,H(x) ≤ CΦcstnd

exp
(hµ, x)

= (1 − p(x, ymax))eh(x,h(x))−µ + (1 − p(x,h(x)))eh(x,ymax)+µ + ∑
y/∈{ymax,h(x)}

(1 − p(x, y)) exp(h(x, y)).

By the definition and using the fact that H(x) = Y when H is symmetric, we obtain
∆CΦcstnd

exp ,H(h,x) = CΦcstnd
exp

(h,x) − C∗Φcstnd
exp ,H(x)

≥ CΦcstnd
exp

(h,x) − CΦcstnd
exp

(hµ, x)

≥ (
√

(1 − p(x,h(x)))eh(x,h(x)) −
√

(1 − p(x, ymax))eh(x,ymax))
2

(taking supremum with respect to µ)

≥ eh(x,h(x))(
√

(1 − p(x,h(x))) −
√

(1 − p(x, ymax)))
2

(eh(x,h(x)) ≥ eh(x,ymax) and p(x,h(x)) ≤ p(x, ymax))

≥ (
√

(1 − p(x,h(x))) −
√

(1 − p(x, ymax)))
2

(h(x,h(x)) ≥ 0)

=
⎛
⎝

p(x, ymax) − p(x,h(x))√
(1 − p(x,h(x))) +

√
(1 − p(x, ymax))

⎞
⎠

2

≥ 1

2
(max
y∈Y

p(x, y) − p(x,h(x)))
2

(0 ≤ p(x, ymax) + p(x,h(x)) ≤ 1)

= 1

2
(∆C`0−1,H(h,x))2 (by Lemma 3 and H(x) = Y)

≥ 1

2
([∆C`0−1,H(h,x)]ε)

2
([t]ε ≤ t)
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for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric and complete
hypothesis set, ε = 0 and Ψ(t) = t2

2
in Theorem 4, or, equivalently, Γ(t) =

√
2t in Theorem 5, we

obtain for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤

√
2(RΦcstnd

exp
(h) −R∗

Φcstnd
exp ,H +MΦcstnd

exp ,H)
1
2 −M`0−1,H.

Theorem 28 (H-consistency bound of Φcstnd
ρ ). Suppose that H is symmetric and satisfies that for

any x ∈ X, there exists a hypothesis h ∈ H such that h(x, y) ≤ −ρ for any y ≠ ymax. Then, for any
hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ RΦcstnd

ρ
(h) −R∗

Φcstnd
ρ ,H +MΦcstnd

ρ ,H −M`0−1,H. (44)

Proof. Since∑y∈Y h(x, y) = 0, by definition of h(x) as a maximizer, we must thus have h(x,h(x)) ≥
0. For the constrained ρ-margin loss Φcstnd

ρ , by (40), the conditional Φcstnd
ρ -risk can be expressed as

follows:

CΦcstnd
ρ

(h,x) = ∑
y∈Y

(1 − p(x, y))min{max{0,1 + h(x, y)
ρ

},1}

= ∑
y∈Y∶h(x,y)≥0

(1 − p(x, y)) + ∑
y∈Y∶h(x,y)<0

(1 − p(x, y))max{0,1 + h(x, y)
ρ

}

≥ 1 − p(x,h(x))
≥ 1 −max

y∈Y
p(x, y).

By the assumption, the equality can be achieved by some h∗ρ ∈H with the constraint∑y∈Y h(x, y) = 0
such that h∗ρ(x, y) ≤ −ρ for any y ≠ ymax and h∗ρ(x, ymax) = −∑y′≠ymax

h∗ρ(x, y′) ≥ 0. Therefore,
the minimal conditional Φcstnd

ρ -risk can be expressed as follows:

C∗Φcstnd
ρ ,H(x) = 1 −max

y∈Y
p(x, y).

By the definition and using the fact that H(x) = Y when H is symmetric, we obtain

∆CΦcstnd
ρ ,H(h,x) = CΦcstnd

ρ
(h,x) − C∗Φcstnd

ρ ,H(x)

= ∑
y∈Y∶h(x,y)≥0

(1 − p(x, y)) + ∑
y∈Y∶h(x,y)<0

(1 − p(x, y))max{0,1 + h(x, y)
ρ

} − (1 −max
y∈Y

p(x, y))

≥ 1 − p(x,h(x)) − (1 −max
y∈Y

p(x, y))

= max
y∈Y

p(x, y) − p(x,h(x))

= ∆C`0−1,H(h,x) (by Lemma 3 and H(x) = Y)
≥ [∆C`0−1,H(h,x)]ε ([t]ε ≤ t)

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric hypothesis
set, ε = 0 and Ψ(t) = t in Theorem 4, or, equivalently, Γ(t) = t in Theorem 5, we obtain for any
hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ RΦcstnd

ρ
(h) −R∗

Φcstnd
ρ ,H +MΦcstnd

ρ ,H −M`0−1,H.

L Proof of negative results for adversarial robustness

Theorem 14 (Negative results for convex functions). Fix c = 2. Suppose that Φ is convex and non-
increasing, and H contains 0 and satisfies the condition that there exists x ∈ X such that Hγ(x) ≠ ∅.

33



If for a non-decreasing function f ∶R+ → R+, the following H-consistency bound holds for any
hypothesis h ∈H and any distribution D:

R`γ (h) −R∗
`γ ,H ≤ f(R̃̀(h) −R∗

̃̀,H
), (16)

then, f is lower bounded by 1
2

, for ̃̀= Φ̃max, Φ̃sum and Φ̃cstnd.

Proof. Consider the distribution that supports on a singleton domain {x} with x satisfying that
Hγ(x) ≠ ∅. When Hγ(x) ≠ ∅, Hγ(x) is also non-empty. Take y1 ∈ Hγ(x) and let y2 ≠ y1. We
define p(x) as p(x, y1) = p(x, y2) = 1

2
. Let h0 = 0 ∈H. By Lemma 11 and the fact that Hγ(x) ≠ ∅

and y1 ∈ Hγ(x), the minimal conditional `γ-risk is

R∗
`γ ,H = C∗`γ ,H(x) = 1 − max

y∈Hγ(x)
p(x, y) = 1 − p(x, y1) =

1

2
.

For h = h0, we have
R`γ (h0) = C`γ (h0, x) = ∑

y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

1ρh(x′,y)≤0 = 1.

For the adversarial max loss with non-increasing Φ, the conditional Φ̃max-risk can be expressed as
follows:
CΦ̃max(h,x) = ∑

y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

Φ(ρh(x′, y))

= ∑
y∈Y

p(x, y)Φ( inf
x′∶∥x−x′∥p≤γ

ρh(x′, y))

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2))) +

1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y2) − h(x′, y1)))

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2))) +

1

2
Φ
⎛
⎝
− sup
x′∶∥x−x′∥p≤γ

(h(x′, y1) − h(x′, y2))
⎞
⎠

If Φ is convex and non-increasing, we obtain for any h ∈H,
RΦ̃max(h) = CΦ̃max(h,x)

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2))) +

1

2
Φ
⎛
⎝

sup
x′∶∥x−x′∥p≤γ

(h(x′, y1) − h(x′, y2))
⎞
⎠

≥ Φ
⎛
⎝

1

2
inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2)) −

1

2
sup

x′∶∥x−x′∥p≤γ

(h(x′, y1) − h(x′, y2))
⎞
⎠

(Φ is convex)
≥ Φ(0), (Φ is non-increasing)

where the equality can be achieved by h0. Therefore,
R∗

Φ̃max,H
= C∗

Φ̃max,H
(x) = RΦ̃max(h0) = Φ(0).

If (16) holds for some non-decreasing function f and ̃̀= Φ̃max, then, we obtain for any h ∈H,

R`γ (h) −
1

2
≤ f(RΦ̃max(h) −Φ(0)).

Let h = h0, then f(0) ≥ 1/2. Since f is non-decreasing, for any t ≥ 0, f(t) ≥ 1/2.

For the adversarial sum loss with non-increasing Φ, the conditional Φ̃sum-risk can be expressed as
follows:
CΦ̃sum(h,x) = ∑

y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

∑
y′≠y

Φ(h(x′, y) − h(x′, y′))

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2))) +

1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y2) − h(x′, y1)))

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2))) +

1

2
Φ
⎛
⎝
− sup
x′∶∥x−x′∥p≤γ

(h(x′, y1) − h(x′, y2))
⎞
⎠

34



If Φ is convex and non-increasing, we obtain for any h ∈H,
RΦ̃sum(h) = CΦ̃sum(h,x)

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2))) +

1

2
Φ
⎛
⎝

sup
x′∶∥x−x′∥p≤γ

(h(x′, y1) − h(x′, y2))
⎞
⎠

≥ Φ
⎛
⎝

1

2
inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2)) −

1

2
sup

x′∶∥x−x′∥p≤γ

(h(x′, y1) − h(x′, y2))
⎞
⎠

(Φ is convex)
≥ Φ(0), (Φ is non-increasing)

where the equality can be achieved by h0. Therefore,
R∗

Φ̃sum,H
= C∗

Φ̃sum,H
(x) = RΦ̃sum(h0) = Φ(0).

If (16) holds for some non-decreasing function f and ̃̀= Φ̃sum, then, we obtain for any h ∈H,

R`γ (h) −
1

2
≤ f(RΦ̃sum(h) −Φ(0)).

Let h = h0, then f(0) ≥ 1/2. Since f is non-decreasing, for any t ≥ 0, f(t) ≥ 1/2.

For the adversarial constrained loss with non-increasing Φ, using the fact that h(x, y1)+h(x, y2) = 0,
the conditional Φ̃cstnd-risk can be expressed as follows:

CΦ̃cstnd(h,x) = ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

∑
y′≠y

Φ(−h(x′, y′))

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(−h(x′, y2))) +

1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(−h(x′, y1)))

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
h(x′, y1)) +

1

2
Φ
⎛
⎝
− sup
x′∶∥x−x′∥p≤γ

h(x′, y1)
⎞
⎠

If Φ is convex and non-increasing, we obtain for any h ∈H,
RΦ̃cstnd(h) = CΦ̃cstnd(h,x)

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
h(x′, y1)) +

1

2
Φ
⎛
⎝
− sup
x′∶∥x−x′∥p≤γ

h(x′, y1)
⎞
⎠

≥ Φ
⎛
⎝

1

2
inf

x′∶∥x−x′∥p≤γ
h(x′, y1) −

1

2
sup

x′∶∥x−x′∥p≤γ

h(x′, y1)
⎞
⎠

(Φ is convex)

≥ Φ(0), (Φ is non-increasing)
where the equality can be achieved by h0. Therefore,

R∗

Φ̃cstnd,H
= C∗

Φ̃cstnd,H
(x) = RΦ̃cstnd(h0) = Φ(0).

If (16) holds for some non-decreasing function f and ̃̀= Φ̃cstnd, then, we obtain for any h ∈H,

R`γ (h) −
1

2
≤ f(RΦ̃cstnd(h) −Φ(0)).

Let h = h0, then f(0) ≥ 1/2. Since f is non-decreasing, for any t ≥ 0, f(t) ≥ 1/2.

M Proof of H-consistency bounds for adversarial max losses Φ̃max

Theorem 15 (H-consistency bound of Φ̃max
ρ ). Suppose that H is symmetric. Then, for any hypoth-

esis h ∈H and any distribution D, we have

R`γ (h) −R∗
`γ ,H ≤

RΦ̃max
ρ

(h) −R∗

Φ̃max
ρ ,H

+MΦ̃max
ρ ,H

min{1,
infx∈{x∈X∶Hγ (x)≠∅}

suph∈Hγ (x) infx′ ∶∥x−x′∥p≤γ
ρh(x′,h(x))

ρ
}
−M`γ ,H. (18)
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Proof. By the definition, the conditional Φ̃max
ρ -risk can be expressed as follows:

CΦ̃max
ρ

(h,x) = ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

Φρ(ρh(x′, y))

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − p(x,h(x)) +max{0,1 −
infx′ ∶∥x−x′∥p≤γ

ρh(x
′,h(x))

ρ
}p(x,h(x)) h ∈Hγ(x)

1 otherwise.

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 −min{1,
infx′ ∶∥x−x′∥p≤γ

ρh(x
′,h(x))

ρ
}p(x,h(x)) h ∈Hγ(x)

1 otherwise.

(45)

Since H is symmetric, for any x ∈ X, either for any y ∈ Y,
sup

h∈{h∈Hγ(x)∶h(x)=y}

inf
x′∶∥x−x′∥p≤γ

ρh(x′,h(x)) = sup
h∈Hγ(x)

inf
x′∶∥x−x′∥p≤γ

ρh(x′,h(x))

or Hγ(x) = ∅. When Hγ(x) = ∅, (45) implies that C∗
Φ̃max
ρ ,H

(x) = 1. When Hγ(x) ≠ ∅,

C∗
Φ̃max
ρ ,H

(x) = 1 −min

⎧⎪⎪⎨⎪⎪⎩
1,

suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
max
y∈Y

p(x, y).

Therefore, the minimal conditional Φ̃max
ρ -risk can be expressed as follows:

C∗
Φ̃max
ρ ,H

(x) = 1 −min

⎧⎪⎪⎨⎪⎪⎩
1,

suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
max
y∈Y

p(x, y)1Hγ(x)≠∅

When Hγ(x) = ∅, CΦ̃max
ρ

(h,x) ≡ 1, which implies that ∆CΦ̃max
ρ ,H(h,x) ≡ 0. When Hγ(x) ≠ ∅,

using the fact that Hγ(x) = Y ⇐⇒ Hγ(x) ≠ ∅ when H is symmetric,

∆CΦ̃max
ρ ,H(h,x) = min

⎧⎪⎪⎨⎪⎪⎩
1,

suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
max
y∈Y

p(x, y)

−min

⎧⎪⎪⎨⎪⎪⎩
1,

infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
p(x,h(x))1h∈Hγ(x)

≥ min

⎧⎪⎪⎨⎪⎪⎩
1,

suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
(max
y∈Y

p(x, y) − p(x,h(x))1h∈Hγ(x))

= min

⎧⎪⎪⎨⎪⎪⎩
1,

suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
∆C`γ ,H(h,x)

≥ min

⎧⎪⎪⎨⎪⎪⎩
1,

suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
[∆C`γ ,H(h,x)]

ε

≥ min

⎧⎪⎪⎨⎪⎪⎩
1,

infx∈{x∈X∶Hγ(x)≠∅} suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
[∆C`γ ,H(h,x)]

ε

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric hypothesis set,
ε = 0 and

Ψ(t) = min

⎧⎪⎪⎨⎪⎪⎩
1,

infx∈{x∈X∶Hγ(x)≠∅} suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
t

in Theorem 12, or, equivalently, Γ(t) = Ψ−1(t) in Theorem 13, we obtain for any hypothesis h ∈H
and any distribution,

R`γ (h) −R∗
`γ ,H ≤

RΦ̃max
ρ

(h) −R∗

Φ̃max
ρ ,H

+MΦ̃max
ρ ,H

min{1,
infx∈{x∈X∶Hγ (x)≠∅}

suph∈Hγ (x) infx′ ∶∥x−x′∥p≤γ
ρh(x′,h(x))

ρ
}
−M`γ ,H.
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N Proof of H-consistency bounds for adversarial sum losses Φ̃sum

Theorem 16 (H-consistency bound of Φ̃sum
ρ ). Assume that H is symmetric and that for any

x ∈ X, there exists a hypothesis h ∈ H inducing the same ordering of the labels for any
x′ ∈ {x′∶ ∥x − x′∥p ≤ γ} and such that infx′∶∥x−x′∥p≤γ ∣h(x

′, i) − h(x′, j)∣ ≥ ρ for any i ≠ j ∈ Y.
Then, for any hypothesis h ∈H and any distribution D, the following inequality holds:

R`γ (h) −R∗
`γ ,H ≤ RΦ̃sum

ρ
(h) −R∗

Φ̃sum
ρ ,H

+MΦ̃sum
ρ ,H −M`γ ,H. (20)

Proof. For any x ∈ X, we define p[1](x), p[2](x), . . . , p[c](x) by sorting the probabilities
{p(x, y) ∶ y ∈ Y} in increasing order. Similarly, for any x ∈ X and h ∈ H, we define
h(x,{1}x), h(x,{2}x), . . . , h(x,{c}x) by sorting the scores {h(x, y) ∶ y ∈ Y} in increasing order.
In particular, we have

h(x,{1}x) = min
y∈Y

h(x, y), h(x,{c}x) = max
y∈Y

h(x, y), h(x,{i}x) ≤ h(x,{j}j), ∀i ≤ j.

If there is a tie for the maximum, we pick the label with the highest index under the natural ordering
of labels, i.e. {c}x = h(x). By the definition, the conditional Φ̃sum

ρ -risk can be expressed as follows:

CΦ̃sum
ρ

(h,x) = ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

∑
y′≠y

Φρ(h(x′, y) − h(x′, y′))

= ∑
y∈Y

sup
x′∶∥x−x′∥p≤γ

p(x, y) ∑
y′≠y

Φρ(h(x′, y) − h(x′, y′))

=
c

∑
i=1

sup
x′∶∥x−x′∥p≤γ

p(x,{i}x′)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h(x′,{i}x′) − h(x
′,{j}x′)) +

c

∑
j=i+1

Φρ(h(x′,{i}x′) − h(x
′,{j}x′))

⎤⎥⎥⎥⎦

=
c

∑
i=1

sup
x′∶∥x−x′∥p≤γ

p(x,{i}x′)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h(x′,{i}x′) − h(x
′,{j}x′)) + c − i

⎤⎥⎥⎥⎦
(46)

By the assumption, there exists a hypothesis h ∈H inducing the same ordering of the labels for any
x′ ∈ {x′∶ ∥x − x′∥p ≤ γ} and such that infx′∶∥x−x′∥p≤γ ∣h(x

′, i) − h(x′, j)∣ ≥ ρ for any i ≠ j ∈ Y, i.e.
{k}x′ = {k}x for any k ∈ Y and x′ ∈ {x′ ∶ ∥x − x′∥p ≤ γ}. Since H is symmetric, we can always
choose h∗ among these hypotheses such that h∗ and p(x) induce the same ordering of the labels, i.e.
p(x,{k}x) = p[k](x) for any k ∈ Y. Then, by (46), we have

C∗
Φ̃sum
ρ ,H

(x) ≤ CΦ̃sum
ρ

(h∗, x)

=
c

∑
i=1

sup
x′∶∥x−x′∥p≤γ

p(x,{i}x′)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h∗(x′,{i}x′) − h
∗(x′,{j}x′)) + c − i

⎤⎥⎥⎥⎦
(by (46))

=
c

∑
i=1

sup
x′∶∥x−x′∥p≤γ

p(x,{i}x′)(c − i)

(infx′∶∥x−x′∥p≤γ ∣h
∗(x′, i) − h∗(x′, j)∣ ≥ ρ for any i ≠ j and Φρ(t) = 0, ∀t ≥ ρ)

=
c

∑
i=1

p(x,{i}x)(c − i)

(h∗ induces the same ordering of the labels for any x′ ∈ {x′ ∶ ∥x − x′∥p ≤ γ})

=
c

∑
i=1

p[i](x)(c − i) (h∗ and p(x) induce the same ordering of the labels)

= c −
c

∑
i=1

i p[i](x) (∑ci=1 p[i](x) = 1)
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By the assumption, Hγ(x) ≠ ∅ and Hγ(x) = Y since H is symmetric. Thus, for any h ∈H,

∆CΦ̃sum
ρ ,H(h,x)

= CΦ̃sum
ρ

(h,x) − C∗
Φ̃sum
ρ ,H

(x)

=
c

∑
i=1

sup
x′∶∥x−x′∥p≤γ

p(x,{i}x′)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h(x′,{i}x′) − h(x
′,{j}x′)) + c − i

⎤⎥⎥⎥⎦
− (c −

c

∑
i=1

i p[i](x))

(Φρ(t) = 1 for t ≤ 0)

≥ p(x,h(x))1h/∈Hγ(x) +
c

∑
i=1

sup
x′∶∥x−x′∥p≤γ

p(x,{i}x′)(c − i) − (c −
c

∑
i=1

i p[i](x)) (Φρ ≥ 0)

≥ p(x,h(x))1h/∈Hγ(x) +
c

∑
i=1

p(x,{i}x)(c − i) − (c −
c

∑
i=1

i p[i](x)) (lower bound the supremum)

= p(x,h(x))1h/∈Hγ(x) +
c

∑
i=1

i p[i](x) −
c

∑
i=1

i p(x,{i}x) (∑ci=1 p(x,{i}) = 1)

= p(x,h(x))1h/∈Hγ(x) +max
y∈Y

p(x, y) − p(x,h(x)) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c − 1
c − 1
c − 2
⋮
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p[c](x)
p[c−1](x)
p[c−2](x)

⋮
p[1](x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c − 1
c − 1
c − 2
⋮
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(x,{c}x)
p(x,{c − 1}x)
p(x,{c − 2}x)

⋮
p(x,{1}x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(p[c](x) = maxy∈Y p(x, y) and {c}x = h(x))

≥ p(x,h(x))1h/∈Hγ(x) +max
y∈Y

p(x, y) − p(x,h(x)) (by Lemma 21)

= max
y∈Y

p(x, y) − p(x,h(x))1h∈Hγ(x)

= ∆C`γ ,H(h,x) (by Lemma 11 and Hγ(x) = Y)

≥ [∆C`γ ,H(h,x)]
ε

([t]ε ≤ t)

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric hypothesis
set, ε = 0 and Ψ(t) = t in Theorem 12, or, equivalently, Γ(t) = t in Theorem 13, we obtain for any
hypothesis h ∈H and any distribution,

R`γ (h) −R∗
`γ ,H ≤ RΦ̃sum

ρ
(h) −R∗

Φ̃sum
ρ ,H

+MΦ̃sum
ρ ,H −M`γ ,H.

O Proof of H-consistency bounds for adversarial constrained losses Φ̃cstnd

Theorem 17 (H-consistency bound of Φ̃cstnd
ρ ). Suppose that H is symmetric and satisfies that

for any x ∈ X, there exists a hypothesis h ∈ H with the constraint ∑y∈Y h(x, y) = 0 such that
supx′∶∥x−x′∥p≤γ h(x

′, y) ≤ −ρ for any y ≠ ymax. Then, for any hypothesis h ∈H and any distribution,

R`γ (h) −R∗
`γ ,H ≤ RΦ̃cstnd

ρ
(h) −R∗

Φ̃cstnd
ρ ,H

+MΦ̃cstnd
ρ ,H −M`γ ,H. (22)

Proof. Define ymax by ymax = argmaxy∈Y p(x, y). If there is a tie, we pick the label with the
highest index under the natural ordering of labels. Since ∑y∈Y h(x, y) = 0, by definition of h(x) as a
maximizer, we must thus have h(x,h(x)) ≥ 0. By the definition, the conditional Φ̃cstnd

ρ -risk can be
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expressed as follows:

CΦ̃cstnd
ρ

(h,x) = ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

∑
y′≠y

Φρ(−h(x′, y′))

= ∑
y∈Y

sup
x′∶∥x−x′∥p≤γ

p(x, y) ∑
y′≠y

Φρ(−h(x′, y′))

= ∑
y∈Y

sup
x′∶∥x−x′∥p≤γ

p(x, y)
⎡⎢⎢⎢⎢⎣

∑
y′≠y∶h(x′,y′)>0

Φρ(−h(x′, y′)) + ∑
y′≠y∶h(x′,y′)≤0

Φρ(−h(x′, y′))
⎤⎥⎥⎥⎥⎦

≥ ∑
y≠h(x′)

sup
x′∶∥x−x′∥p≤γ

p(x, y)

≥ 1 −max
y∈Y

p(x, y). (Φρ ≥ 0 and Φρ(t) = 1 for t ≤ 0)

By the assumption, the equality can be achieved by some h∗ρ ∈H with the constraint∑y∈Y h(x, y) = 0
such that supx′∶∥x−x′∥p≤γ h

∗
ρ(x′, y) ≤ −ρ for any y ≠ ymax and h∗ρ(x′, ymax) = −∑y′≠ymax

h∗ρ(x′, y′)
for any x′ ∈ {x′ ∶ ∥x − x′∥p ≤ γ}. Therefore, the minimal conditional Φ̃cstnd

ρ -risk can be expressed as
follows:

C∗
Φ̃cstnd
ρ ,H

(x) = 1 −max
y∈Y

p(x, y).

By the assumption, Hγ(x) ≠ ∅ and Hγ(x) = Y since H is symmetric. Thus, for any h ∈H with the
constraint that ∑y∈Y h(x, y) = 0,

∆CΦ̃cstnd
ρ ,H(h,x) = CΦ̃cstnd

ρ
(h,x) − C∗

Φ̃cstnd
ρ ,H

(x)

= ∑
y∈Y

sup
x′∶∥x−x′∥p≤γ

p(x, y) ∑
y′≠y

Φρ(−h(x′, y′)) − (1 −max
y∈Y

p(x, y))

≥ ∑
y∈Y

p(x, y) ∑
y′≠y

Φρ(−h(x, y′)) − (1 −max
y∈Y

p(x, y)) (lower bound the supremum)

= ∑
y∈Y

(1 − p(x, y))Φρ(−h(x, y)) − (1 −max
y∈Y

p(x, y)) (swap y and y′)

≥ p(x,h(x))1h/∈Hγ(x) + 1 − p(x,h(x)) − (1 −max
y∈Y

p(x, y))

= max
y∈Y

p(x, y) − p(x,h(x))1h∈Hγ(x)

= ∆C`γ ,H(h,x) (by Lemma 11 and Hγ(x) = Y)

≥ [∆C`γ ,H(h,x)]
ε

([t]ε ≤ t)

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric hypothesis
set, ε = 0 and Ψ(t) = t in Theorem 12, or, equivalently, Γ(t) = t in Theorem 13, we obtain for any
hypothesis h ∈H and any distribution,

R`γ (h) −R∗
`γ ,H ≤ RΦ̃cstnd

ρ
(h) −R∗

Φ̃cstnd
ρ ,H

+MΦ̃cstnd
ρ ,H −M`γ ,H.
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