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Abstract

We present new ensemble learning algorithms for multi-class classification. Our
algorithms can use as a base classifier set a family of deep decision trees or other
rich or complex families and yet benefit from strong generalization guarantees.
We give new data-dependent learning bounds for convex ensembles in the multi-
class classification setting expressed in terms of the Rademacher complexities of
the sub-families composing the base classifier set, and the mixture weight assigned
to each sub-family. These bounds are finer than existing ones both thanks to an
improved dependency on the number of classes and, more crucially, by virtue of
a more favorable complexity term expressed as an average of the Rademacher
complexities based on the ensemble’s mixture weights. We introduce and discuss
several new multi-class ensemble algorithms benefiting from these guarantees,
prove positive results for the H-consistency of several of them, and report the
results of experiments showing that their performance compares favorably with
that of multi-class versions of AdaBoost and Logistic Regression and their L1-
regularized counterparts.

1 Introduction

Devising ensembles of base predictors is a standard approach in machine learning which often helps
improve performance in practice. Ensemble methods include the family of boosting meta-algorithms
among which the most notable and widely used one is AdaBoost [Freund and Schapire, 1997],
also known as forward stagewise additive modeling [Friedman et al., 1998]. AdaBoost and its
other variants learn convex combinations of predictors. They seek to greedily minimize a convex
surrogate function upper bounding the misclassification loss by augmenting, at each iteration, the
current ensemble, with a new suitably weighted predictor.

One key advantage of AdaBoost is that, since it is based on a stagewise procedure, it can learn
an effective ensemble of base predictors chosen from a very large and potentially infinite family,
provided that an efficient algorithm is available for selecting a good predictor at each stage. Fur-
thermore, AdaBoost and its L1-regularized counterpart [Rätsch et al., 2001a] benefit from favorable
learning guarantees, in particular theoretical margin bounds [Schapire et al., 1997, Koltchinskii and
Panchenko, 2002]. However, those bounds depend not just on the margin and the sample size, but
also on the complexity of the base hypothesis set, which suggests a risk of overfitting when using too
complex base hypothesis sets. And indeed, overfitting has been reported in practice for AdaBoost in
the past [Grove and Schuurmans, 1998, Schapire, 1999, Dietterich, 2000, Rätsch et al., 2001b].

Cortes, Mohri, and Syed [2014] introduced a new ensemble algorithm, DeepBoost, which they
proved to benefit from finer learning guarantees, including favorable ones even when using as base
classifier set relatively rich families, for example a family of very deep decision trees, or other simi-
larly complex families. In DeepBoost, the decisions in each iteration of which classifier to add to the
ensemble and which weight to assign to that classifier, depend on the (data-dependent) complexity
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of the sub-family to which the classifier belongs – one interpretation of DeepBoost is that it applies
the principle of structural risk minimization to each iteration of boosting. Cortes, Mohri, and Syed
[2014] further showed that empirically DeepBoost achieves a better performance than AdaBoost,
Logistic Regression, and their L1-regularized variants. The main contribution of this paper is an
extension of these theoretical, algorithmic, and empirical results to the multi-class setting.

Two distinct approaches have been considered in the past for the definition and the design of boosting
algorithms in the multi-class setting. One approach consists of combining base classifiers mapping
each example x to an output label y. This includes the SAMME algorithm [Zhu et al., 2009] as
well as the algorithm of Mukherjee and Schapire [2013], which is shown to be, in a certain sense,
optimal for this approach. An alternative approach, often more flexible and more widely used in
applications, consists of combining base classifiers mapping each pair (x, y) formed by an example
x and a label y to a real-valued score. This is the approach adopted in this paper, which is also
the one used for the design of AdaBoost.MR [Schapire and Singer, 1999] and other variants of that
algorithm.

In Section 2, we prove a novel generalization bound for multi-class classification ensembles that
depends only on the Rademacher complexity of the hypothesis classes to which the classifiers in the
ensemble belong. Our result generalizes the main result of Cortes et al. [2014] to the multi-class set-
ting, and also represents an improvement on the multi-class generalization bound due to Koltchinskii
and Panchenko [2002], even if we disregard our finer analysis related to Rademacher complexity. In
Section 3, we present several multi-class surrogate losses that are motivated by our generalization
bound, and discuss and compare their functional and consistency properties. In particular, we prove
that our surrogate losses are realizable H-consistent, a hypothesis-set-specific notion of consistency
that was recently introduced by Long and Servedio [2013]. Our results generalize those of Long and
Servedio [2013] and admit simpler proofs. We also present a family of multi-class DeepBoost learn-
ing algorithms based on each of these surrogate losses, and prove general convergence guarantee for
them. In Section 4, we report the results of experiments demonstrating that multi-class DeepBoost
outperforms AdaBoost.MR and multinomial (additive) logistic regression, as well as their L1-norm
regularized variants, on several datasets.

2 Multi-class data-dependent learning guarantee for convex ensembles

In this section, we present a data-dependent learning bound in the multi-class setting for convex
ensembles based on multiple base hypothesis sets. Let X denote the input space. We denote by
Y = {1, . . . , c} a set of c ≥ 2 classes. The label associated by a hypothesis f : X × Y → R to
x ∈ X is given by argmaxy∈Y f(x, y). The margin ρf (x, y) of the function f for a labeled example
(x, y) ∈ X × Y is defined by

ρf (x, y) = f(x, y)−max
y′ 6=y

f(x, y′). (1)

Thus, f misclassifies (x, y) iff ρf (x, y) ≤ 0. We consider p families H1, . . . ,Hp of functions
mapping from X × Y to [0, 1] and the ensemble family F = conv(

⋃p
k=1 Hk), that is the family of

functions f of the form f =
∑T

t=1 αtht, where α = (α1, . . . , αT ) is in the simplex ∆ and where, for
each t ∈ [1, T ], ht is in Hkt for some kt ∈ [1, p]. We assume that training and test points are drawn
i.i.d. according to some distribution D over X × Y and denote by S = ((x1, y1), . . . , (xm, ym)) a
training sample of size m drawn according to Dm. For any ρ > 0, the generalization error R(f), its
ρ-margin error Rρ(f) and its empirical margin error are defined as follows:

R(f) = E
(x,y)∼D

[1ρf (x,y)≤0], Rρ(f) = E
(x,y)∼D

[1ρf (x,y)≤ρ], and R̂S,ρ(f) = E
(x,y)∼S

[1ρf (x,y)≤ρ],

(2)
where the notation (x, y) ∼ S indicates that (x, y) is drawn according to the empirical distribution
defined by S. For any family of hypotheses G mapping X × Y to R, we define Π1(G) by

Π1(G) = {x 7→ h(x, y) : y ∈ Y, h ∈ G}. (3)

The following theorem gives a margin-based Rademacher complexity bound for learning with en-
sembles of base classifiers with multiple hypothesis sets. As with other Rademacher complexity
learning guarantees, our bound is data-dependent, which is an important and favorable characteris-
tic of our results.
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Theorem 1. Assume p > 1 and let H1, . . . ,Hp be p families of functions mapping from X × Y to
[0, 1]. Fix ρ > 0. Then, for any δ > 0, with probability at least 1− δ over the choice of a sample S

of size m drawn i.i.d. according to D, the following inequality holds for all f =
∑T

t=1 αtht ∈ F:

R(f) ≤ R̂S,ρ(f)+
8c

ρ

T∑
t=1

αtRm(Π1(Hkt
))+

2
cρ

√
log p

m
+

√⌈
4
ρ2 log

(
c2ρ2m
4 log p

)⌉ log p

m
+

log 2
δ

2m
,

Thus, R(f) ≤ R̂S,ρ(f) + 8c
ρ

∑T
t=1 αtRm(Hkt) + O

(√
log p

ρ2m
log

[
ρ2c2m
4 log p

])
.

The full proof of theorem 3 is given in Appendix B. Even for p = 1, that is for the special case of
a single hypothesis set, our analysis improves upon the multi-class margin bound of Koltchinskii
and Panchenko [2002] since our bound admits only a linear dependency on the number of classes
c instead of a quadratic one. However, the main remarkable benefit of this learning bound is that
its complexity term admits an explicit dependency on the mixture coefficients αt. It is a weighted
average of Rademacher complexities with mixture weights αt, t ∈ [1, T ]. Thus, the second term
of the bound suggests that, while some hypothesis sets Hk used for learning could have a large
Rademacher complexity, this may not negatively affect generalization if the corresponding total
mixture weight (sum of αts corresponding to that hypothesis set) is relatively small. Using such
potentially complex families could help achieve a better margin on the training sample.

The theorem cannot be proven via the standard Rademacher complexity analysis of Koltchinskii and
Panchenko [2002] since the complexity term of the bound would then be Rm(conv(

⋃p
k=1 Hk)) =

Rm(
⋃p

k=1 Hk) which does not admit an explicit dependency on the mixture weights and is lower
bounded by

∑T
t=1 αtRm(Hkt). Thus, the theorem provides a finer learning bound than the one

obtained via a standard Rademacher complexity analysis.

3 Algorithms

In this section, we will use the learning guarantees just described to derive several new ensemble
algorithms for multi-class classification.

3.1 Optimization problem

Let H1, . . . ,Hp be p disjoint families of functions taking values in [0, 1] with increasing Rademacher
complexities Rm(Hk), k ∈ [1, p]. For any hypothesis h ∈ ∪p

k=1Hk, we denote by d(h) the index
of the hypothesis set it belongs to, that is h ∈ Hd(h). The bound of Theorem 3 holds uniformly for
all ρ > 0 and functions f ∈ conv(

⋃p
k=1 Hk). Since the last term of the bound does not depend on

α, it suggests selecting α that would minimize:

G(α) =
1
m

m∑
i=1

1ρf (xi,yi)≤ρ +
8c

ρ

T∑
t=1

αtrt,

where rt = Rm(Hd(ht)) and α ∈ ∆.1 Since for any ρ > 0, f and f/ρ admit the same generalization
error, we can instead search for α ≥ 0 with

∑T
t=1 αt ≤ 1/ρ, which leads to

min
α≥0

1
m

m∑
i=1

1ρf (xi,yi)≤1 + 8c

T∑
t=1

αtrt s.t.
T∑

t=1

αt ≤
1
ρ
. (4)

The first term of the objective is not a convex function of α and its minimization is known to be
computationally hard. Thus, we will consider instead a convex upper bound. Let u 7→ Φ(−u)
be a non-increasing convex function upper-bounding u 7→ 1u≤0 over R. Φ may be selected to be

1 The condition
PT

t=1 αt = 1 of Theorem 3 can be relaxed to
PT

t=1 αt ≤ 1. To see this, use for example
a null hypothesis (ht = 0 for some t).
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for example the exponential function as in AdaBoost [Freund and Schapire, 1997] or the logistic
function. Using such an upper bound, we obtain the following convex optimization problem:

min
α≥0

1
m

m∑
i=1

Φ
(
1− ρf (xi, yi)

)
+ λ

T∑
t=1

αtrt s.t.
T∑

t=1

αt ≤
1
ρ
, (5)

where we introduced a parameter λ ≥ 0 controlling the balance between the magnitude of the values
taken by function Φ and the second term.2 Introducing a Lagrange variable β ≥ 0 associated to the
constraint in (5), the problem can be equivalently written as

min
α≥0

1
m

m∑
i=1

Φ
(
1− min

y 6=yi

[ T∑
t=1

αtht(xi, yi)− αtht(xi, y)
])

+
T∑

t=1

(λrt + β)αt.

Here, β is a parameter that can be freely selected by the algorithm since any choice of its value
is equivalent to a choice of ρ in (5). Since Φ is a non-decreasing function, the problem can be
equivalently written as

min
α≥0

1
m

m∑
i=1

max
y 6=yi

Φ
(
1−

[ T∑
t=1

αtht(xi, yi)− αtht(xi, y)
])

+
T∑

t=1

(λrt + β)αt.

Let {h1, . . . , hN} be the set of distinct base functions, and let Fmax be the objective function based
on that expression:

Fmax(α) =
1
m

m∑
i=1

max
y 6=yi

Φ
(
1−

N∑
j=1

αjhj(xi, yi, y)
)

+
N∑

j=1

Λjαj , (6)

with α = (α1, . . . , αN ) ∈ RN , hj(xi, yi, y) = hj(xi, yi)−hj(xi, y), and Λj = λrj +β for all j ∈
[1, N ]. Then, our optimization problem can be rewritten as minα≥0 Fmax(α). This defines a convex
optimization problem since the domain {α ≥ 0} is a convex set and since Fmax is convex: each
term of the sum in its definition is convex as a pointwise maximum of convex functions (composition
of the convex function Φ with an affine function) and the second term is a linear function of α. In
general, Fmax is not differentiable even when Φ is, but, since it is convex, it admits a sub-differential
at every point. Additionally, along each direction, Fmax admits left and right derivatives both non-
increasing and a differential everywhere except for a set that is at most countable.

3.2 Alternative objective functions

We now consider the following three natural upper bounds on Fmax which admit useful properties
that we will discuss later, the third one valid when Φ can be written as the composition of two
function Φ1 and Φ2 with Φ1 a non-increasing function:

Fsum(α) =
1
m

m∑
i=1

∑
y 6=yi

Φ
(
1−

N∑
j=1

αjhj(xi, yi, y)
)

+
N∑

j=1

Λjαj (7)

Fmaxsum(α) =
1
m

m∑
i=1

Φ
(
1−

N∑
j=1

αjρhj
(xi, yi)

)
+

N∑
j=1

Λjαj (8)

Fcompsum(α) =
1
m

m∑
i=1

Φ1

( ∑
y 6=yi

Φ2

(
1−

N∑
j=1

αjhj(xi, yi, y)
))

+
N∑

j=1

Λjαj . (9)

Fsum is obtained from Fmax simply by replacing in the definition of Fmax the max operator by a
sum. Clearly, function Fsum is convex and inherits the differentiability properties of Φ. A drawback
of Fsum is that for problems with very large c as in structured prediction, the computation of the sum

2Note that this is a standard practice in the field of optimization. The optimization problem in (4) is equiva-
lent to a vector optimization problem, where (

Pm
i=1 1ρf (xi,yi)≤1,

PT
t=1 αtrt) is minimized over α. The latter

problem can be scalarized leading to the introduction of a parameter λ in (5).

4



may require resorting to approximations. Fmaxsum is obtained from Fmax by noticing that, by the
sub-additivity of the max operator, the following inequality holds:

max
y 6=yi

N∑
j=1

−αjhj(xi, yi, y) ≤
N∑

j=1

max
y 6=yi

−αjhj(xi, yi, y) =
N∑

j=1

αjρhj (xi, yi).

As with Fsum, function Fmaxsum is convex and admits the same differentiability properties as Φ.
Unlike Fsum, Fmaxsum does not require computing a sum over the classes. Furthermore, note that the
expressions ρhj

(xi, yi), i ∈ [1,m], can be pre-computed prior to the application of any optimization
algorithm. Finally, for Φ = Φ1 ◦Φ2 with Φ1 non-increasing, the max operator can be replaced by a
sum before applying φ1, as follows:

max
y 6=yi

Φ
(
1− f(xi, yi, y)

)
= Φ1

(
max
y 6=yi

Φ2

(
1− f(xi, yi, y)

))
≤ Φ1

( ∑
y 6=yi

Φ2

(
1− f(xi, yi, y)

))
,

where f(xi, yi, y) =
∑N

j=1 αjhj(xi, yi, y). This leads to the definition of Fcompsum.

In Appendix C, we discuss the consistency properties of the loss functions just introduced. In partic-
ular, we prove that the loss functions associated to Fmax and Fsum are realizable H-consistent (see
Long and Servedio [2013]) in the common cases where the exponential or logistic losses are used
and that, similarly, in the common case where Φ1(u) = log(1 + u) and Φ2(u) = exp(u + 1), the
loss function associated to Fcompsum is H-consistent.

Furthermore, in Appendix D, we show that, under some mild assumptions, the objective functions
we just discussed are essentially within a constant factor of each other. Moreover, in the case of
binary classification all of these objectives coincide.

3.3 Multi-class DeepBoost algorithms

In this section, we discuss in detail a family of multi-class DeepBoost algorithms, which are derived
by application of coordinate descent to the objective functions discussed in the previous paragraphs.
We will assume that Φ is differentiable over R and that Φ′(u) 6= 0 for all u. This condition is not
necessary, in particular, our presentation can be extended to non-differentiable functions such as the
hinge loss, but it simplifies the presentation. In the case of the objective function Fmaxsum, we will
assume that both Φ1 and Φ2, where Φ = Φ1 ◦Φ2, are differentiable. Under these assumptions, Fsum,
Fmaxsum, and Fcompsum are differentiable. Fmax is not differentiable due to the presence of the max
operators in its definition, but it admits a sub-differential at every point.

For convenience, let αt = (αt,1, . . . , αt,N )> denote the vector obtained after t ≥ 1 iterations and
let α0 = 0. Let ek denote the kth unit vector in RN , k ∈ [1, N ]. For a differentiable objective
F , we denote by F ′(α, ej) the directional derivative of F along the direction ej at α. Our co-
ordinate descent algorithm consists of first determining the direction of maximal descent, that is
k = argmaxj∈[1,N ] |F ′(αt−1, ej)|, next of determining the best step η along that direction that
preserves non-negativity of α, η = argminαt−1+ηek≥0 F (αt−1 + ηek), and updating αt−1 to
αt = αt−1 + ηek. We will refer to this method as projected coordinate descent. The following
theorem provides a convergence guarantee for our algorithms in that case.
Theorem 2. Assume that Φ is twice differentiable and that Φ′′(u) > 0 for all u ∈ R. Then, the
projected coordinate descent algorithm applied to F converges to the solution α∗ of the optimization
maxα≥0 F (α) for F = Fsum, F = Fmaxsum, or F = Fcompsum. If additionally Φ is strongly convex
over the path of the iterates αt, then there exists τ > 0 and γ > 0 such that for all t > τ ,

F (αt+1)− F (α∗) ≤ (1− 1
γ )(F (αt)− F (α∗)). (10)

The proof is given in Appendix I and is based on the results of Luo and Tseng [1992]. The theorem
can in fact be extended to the case where instead of the best direction, the derivative for the direc-
tion selected at each round is within a constant threshold of the best [Luo and Tseng, 1992]. The
conditions of Theorem 2 hold for many cases in practice, in particular in the case of the exponential
loss (Φ = exp) or the logistic loss (Φ(−x) = log2(1 + e−x)). In particular, linear convergence is
guaranteed in those cases since both the exponential and logistic losses are strongly convex over a
compact set containing the converging sequence of αts.
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MDEEPBOOSTSUM(S = ((x1, y1), . . . , (xm, ym)))
1 for i← 1 to m do
2 for y ∈ Y − {yi} do
3 D1(i, y)← 1

m(c−1)

4 for t← 1 to T do

5 k ← argmin
j∈[1,N ]

εt,j +
Λjm

2St

6 if
(
(1− εt,k)eαt−1,k − εt,ke−αt−1,k < Λkm

St

)
then

7 ηt ← −αt−1,k

8 else ηt ← log
[
− Λkm

2εtSt
+

√[
Λkm
2εtSt

]2 + 1−εt

εt

]
9 αt ← αt−1 + ηtek

10 St+1 ←
∑m

i=1

∑
y 6=yi

Φ′
(
1−

∑N
j=1 αt,jhj(xi, yi, y)

)
11 for i← 1 to m do
12 for y ∈ Y − {yi} do

13 Dt+1(i, y)← Φ′
(
1−

PN
j=1 αt,jhj(xi,yi,y)

)
St+1

14 f ←
∑N

j=1 αt,jhj

15 return f

Figure 1: Pseudocode of the MDeepBoostSum algorithm for both the exponential loss and the lo-
gistic loss. The expression of the weighted error εt,j is given in (12).

We will refer to the algorithm defined by projected coordinate descent applied to Fsum by MDeep-
BoostSum, to Fmaxsum by MDeepBoostMaxSum, to Fcompsum by MDeepBoostCompSum, and to
Fmax by MDeepBoostMax. In the following, we briefly describe MDeepBoostSum, including its
pseudocode. We give a detailed description of all of these algorithms in the supplementary mate-
rial: MDeepBoostSum (Appendix E), MDeepBoostMaxSum (Appendix F), MDeepBoostCompSum
(Appendix G), MDeepBoostMax (Appendix H).

Define ft−1 =
∑N

j=1 αt−1,jhj . Then, Fsum(αt−1) can be rewritten as follows:

Fsum(αt−1) =
1
m

m∑
i=1

∑
y 6=yi

Φ
(
1− ft−1(xi, yi, y)

)
+

N∑
j=1

Λjαt−1,j .

For any t ∈ [1, T ], we denote by Dt the distribution over [1,m]× [1, c] defined for all i ∈ [1,m] and
y ∈ Y − {yi} by

Dt(i, y) =
Φ′

(
1− ft−1(xi, yi, y)

)
St

, (11)

where St is a normalization factor, St =
∑m

i=1

∑
y 6=yi

Φ′(1 − ft−1(xi, yi, y)). For any j ∈ [1, N ]
and s ∈ [1, T ], we also define the weighted error εs,j as follows:

εs,j =
1
2

[
1− E

(i,y)∼Ds

[
hj(xi, yi, y)

]]
. (12)

Figure 1 gives the pseudocode of the MDeepBoostSum algorithm. The details of the derivation of
the expressions are given in Appendix E. In the special cases of the exponential loss (Φ(−u) =
exp(−u)) or the logistic loss (Φ(−u) = log2(1 + exp(−u))), a closed-form expression is given
for the step size (lines 6-8), which is the same in both cases (see Sections E.2.1 and E.2.2). In the
generic case, the step size can be found using a line search or other numerical methods.

The algorithms presented above have several connections with other boosting algorithms, particu-
larly in the absence of regularization. We discuss these connections in detail in Appendix K.
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4 Experiments

The algorithms presented in the previous sections can be used with a variety of different base clas-
sifier sets. For our experiments, we used multi-class binary decision trees. A multi-class binary
decision tree in dimension d can be defined by a pair (t,h), where t is a binary tree with a variable-
threshold question at each internal node, e.g., Xj ≤ θ, j ∈ [1, d], and h = (hl)l∈Leaves(t) a vector of
distributions over the leaves Leaves(t) of t. At any leaf l ∈ Leaves(t), hl(y) ∈ [0, 1] for all y ∈ Y
and

∑
y∈Y hl(y) = 1. For convenience, we will denote by t(x) the leaf l ∈ Leaves(t) associated to

x by t. Thus, the score associated by (t,h) to a pair (x, y) ∈ X × Y is hl(y) where l = t(x).

Let Tn denote the family of all multi-class decision trees with n internal nodes in dimension d. In
Appendix J, we derive the following upper bound on the Rademacher complexity of Tn:

R(Π1(Tn)) ≤
√

(4n + 2) log2(d + 2) log(m + 1)
m

. (13)

All of the experiments in this section use Tn as the family of base hypothesis sets (parametrized by
n). Since Tn is a very large hypothesis set when n is large, for the sake of computational efficiency
we make a few approximations. First, although our MDeepBoost algorithms were derived in terms of
Rademacher complexity, we use the upper bound in Eq. (13) in place of the Rademacher complexity
(thus, in Algorithm 1 we let Λn = λBn + β, where Bn is the bound given in Eq. (13)). Secondly,
instead of exhaustively searching for the best decision tree in Tn for each possible size n, we use the
following greedy procedure: Given the best decision tree of size n (starting with n = 1), we find the
best decision tree of size n+1 that can be obtained by splitting one leaf, and continue this procedure
until some maximum depth K. Decision trees are commonly learned in this manner, and so in this
context our Rademacher-complexity-based bounds can be viewed as a novel stopping criterion for
decision tree learning. Let H∗

K be the set of trees found by the greedy algorithm just described.
In each iteration t of MDeepBoost, we select the best tree in the set H∗

K ∪ {h1, . . . , ht−1}, where
h1, . . . , ht−1 are the trees selected in previous iterations.

While we described many objective functions that can be used as the basis of a multi-class deep
boosting algorithm, the experiments in this section focus on algorithms derived from Fsum. We also
refer the reader to Table 3 in Appendix A for results of experiments with Fcompsum objective func-
tions. The Fsum and Fcompsum objectives combine several advantages that suggest they will perform
well empirically. Fsum is consistent and both Fsum and Fcompsum are (by Theorem 4) H-consistent.
Also, unlike Fmax both of these objectives are differentiable, and therefore the convergence guaran-
tee in Theorem 2 applies. Our preliminary findings also indicate that algorithms based on Fsum and
Fcompsum objectives perform better than those derived from Fmax and Fmaxsum. All of our objective
functions require a choice for Φ, the loss function. Since Cortes et al. [2014] reported comparable
results for exponential and logistic loss for the binary version of DeepBoost, we let Φ be the expo-
nential loss in all of our experiments with MDeepBoostSum. For MDeepBoostCompSum we select
Φ1(u) = log2(1 + u) and Φ2(−u) = exp(−u).

In our experiments, we used 8 UCI data sets: abalone, handwritten, letters, pageblocks,
pendigits, satimage, statlog and yeast – see more details on these datasets in Table 4, Ap-
pendix L. In Appendix K, we explain that when λ = β = 0 then MDeepBoostSum is equivalent to
AdaBoost.MR. Also, if we set λ = 0 and β 6= 0 then the resulting algorithm is an L1-norm regu-
larized variant of AdaBoost.MR. We compared MDeepBoostSum to these two algorithms, with the
results also reported in Table 1 and Table 2 in Appendix A. Likewise, we compared MDeepBoost-
CompSum with multinomial (additive) logistic regression, LogReg, and its L1-regularized version
LogReg-L1, which, as discussed in Appendix K, are equivalent to MDeepBoostCompSum when
λ = β = 0 and λ = 0, β ≥ 0 respectively. Finally, we remark that it can be argued that the parame-
ter optimization procedure (described below) significantly extends AdaBoost.MR since it effectively
implements structural risk minimization: for each tree depth, the empirical error is minimized and
we choose the depth to achieve the best generalization error.

All of these algorithms use maximum tree depth K as a parameter. L1-norm regularized versions
admit two parameters: K and β ≥ 0. Deep boosting algorithms have a third parameter, λ ≥ 0.
To set these parameters, we used the following parameter optimization procedure: we randomly
partitioned each dataset into 4 folds and, for each tuple (λ, β, K) in the set of possible parameters
(described below), we ran MDeepBoostSum, with a different assignment of folds to the training
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Table 1: Empirical results for MDeepBoostSum, Φ = exp. AB stands for AdaBoost.

abalone AB.MR AB.MR-L1 MDeepBoost handwritten AB.MR AB.MR-L1 MDeepBoost
Error 0.739 0.737 0.735 Error 0.024 0.025 0.021

(std dev) (0.0016) (0.0065) (0.0045) (std dev) (0.0011) (0.0018) (0.0015)

letters AB.MR AB.MR-L1 MDeepBoost pageblocks AB.MR AB.MR-L1 MDeepBoost
Error 0.065 0.059 0.058 Error 0.035 0.035 0.033

(std dev) (0.0018) (0.0059) (0.0039) (std dev) (0.0045) (0.0031) (0.0014)

pendigits AB.MR AB.MR-L1 MDeepBoost satimage AB.MR AB.MR-L1 MDeepBoost
Error 0.014 0.014 0.012 Error 0.112 0.117 0.117

(std dev) (0.0025) (0.0013) (0.0011) (std dev) (0.0123) (0.0096) (0.0087)

statlog AB.MR AB.MR-L1 MDeepBoost yeast AB.MR AB.MR-L1 MDeepBoost
Error 0.029 0.026 0.024 Error 0.415 0.410 0.407

(std dev) (0.0026) (0.0071) (0.0008) (std dev) (0.0353) (0.0324) (0.0282)

set, validation set and test set for each run. Specifically, for each run i ∈ {0, 1, 2, 3}, fold i was
used for testing, fold i + 1 (mod 4) was used for validation, and the remaining folds were used for
training. For each run, we selected the parameters that had the lowest error on the validation set and
then measured the error of those parameters on the test set. The average test error and the standard
deviation of the test error over all 4 runs is reported in Table 1. Note that an alternative procedure
to compare algorithms that is adopted in a number of previous studies of boosting [Li, 2009a,b, Sun
et al., 2012] is to simply record the average test error of the best parameter tuples over all runs.
While it is of course possible to overestimate the performance of a learning algorithm by optimizing
hyperparameters on the test set, this concern is less valid when the size of the test set is large relative
to the “complexity” of the hyperparameter space. We report results for this alternative procedure in
Table 2 and Table 3, Appendix A.

For each dataset, the set of possible values for λ and β was initialized to {10−5, 10−6, . . . , 10−10},
and to {1, 2, 3, 4, 5} for the maximum tree depth K. However, if we found an optimal parameter
value to be at the end point of these ranges, we extended the interval in that direction (by an order
of magnitude for λ and β, and by 1 for the maximum tree depth K) and re-ran the experiments.
We have also experimented with 200 and 500 iterations but we have observed that the errors do not
change significantly and the ranking of the algorithms remains the same.

The results of our experiments show that, for each dataset, deep boosting algorithms outperform the
other algorithms evaluated in our experiments. Let us point out that, even though not all of our re-
sults are statistically significant, MDeepBoostSum outperforms AdaBoost.MR and AdaBoost.MR-
L1 (and, hence, effectively structural risk minimization) on each dataset. More importantly, for each
dataset MDeepBoostSum outperforms other algorithms on most of the individual runs. Moreover,
results for some datasets presented here (namely pendigits) appear to be state-of-the-art. We also
refer our reader to experimental results summarized in Table 2 and Table 3 in Appendix A. These
results provide further evidence in favor of DeepBoost algorithms. The consistent performance im-
provement by MDeepBoostSum over AdaBoost.MR or its L1-norm regularized variant shows the
benefit of the new complexity-based regularization we introduced.

5 Conclusion

We presented new data-dependent learning guarantees for convex ensembles in the multi-class set-
ting where the base classifier set is composed of increasingly complex sub-families, including very
deep or complex ones. These learning bounds generalize to the multi-class setting the guarantees
presented by Cortes et al. [2014] in the binary case. We also introduced and discussed several new
multi-class ensemble algorithms benefiting from these guarantees and proved positive results for the
H-consistency and convergence of several of them. Finally, we reported the results of several ex-
periments with DeepBoost algorithms, and compared their performance with that of AdaBoost.MR
and additive multinomial Logistic Regression and their L1-regularized variants.
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Table 2: Empirical results for MDeepBoostSum, Φ = exp. AB stands for AdaBoost.

abalone AB.MR AB.MR-L1 MDeepBoost handwritten AB.MR AB.MR-L1 MDeepBoost
Error 0.713 0.696 0.677 Error 0.016 0.011 0.009

(std dev) (0.0130) (0.0132) (0.0092) (std dev) (0.0047) (0.0026) (0.0012)
Avg tree size 69.8 31.5 23.8 Avg tree size 187.3 240.6 203.0

Avg no. of trees 17.9 13.3 15.3 Avg no. of trees 34.2 21.7 24.2

letters AB.MR AB.MR-L1 MDeepBoost pageblocks AB.MR AB.MR-L1 MDeepBoost
Error 0.042 0.036 0.032 Error 0.020 0.017 0.013

(std dev) (0.0023) (0.0018) (0.0016) (std dev) (0.0037) (0.0021) (0.0027)
Avg tree size 1942.6 1903.8 1914.6 Avg tree size 134.8 118.3 124.9

Avg no. of trees 24.2 24.4 23.3 Avg no. of trees 8.5 14.3 6.6

pendigits AB.MR AB.MR-L1 MDeepBoost satimage AB.MR AB.MR-L1 MDeepBoost
Error 0.008 0.006 0.004 Error 0.089 0.081 0.073

(std dev) (0.0015) (0.0023) (0.0011) (std dev) (0.0062) (0.0040) (0.0045)
Avg tree size 272.5 283.3 259.2 Avg tree size 557.9 478.8 535.6

Avg no. of trees 23.2 19.8 21.4 Avg no. of trees 7.6 7.3 7.6

statlog AB.MR AB.MR-L1 MDeepBoost yeast AB.MR AB.MR-L1 MDeepBoost
Error 0.011 0.006 0.004 Error 0.388 0.376 0.352

(std dev) (0.0059) (0.0035) (0.0030) (std dev) (0.0392) (0.0431) (0.0402)
Avg tree size 74.8 79.2 61.8 Avg tree size 100.6 111.7 71.4

Avg no. of trees 23.2 17.5 17.6 Avg no. of trees 8.7 6.5 7.7

A Additional Experiments

In this section, we present some further experimental results for MDeepBoostSum and MDeep-
BoostCompSum algorithms. Recall that the results of Table 1 were obtained using the following
parameter optimization procedure. We randomly partitioned each dataset into 4 folds and, for each
tuple (λ, β, K) in the set of possible parameters (described below), we ran MDeepBoostSum, with a
different assignment of folds to the training set, validation set and test set for each run. Specifically,
for each run i ∈ {0, 1, 2, 3}, fold i was used for testing, fold i + 1 (mod 4) was used for validation,
and the remaining folds were used for training. For each run, we selected the parameters that had
the lowest error on the validation set and then measured the error of those parameters on the test
set. The average error and the standard deviation of the error over all 4 runs is reported in Table 1.
We noted that there is an alternative procedure to compare algorithms that is adopted in a number
of previous studies of boosting [Li, 2009a,b, Sun et al., 2012] which is to simply record the average
test error of the best parameter tuples over all runs. We argued that as the size of the validation set
grows, the errors obtained via this procedure should converge to the true generalization error of the
algorithm. The results for this alternative procedure are shown in Table 2 and Table 3.

Observe that once again the results of our experiments show that for each dataset deep boosting
algorithms outperform their shallow rivals. Moreover, all of our results are statistically significant,
at 5% level using one-sided, paired t-test. This provides further empirical evidence in favor of
DeepBoost algorithms.

B Proof of Theorem 1

Our proof makes use of existing methods for deriving Rademacher complexity bounds [Koltchinskii
and Panchenko, 2002] and a proof technique used in [Schapire et al., 1997].

Theorem 1. Assume p > 1 and let H1, . . . ,Hp be p families of functions mapping from X × Y to
[0, 1]. Fix ρ > 0. Then, for any δ > 0, with probability at least 1− δ over the choice of a sample S

of size m drawn i.i.d. according to D, the following inequality holds for all f =
∑T

t=1 αtht ∈ F:

R(f) ≤ R̂S,ρ(f)+
8c

ρ

T∑
t=1

αtRm(Π1(Hkt))+
2
cρ

√
log p

m
+

√⌈
4
ρ2 log

(
c2ρ2m
4 log p

)⌉ log p

m
+

log 2
δ

2m
,

Thus, R(f) ≤ R̂S,ρ(f) + 8c
ρ

∑T
t=1 αtRm(Hkt) + O

(√
log p

ρ2m
log

[
ρ2c2m
4 log p

])
.
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Table 3: Empirical results for MDeepBoostCompSum, Φ1(u) = log2(1+u) and Φ2 = exp(u +1).

abalone LogReg LogReg-L1 MDeepBoost handwritten LogReg LogReg-L1 MDeepBoost
Error 0.710 0.700 0.687 Error 0.016 0.012 0.008

(std dev) (0.0170) (0.0102) (0.0104) (std dev) (0.0031) (0.0020) (0.0024)
Avg tree size 162.1 156.5 28.0 Avg tree size 237.7 186.5 153.8

Avg no. of trees 22.2 9.8 10.2 Avg no. of trees 32.3 32.8 35.9

letters LogReg LogReg-L1 MDeepBoost pageblocks LogReg LogReg-L1 MDeepBoost
Error 0.043 0.038 0.035 Error 0.019 0.016 0.012

(std dev) (0.0018) (0.0012) (0.0012) (std dev) (0.0035) (0.0025) (0.0022)
Avg tree size 1986.5 1759.5 1807.3 Avg tree size 127.4 151.7 147.9

Avg no. of trees 25.5 29.0 27.2 Avg no. of trees 4.5 6.8 7.4

pendigits LogReg LogReg-L1 MDeepBoost satimage LogReg LogReg-L1 MDeepBoost
Error 0.009 0.007 0.005 Error 0.091 0.082 0.074

(std dev) (0.0021) (0.0014) (0.0012) (std dev) (0.0066) (0.0057) (0.0056)
Avg tree size 306.3 277.1 262.7 Avg tree size 412.6 454.6 439.6

Avg no. of trees 21.9 20.8 19.7 Avg no. of trees 6.0 5.8 5.8

statlog LogReg LogReg-L1 MDeepBoost yeast LogReg LogReg-L1 MDeepBoost
Error 0.012 0.006 0.002 Error 0.381 0.375 0.354

(std dev) (0.0054) (0.0020) (0.0022) (std dev) (0.0467) (0.0458) (0.0468)
Avg tree size 74.3 71.6 65.4 Avg tree size 103.9 83.3 117.2

Avg no. of trees 22.3 20.6 17.5 Avg no. of trees 14.1 9.3 9.3

Proof. For a fixed h = (h1, . . . , hT ), any α in the probability simplex ∆ defines a distribution over
{h1, . . . , hT }. Sampling from {h1, . . . , hT } according to α and averaging leads to functions g of
the form g = 1

n

∑T
i=1 ntht for some n = (n1, . . . , nT ), with

∑T
t=1 nt = n, and ht ∈ Hkt .

For any N = (N1, . . . , Np) with |N| = n, we consider the family of functions

GF,N =
{

1
n

p∑
k=1

Nk∑
j=1

hk,j | ∀(k, j) ∈ [p]× [Nk], hk,j ∈ Hk

}
,

and the union of all such families GF,n =
⋃
|N|=n GF,N. Fix ρ > 0. For a fixed

N, the Rademacher complexity of Π1(GF,N) can be bounded as follows for any m ≥ 1:
Rm(Π1(GF,N)) ≤ 1

n

∑p
k=1 Nk Rm(Π1(Hk)). Thus, by Theorem 3, the following multi-class

margin-based Rademacher complexity bound holds. For any δ > 0, with probability at least 1 − δ,
for all g ∈ GF,N,

Rρ(g)− R̂S,ρ(g) ≤ 1
n

4c

ρ

p∑
k=1

Nk Rm(Π1(Hk)) +

√
log 1

δ

2m
.

Since there are at most pn possible p-tuples N with |N| = n,3 by the union bound, for any δ > 0,
with probability at least 1− δ, for all g ∈ GF,n, we can write

Rρ(g)− R̂S,ρ(g) ≤ 1
n

4c

ρ

p∑
k=1

Nk Rm(Π1(Hk)) +

√
log pn

δ

2m
.

Thus, with probability at least 1−δ, for all functions g = 1
n

∑T
i=1 ntht with ht ∈ Hkt , the following

inequality holds

Rρ(g)− R̂S,ρ(g) ≤ 1
n

4c

ρ

p∑
k=1

∑
t:kt=k

nt Rm(Π1(Hkt)) +

√
log pn

δ

2m
.

Taking the expectation with respect to α and using Eα[nt/n] = αt, we obtain that for any δ > 0,
with probability at least 1− δ, for all g, we can write

E
α
[Rρ(g)− R̂S,ρ(g)] ≤ 4c

ρ

T∑
t=1

αtRm(Π1(Hkt)) +

√
log pn

δ

2m
.

3 The number S(p, n) of p-tuples N with |N| = n is known to be precisely
`

p+n−1
p−1

´
.
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Fix n ≥ 1. Then, for any δn > 0, with probability at least 1− δn,

E
α
[Rρ/2(g)− R̂S,ρ/2(g)] ≤ 8c

ρ

T∑
t=1

αtRm(Π1(Hkt)) +

√
log pn

δn

2m
.

Choose δn = δ
2pn−1 for some δ > 0, then for p ≥ 2,

∑
n≥1 δn = δ

2(1−1/p) ≤ δ. Thus, for any δ > 0
and any n ≥ 1, with probability at least 1− δ, the following holds for all g:

E
α
[Rρ/2(g)− R̂S,ρ/2(g)] ≤ 8c

ρ

T∑
t=1

αtRm(Π1(Hkt)) +

√
log 2p2n−1

δ

2m
. (14)

Now, for any f =
∑T

t=1 αtht ∈ F and any g = 1
n

∑T
i=1 ntht, we can upper-bound R(f) =

Pr(x,y)∼D[ρf (x, y) ≤ 0], the generalization error of f , as follows:

R(f) = Pr
(x,y)∼D

[ρf (x, y)− ρg(x, y) + ρg(x, y) ≤ 0]

≤ Pr[ρf (x, y)− ρg(x, y) < −ρ/2] + Pr[ρg(x, y) ≤ ρ/2]
= Pr[ρf (x, y)− ρg(x, y) < −ρ/2] + Rρ/2(g).

We can also write

R̂ρ/2(g) = R̂S,ρ/2(g − f + f) ≤ Pr
(x,y)∼S

[ρg(x, y)− ρf (x, y) < −ρ/2] + R̂S,ρ(f).

Combining these inequalities yields

Pr
(x,y)∼D

[ρf (x, y) ≤ 0]− R̂S,ρ(f) ≤ Pr
(x,y)∼D

[ρf (x, y)− ρg(x, y) < −ρ/2]

+ Pr
(x,y)∼S

[ρg(x, y)− ρf (x, y) < −ρ/2] + Rρ/2(g)− R̂S,ρ/2(g).

Taking the expectation with respect to α yields

R(f)− R̂S,ρ(f) ≤ E
(x,y)∼D,α

[1ρf (x,y)−ρg(x,y)<−ρ/2]

+ E
(x,y)∼S,α

[1ρg(x,y)−ρf (x,y)<−ρ/2] + E
α
[Rρ/2(g)− R̂S,ρ/2(g)]. (15)

Fix (x, y) and for any function ϕ : X ×Y → [0, 1] define y′ϕ as follows: y′ϕ = argmaxy′ 6=y ϕ(x, y).
For any g, by definition of ρg , we can write ρg(x, y) ≤ g(x, y)− g(x, y′f ). In light of this inequality
and Hoeffding’s bound, the following holds:

E
α
[1ρf (x,y)−ρg(x,y)<−ρ/2] = Pr

α
[ρf (x, y)− ρg(x, y) < −ρ/2]

≤ Pr
α

[(
f(x, y)− f(x, y′f )

)
−

(
g(x, y)− g(x, y′f )

)
< −ρ/2

]
≤ e−nρ2/8.

Similarly, for any g, we can write ρf (x, y) ≤ f(x, y) − f(x, y′g). Using this inequality, the union
bound and Hoeffding’s bound, the other expectation term appearing on the right-hand side of (15)
can be bounded as follows:

E
α
[1ρg(x,y)−ρf (x,y)<−ρ/2] = Pr

α
[ρg(x, y)− ρf (x, y) < −ρ/2]

≤ Pr
α

[(
g(x, y)− g(x, y′g)

)
−

(
f(x, y)− f(x, y′g)

)
< −ρ/2

]
≤

∑
y′ 6=y

Pr
α

[(
g(x, y)− g(x, y′)

)
−

(
f(x, y)− f(x, y′)

)
< −ρ/2

]
≤ (c− 1)e−nρ2/8.

Thus, for any fixed f ∈ F , we can write

R(f)− R̂S,ρ(f) ≤ ce−nρ2/8 + E
α
[Rρ/2(g)− R̂S,ρ/2(g)].
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Therefore, the following inequality holds:

sup
f∈F

R(f)− R̂S,ρ(f) ≤ ce−nρ2/8 + sup
g

E
α
[Rρ/2(g)− R̂S,ρ/2(g)],

and, in view of (14), for any δ > 0 and any n ≥ 1, with probability at least 1 − δ, the following
holds for all f ∈ F :

R(f)− R̂S,ρ(f) ≤ 8c

ρ

T∑
t=1

αtRm(Π1(Hkt
)) + ce−

nρ2

8 +

√
(2n− 1) log p + log 2

δ

2m
.

Choosing n =
⌈

4
ρ2 log

(
c2ρ2m
4 log p

)⌉
yields the following inequality:4

R(f)− R̂S,ρ(f) ≤ 8c

ρ

T∑
t=1

αtRm(Π1(Hkt)) +
2
cρ

√
log p

m
+

√⌈
4
ρ2 log

(
c2ρ2m
4 log p

)⌉ log p

m
+

log 2
δ

2m
,

and concludes the proof.

Our proof of Theorem 1 made use of the following general multi-class learning bound, which admits
a more favorable dependency on the number of classes c than the existing multi-class Rademacher
complexity bounds of [Koltchinskii and Panchenko, 2002, Mohri et al., 2012].
Theorem 3. Let G be a family of hypotheses mapping X ×Y to R, with Y = {1, . . . , c}. Fix ρ > 0.
Then, for any δ > 0, with probability at least 1− δ > 0, the following bound holds for all g ∈ G:

R(g) ≤ R̂S,ρ(g) +
4c

ρ
Rm(Π1(G)) +

√
log 1

δ

2m
,

where Π1(G) = {(x, y) 7→ g(x, y) : y ∈ Y, g ∈ G}.

Proof. We will need the following definition for this proof:

ρg(x, y) = min
y′ 6=y

(g(x, y)− g(x, y′))

ρθ,g(x, y) = min
y′

(g(x, y)− g(x, y′) + θ1y′=y),

where θ > 0 is an arbitrary constant. Observe that E[1ρg(x,y)≤0] ≤ E[1ρθ,g(x,y)≤0] since the in-
equality ρθ,g(x, y) ≤ ρg(x, y) holds for all (x, y) ∈ X × Y:

ρθ,g(x, y) = min
y′

(
g(x, y)− g(x, y′) + θ1y′=y

)
≤ min

y′ 6=y

(
g(x, y)− g(x, y′) + θ1y′=y

)
= min

y′ 6=y

(
g(x, y)− g(x, y′)

)
= ρg(x, y),

where the inequality follows from taking the minimum over a smaller set.

Let Φρ be the margin loss function defined for all u ∈ R by Φρ(u) = 1u≤0+(1− u
ρ )10<u≤ρ. We also

let G̃ = {(x, y) 7→ ρθ,g(x, y) : g ∈ G} and G̃ = {Φρ ◦ g̃ : g̃ ∈ G̃}. By the standard Rademacher
complexity bound [Koltchinskii and Panchenko, 2002, Mohri et al., 2012], for any δ > 0, with
probability at least 1− δ, the following holds for all g ∈ G:

R(g) ≤ 1
m

m∑
i=1

Φρ(ρθ,g(xi, yi)) + 2Rm(G̃) +

√
log 1

δ

2m
.

4To select n we consider f(n) = ce−nu +
√

nv, where u = ρ2/8 and v = log p/m. Taking the derivative
of f , setting it to zero and solving for n, we obtain n = − 1

2u
W−1(− v

2c2u
) where W−1 is the second branch

of the Lambert function (inverse of x 7→ xex). Using the bound − log x ≤ −W−1(−x) ≤ 2 log x leads to the
following choice of n: n =

˚
− 1

2u
log( v

2c2u
)
ˇ
.
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Fixing θ = 2ρ, we observe that Φρ(ρθ,g(xi, yi)) = Φρ(ρg(xi, yi)) ≤ 1ρg(xi,yi)≤ρ. Indeed, either
ρθ,g(xi, yi) = ρg(xi, yi) or ρθ,g(xi, yi) = 2ρ ≤ ρg(xi, yi), which implies the desired result. Tala-
grand’s lemma [Ledoux and Talagrand, 1991, Mohri et al., 2012] yields Rm(G̃) ≤ 1

ρRm(G̃) since
Φρ is a 1

ρ -Lipschitz function. Therefore, for any δ > 0, with probability at least 1− δ, for all g ∈ G:

R(g) ≤ RS,ρ(g) +
2
ρ
Rm(G̃) +

√
log 1

δ

2m
.

and to complete the proof it suffices to show that Rm(G̃) ≤ 2cRm(Π1(G)).

Here Rm(G̃) can be upper-bounded as follows:

Rm(G̃) =
1
m

E
S,σ

[
sup
g∈G

m∑
i=1

σi(g(xi, yi)−max
y

(g(xi, y)− 2ρ1y=yi
))

]

≤ 1
m

E
S,σ

[
sup
g∈G

m∑
i=1

σig(xi, yi)
]

+
1
m

E
S,σ

[
sup
g∈G

m∑
i=1

σi max
y

(g(xi, y)− 2ρ1y=yi
)
]
.

Now we bound the second term above. Observe that

1
m

E
σ

[
sup
g∈G

m∑
i=1

σig(xi, yi)
]

=
1
m

E
σ

[
sup
g∈G

m∑
i=1

∑
y∈Y

σig(xi, y)1yi=y

]

≤ 1
m

∑
y∈Y

E
σ

[
sup
g∈G

m∑
i=1

σig(xi, y)1yi=y

]

=
∑
y∈Y

1
m

E
σ

[
sup
g∈G

m∑
i=1

σig(xi, y)
(

εi

2
+

1
2

)]
,

where εi = 2 · 1yi=y − 1. Since εi ∈ {−1,+1}, σi and σiεi admit the same distribution and, for any
y ∈ Y , each of the terms of the right-hand side can be bounded as follows:

1
m

E
σ

[
sup
g∈G

m∑
i=1

σig(xi, y)
(εi

2
+

1
2

)]

≤ 1
2m

E
σ

[
sup
g∈G

m∑
i=1

σiεig(xi, y)
]

+
1

2m
E
σ

[
sup
g∈G

m∑
i=1

σig(xi, y)
]

≤ R̂m(Π1(G)).

Thus, we can write 1
m ES,σ

[
supg∈G

∑m
i=1 σig(xi, yi)

]
≤ cRm(Π1(G)). To bound the second

term, we first apply Lemma 8.1 of Mohri et al. [2012] that immediately yields that

1
m

E
S,σ

[
sup
g∈G

m∑
i=1

σi max
y

(g(xi, y)− 2ρ1y=yi
)
]
≤

∑
y∈Y

1
m

E
S,σ

[
sup
g∈G

m∑
i=1

σi(g(xi, y)− 2ρ1y=yi
)
]

and since Rademacher variables are mean zero, we observe that

E
S,σ

[
sup
g∈G

m∑
i=1

σi(g(xi, y)− 2ρ1y=yi)
]

= E
S,σ

[
sup
g∈G

( m∑
i=1

σig(xi, y)
)
− 2ρ

m∑
i=1

σi1y=yi

]

= E
S,σ

[
sup
g∈G

m∑
i=1

σig(xi, y)
]
≤ Rm(Π1(G))

which completes the proof.
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C Consistency

In this section, we discuss several questions related to consistency. In the multi-class setting where c
scoring functions are used, a loss function L is defined over Y×Yc which associates to a class y ∈ Y
and class scores s1, . . . , sc the real number L(y, s1, . . . , sc). Consistency has often served as a guide
for the selection of a loss function. Informally, a loss function is consistent if minimizing it results
in a classifier whose accuracy is close to that of the Bayes classifier. Tewari and Bartlett [2007]
(see also [Zhang, 2004a,b]) showed that, in general, loss functions of the form (s1, . . . , sc, y) 7→
Φ(−(sy − maxy′ 6=y sy′)) are not consistent, while those that can be written as (s1, . . . , sc, y) 7→∑

y′ 6=y Φ(−(sy − sy′)) are consistent under some additional regularity assumptions on Φ. This
may suggest that solving the optimization problem associated to Fsum may result in a more accurate
classifier than the solution of minα≥0 Fmax(α).5

However, the notion of loss consistency does not take into account the hypothesis set H used since
it assumes an optimization carried out over the set of all measurable functions. Long and Servedio
[2013] proposed instead a notion of H-consistency precisely meant to take the hypothesis set used
into consideration. They showed empirically that using loss functions that are H-consistent can lead
to significantly better performances than using a loss function known to be consistent. Informally,
a loss function is said to be H-consistent if minimizing it over H results in a classifier achieving a
generalization error close to that of the best classifier in H .

More formally, L is said to be realizable H-consistent [Long and Servedio, 2013] if for any dis-
tribution D over X × Y realizable with respect to H and any ε > 0, there exists δ > 0 such that
if |E(x,y)∼D[L(y, h(x, 1), . . . , h(x, c))] − infh∈H E(x,y)∼D[L(y, h(x, 1), . . . , h(x, c))]| ≤ δ, then
E(x,y)∼D[1ρh(x,y)≤0] ≤ ε. The following is an extension of a result of Long and Servedio [2013] to
our setting.
Theorem 4. Let u 7→ Φ(−u) be a non-increasing function upper-bounding u 7→ 1u≤0, bounded
over R+, and such that limu→∞Φ(−u) = 0, and let H be a family of functions mapping
X × Y to R closed under multiplication by a positive scalar (H is a cone). Then, the loss func-
tions (s1, . . . , sc, y) 7→ Φ(−(sy − maxy′ 6=y sy′)) and (s1, . . . , sc, y) 7→

∑
y′ 6=y Φ(−(sy − sy′))

are realizable H-consistent. Moreover, if Φ = Φ1 ◦ Φ2 with non-decreasing Φ1 and Φ2

verifying limu→0 Φ1(u) = limu→∞Φ2(−u) = 0 then the loss function (s1, . . . , sc, y) 7→
Φ1

( ∑
y′ 6=y Φ2(−(sy − sy′))

)
is also realizable H-consistent.

Proof. Let D be a distribution for which h∗ ∈ H achieves zero error, thus ρh∗(x, y) > 0
for all (x, y) in the support of D. Fix ε > 0 and assume that |E(x,y)∼D[Φ(−ρh(x, y))] −
infh∈H E(x,y)∼D[Φ(−ρh(x, y))]| ≤ ε for some h ∈ H . Then, since 1u≤0 ≤ Φ(−u) and since
ηh∗ is in H for any η > 0, the following holds for any η > 0:

E
(x,y)∼D

[1ρh(x,y)≤0] ≤ E
(x,y)∼D

[Φ(−ρh(x, y))]

≤ E
(x,y)∼D

[Φ(−ρηh∗(x, y))] + ε = E
(x,y)∼D

[Φ(−ηρh∗(x, y))] + ε.

Since Φ(−u) is bounded for u ≥ 0, by the Lebesgue dominated convergence theorem,
limη→∞ E(x,y)∼D[Φ(−ρηh∗(x, y))] = 0, which proves the first statement of the theorem. Now
suppose that∣∣∣ E

(x,y)∼D

[ ∑
y′ 6=y

Φ((−(h(x, y)− h(x, y′)))
]
− inf

h∈H
E

(x,y)∼D

[ ∑
y′ 6=y

Φ((−(h(x, y)− h(x, y′)))
]∣∣∣ ≤ ε

for some h ∈ H . Using 1u≤0 ≤ Φ(−u), upper-bounding the maximum by a sum, and using the fact
that ηh∗ is in H for any η > 0, the following holds for any η > 0:

E[1ρh(x,y)≤0] ≤ E
[ ∑

y′ 6=y

Φ(−(h(x, y)− h(x, y′)))
]
≤ E

[ ∑
y′ 6=y

Φ(−η(h∗(x, y)− h∗(x, y′)))
]

+ ε.

5A consistency condition often adopted is to select a function f such that
P

y∈Y f(x, y) = 0 for any
x ∈ X [Zhang, 2004a, Tewari and Bartlett, 2007, Zou et al., 2008]. As observed by other authors in the past
(e.g., Li [2009a]), this constraint is automatically verified for f =

P
t αtht and therefore not needed during

optimization when it holds for the base classifiers ht used, which can be ensured straightforwardly in our
context by adding −1 to each ht.
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Since by assumption ρh∗(x, y) > 0, the inequality (h∗(x, y) − h∗(x, y′)) > 0 holds for all y′ 6= y
by assumption. Therefore, applying the Lebesgue dominated convergence theorem as before yields
the second statement of the theorem. The last statement can be proven in a similar way.

The conditions of the theorem hold in particular for the exponential and the logistic functions and
H = conv(

⋃p
k=1 Hk). Thus, the theorem shows that the loss functions associated to Fmax and Fsum

are realizable H-consistent in the common cases where the exponential or logistic losses are used.
Similarly, it shows that in the common case where Φ1(u) = log(1 + u) and Φ2(u) = exp(u + 1),
the loss function associated to Fcompsum is H-consistent.

D Relationships between objective functions

One caveat of Fmax is that it is not differentiable. In some cases, it may be desirable to deal with a
somewhat simpler optimization problem with a differentiable objective function. As it was already
observed in Section 3.2 each of Fsum and Fmaxsum serve as a differentiable upper bound on Fmax

provided that Φ itself is differentiable. We will show that under certain mild assumptions these
objective functions are essentially within a constant factor of each other. In view of the inequality∑

y 6=yi
Φ

(
1−

∑N
j=1 αjhj(xi, yi, y)

)
≤ (c−1) maxy 6=yi Φ

(
1−

∑N
j=1 αjhj(xi, yi, y)

)
, the following

inequalities relate Fsum, Fmax, and Fmaxsum:

1
c− 1

Fsum ≤ Fmax ≤ Fmaxsum. (16)

Conversely, observe that due to the presence of the term
∑N

j=1 Λjαj in all these objective functions,
the domain of α can be restricted to B+ = {α : (0 ≤ α) ∧ (‖α‖1 ≤ Λ)} with the constant Λ > 0
depending only on Λjs. Then, the following inequality holds over B+:

Fmaxsum ≤
eΛ

c− 1
Fsum. (17)

Indeed, if Φ = exp or Φ(−x) = log2(1 + e−x), then Φ(x + b) ≤ ebΦ(x) for any b ≥ 0 and we can
write

Φ
(
1−

N∑
j=1

αjρhj (xi, yi)
)

= Φ
(
1−

N∑
j=1

αj
1

c− 1

∑
y 6=yi

hj(xi, yi, y) +
N∑

j=1

αj
1

c− 1

∑
y 6=yi

(hj(xi, yi, y)− ρhj (xi, yi)
)

≤ 1
c− 1

∑
y 6=yi

Φ
(
1−

N∑
j=1

αjhj(xi, yi, y) + 2‖α‖1
)

≤ 1
c− 1

∑
y 6=yi

Φ
(
1−

N∑
j=1

αjhj(xi, yi, y)
)
e2‖α‖1 ,

where we used the convexity of Φ for the first inequality.

E MDeepBoostSum

E.1 Direction

For any j ∈ [1, N ], Fsum(αt−1 + ηej) is given by

Fsum(αt−1+ηej) =
1
m

m∑
i=1

∑
y 6=yi

Φ
(
1−ft−1(xi, yi, y)−ηhj(xi, yi, y)

)
+

N∑
j=1

Λjαt−1,j+ηΛj . (18)
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Thus, for any j ∈ [1, N ], the directional derivative of Fsum at αt−1 along ej can be expressed as
follows in terms of εt,j :

F ′
sum(αt−1, ej) =

1
m

m∑
i=1

∑
y 6=yi

(−hj(xi, yi, y))Φ′
(
1− ft−1(xi, yi, y)

)
+ Λj

=
1
m

m∑
i=1

∑
y 6=yi

(−hj(xi, yi, y))Dt(i, y)St + Λj =
St

m
(2εt,j − 1) + Λj .

Thus, the direction k selected at round t is given by k = argminj∈[1,N ] εt,j + Λjm
2St

.

E.2 Step

Given the direction ek, the optimal step value η is given by argminη Fsum(αt−1 +η ek). In the most
general case, η can be found via a line search or other numerical methods. In some special cases, we
can derive a closed-form solution for the step by minimizing an upper bound on Fsum(αt−1 + η ek).

Since for any i ∈ [1,m] and y ∈ Y , hk(xi, yi, y) = 1+hk(xi,yi,y)
2 · (1) + 1−hk(xi,yi,y)

2 · (−1), by the
convexity of u 7→ Φ(1− ηu), the following holds for all η ∈ R:

Φ
(
1− ft−1(xi, yi, y)− ηhk(xi, yi, y)

)
≤ 1 + hk(xi, yi, y)

2
Φ

(
1− ft−1(xi, yi, y)− η

)
+

1− hk(xi, yi, y)
2

Φ
(
1− ft−1(xi, yi, y) + η

)
.

Thus, we can write

F (αt−1 + ηek) ≤ 1
m

m∑
i=1

∑
y 6=yi

1 + hk(xi, yi, y)
2

Φ
(
1− ft−1(xi, yi, y))− η

)

+
1
m

m∑
i=1

∑
y 6=yi

1− hk(xi, yi, y)
2

Φ
(
1− ft−1(xi, yi, y)) + η

)
+

N∑
j=1

αt−1,jΛj + ηΛk.

Let J(η) denote that upper bound. We can select η as the solution of minη+αt−1,k≥0 J(η). Since J
is convex, this defines a convex optimization problem.

E.2.1 Exponential loss

In the case Φ = exp, J(η) can be expressed as follows:

J(η) =
1
m

m∑
i=1

∑
y 6=yi

1 + hk(xi, yi, y)
2

e1−ft−1(xi,yi,y)e−η

+
1
m

m∑
i=1

∑
y 6=yi

1− hk(xi, yi, y)
2

e1−ft−1(xi,yi,y)eη +
N∑

j=1

αt−1,jΛj + ηΛk,

with e1−ft−1(xi,yi,y) = Φ′(1− ft−1(xi, yi, y)) = StDt(i, y). Thus, J(η) can be rewritten as

J(η) =
1
m

m∑
i=1

∑
y 6=yi

Dt(i, y)Ste
−ηhk(xi,yi,y) + Λkη

= (1− εt,k)
St

m
e−η + εt,k

St

m
eη +

N∑
j=1

αt−1,jΛj + ηΛk.

Introducing a Lagrange variable µ ≥ 0, the Lagrangian associated to the convex optimization prob-
lem minη+αt−1,k≥0 J(η) can be written as follows:

L(η, µ) = J(η)− µ(η + αt−1,k) with ∇ηL(η, µ) = J ′(η)− µ.
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By the KKT conditions, at the solution (η∗, µ∗), J ′(η∗) = µ∗ and µ∗(η∗ + αt−1,k) = 0. Thus,
either (µ∗ > 0) ⇔ (J ′(η∗) > 0) and η∗ = −αt−1,k, or µ∗ = 0 and η∗ is solution of the equation
J ′(η∗) = 0.

The condition J ′(η∗) > 0 for η∗ = −αt−1,k can be rewritten as

−(1− εt,k)
St

m
eαt−1,k + εt,k

St

m
e−αt−1,k + Λk > 0⇔ (1− εt,k)eαt−1,k − εt,ke−αt−1,k <

Λkm

St
.

J ′(η) = 0 can be written as the second-degree equation e2η + Λkm
Stεt,k

eη − 1−εt,k

εt,k
, which admits the

solution

eη = − Λkm

2Stεt,k
+

√[ Λkm

2Stεt,k

]2

+
1− εt,k

εt,k
⇔ η = log

[
− Λkm

2Stεt,k
+

√[ Λkm

2Stεt,k

]2

+
1− εt,k

εt,k

]
.

E.2.2 Logistic loss

In the case of the logistic loss, for any u ∈ R, Φ(−u) = log2(1 + e−u) and Φ′(−u) = 1
log 2

1
(1+eu) .

To determine the step size, we use the following general upper bound:

Φ(−u− v)− Φ(−u) = log2

[
1 + e−u + e−u−v − e−u

1 + e−u

]
= log2

[
1 +

e−v − 1
1 + eu

]
≤ e−v − 1

(log 2)(1 + eu)
= Φ′(−u)(e−v − 1).

Thus, we can write

F (αt−1 + ηek)− F (αt−1) ≤
1
m

m∑
i=1

∑
y 6=yi

Φ′(1− ft−1(xi, yi, y))(e−ηhk(xi,yi,y) − 1) + Λkη

=
1
m

m∑
i=1

∑
y 6=yi

Dt(i, y)St(e−ηhk(xi,yi,y) − 1) + Λkη.

To determine η, we can minimize this upper bound, or equivalently the following

1
m

m∑
i=1

∑
y 6=yi

Dt(i, y)Ste
−ηhk(xi,yi,y) + Λkη.

This expression is syntactically the same as (18) in the case of the exponential loss (modulo a term
not depending on η) with only the distribution weights Dt(i, y) and St being different. Thus, we
obtain immediately the same expressions for the step size in the case of the logistic loss but with
St =

∑m
i=1

1

1+eft−1(xi,yi,y)−1 and Dt(i, y) = 1
St

1

1+eft−1(xi,yi,y)−1 .

F MDeepBoostMaxSum

MDeepBoostMaxSum algorithm is derived by application of coordinate descent to Fmaxsum objective
function. Below we provide explicit expressions for the direction and step of the descent. Figure 2
gives the pseudocode of the MDeepBoostMaxSum algorithm.

F.1 Direction

For any j ∈ [1, N ], Fmaxsum(αt−1 + ηej) is given by

Fmaxsum(αt−1+ηej) =
1
m

m∑
i=1

Φ
(
1−

N∑
j=1

αt−1,jρhj (xi, yi)−ηρhj (xi, yi)
)

+
N∑

j=1

Λjαt−1,j +ηΛj .

(19)
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Thus, for any j ∈ [1, N ], the directional derivative of Fmaxsum at αt−1 along ej can be expressed as
follows:

F ′
maxsum(αt−1, ej) =

1
m

m∑
i=1

(−ρhj
(xi, yi))Φ′

(
1−

N∑
j=1

αt−1,jρhj (xi, yi)
)

+ Λj

=
1
m

m∑
i=1

(−ρhj
(xi, yi))Dt(i)St + Λj =

St

m
(2εt,j − 1) + Λj ,

where for any t ∈ [1, T ], we denote by Dt the distribution over [1,m] defined for all i ∈ [1,m] by

Dt(i) =
Φ′

(
1−

∑N
j=1 αt−1,jρhj (xi, yi)

)
St

, (20)

with normalization factor St =
∑m

i=1 Φ′(1 −
∑N

j=1 αt−1,jρhj (xi, yi)). For any j ∈ [1, N ] and
s ∈ [1, T ], we also define the weighted error εs,j as follows:

εs,j =
1
2

[
1− E

i∼Ds

[
ρhs(xi, yi)

]]
. (21)

Thus, the direction k selected by MDeepBoostMaxSum at round t is given by k =
argminj∈[1,N ] εt,j + Λjm

2St
.

F.2 Step

Given the direction ek, the optimal step value η is given by argminη Fmaxsum(αt−1 + η ek). As
in the case of MDeepBoostSum, for the most general Φ, η can be found via a line search or other
numerical methods and in some special cases, we can derive a closed-form solution for the step by
minimizing an upper bound on Fmaxsum(αt−1 + η ek).

Following the same convexity argument as in Section E.2, we can write

F (αt−1 + ηek) ≤ 1
m

m∑
i=1

1 + ρhk
(xi, yi)

2
Φ

(
1−

N∑
j=1

αt−1,jρhj (xi, yi)− η
)

+
1
m

m∑
i=1

1− ρhk
(xi, yi)

2
Φ

(
1−

N∑
j=1

αt−1,jρhj
(xi, yi) + η

)

+
N∑

j=1

αt−1,jΛj + ηΛk.

Let J(η) denote that upper bound. We now examine solutions of the convex optimization problem
minη+αt−1,k≥0 J(η) in the case of exponential and logistic loss.

F.2.1 Exponential loss

In the case Φ = exp, arguing as in Section E.2.1, J(η) can be expressed as follows:

J(η) = (1− εt,k)
St

m
e−η + εt,k

St

m
eη +

N∑
j=1

αt−1,jΛj + ηΛk.

and the solution of the optimization problem minη+αt−1,k≥0 J(η) is given by η∗ = −αt−1,k if

(1− εt,k)eαt−1,k − εt,ke−αt−1,k <
Λkm

St
.

Otherwise, the solution is

η∗ = log

[
− Λkm

2Stεt,k
+

√[ Λkm

2Stεt,k

]2

+
1− εt,k

εt,k

]
.
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MDEEPBOOSTMAXSUM(S = ((x1, y1), . . . , (xm, ym)))
1 for i← 1 to m do
2 D1(i)← 1

m
3 for t← 1 to T do

4 k ← argmin
j∈[1,N ]

εt,j +
Λjm

2St

5 if
(
(1− εt,k)eαt−1,k − εt,ke−αt−1,k < Λkm

St

)
then

6 ηt ← −αt−1,k

7 else ηt ← log
[
− Λkm

2εtSt
+

√[
Λkm
2εtSt

]2 + 1−εt

εt

]
8 αt ← αt−1 + ηtek

9 St+1 ←
∑m

i=1 Φ′
(
1−

∑N
j=1 αt,jρhj

(xi, yi)
)

10 for i← 1 to m do

11 Dt+1(i)←
Φ′

(
1−

PN
j=1 αt,jρhj

(xi,yi)
)

St+1

12 f ←
∑N

j=1 αt,jhj

13 return f

Figure 2: Pseudocode of the MDeepBoostMaxSum algorithm for both the exponential loss and the
logistic loss. The expression of the weighted error εt,j is given in (21). In the generic case of
a surrogate loss Φ different from the exponential or logistic losses, ηt is found instead via a line
search or other numerical methods from ηt = argmaxη Fmaxsum(αt−1 + ηek).

F.2.2 Logistic loss

In the case of the logistic loss, we can argue as in Section E.2.2. In particular, we can write

F (αt−1 + ηek)− F (αt−1) ≤
1
m

m∑
i=1

Dt(i)St(e−ηρhk
(xi,yi) − 1) + Λkη.

As in the case of MDeepBoostSum algorithm with logistic loss, minimizing this upper bound, re-
sults in the same expressions for the step size eta as in the case of the exponential loss but with

normalization factor St =
∑m

i=1

(
1 + e

PN
j=1 αt−1,jρhj

(xi,yi)−1
)−1

and probability distribution

Dt(i) = 1
St

(
1 + e

PN
j=1 αt−1,jρhj

(xi,yi)−1
)−1

.

G MDeepBoostCompSum

In this section, we describe the details of the MDeepBoostCompSum algorithm which consists of the
application of coordinate descent to the Fcompsum objective function. Note that, in general, Fcompsum
needs not be a convex function. However, in the important special case where Φ is the logistic
function the objective does indeed define a convex optimization problem. Under this assumption,
we show that the resulting algorithm is identical to the MDeepBoostSum algorithm with only the
distribution weights Dt(i, y) and St being different.

G.1 Direction

For any j ∈ [1, N ], Fcompsum(αt−1 + ηej) is given by

Fsum(αt−1+ηej) =
1
m

m∑
i=1

Φ1

( ∑
y 6=yi

Φ2

(
1−ft−1(xi, yi, y)−ηhj(xi, yi, y)

))
+

N∑
j=1

Λjαt−1,j+ηΛj .

(22)
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Thus, for any j ∈ [1, N ], the directional derivative of Fcompsum at αt−1 along ej can be expressed as
follows in terms of εt,j :

1
m

m∑
i=1

Φ′1
( ∑

y 6=yi

Φ2

(
1− ft−1(xi, yi, y)

)) ∑
y 6=yi

(−hj(xi, yi, y))Φ′2
(
1− ft−1(xi, yi, y)

)
+ Λj

=
1
m

m∑
i=1

∑
y 6=yi

(−hj(xi, yi, y))Dt(i, y)St + Λj =
St

m
(2εt,j − 1) + Λj ,

where for any t ∈ [1, T ], we denote by Dt the distribution over [1,m] defined for all i ∈ [1,m] and
all y ∈ Y such that y 6= yi by

Dt(i, y) =
Φ′1

( ∑
y 6=yi

Φ2

(
1− ft−1(xi, yi, y)

))
Φ′2

(
1− ft−1(xi, yi, y)

)
St

, (23)

with normalization factor St =
∑m

i=1 Φ′1
( ∑

y 6=yi
Φ2

(
1− ft−1(xi, yi, y)

))
Φ′2

(
1− ft−1(xi, yi, y)

)
.

For any j ∈ [1, N ] and s ∈ [1, T ], we also define the weighted error εs,j as follows:

εs,j =
1
2

[
1− E

(i,y)∼Ds

[
hs(xi, yi, y)

]]
. (24)

Thus, the direction k selected at round t is given by k = argminj∈[1,N ] εt,j + Λjm
2St

.

G.2 Step

Given the direction ek, the optimal step value η is given by argminη Fcompsum(αt−1 + η ek). The
most general case can be handled via a line search or other numerical methods. However, we recall
that in this most general case objective of our problem need not be convex. In what follows, we
assume that Φ is the logistic loss function and show that for resulting convex optimization problem,
step can be chosen in the same way as for MDeepBoostSum algorithm of E.2.1.

To simplify the notation, for a fixed i, let u(y) = 1 − ft−1(xi, yi, y) and v(y) = −ηhj(xi, yi, y).
Then we can write

Φ1

( ∑
y 6=yi

Φ2(u(y) + v(y))
)
− Φ1

( ∑
y 6=yi

Φ2(u(y))
)

= log2

[
1 +

∑
y 6=yi

eu(y)(ev(y) − 1)

1 +
∑

y 6=yi
eu(y)

]

≤
∑

y 6=yi
eu(y)(ev(y) − 1)

1 +
∑

y 6=yi
eu(y)

.

This bound is precisely St

∑
y 6=yi
Dt(i, y)(e−ηhk(xi,yi,y) − 1) and we can write

F (αt−1 + ηek)− F (αt−1) ≤
1
m

m∑
i=1

∑
y 6=yi

Dt(i, y)St(e−ηhk(xi,yi,y) − 1) + Λkη.

To determine η, we can minimize this upper bound, or equivalently the following

1
m

m∑
i=1

∑
y 6=yi

Dt(i, y)Ste
−ηhk(xi,yi,y) + Λkη.

Arguing as in Section E.2.2, one can show that minimizing yields η∗ = −αt−1,k when

(1− εt,k)eαt−1,k − εt,ke−αt−1,k <
Λkm

St
.

and otherwise

η = log

[
− Λkm

2Stεt,k
+

√[ Λkm

2Stεt,k

]2

+
1− εt,k

εt,k

]
.

This shows that in the case of the logistic loss MDeepBoostCompSum is identical to MDeepBoost-
Sum algorithm with only the distribution weights Dt(i, y) and St being different.
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H MDeepBoostMax

MDeepBoostMax algorithm is derived by application of coordinate descent to Fmax objective func-
tion.

H.1 Direction and step

For simplicity we will assume that Φ is a twice differentiable strictly convex function. This
is a mild assumption which holds for both exponential and logistic loss functions. Let αt =
(αt,1, . . . , αt,N )> denote the vector obtained after t ≥ 1 iterations and let α0 = 0. Let ek de-
note the kth unit vector in RN , k ∈ [1, N ]. The direction ek and the step η selected at the tth round
are those minimizing Fmax(αt−1 + ηek), that is

Fmax(αt−1 + ηek) =
1
m

m∑
i=1

max
y 6=yi

Φ
(
1− ft−1(xi, yi, y)− ηhk(xi, yi, y)

)
+

∑
j 6=k

Λjαt−1,j + Λkαt−1,k + η. (25)

We follow the definition of maximum coordinate descent for non-differentiable convex functions
Cortes et al. [2014]. In view of that, at each iteration t ≥ 1, the direction ek selected by coordi-
nate descent with maximum descent coordinate is k = argmaxj∈[1,N ] |δFmax(αt−1, ej)|, where
δFmax(αt−1, ej) is the element of the sub-gradient of Fmax along ej that is the closest to 0.

For any i ∈ [1,m], let Yt,i = argmaxy 6=yi
Φ(1 − ft−1(xi, yi, y)) and φi be defined by φi(αt−1 +

ηej) = maxy 6=yi Φ
(
1 − ft−1(xi, yi, y) − ηhj(xi, yi, y)

)
. Then, since the right-derivative of φi at

αt−1 along the direction ej is the largest element of the sub-differential of φi at αt−1 and sub-
differential of φi is a convex hull of d

dη Φ
(
1− ft−1(xi, yi, y)− ηhj(xi, yi, y)

)∣∣
η=0

for y ∈ Yt,i, we
can write

φ′i,+(αt−1, ej) = max
y∈Yt,i

−hj(xi, yi, y)Φ′
(
1− ft−1(xi, yi, y)

)
= Φ′t−1,i max

y∈Yt,i

{−hj(xi, yi, y)},

where Φ′t−1,i = maxy 6=yi Φ′
(
1 − ft−1(xi, yi, y)

)
. The last equality is a consequence of the fact

that Φ′
(
1 − ft−1(xi, yi, y)

)
= maxy 6=yi Φ′

(
1 − ft−1(xi, yi, y)

)
for all y ∈ Yt,i and hence can be

factored out of maxy∈Yt,i
−hj(xi, yi, y)Φ′

(
1 − ft−1(xi, yi, y)

)
. This is indeed the case since for a

twice differentiable strictly convex function Φ, Φ′′ > 0 and Φ′ is strictly increasing. Combining this
with monotonicity of Φ we have

Yt,i = argmax
y 6=yi

Φ(1− ft−1(xi, yi, y)) = argmax
y 6=yi

Φ′(1− ft−1(xi, yi, y)).

Similarly, we can write
φ′i,−(αt−1, ej) = min

y∈Yt,i

−hj(xi, yi, y)Φ′
(
1− ft−1(xi, yi, y)

)
= Φ′t−1,i min

y∈Yi

{−hj(xi, yi, y)}.

In view of these identities, the right- and left-derivatives of F along ej are given by

F ′
max,+(αt−1, ej) =

1
m

m∑
i=1

Φ′t−1,i max
y∈Yt,i

{−hj(xi, yi, y)}+ Λj ,

F ′
max,−(αt−1, ej) =

1
m

m∑
i=1

Φ′t−1,i min
y∈Yt,i

{−hj(xi, yi, y)}+ Λj .

For any t ∈ [1, T ], we denote by Dt the distribution defined by

Dt(i) =
maxy 6=yi Φ′

(
1− ft−1(xi, yi, y)

)
St

, (26)

where St is a normalization factor, St =
∑m

i=1 maxy 6=yi Φ′
(
1− ft−1(xi, yi, y)). For any s ∈ [1, T ]

and j ∈ [1, N ], we denote by ε+s,j and ε−s,j the following weighted errors of hypothesis hj for the
distribution Ds, for s ∈ [1, T ]:

ε+s,j =
1
2

[
1− E

i∼Ds

[ min
y∈Ys,i

hj(xi, yi, y)]
]

ε−s,j =
1
2

[
1− E

i∼Ds

[ max
y∈Ys,i

hj(xi, yi, y)]
]
. (27)
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MDEEPBOOSTMAX(S = ((x1, y1), . . . , (xm, ym)))
1 for i← 1 to m do
2 D1(i)← 1

m
3 Y1,i ← Y − {yi}
4 for t← 1 to T do
5 for j ← 1 to N do
6 if 1

2 − ε+t,j ≥
Λjm
2St

then
7 dj ← St

m (2ε+t,j − 1) + Λj

8 elseif 1
2 − ε−t,j ≤

Λjm
2St

then
9 dj ← St

m (2ε−t,j − 1) + Λj

10 else dj ← 0
11 k ← argmax

j∈[1,N ]

|dj |

12 ηt ← argmin
η≥−αk

Fmax(αt−1 + η ek)

13 αt ← αt−1 + ηtek

14 St+1 ←
∑m

i=1 maxy 6=yi Φ′
(
1− ft−1(xi, yi, y)

)
15 for i← 1 to m do

16 Dt+1(i)←
maxy 6=yi

Φ′
(
1−ft−1(xi,yi,y)

)
St+1

17 Yt,i ← argmax
y 6=yi

Φ
(
1− ft−1(xi, yi, y)

)
18 f ←

∑N
j=1 αt,jhj

19 return f

Figure 3: Pseudocode of the MDeepBoostMax algorithm. The expression of the weighted errors ε+t,j
and ε−t,j is given in (27) and ηt is found via a line search or other numerical methods. Note that the
active label sets Yt,i are needed for finding ε+t,j and ε−t,j .

Since Φ′t−1,i = StDt(i), we can express the right- and left-derivative in terms of ε+t,j and ε−t,j :

F ′
max,+(αt−1, ej) =

St

m
[2ε+t,j − 1] + Λj

F ′
max,−(αt−1, ej) =

St

m
[2ε−t,j − 1] + Λj .

Therefore, we can write

δFmax(αt−1, ej) =


St

m [2ε+t,j − 1] + Λj if 1
2 − ε+t,j ≥

Λjm
2St

St

m [2ε−t,j − 1] + Λj else if 1
2 − ε−t,j ≤

Λjm
2St

0 otherwise,
(28)

and the direction k selected at round t is given by k = argmaxj∈[1,N ] |δFmax(αt−1, ej)|. Given
the direction ek, the optimal step value η is given by argminη≥−αk

Fmax(αt−1 + η ek). This is a
convex optimization problem that can be solved via a line search or other numerical methods.

Figure 3 gives the pseudocode of the MDeepBoostMax algorithm.

Note that convergence guarantees of Theorem 2 do not apply to Fmax objective since the presence
of the max operator makes it non-differentiable. In the most general setting of non-differentiable
continuous objective functions, it is possible to construct examples where coordinate descent algo-
rithm will get “stuck” and never reach the global minimum. More precisely, for a non-differentiable
convex objective function F the set of points such that δF (α∗, ej) = 0 for all j ∈ [1, N ] and yet
F (α∗) > minα F (α) may not be empty. One way to address this problem and prevent coordi-
nate descent from being “stuck” is to randomize it. Namely, every time we reach a point where
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δF (α, ej) = 0 for all j ∈ [1, N ] we perturb α by a small random vector α0 and restart coordinate
descent procedure from α + α0.

I Convergence of coordinate descent

Theorem 2. Assume that Φ is twice differentiable and that Φ′′(u) > 0 for all u ∈ R. Then, the
projected coordinate descent algorithm applied to F converges to the solution α∗ of the optimization
maxα≥0 F (α) for F = Fsum, F = Fmaxsum, or F = Fcompsum. If additionally Φ is strongly convex
over the path of the iterates αt, then there exists τ > 0 and γ > 0 such that for all t > τ ,

F (αt+1)− F (α∗) ≤ (1− 1
γ )(F (αt)− F (α∗)). (29)

Proof. We present the proof in the case F = Fsum, the proof for the other cases is similar. Let H
be the matrix in Rm(c−1)×N defined by H(i,c),j = hj(xi, yi, y) for all i ∈ [1,m], y 6= yi, and
j ∈ [1, N ], and let e(i,y) be the (i, y)th unit vector in Rm(c−1). Then, for any α, e>(i,y)Hα =∑N

j=1 αjhj(xi, yi, y). Thus, we can write for any α ∈ RN ,

Fsum(α) = G(Hα) + Λ>α,

where Λ = (Λ1, . . . ,ΛN )> and where G is the function defined by

G(u) =
1
m

m∑
i=1

∑
y 6=yi

Φ(1− e>(i,y)u) =
1
m

m∑
i=1

∑
y 6=yi

Φ(1− u(i,y)),

for all u ∈ Rm(c−1) with u(i,y) its (i, y)th coordinate. G is twice differentiable since Φ is and
∇2G(u) is a diagonal matrix with diagonal entries 1

mΦ′′(1 − u(i,y)) > 0 for all i ∈ [1,m] and
y 6= yi. Thus, ∇2G(Hα) is positive definite for all α. The conditions of Theorem 2.1 of [Luo and
Tseng, 1992] are therefore satisfied for the optimization problem

min
α≥0

G(Hα) + Λ>α,

thereby guaranteeing the convergence of the projected coordinate descent method applied to Fsum. If
additionally F is strongly convex over the sequence of αts, then, by the results of [Luo and Tseng,
1992][page 26], the inequality (10) holds for the projected coordinate method that we are using
which selects the best direction at each round, as with the Gauss-Southwell method.

Note that the result holds under the weaker condition that Φ′′(1−
∑N

j=1 α∗jhj(xi, yi, y)) > 0 instead
of Φ′′(u) > 0 for all u, since the assumptions of Theorem 2.1 of [Luo and Tseng, 1992] are also
satisfied in that case.
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J Upper bound on Rademacher complexity

In this section we prove Eq. (13), an upper bound on the Rademacher complexity of Tn. We have

R(Π1(Tn)) =
1
m

E
σ

 sup
t,h,y∈Y

m∑
i=1

σi

∑
l∈Leaves(t)

1t(x)=l hl(y)


=

1
m

E
σ

sup
t

sup
h,y∈Y

∑
l∈Leaves(t)

hl(y)
m∑

i=1

σi1xi∈l


=

1
m

E
σ

sup
t

∑
l∈Leaves(t)

[
m∑

i=1

σi1xi∈l∈Leaves(t)

]
+

 (take hl(y) = 0 or hl(y) = 1)

≤ 1
m

E
σ

sup
t

∑
l∈Leaves(t)

∣∣∣∣∣
m∑

i=1

σi1xi∈l

∣∣∣∣∣


=
1
m

E
σ

 sup
t,sl∈{+1,−1}

∑
l∈Leaves(t)

sl

m∑
i=1

σi1xi∈l


=

1
m

E
σ

 sup
t,sl∈{+1,−1}

m∑
i=1

σi

∑
l∈Leaves(t)

sl1xi∈l

 .

This last expression coincides with the Rademacher complexity of decision trees in the binary clas-
sification case returning a value in {+1,−1}. The VC-dimension of this family can be bounded
by (2n + 1) log2(d + 2) (see for example [Mohri et al., 2012]). Thus, by Massart’s lemma, Eq. 13
follows.

K Relationship with other algorithms

The view of boosting as coordinate descent applied to an objective function was pointed out and
studied in detail by several authors in the past [Friedman et al., 1998, Duffy and Helmbold, 1999,
Mason et al., 1999, Collins et al., 2002].

As pointed out earlier, the objective function Fmax is the tightest convex surrogate among those
we discussed and has favorable H-consistency properties. However, we are not aware of any prior
algorithms based on this objective function, even without regularization (Λj = 0 for all j). Similarly,
the objective function Fmaxsum leads to a very efficient training algorithm since it is based on base
classifier margins ρhi

that can all be pre-computed before training begins, but we are not aware
of prior work based on that objective. Thus, the corresponding algorithms MDeepBoostMax and
MDeepBoostMaxSum are both entirely new.

Certain special cases of our algorithms coincide with well-known multi-class classification algo-
rithms from the literature. For Λj = 0, j ∈ [1, N ] and the exponential loss (Φ(−u) = exp(−u)), the
MDeepBoostSum algorithm is equivalent to AdaBoost.MR [Freund and Schapire, 1997, Schapire
and Singer, 1999], a multi-class version of AdaBoost. For Λj = 0, j ∈ [1, N ] and the logis-
tic loss (Φ(−u) = log2(1 + exp(−u + 1))), the MDeepBoostCompSum algorithm is equivalent
to additive multinomial logistic regression (i.e., a conditional maximum entropy model) where
Φ1(x) = log(1 + x) and Φ2(x) = exp(x + 1)) (see Friedman [2000]). For the same Φ, Φ1 and
Φ2, when λ = 0 and β 6= 0 the MDeepBoostCompSum algorithm is equivalent to the multi-class
logistic regression algorithm with L1-norm regularization studied by Duchi and Singer [2009].

Other existing multi-class classification algorithms are related to the ones we present here, but with
key differences. For example, the MDeepBoostCompSum algorithm is similar to several algorithms
of Zou et al. [2008], except that they do not use regularization and additionally require the consis-
tency condition

∑
yY f(x, y) = 0. Bühlmann and Yu [2003] also describe a multi-class classifica-
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tion algorithm based on boosting, except they reduce the problem to binary classification using a
one-versus-all approach, use the square loss for Φ, and do not use regularization.

In the special case of binary classification, our algorithms are of course related to the binary classi-
fication deep boosting [Cortes et al., 2014] and to several boosting algorithms introduced in the past
[Freund and Schapire, 1997, Kivinen and Warmuth, 1999, Rätsch et al., 2001a, Rätsch and War-
muth, 2002, 2005, Warmuth et al., 2006] including boosting with L1-norm regularization [Rätsch
et al., 2001a] (see [Schapire and Freund, 2012] for a more extended list of references), as discussed
by Cortes et al. [2014].

L Dataset statistics

Table 4: Dataset statistics.

Data set Classes Examples Features
abalone 29 4177 8
handwritten 10 5620 64
letters 26 20000 16
pageblocks 5 5473 10
pendigits 10 10992 16
satimage 6 6435 36
statlog 7 2310 19
yeast 10 1484 8
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