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Abstract
We present a series of new and more favorable
margin-based learning guarantees that depend on
the empirical margin loss of a predictor. We give
two types of learning bounds, in terms of either
the Rademacher complexity or the empirical `∞-
covering number of the hypothesis set used, both
distribution-dependent and valid for general fam-
ilies. Furthermore, using our relative deviation
margin bounds, we derive distribution-dependent
generalization bounds for unbounded loss func-
tions under the assumption of a finite moment.
We also briefly highlight several applications of
these bounds and discuss their connection with
existing results.

1. Introduction
Margin-based learning bounds provide a fundamental tool
for the analysis of generalization in classification (Vap-
nik, 1998; 2006; Schapire et al., 1997; Koltchinskii and
Panchenko, 2002; Taskar et al., 2003; Bartlett and Shawe-
Taylor, 1998; Cortes et al., 2014; Kuznetsov et al., 2014;
Cortes et al., 2017). These are guarantees that hold for real-
valued functions based on the notion of confidence margin.
Unlike worst-case bounds based on standard complexity
measures such as the VC-dimension, margin bounds pro-
vide optimistic guarantees: a strong guarantee holds for
predictors that achieve a relatively small empirical margin
loss, for a relatively large value of the confidence margin.
More generally, guarantees similar to margin bounds can be
derived based on notion of a luckiness (Shawe-Taylor et al.,
1998; Koltchinskii and Panchenko, 2002).

Notably, margin bounds do not have an explicit dependency
on the dimension of the feature space for linear or kernel-
based hypotheses. They provide strong guarantees for large-
margin maximization algorithms such as Support Vector Ma-
chines (SVM) (Cortes and Vapnik, 1995), including when
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they are used with positive definite kernels such as Gaus-
sian kernels, for which the dimension of the feature space
is infinite. Similarly, margin-based learning bounds have
helped derive significant guarantees for AdaBoost (Freund
and Schapire, 1997; Schapire et al., 1997). More recently,
margin-based learning bounds have been derived for feed-
forward artificial neural networks (NNs) (Neyshabur et al.,
2015; Bartlett et al., 2017) and convolutional neural net-
works (CNNs) (Long and Sedghi, 2020).

An alternative family of tighter learning guarantees is that of
relative deviation bounds (Vapnik, 1998; 2006; Anthony and
Shawe-Taylor, 1993; Cortes et al., 2019). These are bounds
on the difference of the generalization and the empirical
error scaled by the square-root of the generalization error
or empirical error, or some other power of the error. The
scaling is similar to dividing by the standard deviation since,
for smaller values of the error, the variance of the error of a
predictor roughly coincides with its error. These guarantees
translate into very useful bounds on the difference of the
generalization error and empirical error whose complexity
terms admit the empirical error as a factor.

This paper presents relative deviation margin bounds. These
are new learning bounds that combine the benefit of stan-
dard margin bounds and that of standard relative deviation
bounds, thereby resulting in tighter margin-based guaran-
tees (Section 5.2). Our bounds are distribution-dependent
and valid for general hypothesis sets. They can be viewed as
“second-order” margin-based guarantees. For a sample size
m, they are based on an interpolation between a 1√

m
-term

that includes the square-root of the empirical margin loss
as a factor and another term in 1

m
. In particular, when the

empirical margin loss is zero, the bound only admits the 1
m

fast rate term.

As an example, our learning bounds provide tighter guaran-
tees for margin-based algorithms such as SVM and boosting
than existing ones. We give two new families of relative
deviation bounds, both distribution-dependent and valid for
general hypothesis sets. Additionally, both families of guar-
antees hold for an arbitrary α-moment, with α ∈ (1,2]. The
guarantees for general α-moments admit interesting appli-
cations in other areas. We describe one such application
to deriving generalization guarantees for unbounded loss
functions in Section 5.1.
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Our first family of margin bounds are expressed in terms
of the empirical `∞-covering number of the hypothesis set
(Section 3). We show how these empirical covering numbers
can be upper-bounded to derive empirical fat-shattering
guarantees. One benefit of these resulting guarantees is that
there are known upper bounds on the covering numbers for
various standard hypothesis sets, which can be leveraged to
derive explicit bounds.

Our second family of margin bounds are expressed in terms
of the Rademacher complexity of the hypothesis set used
(Section 4). Here, our learning bounds are first expressed in
terms of a peeling-based Rademacher complexity term we in-
troduce. Next, we give a series of upper bounds on this com-
plexity measure, first simpler ones in terms of Rademacher
complexity, next in terms of empirical `2-covering numbers,
and finally in terms of the so-called maximum Rademacher
complexity. In particular, we show that a simplified version
of our bounds yields a guarantee similar to the maximum
Rademacher margin bound of Srebro et al. (2010), but for a
general α-moment.

We then use our families of margin bounds for α-moments
to provide generalization guarantees for unbounded loss
functions (Section 5.1). We also illustrate these results by
deriving explicit bounds for various standard hypothesis sets
in Section 5.2.

1.1. Contributions and Previous Work

We now further highlight our contributions and compare
them to related previous work.

`∞-covering based bounds: A version of our main result
for empirical `∞-covering number bounds in the special
case α=2 was postulated by Bartlett (1998) without a proof.
The author suggested that the proof could be given by com-
bining various techniques with the results of Anthony and
Shawe-Taylor (1993) and Vapnik (1998; 2006). However,
as pointed out by Cortes et al. (2019), the proofs given by
Anthony and Shawe-Taylor (1993) and Vapnik (1998; 2006)
are incomplete and rely on a key lemma that is not proven
by these authors. In a distinct line of research, Zhang (2002)
presented finer covering number-based bounds for linear
classifiers. These are not relative deviation bounds but the
author postulated that his techniques could be modified, us-
ing Bernstein-type concentration bounds, to obtain relative
deviation `∞-covering number bounds for linear classifiers.
However, a careful inspection suggests that this is not a
straightforward exercise and obtaining such bounds in fact
requires techniques such as those we develop in this pa-
per, or, perhaps, somewhat similar ones. Our contribution:
We provide a self-contained proof based on a margin-based
symmetrization argument. Our proof technique uses a new
symmetrization argument that is different from those of
Bartlett (1998) and Zhang (2002).

Rademacher complexity bounds: Using ideas from local
Rademacher complexity (Bartlett et al., 2005), Rademacher
complexity bounds were given by Srebro et al. (2010). How-
ever their bounds are based on the so-called maximum
Rademacher complexity, which depends on the worst pos-
sible sample and is therefore independent of the underly-
ing distribution. Our contribution: We provide the first
distribution-dependent relative deviation margin bounds,
in terms of a peeling-based Rademacher complexity. The
proof is based on several new ingredients, including a new
symmetrization result, an upper bound in terms of a normal-
ized Rademacher process, and a peeling-based argument.
We also show that, as a by-product of our guarantees, the
distribution-independent bounds of Srebro et al. (2010) can
be recovered, albeit with a more general α ∈ (1,2].
Generalization bounds for unbounded loss functions:
Standard relative deviation bounds do not hold for com-
monly used loss functions that are unbounded, such as
cross-entropy. Cortes et al. (2019) provided zero-one rela-
tive deviation bounds which they used to derive guarantees
for unbounded losses, in terms of the discrete dichotomies
generated by the hypothesis class, under the assumption of
a finite moment of the loss. Our contribution: We present
the first generalization bounds for unbounded loss functions
in terms of covering numbers and Rademacher complex-
ity, which are optimistic bounds that, in general, are more
favorable than the previous known bounds of Cortes et al.
(2019), under the same finite moment assumption. Doing
so further required us to derive relative deviation margin
bounds for a general α-moment (α ∈ (1,2]), in contrast with
previous work, which only focused on the special case α = 2.
The need for guarantees for unbounded loss functions with
bounded α-moments with α < 2 comes up in several sce-
narios, for example in the context of importance-weighting
(Cortes, Mansour, and Mohri, 2010).

Recently, relative deviation margin bounds for the special
case of linear classifiers were studied by Grønlund et al.
(2020). Both the results and the proof techniques in that
work are specific to the case of linear hypotheses. In con-
trast, our bounds hold for any general hypothesis set and
recover the bounds of Grønlund et al. (2020) for the special
case of linear classifiers, up to logarithmic factors. Fur-
thermore, our proofs, while more general, are also sim-
pler. Moreover, in contrast with these bounds, our guar-
antees are expressed in terms of Rademacher complexity
and are therefore distribution-dependent. Relative devia-
tion PAC-Bayesian bounds were also derived by McAllester
(2003) for linear hypothesis sets. It is known, however, that
Rademacher complexity learning bounds are finer guaran-
tees: as shown by Kakade et al. (2008) and Foster et al.
(2019)[Appendix H], they can be used to derive more favor-
able PAC-Bayesian guarantees than previously known ones
(McAllester, 2003).
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2. Preliminaries
In this section, we introduce the main definitions and nota-
tion used in our analysis and prove two symmetrization-type
lemmas for a relative deviation between the expected binary
loss and empirical margin loss.

We consider an input space X and a binary output space
Y = {−1,+1} and a hypothesis set H of functions mapping
from X to R. We denote by D a distribution over Z = X × Y

and denote by R(h) the generalization error and by R̂S(h)
the empirical error of a hypothesis h ∈H:

R(h) = E
z=(x,y)∼D

[1yh(x)≤0],

R̂S(h) = E
z=(x,y)∼S

[1yh(x)≤0],

where we write z ∼ S to indicate that z is randomly drawn
from the empirical distribution defined by S. Given ρ ≥ 0,
we similarly defined the ρ-margin loss and empirical ρ-
margin loss of h ∈H:

Rρ(h) = E
z=(x,y)∼D

[1yh(x)<ρ],

R̂ρS(h) = E
z=(x,y)∼S

[1yh(x)<ρ].

We will sometimes use the shorthand xm1 to denote a sample
of m points (x1, . . . , xm) ∈ Xm.

The relative margin deviation for a hypothesis h ∈H is the
ratio of the difference between the generalization error of
h and its empirical margin loss, and the α-moment of the
generalization error, 1 < α ≤ 2:

R(h) − R̂ρS(h)
α
√
R(h) + τ

,

modulo a constant term τ > 0 used to guarantee the positiv-
ity of denominator, which can be chosen to be arbitrarily
small. For R(h) small, the variance R(h)(1 − R(h)) is
close to R(h). Thus, for α = 2, the ratio can be viewed as a
normalization of the difference between the generalization
error of h and its empirical margin loss obtained by dividing
(approximately) by the standard deviation.

The problem we consider is to derive high-probability upper
bounds for the supremum over h ∈H of the relative margin
deviation of h. This will result in our relative deviation
margin bounds. We will be mainly interested in the case
α = 2. But, as we shall see in Section 5.1, the case α ∈ (1,2)
is crucial since it allows us to derive new covering number-
based learning guarantees for unbounded loss functions
when the α-moment of the loss is bounded only for some
value α ∈ (1,2).

The following is our first symmetrization lemma in terms of
empirical margin losses. As already mentioned, the param-
eter τ > 0 is used to ensure a positive denominator so that
the relative deviations are mathematically well defined.

Figure 1. Illustration of different choices of function φ for ρ =
0.25.

Lemma 1. Fix ρ ≥ 0 and 1 < α ≤ 2 and assume that
mε

α
α−1 > 1. Then, for any ε, τ > 0, the following inequality

holds:

P
S∼Dm

⎡⎢⎢⎢⎣
sup
h∈H

R(h) − R̂ρS(h)
α
√
R(h) + τ

> ε
⎤⎥⎥⎥⎦

≤ 4 P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
h∈H

R̂S′(h) − R̂ρS(h)
α

√
1
2
[R̂S′(h) + R̂ρS(h) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦
.

The proof is presented in Appendix A. It consists of extend-
ing the proof technique of Cortes et al. (2019) for standard
empirical error to the empirical margin case and of using the
binomial inequality (Greenberg and Mohri, 2013, Lemma 9).
The lemma helps us bound the relative deviation in terms of
the empirical margin loss on a sample S and the empirical
error on an independent sample S′, both of size m.

We now introduce some notation needed for the presentation
and discussion of our relative deviation margin bound. Let
φ∶R→ R+ be a function such that the following inequality
holds for all x ∈ R:

1x<0 ≤ φ(x) ≤ 1x<ρ.

As an example, we can choose φ(x) = 1x<ρ/2 as in the
previous sections. For a sample z = (x, y), let g(z) =
φ(yh(x)). Then,

1yh(x)<0 ≤ g(z) ≤ 1yh(x)<ρ. (1)

Let the family G be defined as follows: G = {z = (x, y) ↦
φ(yh(x))∶h ∈ H} and let R(g) = Ez∼D[g(z)] denote the
expectation of g and R̂S(g) = Ez∼S[g(z)] its empirical
expectation for a sample S. There are several choices for
function φ, as illustrated by Figure 1. For example, φ(x)
can be chosen to be 1x<ρ or 1x<ρ/2 (Bartlett, 1998). φ can
also be chosen to be the so-called ramp loss:

φ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if x < 0

1 − x
ρ

if x ∈ [0, ρ]
0 if x > ρ,
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or the smoothed margin loss chosen by (Srebro et al., 2010):

φ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if x < 0
1+cos(πx/ρ)

2
if x ∈ [0, ρ]

0 if x > ρ.

Fix ρ > 0. Define the ρ-truncation function βρ∶R →
[−ρ,+ρ] by βρ(u) = max{u,−ρ}1u≤0 + min{u,+ρ}1u≥0,
for all u ∈ R. For any h ∈ H, we denote by hρ the ρ-
truncation of h, hρ = βρ(h), and define Hρ = {hρ∶h ∈H}.

For any family of functions F, we also denote by
N∞(F, ε, xm1 ) the empirical covering number of F over
the sample (x1, . . . , xm) and by C(F, ε, xm1 ) a minimum
empirical cover. Then, the following symmetrization lemma
holds.

Lemma 2. Fix ρ ≥ 0 and 1 < α ≤ 2. Then, the following
inequality holds:

P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
h∈H

R̂S′(h) − R̂ρS(h)
α

√
1
2
[R̂S′(h) + R̂ρS(h) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦

≤ P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

R̂S′(g) − R̂S(g)
α

√
1
2
[R̂S′(g) + R̂S(g) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦
.

Further for g(z) = 1yh(x)<ρ/2, using the shorthand K =
C(Hρ,

ρ
2
, S ∪ S′), the following holds:

P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
h∈H

R̂S′(h) − R̂ρS(h)
α

√
1
2
[R̂S′(h) + R̂ρS(h) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦

≤ P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
h∈K

R̂
ρ
2

S′(h) − R̂
ρ
2

S (h)
α

√
1
2
[R̂

ρ
2

S′(h) + R̂
ρ
2

S (h) + 1
m
]
> ε

⎤⎥⎥⎥⎥⎥⎦
.

The proof consists of using Inequality 1, it is given in Ap-
pendix A. The first result of the lemma gives an upper bound
for a general choice of functions g, that is for an arbitrary
choices of the Φ loss function. This inequality will be used
in Section 4 to derive our Rademacher complexity bounds.
The second inequality is for the specific choice of Φ that
corresponds to ρ/2-step function. We will use this inequality
in the next section to derive `∞-covering number bounds.

3. Relative Deviation Margin Bounds –
Covering Numbers

In this section, we present a general relative deviation
margin-based learning bound, expressed in terms of the
expected empirical covering number of Hρ. The learning
guarantee is thus distribution-dependent. It is also very
general since it is given for any 1 <α ≤ 2 and an arbitrary
hypothesis set.

Theorem 1 (General relative deviation margin bound). Fix
ρ ≥ 0 and 1 < α ≤ 2. Then, for any hypothesis set H of
functions mapping from X to R and any τ > 0, the following
inequality holds:

P
S∼Dm

⎡⎢⎢⎢⎣
sup
h∈H

R(h) − R̂ρS(h)
α
√
R(h) + τ

> ε
⎤⎥⎥⎥⎦

≤ 4 E
x2m
1 ∼D2m

[N∞(Hρ,
ρ
2
, x2m

1 )] exp

⎡⎢⎢⎢⎢⎣

−m
2(α−1)
α ε2

2
α+2
α

⎤⎥⎥⎥⎥⎦
.

The proof is given in Appendix B. As mentioned earlier, a
version of this result for α = 2 was postulated by Bartlett
(1998). The result can be alternatively expressed as follows,
taking the limit τ → 0.

Corollary 1. Fix ρ ≥ 0 and 1 < α ≤ 2. Then, for any
hypothesis set H of functions mapping from X to R, with
probability at least 1 − δ, the following inequality holds for
all h ∈H:

R(h) − R̂ρS(h)

≤ 2
α+2
2α

α
√
R(h)

¿
ÁÁÀ logE[N∞(Hρ,

ρ
2
, x2m

1 )] + log 1
δ

m
2(α−1)
α

.

Note that a smaller value of α (α closer to 1) might be
advantageous for some values of R(h), at the price of a
worse complexity in terms of the sample size. For α = 2,
the result can be rewritten as follows. In the following, we
use N∞ as a shorthand for E[N∞(Hρ,

ρ
4
, x2m

1 )].
Corollary 2. Fix ρ ≥ 0. Then, for any hypothesis set H of
functions mapping from X to R, with probability at least
1 − δ, the following inequality holds for all h ∈H:

R(h) − R̂ρS(h) ≤ 2

¿
ÁÁÀ

R̂ρS(h)
log N∞

δ

m
+ 4

N∞

δ

m
.

Proof. Let a, b, and c be defined as follows: a = R(h),

b = R̂ρS(h), and c = logE[N∞(Hρ,
ρ
2
,x2m

1 )), ρ2 )]+log 1
δ

m
. Then,

for α = 2, the inequality of Corollary 1 can be rewritten as

a ≤ b + 2
√
ca.

This implies that (√a − √
c)2 ≤ b + c and hence

√
a ≤√

b + c + √
c. Therefore, a ≤ b + 2c + 2

√
(b + c)c ≤ b +

4c + 2
√
cb. Substituting the values of a, b, and c yields the

bound.

The guarantee just presented provides a tighter margin-based
learning bound than standard margin bounds since the dom-
inating term admits the empirical margin loss as a factor.
Standard margin bounds are subject to a trade-off: a large



Relative Deviation Margin Bounds

value of ρ reduces the complexity term while leading to a
larger empirical margin loss term. Here, the presence of
the empirical loss factor favors this trade-off by allowing a
smaller choice of ρ. The bound is distribution-dependent
since it is expressed in terms of the expected covering num-
ber and it holds for an arbitrary hypothesis set H.

The learning bounds just presented hold for a fixed value
of ρ. They can be extended to hold uniformly for all values
of ρ ∈ [0,1], at the price of an additional log log-term. We
illustrate that extension for Corollary 1.

Corollary 3. Fix 1 < α ≤ 2. Then, for any hypothesis set H
of functions mapping from X to R and any ρ ∈ (0, r], with
probability ≥ 1 − δ, the following inequality holds for all
h ∈H:

R(h) ≤ R̂ρS(h)+2
α+2
2α

α
√
R(h)

¿
ÁÁÁÀ logN∞ + log ( log2(2r/ρ)

δ
)

m
2(α−1)
α

.

Proof. For k ≥ 1, let ρk = r/2k and δk = δ/k2. For all such
ρk, by Corollary 1 and the union bound,

R(h) ≤ R̂ρkS (h)+2
α+2
2α

α
√
R(h)

¿
ÁÁÀ logN∞ + log 1

δ
+ 2 log k

m
2(α−1)
α

.

By the union bound, the error probability is most ∑k δk =
δ∑k(1/k2) ≤ δ. For any ρ ∈ (0, r], there exists a k such
that ρ ∈ (ρk, ρk−1]. For this k, ρ ≤ ρk−1 = r/2k−1. Hence,
k ≤ log2(2r/ρ). By the definition of margin, for all h ∈H,
R̂ρkS (h) ≤ R̂ρS(h). Furthermore, as ρk = ρk−1/2 ≥ ρ/2,
N∞(Hρ,

ρk
2
, x2m

1 ) ≤ N∞(Hρ,
ρ
4
, x2m

1 ). Hence, for all ρ ∈
(0, r],

R(h) ≤ R̂ρS(h)+2
α+2
2α

α
√
R(h)

¿
ÁÁÁÀ logN∞ + log ( log2(2r/ρ)

δ
)

m
2(α−1)
α

.

This concludes the proof.

Our previous bounds can be expressed in terms of the fat-
shattering dimension, as illustrated below. Recall that, given
γ > 0, a set of points U = {u1, . . . , um} is said to be γ-
shattered by a family of real-valued functions H if there
exist real numbers (r1, . . . , rm) (witnesses) such that for all
binary vectors (b1, . . . , bm) ∈ {0,1}m, there exists h ∈ H
such that:

h(x)
⎧⎪⎪⎨⎪⎪⎩

≥ ri + γ if bi = 1;

≤ ri − γ otherwise.

The fat-shattering dimension fatγ(H) of the family H is the
cardinality of the largest set γ-shattered set by H (Anthony
and Bartlett, 1999).

Corollary 4. Fix ρ ≥ 0. Then, for any hypothesis set H of
functions mapping from X to R with d = fat ρ

16
(H), with

probability at least 1 − δ, the following holds for all h ∈H:

R(h) ≤ R̂ρS(h) + 2

√
R̂ρS(h)

∆m

m
+ ∆m

m
,

where ∆m = 1+d log2(2c2m) log2
2cem
d

+ log 1
δ

and c = 17.

Proof. By (Bartlett, 1998, Proof of theorem 2), we have

log max
x2m
1

[N∞(Hρ,
ρ
2
, x2m

1 )] ≤ 1+d′ log2(2c2m) log2

2cem

d′
,

where d′ = fat ρ
16

(Hρ) ≤ fat ρ
16

(H) = d. Upper bounding
the expectation by the maximum completes the proof.

We will use this bound in Section 5.2 to derive explicit
guarantees for several standard hypothesis sets.

4. Relative Deviation Margin Bounds –
Rademacher Complexity

In this section, we present relative deviation margin bounds
expressed in terms of the Rademacher complexity of the
hypothesis sets. As with the previous section, these bounds
are general: they hold for any 1 < α ≤ 2 and arbitrary
hypothesis sets.

As in the previous section, we will define the family G by
G = {φ(yh(x))∶h ∈H}, where φ is a function such that

1x<0 ≤ φ(x) ≤ 1x<ρ.

For a set G and a set of samples zm1 , the empirical
Rademacher complexity is defined as

R̂m(G) = E
σ
[sup
g∈G

1

m
∑
i

σig(zi)] .

We further allow G to be dependent on the samples.

The proof of our main result in this section admits the fol-
lowing three main ingredients: (1) a symmetrization lemma
to relate the relative margin deviation term to a symmetrized
quantity with empirical terms only (Lemmas 1 and 2); (2)
relating the problem of bounding that symmetrized quan-
tity to that of bounding a normalized Rademacher process
(Lemma 3); (3) bounding that normalized Rademacher pro-
cess in terms of Rademacher complexity using an adapted
peeling technique.

4.1. Rademacher Complexity-Based Margin Bounds

We first relate bounding the symmetrized relative devi-
ations to bounding the normalized Rademacher process
supg∈G

1
m ∑

m
i=1 σig(zi)

α
√

1
m [∑mi=1 g(zi)+1]

.
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Lemma 3. Fix 1 < α ≤ 2. Then, the following inequality
holds:

P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

R̂S′(g) − R̂S(g)
α

√
1
2
[R̂S′(g) + R̂S(g) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦

≤ 2 P
zm1 ∼Dm,σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σig(zi)

α

√
1
m
[∑mi=1 g(zi) + 1]

> ε

2
√

2

⎤⎥⎥⎥⎥⎥⎦
.

The proof is given in Appendix C. It consists of introducing
Rademacher variables and deriving an upper bound in terms
of the first m points only.

Now, to bound the normalized Rademacher process term,
the technique adopted in previous work has consisted of
fixing zm1 and applying Hoeffding’s bound to the ratio

1
m ∑

m
i=1 σig(zi)

α
√

1
m [∑mi=1(g(zi))+1]

for a fixed g ∈ G (Anthony and Shawe-

Taylor, 1993; Cortes et al., 2019). This is then followed by
a union bound, which results in shattering coefficients or
covering numbers, and an expectation over zm1 .

Instead, for a fixed zm1 , we will seek to directly bound the
normalized Rademacher process term via a uniform conver-
gence bound. Doing so is not straightforward due to the com-
plex denominator. Thus, we first peel G according to the val-
ues of the main term in the denominator 1

m ∑
m
i=1 g(zi) + 1

m
:

we partition G into sets Gk(zm1 ) for which this average
value is in [ 2k

m
, 2k+1−1

m
]. This reduces bounding the nor-

malized Rademacher process term to that of bounding the
Rademacher process terms supg∈Gk(zm1 )

1
m ∑

m
i=1 σig(zi).

Now, to bound these terms, using McDiarmid’s inequality
would result in too loose terms. This is essentially because
the proxy term for the variance in McDiarmid’s inequality is
a quantity of the form ∑mi=1 ∥∆ig∥2

∞. We use an alternative
bounded difference inequality (van Handel, 2016, Theorem
3.18) with a proxy term of the form ∥∑mi=1 ∆ig∥2

∞ instead,
which helps us leverage the property of Gk(zm1 ) and also
provide a finer one-sided inequality. This results, for each
Rademacher process term supg∈Gk(zm1 )

1
m ∑

m
i=1 σig(zi), in

a bound expressed in terms of the Rademacher complexity
of Gk(zm1 ). A union bound over the sets Gk(zm1 ) and an
expectation over zm1 conclude the proof.

With this background, we now detail the peeling argument,
that is we partition G into subsets Gk, give a learning bound
for each Gk, and then take a weighted union bound. For
any non-negative integer k with 0 ≤ k ≤ log2m, let Gk(zm1 )
denote the family of hypotheses defined by

Gk(zm1 ) = {g ∈ G∶2k ≤ (
m

∑
i=1

g(zi)) + 1 < 2k+1}.

Using the above inequality and a peeling argument, we
show the following upper bound expressed in terms of
Rademacher complexities.

Lemma 4. Fix 1 < α ≤ 2 and zm1 ∈ Zm. Then, the following
inequality holds:

P
σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σig(zi)

α

√
1
m
[∑mi=1(g(zi)) + 1]

> ε
RRRRRRRRRRR
zm

⎤⎥⎥⎥⎥⎥⎦

≤ 2
⌊log2m⌋
∑
k=0

exp

⎡⎢⎢⎢⎢⎣

m2R̂2
m(Gk(zm1 ))
2k+5

− ε2

64 2k(1−2/α)

m2−2/α

⎤⎥⎥⎥⎥⎦
1
ε≤2[ 2k

m ]1−
1
α
.

The proof is given in Appendix C. Instead of applying Ho-
effding’s bound to each term of the left-hand side for a fixed
g and then using covering and the union bound to bound the
supremum, here, we seek to bound the supremum over G
directly. To do so, we use a bounded difference inequality
that leads to a finer result than McDiarmid’s inequality.

Let rm(G) be defined as the following peeling-based
Rademacher complexity of G:

sup
0≤k≤log2(m)

log [ E
zm1 ∼Dm

[exp(m
2R̂2

m(Gk(zm1 ))
2k+5

)]] .

Then, the following is a margin-based relative deviation
bound expressed in terms of rm(G), that is in terms of
Rademacher complexities.

Theorem 2. Fix 1 < α ≤ 2. Then, with probability at least
1 − δ, for all hypothesis h ∈ H, the following inequality
holds:

R(h) − R̂ρS(h)

≤ 16
√

2 α
√
R(h) [

rm(G) + log logm + log 16
δ

m
]

1− 1
α

.

Combining the above lemma with Theorem 2 yields the
following.

Corollary 5. Fix 1 < α ≤ 2 and let G be defined as above.
Then, with probability at least 1−δ, for all hypothesis h ∈H,

R(h)−R̂ρS(h) ≤ 32
α

√
R̂ρS(h) (

∆m

m
)

1− 1
α

+ 2(32) α
α−1 (∆m

m
) ,

where ∆m = rm(G) + log logm + log 16
δ

.

The above result can be extended to hold for all α simulta-
neously.

Corollary 6. Let G be defined as above. Then, with proba-
bility at least 1 − δ, for all hypothesis h ∈H and α ∈ (1,2],

R(h)−R̂ρS(h) ≤ 32
√

2 α
√
R(h)

⎡⎢⎢⎢⎢⎣

rm(G) + log 16 logm
δ

m

⎤⎥⎥⎥⎥⎦

1− 1
α

.
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4.2. Upper Bounds on Peeling-Based Rademacher
Complexity

We now present several upper bounds on rm(G) and show
how this can help recover previously known quantities. We
provide proofs for all the results in Appendix D. For any hy-
pothesis set G, we denote by SG(xm1 ) the number of distinct
dichotomies generated by G over that sample:

SG(zm1 ) = Card({(g(z1), . . . , g(zm))∶ g ∈ G}).

We note that we do not make any assumptions over the range
of G.
Lemma 5. If the functions in G take values in {0,1}, then
the following upper bounds hold for the peeling-based
Rademacher complexity of G:

rm(G) ≤ 1

8
log E

zm1
[SG(zm1 )].

Combining the above result with Corollary 5, improves the
relative deviation bounds of (Cortes et al., 2019, Corollary
2) for α < 2. In particular, we improve the

√
Ezm1 [SG(zm1 )]

term in their bounds to (Ezm1 [SG(zm1 )])1−1/α
, which is sig-

nificant for α < 2.

We next upper bound the peeling-based Rademacher com-
plexity in terms of covering numbers.
Lemma 6. For a set of hypotheses G,

rm(G) ≤ sup
0≤k≤log2(m)

log[ E
zm1 ∼Dm

[exp{fk(zm1 ,G)}]].

where

fk(zm1 ,G)=
1

16
[1 + ∫

1

1
√

m

logN2(Gk(zm1 ),
√

2k

m
ε, zm1 )dε].

One can further simplify the above bound using the
smoothed margin loss from (Srebro et al., 2010). Let the
worst case Rademacher complexity be defined as follows.

R̂max
m (H) = sup

zm1

R̂m(H).

Lemma 7. Let g be the smoothed margin loss from (Srebro
et al., 2010, Section 5.1), with its second moment bounded
by (π2/4ρ2). Then, rm(G) is upper bounded by

[4πR̂max
m (H)]2

(ρ2/m) [2 log
3
2 [ m

R̂max
m (H)

] − log
3
2 [ 2πm

ρR̂max
m (H)

]]
2

.

Proof. Recall that the smoothed margin loss of Srebro et al.
(2010) is given by

g(yh(x)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if yh(x) < 0
1+cos(πyh(x)/ρ)

2
if yh(x) ∈ [0, ρ]

0 if yh(x) > ρ.

Upper bounding the expectation by the maximum gives:

rm(G) ≤ sup
k

log sup
zm1

[exp(m
2R̂2

m(Gk(zm1 ))
2k+5

)]

≤ sup
k

sup
zm1

m2R̂2
m(Gk(zm1 ))
2k+5

.

Let G′k(zm1 ) = {g ∈ G∶∑mi=1 g(zi) + 1 ≤ 2k+1}. Since
Gk(zm1 ) ⊆ G′k(zm),

rm(G) ≤ sup
k

sup
zm1

m2R̂2
m(G′k(zm))
2k+5

.

Now, R̂m(G′k(zm)) coincides with the local Rademacher
complexity term defined in (Srebro et al., 2010, Section 2).
Thus, by (Srebro et al., 2010, Lemma 2.2), R̂m(G′k(z

m))
R̂max
m (H) is

upper bounded by

16π

ρ

√
2k+1

m
[2 log

3
2 [ m

R̂max
m (H)

]−log
3
2 [ 2πm

ρ R̂max
m (H)

]],

which concludes the proof.

Combining Lemma 7 with Corollary 5 yields the following
bound, which is a generalization of (Srebro et al., 2010,
Theorem 5) holding for all α ∈ (1,2].
Corollary 7. For any δ > 0, with probability at least 1 − δ,
the following inequality holds for all α ∈ (0,1] and all
h ∈H:

R(h) − R̂ρS(h) ≤ 32
√

2
α

√
R̂ρS(h)β

1− 1
α

m + 2(32) α
α−1 βm,

where βm is the upper bound on rm(G) in Lemma 7.

5. Applications
In this section, we discuss two applications of our relative
deviation margin bounds. We first show how they can be
used to obtain generalization guarantees for unbounded loss
functions. Next, we describe the application of our bounds
to several specific hypothesis sets and show they can recover
some recent results. In Appendix F, we further discuss other
potential applications of our learning guarantees.

5.1. Generalization Bounds for Unbounded Loss
Functions

Standard generalization bounds hold for bounded loss func-
tions. Many loss functions frequently used in applications,
such as the cross-entropy loss, are unbounded, when used
with standard hypothesis sets. For the more general and
more realistic case of unbounded loss functions, a number
of different results have been presented in the past, under dif-
ferent assumption on the family of functions. This includes
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learning bounds assuming the existence of an envelope, that
is a single non-negative function with a finite expectation
lying above the absolute value of the loss of every function
in the hypothesis set (Dudley, 1984; Pollard, 1984; Dud-
ley, 1987; Pollard, 1989; Haussler, 1992), or an assumption
similar to Hoeffding’s inequality based on the expectation
of a hyperbolic function, a quantity similar to the moment-
generating function (Meir and Zhang, 2003), or the weaker
assumption that the αth-moment of the loss is bounded for
some value of α > 1 (Vapnik, 1998; 2006; Cortes et al.,
2019). The need for guarantees for unbounded loss func-
tions with bounded alpha-moments with α < 2 come up in
several scenarios, for example in the context of importance-
weighting (Cortes, Mansour, and Mohri, 2010). Here, we
will also adopt this assumption and present distribution-
dependent learning bounds for unbounded losses that im-
prove upon the previous bounds of Cortes et al. (2019). To
do so, we will leverage the relative deviation margin bounds
given in the previous sections, which hold for any α ≤ 2.

Let L be an unbounded loss function and L(h, z) denote
the loss of hypothesis h for sample z. Let Lα(h) =
Ez∼D[L(h, z)α] be the αth-moment of the loss function
L, which is assumed finite for all h ∈ H. In what fol-
lows, we will use the shorthand P[L(h, z) > t] instead of
Pz∼D[L(h, z) > t], and similarly P̂[L(h, z) > t] instead of
Pz∼D̂[L(h, z) > t].
Theorem 3. Fix ρ ≥ 0. Let 1 < α ≤ 2, 0 < ε ≤ 1, and
0 < τ α−1α < ε α

α−1 . For any loss function L (not necessarily
bounded) and hypothesis set H such that Lα(h) < +∞ for
all h ∈H,

P [sup
h∈H

L(h) − L̂S(h) > Γτ(α, ε) ε α
√
Lα(h) + τ + ρ]

≤ P
⎡⎢⎢⎢⎣

sup
h∈H,t∈R

P[L(h, z) > t] − P̂[L(h, z) > t − ρ]
α
√
P[L(h, z) > t] + τ

> ε
⎤⎥⎥⎥⎦
,

where Γτ(α, ε) = α−1
α

(1 + τ) 1
α + 1

α
( α
α−1

)α−1 (1 +

(α−1
α

)α τ 1
α ) 1

α [1 + log(1/ε)
( α
α−1

)α−1
]
α−1
α

.

The proof is provided in Appendix E. The above theorem
can be used in conjunction with our relative deviation mar-
gin bounds to obtain strong guarantees for unbounded loss
functions and we illustrate it with our `∞-based bounds.
Similar techniques can be used to obtain peeling-based
Rademacher complexity bounds. Combining Theorems 3
and (1) yields the following corollary.

Corollary 8. Fix ρ ≥ 0. Let ε < 1, 1 < α ≤ 2. and hypothesis
set H such that Lα(h) < +∞ for all h ∈H,

L(h) − L̂S(h) ≤ γ α
√
Lα(h)

√
∆m

m
2(α−1)
α

+ ρ,

where ∆m = logE[N∞(L(H), ρ
2
, x2m

1 )] + log 1
δ

and γ =

Γ0 (α,
√

∆m

m
2(α−1)
α

) = O(logm).

The upper bound in the above corollary has two terms. The
first term is based on the covering number and decreases
with ρ while the second term increases with ρ. A natu-
ral choice for ρ is 1/√m, however one can choose a suit-
able value of ρ that minimizes the sum to obtain favorable
bounds.1 Furthermore, the above bound depends on the
covering number as opposed to the result of Cortes et al.
(2019), which depends on the number of dichotomies gen-
erated by the hypothesis set. Hence, the above bound is
optimistic and in general is more favorable than the previous
known bounds of Cortes et al. (2019). We note that instead
of using our `∞-based bounds, one can use our Rademacher
complexity bounds to derive finer results.

5.2. Relative Margin Bounds for Common Hypothesis
Sets

In this section, we briefly highlight some applications of our
learning bounds: both our covering number and Rademacher
complexity margin bounds can be used to derive finer
margin-based guarantees for several commonly used hy-
pothesis sets. Below we briefly illustrate these applications.

Linear hypothesis sets: let H be the family of liner hypothe-
ses defined by

H = {x↦w ⋅ x∶ ∥w∥2 ≤ 1,x ∈ Rn, ∥x∥2 ≤ R}.

The margin bound for SVM by Bartlett and Shawe-Taylor
(1998, Theorem 1.7) is

R(h) ≤ R̂ρS(h) + c
′√β′m, (2)

where c′ is some universal constant and where β′m =
Õ ( (R/ρ)2

m
). Recently, Grønlund et al. (2020) derived the

following more favorable relative deviation margin bounds
for linear hypothesis sets:

R(h) ≤ R̂ρS(h) + 2
√
R̂ρS(h)β′′m + β′′m, (3)

where β′′m = Õ ( (R/ρ)2
m

). We can directly apply our rela-
tive deviation margin bounds to recover this result up to
logarithmic factors. However, our guarantees have the ad-
ditional benefit of being expressed in terms of Rademacher
complexity and thus of being distribution-dependent, unlike
the bound of Grønlund et al. (2020). Furthermore, while
their proof technique crucially depends on the fact that the
underlying hypothesis set is linear, ours is comparatively

1This requires that the bound holds uniformly for all ρ, which
can be shown with an additional log log 1

ρ
term (See Corollary 9).
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simpler and very general, it applies to arbitrary hypothesis
sets.

Feed-forward neural networks of depth d: For a matrix W,
let ∥W∥p,q denote the matrix p, q norm and ∥W∥2 denote
the spectral norm. Let H0 = {x ∶ ∥x∥2 ≤ 1,x ∈ Rn}
and Hi = {σ(W ⋅ h) ∶ h ∈ Hi−1, ∥W∥2 ≤ B, ∥WT ∥2,1 ≤
B2,1∥W∥2)}. Let σ be L-Lipschitz. The Rademacher com-
plexity bounds of Corollary 7 can be used to provide gen-
eralization bounds for neural networks. By Bartlett et al.
(2017), the following upper bound holds for Hd:

R̂max
m (H) = Õ (d

3/2BB2,1

ρ
√
m

⋅ (BL)d) .

Plugging in this upper bound in the bound of Corollary 7
leads to the following:

R(h) ≤ R̂ρS(h) + 2
√
R̂ρS(h)βm + βm, (4)

where βm = Õ (d
3B2B2

2,1

ρ2m
⋅ (BL)2d). In comparison, the

best existing neural network bounds by Bartlett et al. (2017,
Theorem 1.1) is

R(h) ≤ R̂ρS(h) + c
′√β′m, (5)

where c′ is a universal constant and β′m is the empirical
Rademacher complexity. The margin bound (4) has the ben-
efit of a more favorable dependency on the empirical margin
loss than (5), which can be significant when that empirical
term is small. On other hand, the empirical Rademacher
complexity of (5) is more favorable than its counterpart in
(4). A similar analysis can be used to derive relative mar-
gin bounds for ensembles of predictors or neural networks
families (see Appendix F.2) as well as many other function
classes.

6. Conclusion
Margin bounds are the most appropriate tools for the analy-
sis of generalization in classification problems since they are
more “optimistic” and typically not dimension-dependent.
They have been used successfully to analyze the generaliza-
tion properties of linear classifiers with Gaussian kernels,
that of AdaBoost, and more recently that of neural networks.
The finer margin guarantees we presented provide a more
powerful tool for such analyses. Our relative margin bounds
can further be used to derive guarantees for a variety of
hypothesis sets and in a variety of applications. In particular,
as illustrated in Appendix F.2, these bounds can help derive
more favorable margin-based learning bounds for different
families of neural networks, which has been the topic of
several recent research publications. They may also serve
as a useful tool in the analysis of scenarios such as active
learning and the design of new algorithms.
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A. Symmetrization
We use the following lemmas from (Cortes et al., 2019) in our proofs.

Lemma 8 ((Cortes et al., 2019)). Fix η > 0 and α with 1 < α ≤ 2. Let f ∶ (0,+∞) × (0,+∞) → R be the function defined by
f ∶ (x, y) ↦ x−y

α
√
x+y+η . Then, f is a strictly increasing function of x and a strictly decreasing function of y.

Lemma 9 ((Greenberg and Mohri, 2013)). Let X be a random variable distributed according to the binomial distribution
B(m,p) with m a positive integer (the number of trials) and p > 1

m
(the probability of success of each trial). Then, the

following inequality holds:

P [X ≥ E[X]] > 1

4
, (6)

and, if instead of requiring p > 1
m

we require p < 1 − 1
m

, then

P [X ≤ E[X]] > 1

4
, (7)

where in both cases E[X] =mp.

The following symmetrization lemma in terms of empirical margin loss is proven using the previous lemmas.

Lemma 1. Fix ρ ≥ 0 and 1 < α ≤ 2 and assume that mε
α
α−1 > 1. Then, for any ε, τ > 0, the following inequality holds:

P
S∼Dm

⎡⎢⎢⎢⎣
sup
h∈H

R(h) − R̂ρS(h)
α
√
R(h) + τ

> ε
⎤⎥⎥⎥⎦
≤ 4 P

S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
h∈H

R̂S′(h) − R̂ρS(h)
α

√
1
2
[R̂S′(h) + R̂ρS(h) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦
.

Proof. We will use the function F defined over (0,+∞) × (0,+∞) by F ∶ (x, y) ↦ x−y
α
√

1
2 [x+y+

1
m ]

.

Fix S,S′ ∈ Zm. We first show that the following implication holds for any h ∈H:

⎛
⎝
R(h) − R̂ρS(h)
α
√
R(h) + τ

> ε
⎞
⎠
∧ (R̂S′(h) > R(h)) ⇒ F (R̂S′(h), R̂ρS(h)) > ε. (8)

The first condition can be equivalently rewritten as R̂ρS(h) < R(h) − ε α
√

(R(h) + τ), which implies

R̂ρS(h) < R(h) − ε α
√
R(h) ∧ ε

α
α−1 < R(h), (9)

since R̂ρS(h) ≥ 0. Assume that the antecedent of the implication (8) holds for h ∈ H. Then, in view of the monotonicity
properties of function F (Lemma 8), we can write:

F (R̂S′(h), R̂ρS(h)) ≥ F (R(h),R(h) − ε α
√
R(h)) (R̂S′(h) > R(h) and 1st ineq. of (9))

= R(h) − (R(h) − εR(h) 1
α

α

√
1
2
[2R(h) − εR(h) 1

α + 1
m
]

≥ εR(h) 1
α

√
1
2
[2R(h) − ε α

α−1 + 1
m
]

(second ineq. of (9))

> εR(h) 1
α

α

√
1
2
[2R(h)]

= ε, (mε
α
α−1 > 1)

which proves (8).

Now, by definition of the supremum, for any η > 0, there exists hS ∈H such that

sup
h∈H

R(h) − R̂ρS(h)
α
√
R(h) + τ

−
R(hS) − R̂ρS(hS)

α
√
R(hS) + τ

≤ η. (10)
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Using the definition of hS and the implication (8), we can write

P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
h∈H

R̂S′(h) − R̂ρS(h)
α

√
1
2
[R̂ρS(h) + R̂S′(h) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦

≥ P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣

R̂S′(hS) − R̂ρS(hS)
α

√
1
2
[R̂ρS(hS) + R̂S′(hS) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦
(def. of sup)

≥ P
S,S′∼Dm

⎡⎢⎢⎢⎢⎣

⎛
⎝
R(hS) − R̂ρS(hS)

α
√
R(hS) + τ

> ε
⎞
⎠
∧ (R̂S′(hS) > R(hS))

⎤⎥⎥⎥⎥⎦
(implication (8))

= E
S,S′∼Dm

⎡⎢⎢⎢⎢⎣
1R(hS)−R̂ρS(hS)

α√R(hS)+τ
>ε

1R̂S′(hS)>R(hS)

⎤⎥⎥⎥⎥⎦
(def. of expectation)

= E
S∼Dm

⎡⎢⎢⎢⎢⎣
1R(hS)−R̂ρS(hS)

α√R(hS)+τ
>ε

P
S′∼Dm

[R̂S′(hS) > R(hS)]
⎤⎥⎥⎥⎥⎦
. (linearity of expectation)

Now, observe that, if R(hS) ≤ ε
α
α−1 , then the following inequalities hold:

R(hS) − R̂ρS(hS)
α
√
R(hS) + τ

≤ R(hS)
α
√
R(hS)

= R(hS)
α−1
α ≤ ε. (11)

In light of that, we can write

P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
h∈H

R̂S′(h) − R̂ρS(h)
α

√
1
2
[R̂ρS(h) + R̂S′(h) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦

≥ E
S∼Dm

⎡⎢⎢⎢⎢⎣
1R(hS)−R̂ρS(hS)

α√R(hS)+τ
>ε

1
R(hS)>ε

α
α−1

P
S′∼Dm

[R̂S′(hS) > R(hS)]
⎤⎥⎥⎥⎥⎦

≥ 1

4
E

S∼Dm

⎡⎢⎢⎢⎢⎣
1R(hS)−R̂ρS(hS)

α√R(hS)+τ
>ε

⎤⎥⎥⎥⎥⎦
(ε α

α−1 > 1
m

and Lemma 9)

≥ 1

4
E

S∼Dm

⎡⎢⎢⎢⎢⎣
1

suph∈H
R(h)−R̂

ρ
S
(h)

α√R(h)+τ
>ε+η

⎤⎥⎥⎥⎥⎦
(def. of hS)

= 1

4
P

S∼Dm

⎡⎢⎢⎢⎣
sup
h∈H

R(h) − R̂ρS(h)
α
√
R(h) + τ

> ε + η
⎤⎥⎥⎥⎦
. (def. of expectation)

Now, since this inequality holds for all η > 0, we can take the limit η → 0 and use the right-continuity of the cumulative
distribution to obtain

P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
h∈H

R̂S′(h) − R̂ρS(h)
α

√
1
2
[R̂ρS(h) + R̂S′(h) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦
≥ 1

4
P

S∼Dm

⎡⎢⎢⎢⎣
sup
h∈H

R(h) − R̂ρS(h)
α
√
R(h) + τ

> ε
⎤⎥⎥⎥⎦
,

which completes the proof.

Lemma 2. Fix ρ ≥ 0 and 1 < α ≤ 2. Then, the following inequality holds:

P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
h∈H

R̂S′(h) − R̂ρS(h)
α

√
1
2
[R̂S′(h) + R̂ρS(h) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦
≤ P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

R̂S′(g) − R̂S(g)
α

√
1
2
[R̂S′(g) + R̂S(g) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦
.
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Further for g(z) = 1yh(x)<ρ/2, using the shorthand K = C(Hρ,
ρ
2
, S ∪ S′), the following holds:

P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
h∈H

R̂S′(h) − R̂ρS(h)
α

√
1
2
[R̂S′(h) + R̂ρS(h) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦
≤ P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
h∈K

R̂
ρ
2

S′(h) − R̂
ρ
2

S (h)
α

√
1
2
[R̂

ρ
2

S′(h) + R̂
ρ
2

S (h) + 1
m
]
> ε

⎤⎥⎥⎥⎥⎥⎦
.

Proof. For the first part of the lemma, note that for any given h and the corresponding g, and sample z ∈ S ∪ S′, using
inequalities

1yh(x)<0 ≤ g(z) ≤ 1yh(x)<ρ.

and taking expectations yields for any sample S:

R̂S(h) ≤ RS(g) ≤ R̂ρS(h).

The result then follows by Lemma 8.

For the second part of the lemma, observe that restricting the output of h ∈H to be in [−ρ, ρ] does not change its binary or
margin-loss: 1yh(x)<ρ = 1yhρ(x)<ρ and 1yh(x)≤0 = 1yhρ(x)≤0. Thus, we can write

P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
h∈H

R̂S′(h) − R̂ρS(h)
α

√
1
2
[R̂S′(h) + R̂ρS(h) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦
= P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
h∈Hρ

R̂S′(h) − R̂ρS(h)
α

√
1
2
[R̂S′(h) + R̂ρS(h) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦
.

Now, by definition of C(Hρ,
ρ
2
, S ∪ S′), for any h ∈Hρ there exists g ∈ C(Hρ,

ρ
2
, S ∪ S′) such that for any x ∈ S ∪ S′,

∣g(x) − h(x)∣ ≤ ρ
2
.

Thus, for any y ∈ {−1,+1} and x ∈ S ∪ S′, we have ∣yg(x) − yh(x)∣ ≤ ρ
2

, which implies:

1yh(x)≤0 ≤ 1yg(x)≤ ρ2 ≤ 1yh(x)≤ρ.

Hence, we have R̂S′(h) ≤ R̂
ρ
2

S′(g) and R̂ρS(h) ≥ R̂
ρ
2

S (g) and, by the monotonicity properties of Lemma 8:

R̂S′(h) − R̂ρS(h)
α

√
1
2
[R̂S′(h) + R̂ρS(h) + 1

m
]
≤

R̂
ρ
2

S′(g) − R̂
ρ
2

S (g)
α

√
1
2
[R̂

ρ
2

S′(g) + R̂
ρ
2

S (g) + 1
m
]
.

Taking the supremum over both sides yields the result.
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B. Relative Deviation Margin Bounds – Covering Numbers
Theorem 1 (General relative deviation margin bound). Fix ρ ≥ 0 and 1 < α ≤ 2. Then, for any hypothesis set H of functions
mapping from X to R and any τ > 0, the following inequality holds:

P
S∼Dm

⎡⎢⎢⎢⎣
sup
h∈H

R(h) − R̂ρS(h)
α
√
R(h) + τ

> ε
⎤⎥⎥⎥⎦
≤ 4 E

x2m
1 ∼D2m

[N∞(Hρ,
ρ
2
, x2m

1 )] exp

⎡⎢⎢⎢⎢⎣

−m
2(α−1)
α ε2

2
α+2
α

⎤⎥⎥⎥⎥⎦
.

Proof. Consider first the case where mε
α
α−1 ≤ 1. The bound then holds trivially since we have:

4 exp
⎛
⎝
−m

2(α−1)
α ε2

2
α+2
α

⎞
⎠
≥ 4 exp( −1

2
α+2
α

) > 1.

On the other hand, when mε
α
α−1 > 1, by Lemmas 1 and 2 we can write:

P
S∼Dm

⎡⎢⎢⎢⎣
sup
h∈H

R(h) − R̂ρS(h)
α
√
R(h) + τ

> ε
⎤⎥⎥⎥⎦
≤ 4 P

S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup

h∈C(Hρ,
ρ
2 ,S∪S′)

R̂
ρ
2

S′(h) − R̂
ρ
2

S (h)
α

√
1
2
[R̂

ρ
2

S′(h) + R̂
ρ
2

S (h) + 1
m
]
> ε

⎤⎥⎥⎥⎥⎥⎦
.

To upper bound the probability that the symmetrized expression is larger than ε, we begin by introducing a vector of
Rademacher random variables σ = (σ1, σ2, . . . , σm), where σis are independent identically distributed random variables
each equally likely to take the value +1 or −1. Let x1, x2, . . . xm be samples in S and xm+1, xm+2, . . . x2m be samples in S′.
Using the shorthands z = (x, y), g(z) = 1yh(x)≤ ρ2 , and G(x2m

1 ) = C(Hρ,
ρ
2
, S ∪S′), we can then write the above quantity as

P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup

h∈C(Hρ,
ρ
2 ,S∪S′)

R̂
ρ
2

S′(h) − R̂
ρ
2

S (h)
α

√
1
2
[R̂

ρ
2

S′(h) + R̂
ρ
2

S (h) + 1
m
]
> ε

⎤⎥⎥⎥⎥⎥⎦

= P
z2m1 ∼D2m

⎡⎢⎢⎢⎢⎢⎣
sup

g∈G(x2m)

1
m ∑

m
i=1(g(zm+i) − g(zi))

α

√
1

2m
[∑mi=1(g(zm+i) + g(zi)) + 1]

> ε
⎤⎥⎥⎥⎥⎥⎦

= P
z2m1 ∼D2m,σ

⎡⎢⎢⎢⎢⎢⎣
sup

g∈G(x2m)

1
m ∑

m
i=1 σi(g(zm+i) − g(zi))

α

√
1

2m
[∑mi=1(g(zm+i) + g(zi)) + 1]

> ε
⎤⎥⎥⎥⎥⎥⎦

= E
z2m1 ∼D2m

⎡⎢⎢⎢⎢⎢⎣
P
σ

⎡⎢⎢⎢⎢⎢⎣
sup

g∈G(x2m)

1
m ∑

m
i=1 σi(g(zm+i) − g(zi))

α

√
1

2m
[∑mi=1(g(zm+i) + g(zi)) + 1]

> ε ∣ z2m
1

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦
.

Now, for a fixed z2m
1 , we have Eσ [

1
m ∑

m
i=1 σi(g(zm+i)−g(zi))

α
√

1
2m [∑mi=1(g(zm+i)+g(zi))+1]

] = 0, thus, by Hoeffding’s inequality, we can write

P
σ

⎡⎢⎢⎢⎢⎢⎣

1
m ∑

m
i=1 σi(g(zm+i) − g(zi))

α

√
1

2m
[∑mi=1(g(zm+i) + g(zi)) + 1]

> ε ∣ z2m
1

⎤⎥⎥⎥⎥⎥⎦
≤ exp

⎛
⎝
−[∑mi=1(g(zm+i) + g(zi)) + 1] 2

αm
2(α−1)
α ε2

2
α+2
α ∑mi=1(g(zm+i) − g(zi))2

⎞
⎠

≤ exp
⎛
⎝
−[∑mi=1(g(zm+i) + g(zi))]

2
αm

2(α−1)
α ε2

2
α+2
α ∑mi=1(g(zm+i) − g(zi))2

⎞
⎠
.

Since the variables g(zi), i ∈ [1,2m], take values in {0,1}, we can write
m

∑
i=1

(g(zm+i) − g(zi))2 =
m

∑
i=1

g(zm+i) + g(zi) − 2g(zm+i)g(zi)

≤
m

∑
i=1

g(zm+i) + g(zi)

≤
m

∑
i=1

[g(zm+i) + g(zi)]
2
α ,
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where the last inequality holds since α ≤ 2 and since the sum is either zero or greater than or equal to one. In view of this
identity, we can write

P
σ

⎡⎢⎢⎢⎢⎢⎣

1
m ∑

m
i=1 σi(g(zm+i) − g(zi))

α

√
1

2m
[∑mi=1(g(zm+i) + g(zi))]

> ε ∣ z2m
1

⎤⎥⎥⎥⎥⎥⎦
≤ exp

⎛
⎝
−m

2(α−1)
α ε2

2
α+2
α

⎞
⎠
.

The number of such hypotheses is N∞(Hρ,
ρ
2
, x2m

1 ), thus, by the union bound, the following holds:

P
σ

⎡⎢⎢⎢⎢⎢⎣
sup

g∈G(x2m)

∑mi=1 σi(g(zm+i) − g(zi))
α

√
1
2
[∑mi=1(g(zm+i) + g(zi))]

> ε ∣ z2m
1

⎤⎥⎥⎥⎥⎥⎦
≤ N∞(Hρ,

ρ
2
, x2m

1 ) exp
⎛
⎝
−m

2(α−1)
α ε2

2
α+2
α

⎞
⎠
.

The result follows by taking expectations with respect to z2m
1 and applying the previous lemmas.
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C. Relative Deviation Margin Bounds – Rademacher Complexity
The following lemma relates the symmetrized expression of Lemma 2 to a Rademacher average quantity.
Lemma 3. Fix 1 < α ≤ 2. Then, the following inequality holds:

P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

R̂S′(g) − R̂S(g)
α

√
1
2
[R̂S′(g) + R̂S(g) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦
≤ 2 P

zm1 ∼Dm,σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σig(zi)

α

√
1
m
[∑mi=1 g(zi) + 1]

> ε

2
√

2

⎤⎥⎥⎥⎥⎥⎦
.

Proof. To upper bound the probability that the symmetrized expression is larger than ε, we begin by introducing a vector of
Rademacher random variables σ = (σ1, σ2, . . . , σm), where σis are independent identically distributed random variables
each equally likely to take the value +1 or −1. Let z1, z2, . . . zm be samples in S and zm+1, zm+2, . . . z2m be samples in S′.
We can then write the above quantity as

P
S,S′∼Dm

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

R̂S′(g) − R̂S(g)
α

√
1
2
[R̂S′(g) + R̂S(g) + 1

m
]
> ε

⎤⎥⎥⎥⎥⎥⎦

= P
z2m1 ∼D2m

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1(g(zm+i) − g(zi))

α

√
1

2m
[∑mi=1(g(zm+i) + g(zi)) + 1]

> ε
⎤⎥⎥⎥⎥⎥⎦

= P
z2m1 ∼D2m,σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σi(g(zm+i) − g(zi))

α

√
1

2m
[∑mi=1(g(zm+i) + g(zi)) + 1]

> ε
⎤⎥⎥⎥⎥⎥⎦
.

If a + b ≥ ε, then either a ≥ ε/2 or b ≥ ε/2, hence

P
z2m1 ∼D2m,σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σi(g(zm+i) − g(zi))

α

√
1

2m
[∑mi=1(g(zm+i) + g(zi)) + 1]

> ε
⎤⎥⎥⎥⎥⎥⎦

≤ P
z2m1 ∼D2m,σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σi(g(zm+i))

α

√
1

2m
[∑mi=1(g(zm+i) + g(zi)) + 1]

> ε

2

⎤⎥⎥⎥⎥⎥⎦

+ P
z2m1 ∼D2m,σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σi(−g(zi))

α

√
1

2m
[∑mi=1(g(zm+i) + g(zi)) + 1]

> ε

2

⎤⎥⎥⎥⎥⎥⎦

= 2 P
z2m1 ∼D2m,σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σig(zi)

α

√
1

2m
[∑mi=1(g(zm+i) + g(zi)) + 1]

> ε

2

⎤⎥⎥⎥⎥⎥⎦

≤ 2 P
z2m1 ∼D2m,σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σig(zi)

α

√
1

2m
[∑mi=1(g(zi)) + 1]

> ε

2

⎤⎥⎥⎥⎥⎥⎦

≤ 2 P
z2m1 ∼D2m,σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σig(zi)

α

√
1
m
[∑mi=1(g(zi)) + 1]

> ε

2
√

2

⎤⎥⎥⎥⎥⎥⎦

= 2 P
zm1 ∼Dm,σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σig(zi)

α

√
1
m
[∑mi=1(g(zi)) + 1]

> ε

2
√

2

⎤⎥⎥⎥⎥⎥⎦
,

where the penultimate inequality follow by observing that if a/c ≥ ε, then a/c′ ≥ ε, for all c′ ≤ c and the last inequality
follows by observing α ≥ 1.

We will use the following bounded difference inequality (van Handel, 2016, Theorem 3.18), which provide us with a finer
tool that McDiarmid’s inequality.
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Lemma 10 ((van Handel, 2016)). Let f(x1, x2, . . . , xn) be a function of n independent samples x1, x2, . . . xn. Let

ci = max
x′i

f(x1, x2, . . . , xn) − f(x1, x2, . . . , xi−1, x
′
i, xi+1, . . . , xn).

Then,

P (f(x1, x2, . . . , xn) ≥ E[f(x1, x2, . . . , xn)] + ε) ≤ exp(− ε2

4∑i c2i
) .

Using the above inequality and a peeling argument, we show the following upper bound expressed in terms of Rademacher
complexities.

Lemma 4. Fix 1 < α ≤ 2 and zm1 ∈ Zm. Then, the following inequality holds:

P
σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σig(zi)

α

√
1
m
[∑mi=1(g(zi)) + 1]

> ε
RRRRRRRRRRR
zm

⎤⎥⎥⎥⎥⎥⎦
≤ 2

⌊log2m⌋
∑
k=0

exp

⎡⎢⎢⎢⎢⎣

m2R̂2
m(Gk(zm1 ))
2k+5

− ε2

64 2k(1−2/α)

m2−2/α

⎤⎥⎥⎥⎥⎦
1
ε≤2[ 2k

m ]1−
1
α
.

Proof. By definition of Gk, the following inequality holds:

sup
g∈Gk(zm1 )

1
m ∑

m
i=1 σig(zi)

α

√
1
m
[∑mi=1(g(zi)) + 1]

≤
2k+1

m

α

√
1
m
[∑mi=1(g(zi)) + 1]

≤
2k+1

m

( 2k

m
)1/α .

Thus, for ε > 2 ( 2k

m
)

1−1/α
, the left-hand side probability is zero. This leads to the indicator function factor in the right-hand

side of the expression. We now prove the non-indicator part.

By the union bound,

P
σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σig(zi)

α

√
1
m
[∑mi=1(g(zi)) + 1]

> ε
RRRRRRRRRRR
zm

⎤⎥⎥⎥⎥⎥⎦
= P

σ

⎡⎢⎢⎢⎢⎢⎣
sup
k

sup
g∈Gk(zm1 )

1
m ∑

m
i=1 σig(zi)

α

√
1
m
[∑mi=1(g(zi)) + 1]

> ε
RRRRRRRRRRR
zm

⎤⎥⎥⎥⎥⎥⎦

≤ ∑
k

P
σ

⎡⎢⎢⎢⎢⎢⎣
sup

g∈Gk(zm1 )

1
m ∑

m
i=1 σig(zi)

α

√
1
m
[∑mi=1(g(zi)) + 1]

> ε
RRRRRRRRRRR
zm

⎤⎥⎥⎥⎥⎥⎦

≤ ∑
k

P
σ

⎡⎢⎢⎢⎢⎢⎣
sup

g∈Gk(zm1 )

1
m
∣∑mi=1 σig(zi)∣

α

√
1
m
[∑mi=1(g(zi)) + 1]

> ε
RRRRRRRRRRR
zm

⎤⎥⎥⎥⎥⎥⎦
(a)
≤ ∑

k

P
σ

⎡⎢⎢⎢⎢⎣
sup

g∈Gk(zm1 )

1

m
∣
m

∑
i=1

σig(zi)∣ > ε
α

√
2k

m

RRRRRRRRRRR
zm

⎤⎥⎥⎥⎥⎦
(b)
≤ ∑

k

2P
σ

⎡⎢⎢⎢⎢⎣
sup

g∈Gk(zm1 )

1

m

m

∑
i=1

σig(zi) > ε
α

√
2k

m

RRRRRRRRRRR
zm

⎤⎥⎥⎥⎥⎦
,

where the (a) follows by observing that for all g ∈ Gk, [∑mi=1(g(zi)) + 1] ≥ 2k/m and (b) follows by observing that for a

particular σ, 1
m ∑

m
i=1 σig(zi) < ε α

√
2k

m
, then for σ′ = −σ, the value would be 1

m ∑
m
i=1 σ

′
ig(zi) > ε α

√
2k

m
. Hence it suffices to

bound

P
σ

⎡⎢⎢⎢⎢⎣
sup

g∈Gk(zm1 )

1

m

m

∑
i=1

σig(zi) > ε
α

√
2k

m

RRRRRRRRRRR
zm

⎤⎥⎥⎥⎥⎦
,

for a given k. We will apply the bounded difference inequality ((van Handel, 2016, Theorem 3.18)), which is a finer
concentration bound than McDiarmid’s inequality in this context, to the random variable supg∈Gk(zm1 )

1
m ∑

m
i=1 σig(zi). For

any σ, let gσ denote the function in Gk(zm1 ) that achieves the supremum. For simplicity, we assume that the supremum
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can be achieved. The proof can be extended to the case when its not achieved. Then, for any two vectors of Rademacher
variables σ and σ′ that differ only in the jth coordinate, the difference of suprema can be bounded as follows:

1

m

m

∑
i=1

σigσ(zi) −
1

m

m

∑
i=1

σ′igσ′(zi) ≤
1

m

m

∑
i=1

σigσ(zi) −
1

m

m

∑
i=1

σ′igσ(zi)

= 1

m
(σj − σ′j)gσ(zj)

≤ 2gσ(zj)
m

.

The sum of the squares of the changes is therefore bounded by

4

m2

m

∑
i=1

g2
σ(zi) ≤

4

m2
sup

g∈Gk(zm1 )

m

∑
i=1

g2(zi) ≤
4

m2
sup

g∈Gk(zm1 )

m

∑
i=1

g(zi) ≤
4

m2
m2k+1 = 2k+3

m
.

Since Eσ [supg∈Gk(zm1 )
1
m ∑

m
i=1 σig(zi)] = R̂zm1

(Gk(zm1 )), by the Lemma 10, for ε ≥
R̂zm

1
(Gk(zm1 ))
α
√

2k/m
, the following holds:

P
σ

⎡⎢⎢⎢⎢⎣
sup

g∈Gk(zm1 )

1

m

m

∑
i=1

σig(zi) > ε
α

√
2k

m

RRRRRRRRRRR
zm

⎤⎥⎥⎥⎥⎦

= P
σ

⎡⎢⎢⎢⎢⎣
sup

g∈Gk(zm1 )

1

m

m

∑
i=1

σig(zi) − R̂m(Gk(zm1 )) > ε α
√

2k

m
− R̂m(Gk(zm1 ))

RRRRRRRRRRR
zm

⎤⎥⎥⎥⎥⎦

≤ exp

⎛
⎜⎜⎜
⎝
−
m [ε α

√
2k

m
− R̂zm1

(Gk(zm1 ))]
2

2k+5

⎞
⎟⎟⎟
⎠
= exp

⎛
⎜⎜⎜⎜⎜
⎝

−
(ε −

R̂zm
1

(Gk(zm1 ))
α
√

2k

m

)
2

32 2k(1−2/α)

m2−2/α

⎞
⎟⎟⎟⎟⎟
⎠

.

Since, −(ε − a)2 ≤ a2 − ε2/2, for ε ≥ R̂m(Gk(zm1 ))
α
√

2k/m
, we can write:

P
σ

⎡⎢⎢⎢⎢⎣
sup

g∈Gk(zm1 )

1

m

m

∑
i=1

σig(zi) > ε
α

√
2k

m

RRRRRRRRRRR
zm

⎤⎥⎥⎥⎥⎦
≤ exp

⎛
⎜⎜⎜
⎝

( R̂m(Gk(zm1 ))
α
√

2k/m
)

2

32 2k(1−2/α)

m2−2/α

⎞
⎟⎟⎟
⎠
⋅ exp

⎛
⎝
− ε2

64 2k(1−2/α)

m2−2/α

⎞
⎠

= exp(m
2R̂2

m(Gk(zm1 ))
2k+5

) ⋅ exp
⎛
⎝
− ε2

64 2k(1−2/α)

m2−2/α

⎞
⎠
.

For ε < R̂m(Gk(zm1 ))
α
√

2k/m
, the bound holds trivially since the right-hand side is at most one.

The following is a margin-based relative deviation bound expressed in terms of Rademacher complexities.

Theorem 2. Fix 1 < α ≤ 2. Then, with probability at least 1 − δ, for all hypothesis h ∈H, the following inequality holds:

R(h) − R̂ρS(h) ≤ 16
√

2 α
√
R(h) [

rm(G) + log logm + log 16
δ

m
]

1− 1
α

.

Proof. Let rkm(G) be the k-peeling-based Rademacher complexity of G defined as follows:

rkm(G) = log E
zm1

[exp(m
2R̂2

m(Gk(zm1 ))
2k+5

)] .
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Combining Lemmas 1, 2, 3, and 4 yields:

P
S∼Dm

⎡⎢⎢⎢⎣
sup
h∈H

R(h) − R̂ρS(h)
α
√
R(h) + τ

> ε
⎤⎥⎥⎥⎦

≤ 8 P
zm1 ∼Dm,σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σig(zi)

α

√
1
m
[∑mi=1(g(zi)) + 1]

> ε

2
√

2

⎤⎥⎥⎥⎥⎥⎦

= 8 E
zm∼Dm

⎡⎢⎢⎢⎢⎢⎣
P
σ

⎡⎢⎢⎢⎢⎢⎣
sup
g∈G

1
m ∑

m
i=1 σig(zi)

α

√
1
m
[∑mi=1(g(zi)) + 1]

> ε

2
√

2

RRRRRRRRRRR
zm

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦

≤ 16 E
zm∼Dm

⎡⎢⎢⎢⎢⎣
∑
k

exp(m
2R̂2

m(Gk(zm1 ))
2k+5

) ⋅ exp
⎛
⎝
− ε2

512 2k(1−2/α)

m2−2/α

⎞
⎠

1
ε≤4

√
2( 2k

m )
1−1/α

⎤⎥⎥⎥⎥⎦

= 16∑
k

E
zm∼Dm

[exp(m
2R̂2

m(Gk(zm1 ))
2k+5

)] ⋅ exp
⎛
⎝
− ε2

512 2k(1−2/α)

m2−2/α

⎞
⎠

1
ε≤4

√
2( 2k

m )
1−1/α

≤ 16(log2m) E
zm∼Dm

[exp(m
2R̂2

m(Gk(zm1 ))
2k+5

)] ⋅ exp
⎛
⎝
− ε2

512 2k(1−2/α)

m2−2/α

⎞
⎠

1
ε≤4

√
2( 2k

m )
1−1/α

≤ 16(log2m) sup
k
er
k
m(G) ⋅ exp

⎛
⎝
− ε2

512 2k(1−2/α)

m2−2/α

⎞
⎠

1
ε≤4

√
2( 2k

m )
1−1/α

Hence, with probability at least 1 − δ,

sup
h∈H

R(h) − R̂ρS(h)
α
√
R(h) + τ

≤ sup
k

min
⎛
⎝

16
√

2
2k(1/2−1/α)

m1−1/α

√
rkm(G) + log logm + log

16

δ
,4

√
2(2k

m
)

1−1/α⎞
⎠
.

For α ≤ 2, the first term in the minimum decreases with k and the second term increases with k. Let k0 be such that

2k0 = 16(sup
k

rkm(G) + log logm + log
16

δ
) = 16(rm(G) + log logm + log

16

δ
) .

Then for any k,

sup
k

min
⎛
⎝

16
√

2
2k(1/2−1/α)

m1−1/α

√
rkm(G) + log logm + log

16

δ
,4

√
2(2k

m
)

1−1/α⎞
⎠

≤ sup
k

max
⎛
⎝

16
√

2
2k0(1/2−1/α)

m1−1/α

√
rkm(G) + log logm + log

16

δ
,4

√
2(2k0

m
)

1−1/α⎞
⎠

≤ max
⎛
⎝

16
√

2
2k0(1/2−1/α)

m1−1/α

√
rm(G) + log logm + log

16

δ
,4

√
2(2k0

m
)

1−1/α⎞
⎠

≤ 4
√

2(2k0

m
)

1−1/α

≤ 16
√

2(
rm(G) + log logm + log 16

δ

m
)

1−1/α

.

Rearranging and taking the limit as τ → 0 yields the result.

Lemma 11. For any x, y, z ≥ 0, if (x − y α
√
x ≤ z), then the following inequality holds:

x ≤ z + 2y α
√
z + (2y) α

α−1 .
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Proof. In view of the assumption, we can write:

x ≤ z + y α
√
x ≤ 2 max(z, y α

√
x),

If z ≥ y α
√
x, then x ≤ 2z. if z ≤ y α

√
x, then x ≤ (2y)α/(α−1). This shows that we have x ≤ 2 max(z, (2y)1−1/α). Plugging

in the right-hand side in the previous inequality and using the sub-additivity of x↦ α
√
x gives:

x ≤ z + y α
√
x ≤ z + y α

√
2 max(z, (2y)α/(α−1)) ≤ z + y α

√
2z + y α

α−1 2
1
α+

1
α−1 .

The lemma follows by observing that 2
1
α ≤ 2 for α ≥ 1.

Corollary 6. Let G be defined as above. Then, with probability at least 1 − δ, for all hypothesis h ∈H and α ∈ (1,2],

R(h) − R̂ρS(h) ≤ 32
√

2 α
√
R(h)

⎡⎢⎢⎢⎢⎣

rm(G) + log 16 logm
δ

m

⎤⎥⎥⎥⎥⎦

1− 1
α

.

Proof. By Theorem 2,

R(h) − R̂ρS(h) ≤ 16 α
√
R(h)(

rm(G) + log logm + log 16
δ

m
)

1−1/α

.

Let B = rm(G)+ log logm+ log 16
δ

. Let αk = 1+e−εk. Let δk = δ/k2. Then, by the union bound, for all αk, with probability
at least 1 − δ,

R(h) − R̂ρS(h) ≤ 16
√

2 αk

√
R(h) (B + 2 log k

m
)

1−1/αk
.

Let αk ≥ α ≥ αk+1. Then (k + 1) ≤ 1
ε

log 1
α−1

. Then,

α
√
R(h)(

B + log 1
α−1

m
)

1−1/α

α
√
R(h)(B + 2 log(k + 1)

m
)

1−1/α

≥ min
⎛
⎝
αk

√
R(h)(B + 2 log(k + 1)

m
)

1−1/αk
, αk+1

√
R(h)(B + 2 log(k + 1)

m
)

1−1/αk+1⎞
⎠
.

Hence, with probability at least 1 − δ, for all α ∈ (1,2],

R(h) − R̂ρS(h) ≤ 16
√

2 α
√
R(h)(

B + 2 log 1
α−1

m
)

1−1/α

.

The lemma follows by observing that

(
B + 2 log 1

α−1

m
)

1−1/α

≤ (B
m

)
1−1/α

+ (2
log 1

α−1

m
)

1−1/α

≤ (B
m

)
1−1/α

+ ( 1

m
)

1−1/α
≤ 2(B

m
)

1−1/α
.
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D. Upper Bounds on Peeling-Based Rademacher Complexity
Lemma 5. If the functions in G take values in {0,1}, then the following upper bounds hold for the peeling-based Rademacher
complexity of G:

rm(G) ≤ 1

8
log E

zm1
[SG(zm1 )].

Proof. By definition,

rm(G) = sup
k

log E
zm1

[exp(m
2R̂2

m(Gk(zm1 ))
2k+5

)] .

For any g ∈ Gk(zm1 ), since g takes values in [0,1], we have:
m

∑
i=1

g2(zi) ≤
m

∑
i=1

g(zi) ≤
2k+1

m
.

Thus, by Massart’s lemma and Jensen’s inequality, the following inequality holds:

R̂m(Gk(zm1 )) ≤
√

2 log E
zm1

[∣Gk(zm1 )∣]
√

2k+1

m

≤
√

2 log E
zm1

[SG(zm1 )]
√

2k+1

m2
.

Hence,

rm(G) ≤ sup
k

1

23
log E

zm1
[SG(zm1 )] = 1

8
log E

zm1
[SG(zm1 )].

Lemma 6. For a set of hypotheses G,

rm(G) ≤ sup
0≤k≤log2(m)

log[ E
zm1 ∼Dm

[exp{fk(zm1 ,G)}]].

where

fk(zm1 ,G)=
1

16
[1 + ∫

1

1
√

m

logN2(Gk(zm1 ),
√

2k

m
ε, zm1 )dε].

Proof. By Dudley’s integral,

R̂m(Gk(zm1 )) = min
τ
τ + ∫

2k/m

ε=τ

√
logN2(Gk(zm1 ), ε)

m
dε.

Choosing τ = 2k/2

m
and changing variables from ε to ε 2k/2√

m
yields,

R̂m(Gk(zm1 )) = 2k/2

m
+ 2k/2

m
∫

1

ε=1/√m

√
logN2(Gk(zm1 ), ε

√
2k/m)dε.

Using (a + b)2 ≤ 2a2 + 2b2 and the Cauchy-Schwarz inequality yields,

m2R̂2
m(Gk(zm1 ))
2k+5

≤ 1

16
(1 + (∫

1

ε=1/√m

√
logN2(Gk(zm1 ), ε

√
2k/m)dε)

2

)

≤ 1

16
(1 + ∫

1

ε=1/√m
logN2(Gk(zm1 ), ε

√
2k/m)dε) .

Recall that the worst case Rademacher complexity is defined as follows.

R̂max
m (H) = sup

zm1

R̂m(H)
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E. Unbounded Margin Losses

Theorem 3. Fix ρ ≥ 0. Let 1 < α ≤ 2, 0 < ε ≤ 1, and 0 < τ α−1α < ε α
α−1 . For any loss function L (not necessarily bounded)

and hypothesis set H such that Lα(h) < +∞ for all h ∈H,

P [sup
h∈H

L(h) − L̂S(h) > Γτ(α, ε) ε α
√
Lα(h) + τ + ρ] ≤ P

⎡⎢⎢⎢⎣
sup

h∈H,t∈R

P[L(h, z) > t] − P̂[L(h, z) > t − ρ]
α
√
P[L(h, z) > t] + τ

> ε
⎤⎥⎥⎥⎦
,

where Γτ(α, ε) = α−1
α

(1 + τ) 1
α + 1

α
( α
α−1

)α−1 (1 + (α−1
α

)α τ 1
α ) 1

α [1 + log(1/ε)
( α
α−1

)α−1
]
α−1
α

.

Proof. Fix 1 < α ≤ 2 and ε > 0 and S assume that for any h ∈H and t ≥ 0, the following holds:

P[L(h, z) > t] − P̂[L(h, z) > t − ρ]
α
√
P[L(h, z) > t] + τ

≤ ε. (12)

Let t1 = α−1
α

α
√
Lα(h) + τ [ 1

ε
]

1
α−1 . We show that this implies that for any h ∈H , L(h)− L̂S(h) ≤ Γτ(α, ε)ε α

√
Lα(h) + τ +

min(ρ, t1). By the properties of the Lebesgue integral, we can write

L(h) = Ez∼D[L(h, z)] = ∫
+∞

0
P[L(h, z) > t]dt.

Similarly, we can write

L̂(h) = Ez∼D̂[L(h, z)] = ∫
+∞

0
P̂[L(h, z) > u]du

= ∫
+∞

ρ
P̂[L(h, z) > t − ρ]dt

= ∫
+∞

0
P̂[L(h, z) > t − ρ]dt − ∫

ρ

0
P̂[L(h, z) > t − ρ]dt

and Lα(h) = ∫
+∞

0
P[Lα(h, z) > t]dt = ∫

+∞

0
αtα−1 P[L(h, z) > t]dt.

To bound L(h) − L̂(h), we simply bound P[L(h, z) > t] − P̂[L(h, z) > t − ρ] by P[L(h, z) > t] for large values of t, that
is t > t1, and use inequality (12) for smaller values of t:

= L(h) − L̂(h)

= ∫
+∞

0
P[L(h, z) > t] − P̂[L(h, z) > t − ρ]dt + ∫

ρ

0
P̂[L(h, z) > t − ρ]dt

≤ ∫
+∞

0
P[L(h, z) > t] − P̂[L(h, z) > t − ρ]dt + ρ

≤ ∫
t1

0
ε α
√
P[L(h, z) > t] + τ dt + ∫

+∞

t1
P[L(h, z) > t]dt +min(t1, ρ),

where the last two inequalities use the fact that L is non-negative. The rest of the proof is similar to (Cortes et al., 2019,
Theorem 3).

Corollary 9. Let ε < 1, 1 < α ≤ 2. and hypothesis set H such that Lα(h) < +∞ for all h ∈H,

L(h) − L̂S(h) ≤ min
ρ≤r

γ α
√
Lα(h)

¿
ÁÁÀ logE[N∞(L(H), ρ

2
, x2m

1 )] + log 1
δ
+ log log 2r

ρ

m
2(α−1)
α

+ ρ,

where γ = Γ0

⎛
⎝
α,

√
logE[N∞(L(H), ρ

2
,x2m

1 )]+log 1
δ+log log 2r

ρ

m
2(α−1)
α

⎞
⎠
= O(logm).

The proof of Corollary 9 is similar to that of Corollary 3 and is omitted.
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F. Applications
F.1. Algorithms

As discussed in Section 5.2, our results can help derive tighter guarantees for margin-based algorithms such as Support
Vector Machines (SVM) (Cortes and Vapnik, 1995) and other algorithms such as those based on neural networks that can be
analyzed in terms of their margin. But, another potential application of our learning bounds is to design new algorithms,
either by seeking to directly minimize the resulting upper bound, or by using the bound as an inspiration for devising a new
algorithm.

In this sub-section, we briefly initiate this study in the case of linear hypotheses. We describe an algorithm seeking to
minimize the upper bound of Corollary 4 (or Corollary 7) in the case of linear hypotheses. Let R be the radius of the sphere
containing the data. Then, the bound of the corollary holds with high probability for any function h∶x↦w ⋅ x with w ∈ Rd,
∥w∥2 ≤ 1, and for any ρ > 0 for d = (R/ρ)2. Ignoring lower order terms and logarithmic factors, the guarantee suggests
seeking to choose w with ∥w∥ ≤ 1 and ρ > 0 to minimize the following:

R̂ρS(w) + λ
ρ

√
R̂ρS(w),

where we denote by R̂ρS(w) the empirical margin loss of h∶x ↦ w ⋅ x. Thus, using the so-called ramp loss Φρ∶u ↦
min(1,max(0,1 − u

ρ
)), this suggests choosing w with ∥w∥ ≤ 1 and ρ > 0 to minimize the following:

1

m

m

∑
i=1

Φρ(yiw ⋅ xi) +
λ

ρ

¿
ÁÁÀ 1

m

m

∑
i=1

Φρ(yiw ⋅ xi).

This optimization problem is closely related to that of SVM but it is distinct. The problem is non-convex, even if Φρ is
upper bounded by the hinge loss. The solution may also not coincide with that of SVM in general. As an example, when the
training sample is linearly separable, any pair (w∗, ρ∗) with a weight vector w∗ defining a separating hyperplane and ρ∗

sufficiently large is solution, since we have ∑mi=1 Φρ∗(yiw∗ ⋅ xi) = 0. In contrast, for (non-separable) SVM, in general the
solution may not be a hyperplane with zero error on the training sample, even when the training sample is linearly separable.
Furthermore, the SVM solution is unique (Cortes and Vapnik, 1995).

In the above, we used the ramp loss since it is closest to the hinge loss used in SVM and it has been shown recently that
a slightly modified version of the ramp loss can also benefit from favorable adversarial loss guarantees in the context of
linear hypotheses (Bao et al., 2020). Furthermore, it can of course be upper-bounded by the hinge loss. We note that our
margin-based results hold for several loss functions highlighted in Figure 1.

F.2. Margin-Based Bounds for Known Hypothesis Sets

Ensembles of predictors in base hypothesis set H: let d be the VC-dimension of H and consider the family of ensembles
F = {x↦ ∑pk=1wkhk(x)∶hk ∈H,wk ≥ 0,∑pk=1wk = 1}. The most well known existing margin bound for ensembles such
as AdaBoost in terms of the VC-dimension of the base hypothesis given by Schapire et al. (1997) is:

R(h) ≤ R̂ρS(h) + c
′√β′m, (13)

where c′ is some universal constant and where β′m = Õ ( (d/ρ)2
m

). Gao and Zhou (2013) showed that

R(h) ≤ R̂ρS(h) + 2
√
R̂ρS(h)β′′m + β′′m, (14)

where β′′m = Õ ( (d/ρ)2
m

). However, their proof technique depends crucially on the fact that the underlying hypothesis set
is an ensemble of predictors. We can directly apply our relative deviation margin bounds to recover their result, up to
logarithmic factors. The following upper bound on the fat-shattering dimension holds (Bartlett and Shawe-Taylor, 1998):
fatρ(F) ≤ c(d/ρ)2 log(1/ρ), for some universal constant c. Plugging in this upper bound in the bound of Corollary 4 yields
the following:

R(h) ≤ R̂ρS(h) + 2
√
R̂ρS(h)βm + βm, (15)
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with βm = Õ ( (d/ρ)2
m

). The margin bound in (15) is thus more favorable than (13) and comparable to (14).

Feed-forward neural networks of depth d: let H0 = {x↦ xi∶ i ∈ {0,1, . . . n},x ∈ [−1,1]n} ∪ {0,1} and

Hi =
⎧⎪⎪⎨⎪⎪⎩
σ
⎛
⎝ ∑
h∈∪j<iHj

w ⋅ h
⎞
⎠
∶ ∥w∥1 ≤ R

⎫⎪⎪⎬⎪⎪⎭

for i ∈ [d], where σ is a µ-Lipschitz activation function. Then, the following upper bound holds for the fat-shattering

dimension of H (Bartlett and Shawe-Taylor, 1998): fatρ(Hd) ≤ cd
2
(Rµ)d(d+1)
ρ2d

logn. Plugging in this upper bound in the
bound of Corollary 4 gives the following:

R(h) ≤ R̂ρS(h) + 2
√
R̂ρS(h)βm + βm, (16)

with βm = Õ ( c
d2(Rµ)d(d+1)/ρ2d

m
). In comparison, the best existing margin bound for neural networks by (Bartlett and

Shawe-Taylor, 1998, Theorem 1.5 , Theorem 1.11) is

R(h) ≤ R̂ρS(h) + c
′√β′m, (17)

where c′ is some universal constant and where β′m = Õ ( c
d2(Rµ)d(d+1)/ρ2d

m
). The margin bound in (16) is thus more favorable

than (17).
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