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Abstract
We present a new discriminative technique for
the multiple-source adaptation (MSA) problem.
Unlike previous work, which relies on density
estimation for each source domain, our solution
only requires conditional probabilities that can be
straightforwardly accurately estimated from un-
labeled data from the source domains. We give a
detailed analysis of our new technique, including
general guarantees based on Rényi divergences,
and learning bounds when conditional Maxent is
used for estimating conditional probabilities for a
point to belong to a source domain. We show that
these guarantees compare favorably to those that
can be derived for the generative solution, using
kernel density estimation. Our experiments with
real-world applications further demonstrate that
our new discriminative MSA algorithm outper-
forms the previous generative solution as well as
other domain adaptation baselines.

1. Introduction
Learning algorithms are applied to an increasingly broad
array of problems. For some tasks, large amounts of labeled
data are available to train very accurate predictors. But, for
most new problems or domains, no such supervised infor-
mation is at the learner’s disposal. Furthermore, labeling
data is costly since it typically requires human inspection
and agreements between multiple expert labelers. Can we
leverage past predictors learned for various domains and
combine them to devise an accurate one for a new task? Can
we provide guarantees for such combined predictors? How
should we define that combined predictor? These are some
of the challenges of multiple-source domain adaptation.

The problem of domain adaptation from multiple sources
admits distinct instances defined by the type of source in-
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formation available to the learner, the number of source
domains, and the amount of labeled and unlabeled data
available from the target domain (Mansour et al., 2008;
2009a; Hoffman et al., 2018; Pan and Yang, 2010; Muandet
et al., 2013; Xu et al., 2014; Hoffman et al., 2012; Gong
et al., 2013a;b; Zhang et al., 2015; Ganin et al., 2016; Tzeng
et al., 2015; Motiian et al., 2017b;a; Wang et al., 2019b;
Konstantinov and Lampert, 2019; Liu et al., 2015; Saito
et al., 2019; Wang et al., 2019a). The specific instance we
are considering is one where the learner has access to multi-
ple source domains and where, for each domain, they only
have at their disposal a predictor trained for that domain and
some amount of unlabeled data. No other information about
the source domains, in particular no labeled data is avail-
able. The target domain or distribution is unknown but it is
assumed to be in the convex hull of the source distributions,
or relatively close to that. The multiple-source adaptation
(MSA) problem consists of combining relatively accurate
predictors available for each source domain to derive an
accurate predictor for any such new mixture target domain.
This problem was first theoretically studied by Mansour
et al. (2008; 2009a) and subsequently by Hoffman et al.
(2018; 2021), who further provided an efficient algorithm
for this problem and reported the results of a series of exper-
iments with that algorithm and favorable comparisons with
alternative solutions.

As pointed out by these authors, this problem arises in a
variety of different contexts. In speech recognition, each
domain may correspond to a different group of speakers and
an acoustic model learned for each domain may be available.
Here, the problem consists of devising a general recognizer
for a broader population, a mixture of the source domains
(Liao, 2013). Similarly, in object recognition, there may
be accurate models trained on different image databases
and the goal is to come up with an accurate predictor for a
general domain, which is likely to be close to a mixture of
these sources (Torralba and Efros, 2011). A similar situation
often appears in sentiment analysis and various other natural
language processing problems where accurate predictors are
available for some source domains such as TVs, laptops
and CD players, each previously trained on labeled data,
but no labeled data or predictor is at hand for the broader
category of electronics, which can be viewed as a mixture of
the sub-domains (Blitzer et al., 2007; Dredze et al., 2008).
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An additional motivation for this setting of multiple-source
adaptation is that often the learner does not have access to
labeled data from various domains for legitimate reasons
such as privacy or storage limitation. This may be for ex-
ample labeled data from various hospitals, each obeying
strict regulations and privacy rules. But, a predictor trained
on the labeled data from each hospital may be available.
Similarly, a speech recognition system trained on data from
some group may be available but the many hours of source
labeled data used to train that model may not be accessi-
ble anymore, due to the very large amount of disk space it
requires. Thus, in many cases, the learner cannot simply
merge all source labeled data to learn a predictor.

Main contributions. In Section 3, we present a new dis-
criminative technique for the MSA problem, Previous work
showed that a distribution-weighted combination of source
predictors benefited from favorable theoretical guarantees
(Mansour et al., 2008; 2009a; Hoffman et al., 2018; 2021).
However, that generative solution requires an accurate den-
sity estimation for each source domain, which, in general,
is a difficult problem. Instead, our solution only needs con-
ditional probabilities, which is easier to accurately estimate
from unlabeled data from the source domains. We also de-
scribe an efficient DC-programming optimization algorithm
for determining the solution of our discriminative technique,
which is somewhat similar to but distinct from that of previ-
ous work, since it requires a new DC-decomposition.

In Section 4, we give a new and detailed theoretical analysis
of our technique, starting with new general guarantees that
depend on the Rényi divergences between the target distri-
bution and mixtures of the true source distributions, instead
of mixtures of estimates of those distributions (Section 3).
We then present finite sample learning bounds for our new
discriminative solution when conditional Maxent is used for
estimating conditional probabilities. We also give a new and
careful analysis of the previous generative solution, when
using kernel density estimation, including the first finite
sample generalization bound for that technique. We show
that the theoretical guarantees for our discriminative solu-
tion compare favorably to those derived for the generative
solution in several ways. While we benefit from some of
the analysis in previous work (Hoffman et al., 2018; 2021),
our main proofs and techniques are new and non-trivial.

We further report the results of several experiments with
our discriminative algorithm both with a synthetic dataset
and several real-world applications (Section 5). Our results
demonstrate that, in all tasks, our new solution outperforms
the previous work’s generative solution, which had been
shown itself to surpass empirically the accuracy of other do-
main adaptation baselines (Hoffman et al., 2018). They also
indicate that our discriminative technique requires fewer
samples to achieve a high accuracy than the previous solu-

tion, which matches our theoretical analysis.

Related work. There is a very broad literature dealing with
single-source and multiple-source adaptation with distinct
scenarios. Here, we briefly discuss the most related pre-
vious work, in addition to (Mansour et al., 2008; 2009a;
Hoffman et al., 2018), and defer a more extensive discus-
sion to Appendix A. The idea of using a domain classifier to
combine domain-specific predictors has been suggested in
the past. Jacobs et al. (1991) and Nowlan and Hinton (1991)
considered an adaptive mixture of experts model, where
there are multiple expert networks, as well as a gating net-
work to determine which expert to use for each input. The
learning method consists of jointly training the individual
expert networks and the gating network. In our scenario,
no labeled data is available, expert networks are pre-trained
separately from the gating network, and our gating network
admits a specific structure. Hoffman et al. (2012) learned
a domain classifier via SVM on all source data combined,
and predicted on new test points with the weighted sum of
domain classifier’s scores and domain-specific predictors.
Such linear combinations were later shown by Hoffman et al.
(2018) to perform poorly in some cases and not to benefit
from strong guarantees. More recently, Xu et al. (2018)
deployed multi-way adversarial training to multiple source
domains to obtain a domain discriminator, and also used a
weighted sum of discriminator’s scores and domain-specific
predictors to make predictions. Zhao et al. (2018) consid-
ered a scenario where labeled samples are available, unlike
our scenario, and learned a domain classifier to approximate
the discrepancy term in a MSA generalization bound, and
proposed the MDAN model to minimize the bound.

We start with a description of the learning scenario we con-
sider and the introduction of notation and definitions rele-
vant to our analysis (Section 2).

2. Learning Scenario
We consider the MSA problem in the general stochastic
scenario studied by Hoffman et al. (2018) and adopt the
same notation.

Let X denote the input space, Y the output space. We will
identify a domain with a distribution over X × Y. There
are p source domains D1, . . . ,Dp. As in previous work,
we adopt the assumption that the domains share a com-
mon conditional probability D(·|x) and thus Dk(x, y) =
Dk(x)D(y|x), for all (x, y) ∈ X × Y and k ∈ [p]. This is
a natural assumption in many common machine learning
tasks. For example, in image classification, the label of a
picture as a dog may not depend much on whether the pic-
ture is from a personal collection or a more general dataset.
Nevertheless, as discussed in Hoffman et al. (2018), this
condition can be relaxed and, here too, all our results can
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be similarly extended to a more general case where the con-
ditional probabilities vary across domains. Since not all k
conditional probabilities are equally accurate on the single
x, better target accuracy can be obtained by combining the
Dk(x)s in an x-dependent way.

For each domain Dk, k ∈ [p], the learner has access to some
unlabeled data drawn i.i.d. from the marginal distribution
Dk over X, as well as to a predictor hk. We consider two
types of predictor functions hk, and their associated loss
functions ` under the regression model (R) and the probabil-
ity model (P) respectively:

hk : X→ R ` : R× Y→ R+ (R)
hk : X× Y→ [0, 1] ` : [0, 1]→ R+ (P)

In the probability model, the predictors are assumed to be
normalized:

∑
y∈Y h(x, y) = 1 for all x ∈ X. We will

denote by L(D, h) the expected loss of a predictor h with
respect to the distribution D:

L(D, h) = E
(x,y)∼D

[
`(h(x), y)

]
(R),

L(D, h) = E
(x,y)∼D

[
`(h(x, y))

]
(P).

Our theoretical results are general and only assume that
the loss function ` is convex, continuous. But, in the re-
gression model, we will be particularly interested in the
squared loss `(h(x), y) = (h(x)− y)2 and, in the probabil-
ity model, the cross-entropy loss (or log-loss) `(h(x, y)) =
− log h(x, y). We will also assume that each source pre-
dictor hk is ε-accurate on its domain for some ε > 0, that
is, ∀k ∈ [p],L(Dk, hk) ≤ ε. Our assumption that the
loss of hk is bounded, implies that `(hk(x), y) ≤ M or
`(hk(x, y)) ≤M , for all (x, y) ∈ X× Y and k ∈ [p].

Let ∆ = {λ = (λ1, . . . , λp) :
∑p
k=1 λk = 1, λk ≥ 0}

denote the simplex in Rp, and let D = {Dλ : Dλ =∑p
k=1 λkDk, λ ∈ ∆} be the family of all mixtures of the

source domains, that is the convex hull of Dks.

Since not all k source predictors are necessarily equally
accurate on the single input x, better target accuracy can
be obtained by combining the hk(x)s dependent on x. The
MSA problem for the learner is exactly how to combine
these source predictors hk to design a predictor h with small
expected loss for any unknown target domain DT that is an
element of D, or any unknown distribution DT close to D.

Our theoretical guarantees are presented in terms of Rényi
divergences, a broad family of divergences between distri-
butions generalizing the relative entropy. The Rényi Diver-
gence is parameterized by α ∈ [0,+∞] and denoted by Dα.
The α-Rényi Divergence between two distributions P and
Q is defined by:

Dα(P ‖ Q) =
1

α− 1
log

[ ∑
(x,y)∈X×Y

P(x, y)

[
P(x, y)

Q(x, y)

]α−1
]
,

where, for α ∈ {0, 1,+∞}, the expression is defined by
taking the limit (Arndt, 2004). For α = 1, the Rényi diver-
gence coincides with the relative entropy. We will denote
by dα(P ‖ Q) the exponential of Dα(P ‖ Q):

dα(P ‖ Q) =

[ ∑
(x,y)∈X×Y

Pα(x, y)

Qα−1(x, y)

] 1
α−1

.

Appendix B provides more background on the definition
and the main properties of Rényi divergences.

In the following, to alleviate the notation, we abusively
denote the marginal distribution of a distribution Dk defined
over X× Y in the same way and rely on the arguments for
disambiguation, e.g. Dk(x) vs. Dk(x, y).

3. Discriminative MSA solution
In this section we present our new solution for the MSA
problem and give an efficient algorithm for determining its
parameter. But first we describe the previous solution.

3.1. Previous Generative Technique

In previous work, it was shown that, in general, standard con-
vex combinations of source predictors can perform poorly
(Mansour et al., 2008; 2009a; Hoffman et al., 2018): in
some problems, even when the source predictors have zero
loss, no convex combination can achieve a loss below some
constant for a uniform mixture of the source distributions.
Instead, a distribution-weighted solution was proposed to
the MSA problem. That solution relies on density estimates
D̂k for the marginal distributions x 7→ Dk(x), which are
obtained via techniques such as kernel density estimation,
for each source domain k ∈ [p] independently.

Given such estimates, the solution is defined as follows in
the regression and probability models, for all (x, y) ∈ X×Y:

ĥz(x) =

p∑
k=1

zkD̂k(x)∑p
j=1 zjD̂j(x)

hk(x), (1)

ĥz(x, y) =

p∑
k=1

zkD̂k(x)∑p
j=1 zjD̂j(x)

hk(x, y), (2)

with z ∈ ∆ is a parameter determined via an optimization
problem such that hz admits the same loss for all Dk. We
are assuming here that the estimates verify D̂k(x) > 0 for
all x ∈ X and therefore that the denominators are positive.
Otherwise, a small positive number η > 0 can be added to
the denominators of the solutions, as in previous work. We
are adopting this assumption only to simplify the presenta-
tion. For the probability model, the joint estimates D̂k(x, y)
used in (Hoffman et al., 2018) can be equivalently replaced
by marginal ones D̂k(x) since all domain distributions share
the same conditional probabilities.
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Since this previous work relies on density estimation, we
will refer to it as a generative solution to the MSA problem,
in short, GMSA. The technique benefits from the following
general guarantee (Hoffman et al., 2018), where we extend
the Rényi divergences to divergences between a distribution
D and a set of distributions D and write Dα(D ‖ D) =
minD∈D Dα(D ‖ D).
Theorem 1. For any δ > 0, there exists a z ∈ ∆ such that
the following inequality holds for any α > 1 and arbitrary
target distribution DT :

L(DT , ĥz) ≤
[
(ε̂+ δ) dα(DT ‖ D̂)

]α−1
α

M
1
α ,

where ε̂ = maxk∈[p]

[
ε dα(D̂k ‖ Dk)

]α−1
α

M
1
α , and D̂ ={∑p

k=1 λkD̂k : λ ∈ ∆
}

.

The bound depends on the quality of the density estimates
via the Rényi divergence between D̂k and Dk, for each
k ∈ [p], and the closeness of the target distribution DT to
the mixture family D̂, a bound we elaborate on further in Ap-
pendix C.1 and express in terms of the closeness of the target
distribution DT to the true family D. For α = +∞, for
DT close to D̂ and accurate estimates of Dk, dα(DT ‖ D̂)

and dα(D̂k ‖ Dk) are close to one and the upper bound is
as a result close to ε. That is, with good density estimates,
the error of hz is no worse than that of the source predic-
tors hks. However, obtaining good density estimators is a
difficult problem and in general requires large amounts of
data. In the following section, we provide a new and less
data-demanding solution based on conditional probabilities.

3.2. New Discriminative Technique

Let D denote the distribution over X defined by D(x) =
1
p

∑p
k=1 Dk(x). We will assume and can enforce that D

is the distribution according to which we can expect to
receive unlabeled samples from the p sources to train our
discriminator. We will denote by Q the distribution over
X× [p] defined by Q(x, k) = 1

pDk(x), whose X-marginal
coincides with D: Q(x) = D(x).

Our new solution relies on estimates Q̂(k|x) of the condi-
tional probabilities Q(k|x) for each domain k ∈ [p], that is
the probability that point x belongs to source k. Given such
estimates, our new solution to the MSA problem is defined
as follows in the regression and probability models, for all
(x, y) ∈ X× Y:

ĝz(x) =

p∑
k=1

zkQ̂(k|x)∑p
j=1 zjQ̂(j|x)

hk(x), (3)

ĝz(x, y) =

p∑
k=1

zkQ̂(k|x)∑p
j=1 zjQ̂(j|x)

hk(x, y), (4)

with z ∈ ∆ being a parameter determined via an optimiza-
tion problem. As for the GMSA solution, we are assuming
here that the estimates verify Q̂(k|x) > 0 for all x ∈ X and
therefore that the denominators are positive. Otherwise, a
small positive number η > 0 can be added to the denomina-
tors of the solutions, as in previous work. We are adopting
this assumption only to simplify the presentation. Note that
in the probability model, ĝz(x, y) is normalized since hks
are normalized:

∑
y∈Y gz(x, y) = 1 for all x ∈ X.

Since our solution relies on estimates of conditional prob-
abilities of domain membership, we will refer to it as a
discriminative solution to the MSA problem, DMSA in short.

Observe that, by the Bayes’ formula, the conditional proba-
bility estimates Q̂(k|x) induce density estimates D̂k(x) of
the marginal distributions x 7→ Dk(x):

D̂k(x) =
Q̂(k|x)D(x)

Q̂(k)
(5)

where Q̂(k) =
∑
x∈X Q̂(k|x)D(x). For an exact estimate,

that is Q̂(k|x) = Q(k|x), the formula holds with Q̂(k) =∑
x∈X Q(x, k) = 1

p . In light of this observation, we can
establish the following connection between the GMSA and
DMSA solutions.
Proposition 1. Let ĥz be the GMSA solution using the es-
timates D̂k defined in (5). Then, for any z ∈ ∆, we have
ĥz = ĝz′ with z′k = zk/Q̂(k)∑p

j=1 zj/Q̂(j)
, for all k ∈ [p].

Proof. First consider the regression model. By definition of
the GMSA solution, we can write:

ĥz(x) =

p∑
k=1

zk
Q̂(k|x)D(x)

Q̂(k)∑p
j=1 zj

Q̂(j|x)D(x)

Q̂(j)

hk(x)

=

p∑
k=1

zk
Q̂(k)

Q̂(k|x)∑p
j=1

zj

Q̂(j)
Q̂(j|x)

hk(x) = gz′(x).

The probability model’s proof is syntactically the same.

In view of this result, the DMSA technique benefits from a
guarantee similar to GMSA (Theorem 1), where for DMSA the
density estimates are based on the conditional probability
estimates Q̂(k|x).
Theorem 2. For any δ > 0, there exists a z ∈ ∆ such that
the following inequality holds for any α > 1 and arbitrary
target distribution DT :

L(DT , ĝz) ≤
[
(ε̂+ δ) dα(DT ‖ D̂)

]α−1
α

M
1
α ,

where ε̂ = maxk∈[p]

[
ε dα(D̂k ‖ Dk)

]α−1
α

M
1
α , and D̂ ={∑p

k=1 λkD̂k : λ ∈ ∆
}

, with D̂k(x, y) = Q̂(k|x)D(x,y)

Q̂(k)
.
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3.3. Optimization Algorithm

By Proposition 1, to determine the parameter z′ guaran-
teeing the bound of Theorem 2 for ĝz′ , it suffices to de-
termine the parameter z that yields the guarantee of Theo-
rem 1 for ĥz , when using the estimates D̂k = Q̂(k|x)D(x)

Q̂(k)
.

As shown by (Hoffman et al., 2018), the parameter z
is the one for which ĥz admits the same loss for all
source domains, that is L(D̂k, ĥz) = L(D̂k′ , ĥz) for all
k, k′ ∈ [p], where D̂k is the joint distribution derived

from D̂k: D̂k(x, y) = D̂k(x)D(y|x) = Q̂(k|x)D(x,y)

Q̂(k)
, with

D(x, y) = 1
p

∑p
k=1 Dk(x, y). Note, D̂(x, y) is abusively

denoted the same way as D̂(x) to avoid the introduction of
additional notation, but the difference in arguments should
suffice to help distinguish the two distributions.

Thus, using ĝz′ = ĥz , to find z, and subsequently z′, it
suffices to solve the following optimization problem in z:

min
z∈∆

max
k∈[p]

L(D̂k, ĝz′)− L(D̂z, ĝz′), (6)

where z′k = zk/Q̂(k)∑p
j=1 zj/Q̂(j)

and D̂z =
∑p
k=1 zkD̂k. As

in previous work, this problem can be cast as a DC-
programming (difference-of-convex) problem and solved
using the DC algorithm (Tao and An, 1997; 1998; Sriperum-
budur and Lanckriet, 2012). However, we need to derive
a new DC-decomposition here, both for the regression and
the probability model, since the objective is distinct from
that of previous work. A detailed description of that DC-
decomposition and its proofs, as well as other details of the
algorithm are given in Appendix D.

4. Learning Guarantees
In this section, we prove favorable learning guarantees for
the predictor ĝz returned by DMSA, when using conditional
maximum entropy to derive domain estimates Q(k|x). We
first extend Theorem 1 and present a general theoretical
guarantee which holds for DMSA and GMSA (Section 4.1).
Next, in Section 4.2, we give a generalization bound for
conditional Maxent and use that to prove learning guaran-
tees for DMSA. We then analyze GMSA using kernel density
estimation (Section 4.3), and show that DMSA benefits from
significantly more favorable learning guarantees than GMSA.

4.1. General Guarantee

Theorem 1 gives a guarantee in terms of the Rényi diver-
gence of DT and D̂, which depends on the empirical esti-
mates. Instead, we derive a bound in terms of the Rényi
divergence of DT and D and, as with Theorem 1, the Rényi
divergences between the distributions Dk and their estimates
D̂k.

To do so, we use an inequality that can be viewed as a
triangle inequality result for Rényi divergences (Hoffman
et al., 2021).

Proposition 2. Let P, Q, R be three distributions on X× Y.
Then, for any γ ∈ (0, 1) and any α > γ, the following
inequality holds:[
dα(P ‖ Q)

]α−1

≤
[
dα
γ

(P ‖ R)
]α−γ[

dα−γ
1−γ

(R ‖ Q)
]α−1

.

The proof is given in Appendix B. This result is used in
combination with Theorem 1 to establish the following.

Theorem 3. For any δ > 0, there exists z ∈ ∆ such that
the following inequality holds for any α > 1 and arbitrary
target distribution DT :

L(DT , ĝz) ≤ [(ε̂+ δ) d̂′]
α−1
α [d2α(DT ‖ D)]

2α−1
2α M

1
α ,

where ε̂ = (εd̂)
α−1
α M

1
α , d̂ = maxk∈[p] dα(D̂k ‖ Dk), and

d̂′ = maxk∈[p] d2α−1(Dk ‖ D̂k), with D̂k = Q̂(k|x)D(x)

Q̂(k)
.

The proof is given in Appendix C.1. The theorem holds
similarly for GMSA with D̂k a direct estimate of Dk (Theo-
rem 9, Appendix E.2). This provides a strong performance
guarantee for GMSA or DMSA when the target distribution DT

is close to the family of mixtures of the source distributions
Dk, and when D̂k is a good estimate of Dk.

4.2. Conditional Maxent

The distribution D = 1
p

∑p
k=1 Dk over X × Y naturally

induces the distribution Q over X× [p] defined for all (x, k)
by Q(x, k) = 1

pDk(x). Let S = ((x1, k1), . . . , (xm, km))
be a sample of m labeled points drawn i.i.d. from Q.

Let Φ: X× [p]→ RN be a feature mapping with bounded
norm, ‖Φ‖ ≤ r, for some r > 0. Then, the optimization
problem defining the solution of conditional Maxent (or
multinomial logistic regression) with the feature mapping Φ
is given by

min
w∈RN

µ‖w‖2 − 1

m

m∑
i=1

log pw[ki|xi], (7)

where pw is defined by pw[k|x] = 1
Z(x) exp(w · Φ(x, k)),

with Z(x) =
∑
k∈[p] exp(w · Φ(x, k)), and where µ ≥ 0

is a regularization parameter. Then, conditional Maxent
benefits from the following theoretical guarantee.

Theorem 4. Let ŵ be the solution of problem (7) andw∗ the
population solution of the conditional Maxent optimization
problem:

w∗ = argmin
w∈RN

µ‖w‖2 − E
(x,k)∼Q

[
log pw[k|x]

]
.
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Then, for any δ > 0, with probability at least 1− δ, for any
(x, k) ∈ X× [p], the following inequality holds:∣∣∣log pŵ[k|x]− log pw∗ [k|x]

∣∣∣ ≤ 2
√

2r2

µ
√
m

[
1 +

√
log(1/δ)

]
.

The theorem shows that the pointwise log-loss of the condi-
tional Maxent solution pŵ is close to that of the best-in-class
pw∗ modulo a term in O(1/

√
m) that does not depend on

the dimension of the feature space. The proof is given in
Appendix C.2.

4.3. Comparison of the Guarantees for DMSA and GMSA

We now use Theorem 3 and the bound of Theorem 4 to
give a theoretical guarantee for DMSA used with conditional
Maxent. We show that it is more favorable than a guarantee
for GMSA using kernel density estimation.

Theorem 5 (DMSA). There exists z ∈ ∆ such that for any
δ > 0, with probability at least 1−δ the following inequality
holds DMSA used with conditional Maxent, for an arbitrary
target mixture DT :

L(DT , ĝz) ≤ ε p e
6
√

2r2

µ
√
m

[
1+
√

log(1/δ)
]
d∗ d′∗,

with d∗ = sup
x∈X

d∞ (Q∗[·|x] ‖ Q(·|x))

d′∗ = sup
x∈X

d2
∞ (Q(·|x) ‖ Q∗[·|x]) ,

where Q∗(·|x) = pw∗ [·|x] is the population solution of
conditional Maxent problem (statement of Theorem 4).

The proof is given in Appendix C.3. It is based on a new
and careful analysis of the Rényi divergences, leveraging
the guarantee of Theorem 4. More refined versions of these
results with alternative Rényi divergence parameters and
with expectations instead of suprema in the definitions of d∗

and d′∗ are presented in that same appendix. The theorem
shows that the expected error of DMSA with conditional
Maxent is close to ε modulo a factor that varies as e1/

√
m,

where m is the size of the total unlabeled sample received
from all p sources, and factors Q∗ and Q′∗ that measure
how closely conditional Maxent can approximate the true
conditional probabilities with infinite samples.

Next, we prove learning guarantees for GMSA with densities
estimated via kernel density estimation (KDE). We assume
that the same i.i.d. sample S = ((x1, k1), . . . , (xm, km)) as
with conditional Maxent is used. Here, the points labeled
with k are used for estimating Dk via KDE. Since the sam-
ple is drawn from Q with Q(x, k) = 1

pDk, the number of

samples points mk labeled with k is very close to m
p . D̂k is

learned from mk samples, via KDE with a normalized ker-
nel function Kσ(·, ·) that satisfies

∫
x∈XKσ(x, x′) dx = 1

for all x′ ∈ X.

Theorem 6 (GMSA). There exists z ∈ ∆ such that, for any
δ > 0, with probability at least 1−δ the following inequality
holds for GMSA used KDE, for an arbitrary target mixture
DT :

L(DT , ĥz) ≤ ε
1
4M

3
4 e

6κ√
2(m/p)

√
log p+log(1/δ)

d∗d′∗,

with κ = maxx,x′,x′′∈X
Kσ(x,x′)
Kσ(x,x′′) , and

d∗ = max
k∈[p]

E
x∼Dk

[d+∞
(
Kσ(·, x) ‖ Dk

)
],

d′∗ = max
k∈[p]

E
x∼Dk

[d+∞
(
Dk ‖ Kσ(·, x)

)
].

The proof is given in Appendix E.2. More refined ver-
sions of these results with alternative Rényi divergences
are presented in that same appendix. In comparison with
the guarantee for DMSA, the bound for GMSA admits a worse
dependency on ε. Furthermore, while the dependency of
the learning bound of DMSA on the sample size is of the
form O(e1/

√
m) and thus decreases as a function of the full

sample size m, that of GMSA is of the form O(e1/
√
m/p)

and only decreases as a function of the per-domain sample
size. This further reflects the benefit of our discriminative
solution since the estimation of the conditional probabilities
is based on conditional Maxent trained on the full sample.
Finally, the bound of GMSA depends on κ, a ratio that can be
unbounded for Gaussian kernels commonly used for KDE.

The generalization guarantees for DMSA (Theorem 7) de-
pends on two critical terms that measure the divergence
between the population solution of conditional Maxent and
the true domain classifier Q(·|x):

d+∞
(
Q∗(·|x) ‖ Q(·|x)

)
and d+∞

(
Q(·|x) ‖ Q∗(·|x)

)
.

When the feature mapping for conditional Maxent is suffi-
ciently rich, for example when it is the reproducing kernel
Hilbert space (RKHS) associated to a Gaussian kernel, one
can expect the two divergences to be close to one. The gen-
eralization guarantees for GMSA (Theorem 10) also depend
on two divergence terms:

d+∞
(
Kσ(·, x) ‖ Dk

)
and d+∞

(
Dk ‖ Kσ(·, x)

)
.

Compared to learning a domain classifier Q̂(·|x), it is more
difficult to chose a good density kernel Kσ(·, ·) to ensure
that the divergence between marginal distributions is small,
which shows another benefit of DMSA.

The next section further illustrates the more advantageous
sample complexity of the DMSA algorithm and shows that,
in addition to the theoretical advantages discussed in this
section, it also benefits from more favorable empirical re-
sults.
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Table 1. MSE on the sentiment analysis dataset. Single source baselines, K, D, B, E, the uniform combination unif, GMSA, and DMSA.

Sentiment Analysis Test Data
K D B E KD BE DBE KBE KDB KDB KDBE

K 1.42±0.10 2.20±0.15 2.35±0.16 1.67±0.12 1.81±0.07 2.01±0.10 2.07±0.08 1.81±0.06 1.76±0.06 1.99±0.06 1.91±0.05
D 2.09±0.08 1.77±0.08 2.13±0.10 2.10±0.08 1.93±0.07 2.11±0.07 2.00±0.06 2.11±0.06 1.99±0.06 2.00±0.06 2.02±0.05
B 2.16±0.13 1.98±0.10 1.71±0.12 2.21±0.07 2.07±0.11 1.96±0.07 1.97±0.06 2.03±0.06 2.12±0.07 1.95±0.08 2.02±0.06
E 1.65±0.09 2.35±0.11 2.45±0.14 1.50±0.07 2.00±0.09 1.97±0.09 2.10±0.08 1.86±0.05 1.83±0.07 2.15±0.07 1.99±0.06
unif 1.50±0.06 1.75±0.09 1.79±0.10 1.53±0.07 1.63±0.06 1.66±0.08 1.69±0.06 1.61±0.05 1.60±0.05 1.68±0.05 1.65±0.05
GMSA 1.42±0.10 1.88±0.11 1.80±0.10 1.51±0.07 1.65±0.08 1.66±0.07 1.73±0.05 1.58±0.04 1.60±0.05 1.70±0.04 1.65±0.04
DMSA (ours) 1.42±0.08 1.76±0.07 1.70±0.11 1.46±0.07 1.59±0.06 1.58±0.07 1.64±0.05 1.53±0.04 1.55±0.04 1.63±0.04 1.59±0.04

5. Experiments
We experimented with our DMSA technique on the same
datasets as those used in (Hoffman et al., 2018), as well as
with the UCI adult dataset, and compared its performance
with several baselines, including GMSA. Since Hoffman et al.
(2018) already showed that GMSA empirically outperforms
alternative MSA solutions, in this section, we mainly focus
on demonstrating improvements over GMSA under the same
experimental setups.

Sentiment analysis. To evaluate the DMSA solution under
the regression model, we used the sentiment analysis dataset
(Blitzer et al., 2007), which consists of product review text
and rating labels taken from four domains: books (B), dvd
(D), electronics (E), and kitchen (K), with 2,000 sam-
ples for each domain. We adopted the same training proce-
dure and hyper-parameters as those used by Hoffman et al.
(2018) to obtain base predictors: first define a vocabulary of
2,500 words that occur at least twice in each of the four do-
mains, then use this vocabulary to define word-count feature
vectors for every review text, and finally train base predic-
tors for each domain using support vector regression. We
used the same word-count features to train the domain clas-
sifier via logistic regression. We randomly split the 2,000
samples per domain into 1,600 train and 400 test samples
for each domain, and learn the base predictors, domain clas-
sifier, density estimations, and parameter z for both MSA
solutions on all available training samples. We repeated
the process 10 times, and report the mean and standard
deviation of the mean squared error on various target test
mixtures in Table 1.

We compared our technique, DMSA, against each source
predictor, hk, the uniform combination of the source pre-
dictors (unif), 1

p

∑p
k=1 hk, and GMSA with kernel density

estimation. Each column in Table 1 corresponds to a dif-
ferent target test mixture, as indicated by the column name:
four single domains, and uniform mixtures of two, three,
and four domains, respectively. Our distribution-weighted
method DMSA outperforms all baseline predictors across al-
most all test domains. Observe that, even when the target
is a single source domain, such as K, B, E, our method can
still outperform the predictor which is trained and tested
on the same domain, showing the benefits of ensembles.

Moreover, DMSA improves upon GMSA by a wide margin
on all test mixtures, which demonstrates the advantage of
using a domain classifier over estimated densities in the
distribution-weighted combination.

Digit dataset. To evaluate the DMSA solution under the
probability model, we considered a digit recognition task
consisting of three datasets: Google Street View House
Numbers (SVHN), MNIST, and USPS. For each individual
domain, we trained a convolutional neural network (CNN)
with the same setup as in (Hoffman et al., 2018), and used
the output from the softmax score layer as our base predic-
tors hk. Furthermore, for every input image, we extracted
the last layer before softmax from each of the base networks
and concatenated them to obtain the feature vector for train-
ing the domain classifier. We used the full training sets per
domain to train the source model, and used 6,000 samples
per domain to learn the domain classifier. Finally, for our
DC-programming algorithm, we used a 1,000 image-label
pairs from each domain, thus a total of 3,000 labeled pairs
to learn the parameter z.

We compared our DMSA algorithm against each source pre-
dictor (hk), the uniform combination, unif, a network
jointly trained on all source data combined, joint, and
GMSA with kernel density estimation. Since the training and
testing datasets are fixed, we simply report the numbers
from the original GMSA paper. We measured the perfor-
mance of these baselines on each of the three test datasets,
on combinations of two test datasets, and on all test datasets
combined. The results are reported in Table 2. Once again,
DMSA outperforms all baselines on all test mixtures, and
when the target is a single test domain, DMSA admits a com-
parable performance to the predictor that is trained and
tested on the same domain. And, as in the sentiment analy-
sis experiments, DMSA outperforms GMSA by a wide margin
on most of the test domains. For example, on SVHN test
data, the improvement is 0.9%, which is larger than 0.5%,
the standard deviation estimate on the test data.

We also report empirical results for the adversarial domain
adaptation method of Zhao et al. (2018) in Table 2. Let us
emphasize that the learning scenario for this algorithm does
not match ours: this algorithm makes use of labeled data
from source domains, as well as unlabeled data from a fixed
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Figure 1. Left: Illustration of the true densities and kernel density estimates for GMSA for domains D1 and D2 with 1000 samples. The
labeling function f(x) = −1 in the green regions and 1 otherwise. Right: Same estimates zoomed in at x = 0.

Table 2. Digit Dataset Accuracy. DMSA outperforms each single-
source domain model, unif, joint, and most importantly GMSA,
on various target mixtures.

Digits Test Data
svhn mnist usps mu su sm smu mean

CNN-s 92.3 66.9 65.6 66.7 90.4 85.2 84.2 78.8
CNN-m 15.7 99.2 79.7 96.0 20.3 38.9 41.0 55.8
CNN-u 16.7 62.3 96.6 68.1 22.5 29.4 32.9 46.9
CNN-unif 75.7 91.3 92.2 91.4 76.9 80.0 80.7 84.0
CNN-joint 90.9 99.1 96.0 98.6 91.3 93.2 93.3 94.6
adv-mu 91.5 98.5 95.7 98.1 91.8 93.5 93.6 94.7
adv-su 91.6 98.5 95.7 98.0 91.9 93.5 93.6 94.7
adv-sm 91.8 98.3 95.3 97.8 92.1 93.6 93.7 94.7
GMSA 91.4 98.8 95.6 98.3 91.7 93.5 93.6 94.7
DMSA (ours) 92.3 99.2 96.6 98.8 92.6 94.2 94.3 95.4

target domain. In other words, the algorithm makes use of
more information than what is available in our scenario or
accessible to DMSA. Nevertheless, we are including these
results for reference.

For a target domain formed by the union of two out of
the three domains svhn, mnist, or usps, that is a target
domain defined as sm, su, or mu, we trained adv-target-
domain, where we used unlabeled data from the target
domain and labeled examples from all the three source
domains smu. For these experiments, we used the entire
training data from source domains and the entire unlabeled
training data from target domains. We used the neural archi-
tecture and the discriminator used by Zhao et al. (2018). The
results show that, while the adv-target-domain algorithm
(Zhao et al., 2018) is making use of more information, its
performance is inferior to that of GMSA and DMSA, even for
the specific target distribution it is trained for and that it has
therefore extra information about.

In Tables 5 and 6 in Appendix F, we report additional ex-
perimental results with the digits dataset for the scenario
where the target domain is close to being a mixture of the
source domains but where it may not necessarily be such a
mixture, a scenario not covered by Hoffman et al. (2018).
These experiments also demonstrate a consistently strong
performance of DMSA.

To illustrate the efficiency of DMSA we further tested DMSA
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Figure 2. Average test accuracy of GMSA (blue) and DMSA (orange)
on the digits dataset as a function of the number of samples used
in domain adaptation.

and GMSA on the digits dataset when only a small amount
of data is available for domain adaptation. We plotted the
performance of both algorithms as a function of m, the
number of samples per domain, see Figure 2. As expected,
DMSA consistently outperforms GMSA, especially in the small
sample regime, thus matching our theoretical analysis that
DMSA can succeed with fewer samples.

Adult dataset. We also experimented with the UCI adult
dataset (Blake, 1998), which contains 32,561 training sam-
ples with numerical and categorical features, each represent-
ing a person. The task consists of predicting if the person’s
income exceeds $50,000. Following (Mohri et al., 2019),
we split the dataset into two domains, the doctorate Doc do-
main and non-doctorate NDoc domain and used categorical
features for training linear classification models. We froze
these models and experimented with the MSA methods
GMSA and DMSA. Here, we repeatedly sampled 400 training
samples from each domain for training, keeping the test set
fixed.

Table 3. Linear models for adult dataset. The experiments are
averaged over 100 runs.

Test data Doc NDoc Doc-NDoc

GMSA 70.2 ± 1.2 76.4 ± 1.6 73.3 ± 0.8
DMSA 70.0 ± 0.8 80.5 ± 0.5 75.3 ± 0.4

The results are reported in Table 3. DMSA achieves a higher
accuracy than GMSA on the NDoc domain and also in the
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Figure 3. Comparison of GMSA and DMSA on the synthetic dataset. DMSA performs better than GMSA on both domains and thus on any
convex combination. The experiments are averaged over 10 runs; error bars show one standard deviation.

average of two domains. The difference in performance is
not statistically significant for the Doc domain as it has very
few test samples.

Office dataset. We also carried out experiments on the vi-
sual adaptation office dataset (Saenko et al., 2010). The
Office dataset is composed of 3 domains: amazon, dslr,
and webcam. The amazon domain consists of 2817 im-
ages, dslr 498, and webcam 795 images. We divided
the dataset into two splits following (Saenko et al., 2010).
For the training data, we used 20 samples per category for
amazon and 8 for both dslr and webcam. We used the
rest of the samples as test data. We extracted the penulti-
mate layer output from ResNet50 architecture (He et al.,
2015) pre-trained on ImageNet and trained logistic regres-
sion models as base classifiers using this pretrained feature.
The results are shown in Table 4. DMSA outperforms GMSA
in all three domains and thus any convex combination. The
differences for amazon and webcam is less than a stan-
dard deviation, however, we observe the advantage of DMSA
over GMSA consistently. Similarly, DMSA achieves a higher
accuracy than ResNet-unif, especially in the amazon do-
main, for which its performance matches that of a model
specifically trained for that domain.

Table 4. Office Dataset Accuracy. The experiments are averaged
over 10 runs.

Test data amazon webcam dslr

ResNet-amazon 82.2± 0.6 75.8± 1.3 77.6± 1.4
ResNet-webcam 63.3± 1.6 95.7± 1.0 95.7± 1.3
ResNet-dslr 64.6± 1.0 94.0± 0.7 95.8± 1.0
ResNet-unif 79.3± 0.6 96.7± 0.7 97.2± 0.6
GMSA 82.1± 0.4 96.8± 0.8 96.7± 0.6
DMSA 82.2± 0.4 97.2± 0.9 97.4± 0.4

Synthetic dataset. We finally conducted simulations on a
small synthetic dataset to further illustrate the difference
between GMSA and DMSA. We used the sklearn toolkit for
these experiments. Let D1 and D2 be Gaussian mixtures in
one dimension defined as follows: D1 = 0.9 ·N(−20, 8) +
0.1·N(0, 0.1) and D2 = 0.75·N(3, 0.1)+0.25·N(5, 0.1)+
0.05 ·N(0, 0.1), see Figure 1. The two domains are similar

around 0 but are disjoint otherwise. Let the labeling function
f(x) = −1 if x ∈ [−0.5, 0.5] ∪ [3.5,+∞). The example
is designed such that if their estimates are good, then both
GMSA and DMSA would achieve close to 100% accuracy. We
first sampled 1000 examples and trained a linear separator
hk for each domain k. compared GMSA and DMSA on this
dataset. For GMSA, we trained kernel density estimators and
chose the bandwidth based on a five-fold cross-validation.
For DMSA, we trained a conditional Maxent threshold classi-
fier. We first illustrate the kernel density estimate using 1000
samples in Figure 1. For x ∈ [−0.5, 0.5], D1(x) > D2(x),
but the kernel density estimates satisfy D̂2(x) ≥ D̂1(x),
which shows the limitations of kernel density estimation
with a single bandwidth. On the other hand, DMSA selected
a threshold around 0.3 for distinguishing between D1 and
D2 and achieves accuracy around 100%. We varied the
number of examples available for domain adaptation and
compared GMSA and DMSA. For simplicity, we found the best
z using exhaustive search for both GMSA and DMSA. The
results show that DMSA consistently outperforms GMSA on
both the domains and hence on all convex combinations,
see Figure 3. The results also indicate that DMSA converges
faster, in accordance with our theory.

6. Conclusion
We presented a new algorithm for the important problem
of multiple-source adaptation, which commonly arises in
applications. Our algorithm was shown to benefit from
favorable theoretical guarantees and a superior empirical
performance, compared to previous work. Moreover, our
algorithm is practical: it is straightforward to train a multi-
class classifier in the setting we described and our DC-
programming solution is very efficient.

Providing a robust solution for the problem is particularly
important for under-represented groups, whose data is not
necessarily well-represented in the classifiers to be com-
bined and trained on source data. Our solution demonstrates
improved performance even in the cases where the target
distribution is not included in the source distributions. We
hope that continued efforts in this area will result in more
equitable treatment of under-represented groups.
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A. Related and Previous Work on Multiple-Source Adaptation (MSA)
The general theoretical problem of adaptation from a single domain to a target domain has been studied in a series of
publications in the last two decades or so (Kifer et al., 2004; Ben-David et al., 2007; Blitzer et al., 2008; Mansour et al.,
2009b; Cortes and Mohri, 2011; 2014; Cortes et al., 2015; 2019). There are many distinct instances of adaptation problems.

Multiple-source adaptation extends the single-source single-target scenario, and has been extensively studied from various
aspects. (Yang et al., 2007) proposed to learn a linear combination of pre-trained auxiliary classifiers using SVMs on labeled
target data. (Duan et al., 2009; 2012) further assumed plenty of unlabeled target data to form a meaningful regularizer,
and a small set of labeled target data for training. (Khosla et al., 2012; Blanchard et al., 2011) combined all the source
data to jointly train a single predictor. (Pei et al., 2018; Zhao et al., 2018) extended single domain adversarial learning
techniques to the multiple-source setting to extract domain-invariant features. (Ghifary et al., 2015) extended auto-encoders
to the multi-task setting and minimized the sum of reconstruction errors across domains. (Peng et al., 2019) proposed to
align moments of feature distribution across source and target domains. (Muandet et al., 2013) proposed Domain-Invariant
Component Analysis to transform features onto a low dimensional subspace that minimizes the dissimilarity across domains.

(Zhang et al., 2015) adopted a causal view of MSA where label Y is the cause for features X , estimated the weights
for combining source conditional probabilities (PX|Y ), and proposed various ways to construct target predictor based on
estimated weights. (Crammer et al., 2008) considered learning accurate models for each source domain, using “nearby”
data of other domains. (Gong et al., 2012) ranked multiple source domains by how good can they adapt to a target domain.
(Gong et al., 2013a) learned domain-invariant features by constructing multiple auxiliary tasks, and learning new feature
representations from each auxiliary task. (Gong et al., 2013b) proposed to discover multiple latent domains by maximizing
distinctiveness and learnability between latent domains. (Jhuo et al., 2012) transfered source samples into an intermediate
representation such that each transformed source sample can be linearly reconstructed by target samples. Wen et al. (2019)
adjusted the weight of each source domain during training based on discrepancy minimization theory. Fernando et al.
(2013) considered aligning subspaces for visual domain adaptation. Liu et al. (2016) proposed to preserve the structure
information from source domains via clustering. Gan et al. (2016) tackled the multiple-source adaptation problem via
attributes possessing. Sun et al. (2011) considered a two-stage adaptation where in the first stage one combines weighted
source data based on marginal probability, and in the second stage based conditional probability as well.

More recently, Mansour, Mohri, Ro, Suresh, and Wu (2021) presented a theoretical and algorithmic study of the multiple-
source domain adaptation problem in the common scenario where the learner has access only to a limited amount of labeled
target data, but where they have at their disposal a large amount of labeled data from multiple source domains. They showed
that a new family of algorithms based on model selection ideas benefits from very favorable guarantees in this scenario and
discussed some theoretical obstacles affecting some alternative techniques.
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B. Rényi Divergences
The Rényi Divergence is parameterized by α ∈ [0,+∞] and denoted by Dα. The α-Rényi Divergence of two distributions
D and D is defined by

Dα(D ‖ D) =
1

α− 1
log

∑
(x,y)∈X×Y

D(x, y)

[
D(x, y)

D(x, y)

]α−1

,

where, for α ∈ {0, 1,+∞}, the expression is defined by taking the limit. For α = 1, the Rényi divergence coincides with
the relative entropy. For α = +∞, it coincides with log supx∈X

D(x)
D(x) . It can be shown that the Rényi Divergence is always

non-negative and that for any α > 0, Dα(D ‖ D) = 0 iff D = D (Arndt, 2004). We will denote by dα(D ‖ D) the
exponential:

dα(D ‖ D) = eDα(D‖D) =

[ ∑
(x,y)∈X×Y

Dα(x, y)

Dα−1(x, y)

] 1
α−1

.

The following lemma from (Van Erven and Harremos, 2014) summarizes some useful properties of the Rényi divergence.

Lemma 1. The Rényi divergence admits the following properties:

1. Dα(D ‖ D) is a non-decreasing function of α.

2. Dα(D ‖ D) is jointly convex in (D,D) for α ∈ [0, 1].

3. Dα(D ‖ D) is convex in D for α ∈ [0,∞].

4. Dα(D ‖ D) is jointly quasi-convex in (D,D) for α ∈ [0,∞].

The following general triangle inequality for Rényi divergences is due to Hoffman et al. (2021). Here, we give the full proof
for completeness.

Proposition 2. Let P, Q, R be three distributions on X × Y. Then, for any γ ∈ (0, 1) and any α > γ, the following
inequality holds: [

dα(P ‖ Q)
]α−1

≤
[
dα
γ

(P ‖ R)
]α−γ[

dα−γ
1−γ

(R ‖ Q)
]α−1

.

Proof. Fix γ ∈ (0, 1). By Hölder’s inequality, we can write:[
dα(P ‖ Q)

]α−1

=
∑
x

Pα(x, y)

Qα−1(x, y)
=
∑
x

Pα(x, y)

Rα−γ(x, y)

Rα−γ(x, y)

Qα−1(x, y)

≤
[∑

x

( Pα(x, y)

Rα−γ(x, y)

) 1
γ

]γ[∑
x

(Rα−γ(x, y)

Qα−1(x, y)

) 1
1−γ
]1−γ

=

[∑
x

P
α
γ (x, y)

R
α
γ−1(x, y)

]γ[∑
x

R
α−γ
1−γ (x, y)

Q
α−γ
1−γ −1(x, y)

]1−γ

=
[
dα
γ

(P ‖ R)
]α−γ[

dα−γ
1−γ

(R ‖ Q)
]α−1

.

This concludes the proof.
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C. DMSA Guarantees
C.1. General Guarantee

Theorem 1 gives a guarantee in terms of a Rényi divergence of DT and D̂. Using the triangle inequality result of Proposition 2,
we can derive an upper bound in terms of a Rényi divergence of DT and D instead and only Rényi divergences between the
distributions Dk and their estimate D̂k.

Theorem 3. For any δ > 0, there exists z ∈ ∆ such that the following inequality holds for any α > 1 and arbitrary target
distribution DT :

L(DT , ĝz) ≤ [(ε̂+ δ) d̂′]
α−1
α [d2α(DT ‖ D)]

2α−1
2α M

1
α ,

where ε̂ = (εd̂)
α−1
α M

1
α , d̂ = maxk∈[p] dα(D̂k ‖ Dk), and d̂′ = maxk∈[p] d2α−1(Dk ‖ D̂k), with D̂k = Q̂(k|x)D(x)

Q̂(k)
.

Proof. For α > 1, by Proposition 2, choosing γ = 1
2 , the following holds for any λ ∈ ∆:

[dα(DT ‖ D̂λ)]α−1 ≤ [d2α(DT ‖ Dλ)]α−
1
2 [d2α−1(Dλ ‖ D̂λ)]α−1

= [d2α(DT ‖ Dλ)]α−
1
2 [eD2α−1(Dλ‖D̂λ)]α−1

≤ [d2α(DT ‖ Dλ)]α−
1
2 [emaxk∈[p](D2α−1(Dk‖D̂k)]α−1

(quasi-convexity of Rényi divergence (Lemma 1))

= [d2α(DT ‖ Dλ)]α−
1
2 [max
k∈[p]

d2α−1(Dk ‖ D̂k)]α−1. (monotonicity of exp)

Thus, by Theorem 1, for ε̂ = maxk∈[p]

[
ε dα(D̂k ‖ Dk)

]α−1
α

M
1
α , for any λ ∈ ∆, we have:

L(DT , ĝz) ≤
[
(ε̂+ δ) dα(DT ‖ D̂λ)

]α−1
α

M
1
α = (ε̂+ δ)

α−1
α

[
dα(DT ‖ D̂λ)

]α−1
α

M
1
α

≤ (ε̂+ δ)
α−1
α [d2α(DT ‖ Dλ)]

2α−1
2α [max

k∈[p]
d2α−1(Dk ‖ D̂k)]

α−1
α M

1
α .

Taking the infimum of the right-hand side over λ ∈ ∆ completes the proof.

C.2. Conditional Maxent

Here, we prove a general pointwise guarantee for conditional Maxent that will be later used in the analysis of DMSA, when
used with this algorithm (Appendix C.3).

Theorem 4. Let ŵ be the solution of problem (7) and w∗ the population solution of the conditional Maxent optimization
problem:

w∗ = argmin
w∈RN

µ‖w‖2 − E
(x,k)∼Q

[
log pw[k|x]

]
.

Then, for any δ > 0, with probability at least 1− δ, for any (x, k) ∈ X× [p], the following inequality holds:

∣∣∣log pŵ[k|x]− log pw∗ [k|x]
∣∣∣ ≤ 2

√
2r2

µ
√
m

[
1 +

√
log(1/δ)

]
.

Proof. By Theorem 2 of (McDonald et al., 2009), for any δ > 0, with probability at least 1− δ, the following inequality
holds:

‖ŵ − w∗‖ ≤ r

µ
√
m/2

[
1 +

√
log 1/δ

]
.
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Next, for any (x, k) ∈ X× [p], observe that

∇w [log pw[k|x]] = ∇w

w · Φ(x, k)− log

 p∑
j=1

ew·Φ(x,j)

 = ∇w

[
Φ(x, k)−

∑p
j=1 e

w·Φ(x,j)Φ(x, j)∑p
j=1 e

w·Φ(x,j)

]
= E
j∼pw[·|x]

[Φ(x, k)− Φ(x, j)] .

Thus, the following upper bound holds: ‖∇w log pw[k|x]‖ ≤ ‖Ej∼pw[·|x][Φ(x, k)−Φ(x, j)]‖ ≤ 2r for any (x, k) ∈ X×[p].
Therefore, by the 2r-Lipschitzness of w 7→ log pw[k|x] for any (x, k) ∈ X× [p], with probability at least 1−δ, the following
inequality holds:

∣∣∣ log pŵ[k|x]− log pw∗ [k|x]
∣∣∣ ≤ 2r‖ŵ − w∗‖ ≤ 2

√
2r2

µ
√
m

[
1 +

√
log(1/δ)

]
,

which completes the proof.

C.3. Guarantees for DMSA with Conditional Maxent

Theorem 5 (DMSA). There exists z ∈ ∆ such that for any δ > 0, with probability at least 1 − δ the following inequality
holds DMSA used with conditional Maxent, for an arbitrary target mixture DT :

L(DT , ĝz) ≤ ε p e
6
√

2r2

µ
√
m

[
1+
√

log(1/δ)
]
d∗ d′∗,

with d∗ = sup
x∈X

d∞ (Q∗[·|x] ‖ Q(·|x))

d′∗ = sup
x∈X

d2
∞ (Q(·|x) ‖ Q∗[·|x]) ,

where Q∗(·|x) = pw∗ [·|x] is the population solution of conditional Maxent problem (statement of Theorem 4).

We give the proof for the following more general result.

Theorem 7. There exists z ∈ ∆ such that the following inequality holds for any α > 1 and arbitrary target mixture DT :

L(DT , ĝz) ≤ ε
(α−1)2

α2 M
2α−1

α2 p
(2α−1)(α+2)

2α2 e
(12α2−11α+2)

2α2 r‖w∗−ŵ‖d1(α)d2(α)d3(α)

with d1(α) =

[
E

x∼D

[
d4α−3

4α−2

(
Q(·|x) ‖ Q∗(·|x)

)]] 1
4α

d2(α) =

[
E

x∼D

[
d2α−1

2α

(
Q(·|x) ‖ Q∗[·|x]

)]] 1
2α

d3(α) =

[
E

x∼D

[
d2α−2

2α−1

(
Q∗(·|x) ‖ Q(·|x)

)]]α−1

2α2

.

Proof. The proof relies on the auxiliary Lemmas 2 and 3 proven below. In Theorem 3, the bound depends on
maxk∈[p] dα(Dk ‖ D̂k) and maxk∈[p] dα(D̂k ‖ Dk), for some Rényi parameter α > 1. We will analyze these terms
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here for the DMSA solution, for which D̂k(x) = Q̂(k|x)D(x)

Q̂(k)
. Using this expression, for any α > 1, we can write:

max
k∈[p]

[
dα(Dk ‖ D̂k)

]α−1

= max
k∈[p]

[ ∑
(x,y)∈X×Y

Dα
k (x, y)

D̂α−1
k (x, y)

]
= max

k∈[p]

[ ∑
(x,y)∈X×Y

[
Dk(x)Dk(y|x)

]α
[
D̂k(x)Dk(y|x)

]α−1

]

= max
k∈[p]

[ ∑
(x,y)∈X×Y

D(y|x)

[
Dk(x)

]α
[
D̂k(x)

]α−1

]

= max
k∈[p]

[ ∑
(x,y)∈X×Y

D(y|x)

[
Q(k|x)D(x)/(1/p)

]α
[
Q̂(k|x)D(x)/Q̂(k)

]α−1

]

= max
k∈[p]

[ ∑
(x,y)∈X×Y

D(y|x)D(x)pαQ̂α−1(k)
Qα[k|x]

Q̂α−1[k|x]

]

= max
k∈[p]

[∑
x∈X

D(x)pαQ̂α−1(k)
Qα[k|x]

Q̂α−1[k|x]

]
.

Next, upper-bounding the maximum by a sum yields:

max
k∈[p]

[
dα(Dk ‖ D̂k)

]α−1

≤
∑
k∈[p]

[∑
x∈X

D(x)pαQ̂α−1(k)
Qα[k|x]

Q̂α−1[k|x]

]
=

[∑
x∈X

D(x)
∑
k∈[p]

pαQ̂α−1(k)
Qα[k|x]

Q̂α−1[k|x]

]

≤ pα
[∑
x∈X

D(x)
∑
k∈[p]

Qα[k|x]

Q̂α−1[k|x]

]

= pα E
x∼D

[
dα−1
α (Q(·|x) ‖ Q̂(·|x))

]
.

Thus, by Lemma 2, we have

max
k∈[p]

[
dα(Dk ‖ D̂k)

]α−1

≤ pαe(2α−1)r‖w∗−ŵ‖
[

E
x∼D

[
d2α−1

2α

(
Q(·|x) ‖ Q∗[·|x]

)]] 1
2

,

and therefore max
k∈[p]

[
d2α−1(Dk ‖ D̂k)

]2α−2

≤ p2α−1e(4α−3)r‖w∗−ŵ‖
[

E
x∼D

[
d4α−3

4α−2

(
Q(·|x) ‖ Q∗[·|x]

)]] 1
2

,

an expression needed later. As for the previous analysis of the Rényi divergence, we can write for any α > 1:

max
k∈[p]

[
dα(D̂k ‖ Dk)

]α−1

= max
k∈[p]

[ ∑
(x,y)

D̂α
k (x, y)

Dα−1
k (x, y)

]
= max

k∈[p]

[ ∑
(x,y)∈X×Y

D(y|x)

(
Q̂(k|x)D(x)/Q̂(k)

)α
(
Q(k|x)D(x)/Q(k)

)α−1

]

= max
k∈[p]

[ ∑
(x,y)∈X×Y

D(y|x)D(x)
1

pα−1Q̂α(k)

Q̂αk (x)

Qα−1
k (x)

]

= max
k∈[p]

[∑
x∈X

D(x)
1

pα−1Q̂α(k)

Q̂αk (x)

Qα−1
k (x)

]
.
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Using the upper bound on 1

Q̂(k)
of Lemma 3 yields:

max
k∈[p]

[
dα(D̂k ‖ Dk)

]α−1

≤ p
2α−1
α−1 E

x∼D

[
dα−1
α (Q(·|x) ‖ Q̂(·|x))

] α
α−1

max
k∈[p]

[∑
x∈X

D(x)
Q̂αk (x)

Qα−1
k (x)

]

≤ p
2α−1
α−1 E

x∼D

[
dα−1
α (Q(·|x) ‖ Q̂(·|x))

] α
α−1

∑
k∈[p]

[∑
x∈X

D(x)
Q̂αk (x)

Qα−1
k (x)

]

≤ p
2α−1
α−1 E

x∼D

[
dα−1
α (Q(·|x) ‖ Q̂(·|x))

] α
α−1 E

x∼D

[
dα−1
α

(
Q̂(x) ‖ Q(x)

)]
.

Thus, by Lemma 2, we have

max
k∈[p]

[
dα(D̂k ‖ Dk)

]α−1

≤ p
2α−1
α−1 e

α(2α−1)
α−1 r‖w∗−ŵ‖

[
E

x∼D

[
d2α−1

2α

(
Q(·|x) ‖ Q∗[·|x]

)]] α
2α−2

e(2α−1)r‖ŵ−w∗‖
[

E
x∼D

[
d2α−2

2α−1

(
Q∗(·|x) ‖ Q(·|x)

)]] 1
2

= p
2α−1
α−1 e

(2α−1)2)
α−1 r‖w∗−ŵ‖

[
E

x∼D

[
d2α−1

2α

(
Q(·|x) ‖ Q∗[·|x]

)]] α
2α−2

[
E

x∼D

[
d2α−2

2α−1

(
Q∗(·|x) ‖ Q(·|x)

)]] 1
2

.

Plugging these inequalities into the bound of Theorem 3 yields:

L(DT , ĝz) ≤ ε
(α−1)2

α2 M
2α−1

α2

[
max
k∈[p]

d2α−1(Dk ‖ D̂k)
]α−1

α
[

max
k∈[p]

dα(D̂k ‖ Dk)
] (α−1)2

α2

≤ ε
(α−1)2

α2 M
2α−1

α2

[
p

2α−1
2α e

4α−3
2α r‖w∗−ŵ‖

[
E

x∼D

[
d4α−3

4α−2

(
Q(·|x) ‖ Q∗(·|x)

)]] 1
4α

]
[
p

2α−1

α2 e
(2α−1)2

α2 r‖w∗−ŵ‖
[
E
[
d2α−1

2α

(
Q(·|x) ‖ Q∗(·|x)

)]] 1
2α
[
E
[
d2α−2

2α−1

(
Q∗(·|x) ‖ Q(·|x)

)]]α−1

2α2

]
= ε

(α−1)2

α2 M
2α−1

α2 p
(2α−1)(α+2)

2α2 e
(12α2−11α+2)

2α2 r‖w∗−ŵ‖d1(α)d2(α)d3(α)

with d1(α) =

[
E

x∼D

[
d4α−3

4α−2

(
Q(·|x) ‖ Q∗(·|x)

)]] 1
4α

d2(α) =

[
E

x∼D

[
d2α−1

2α

(
Q(·|x) ‖ Q∗[·|x]

)]] 1
2α

d3(α) =

[
E

x∼D

[
d2α−2

2α−1

(
Q∗(·|x) ‖ Q(·|x)

)]]α−1

2α2

,

which completes the proof.

Lemma 2. For any α > 1 and k ∈ [p], the following inequalities hold for the expected Rényi divergences between Q and Q̂:

E
x∼D

[
dα−1
α (Q(·|x) ‖ Q̂(·|x))

]
≤ e(2α−1)r‖w∗−ŵ‖

[
E

x∼D

[
d2α−1

2α

(
Q(·|x) ‖ Q∗[·|x]

)]] 1
2

E
x∼D

[
dα−1
α

(
Q̂(·|x) ‖ Q(·|x)

)]
≤ e(2α−1)r‖ŵ−w∗‖

[
E

x∼D

[
d2α−2

2α−1

(
Q∗(·|x) ‖ Q(·|x)

)]] 1
2

,

where Q∗(·|x) = pw∗ [·|x], and Q̂(·|x) = pŵ[·|x], the population and empirical solution of conditional Maxent problem (7),
respectively.
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Proof. By Proposition 2, we can write for any γ ∈ (0, 1), γ < α:

E
x∼D

[
dα−1
α (Q(·|x) ‖ Q̂(·|x))

]
=
∑
x∈X

D(x) dα−1
α (Q(·|x) ‖ Q̂(·|x))

≤
∑
x∈X

D(x)

[
p∑
k=1

Q
α
γ

k [k|x]

Q
∗αγ−1

k [k|x]

]γ  p∑
k=1

Q
∗α−γ1−γ
k [k|x]

Q̂
α−γ
1−γ −1

k [k|x]

1−γ

=
∑
x

[
D(x)

p∑
k=1

Q
α
γ

k [k|x]

Q
∗αγ−1

k [k|x]

]γ D(x)

p∑
k=1

Q
∗α−γ1−γ
k [k|x]

Q̂
α−γ
1−γ −1

k [k|x]

1−γ

≤

[∑
x

D(x)

p∑
k=1

Q
α
γ

k [k|x]

Q
∗αγ−1

k [k|x]

]γ ∑
x

D(x)

p∑
k=1

Q
∗α−γ1−γ
k [k|x]

Q̂
α−γ
1−γ −1

k [k|x]

1−γ

(Hölder’s inequality)

=

[
E

x∼D

[
d
α
γ−1
α
γ

(
Q(·|x) ‖ Q∗[·|x]

)]]γ [
E

(x,k)∼D×Q∗

[
Q∗[k|x]

Q̂(k|x)

]α−γ
1−γ
]1−γ

≤
[
e(α−γ1−γ )2r‖w∗−ŵ‖

]1−γ [
E

x∼D

[
d
α
γ−1
α
γ

(
Q(·|x) ‖ Q∗[·|x]

)]]γ
. (Theorem 4)

Choosing γ = 1
2 gives

E
x∼D

[
dα−γα (Q(·|x) ‖ Q̂(·|x))

]
≤
[
e(2α−1)r‖w∗−ŵ‖

] [
E

x∼D

[
d2α−1

2α

(
Q(·|x) ‖ Q∗[·|x]

)]] 1
2

.

Similarly, we can write:

E
x∼D

[
dα−1
α

(
Q̂(·|x) ‖ Q(·|x)

)]
≤
∑
x∈X

[
D(x)

∑
k∈[p]

Q̂
α
γ

k (x)

Q
∗αγ−1

k (x)

]γ[
D(x)

∑
k∈[p]

Q
∗α−γ1−γ
k (x)

Q
α−γ
1−γ −1

k (x)

]1−γ

≤
[∑
x∈D

D(x)
∑
k∈[p]

Q̂
α
γ

k (x)

Q
∗αγ−1

k (x)

]γ[∑
x∈D

D(x)
∑
k∈[p]

Q
∗α−γ1−γ
k (x)

Q
α−γ
1−γ −1

k (x)

]1−γ

(Hölder’s ineq.)

= E
(x,k)∼D×Q̂

[ Q̂(k|x)

Q∗(k|x)

]α
γ−1

γ [ E
x∼D

[
d
α−γ
1−γ −1
α−γ
1−γ

(
Q∗(·|x) ‖ Q(·|x)

)]]1−γ

≤
[
e(α−γ)2r‖ŵ−w∗‖

][
E

x∼D

[
d
α−γ
1−γ −1
α−γ
1−γ

(
Q∗(·|x) ‖ Q(·|x)

)]]1−γ

. (Theorem 4)

Choosing γ = 1
2 gives

E
x∼D

[
dα−1
α

(
Q̂(·|x) ‖ Q(·|x)

)]
≤
[
e(2α−1)r‖ŵ−w∗‖

][
E

x∼D

[
d2α−2

2α−1

(
Q∗(·|x) ‖ Q(·|x)

)]] 1
2

,

which completes the proof.

Lemma 3. For any α > 1 and k ∈ [p], the following inequality holds:

1

Q̂(k)
≤ p

α
α−1 E

x∼D

[
dα−1
α

(
Q(·|x) ‖ Q̂(·|x)

)] 1
α−1

.
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Proof. Observe that, for any k ∈ [p], we have:

Q(k) =
∑
x∈X

Q̂(k|x)D(x) =
∑
x∈X

[
Q(k|x)

Q̂
α−1
α (k|x)

D
1
α (x)

] [
Q̂
α−1
α (k|x)D

α−1
α (x)

]

≤

[∑
x∈X

Qα(k|x)

Q̂α−1(k|x)
D(x)

] 1
α
[∑
x∈X

Q̂(k|x)D(x)

]α−1
α

(Hölder’s ineq.)

=

[∑
x∈X

Qα(k|x)

Q̂α−1(k|x)
D(x)

] 1
α

Q̂
α−1
α (k).

Thus, for any k ∈ [p], we can write:

1

Q̂(k)
≤
[

1

Q(k)

] α
α−1

[∑
x∈X

Qα(k|x)

Q̂α−1(k|x)
D(x)

] 1
α−1

= p
α
α−1

[∑
x∈X

Qα(k|x)

Q̂α−1(k|x)
D(x)

] 1
α−1

(Q(k) = 1
p )

≤ p
α
α−1 max

k∈[p]

[∑
x∈X

Qα(k|x)

Q̂α−1(k|x)
D(x)

] 1
α−1

≤ p
α
α−1

∑
k∈[p]

[∑
x∈X

Qα(k|x)

Q̂α−1(k|x)
D(x)

] 1
α−1

= p
α
α−1

∑
x∈X

∑
k∈[p]

Qα(k|x)

Q̂α−1(k|x)

D(x)

 1
α−1

= p
α
α−1 E

x∼D

[
dα−1
α

(
Q(·|x) ‖ Q̂(·|x)

)] 1
α−1

,

which completes the proof.
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D. DMSA Optimization Algorithm
Here we give a DC-decomposition for the DMSA optimization problem both in the regression model with the squared loss
and the probability model with the cross-entropy loss. We then describe the DC algorithm based on these decompositions.

Proposition 3 (Regression model). Let ` be the squared loss. Then, for any k ∈ [p], L(D̂k, gz′) − L(D̂z, gz′) =
uk(z)− vk(z), where uk and vk are convex functions defined for all z by

uk(z) = L(D̂k, gz′)− 2M

[∑
x∈X

D̂k(x) log Q̂z(x)

]
,

vk(z) = L(D̂z, gz′)− 2M

[∑
x∈X

D̂k(x) log Q̂z(x)

]
,

where z′k = zk/Q̂(k)∑p
j=1 zj/Q̂(j)

, D̂z =
∑p
k=1 zkD̂k, and Q̂z(x) =

∑p
j=1 zjQ̂(j|x).

Proof. First, notice that gz′(x) = gz , where zk = zk/Q̂(k), since in the expression of gz′(x) we can divide the numerator
and the denominator by

∑p
j=1 zj/Q̂(j).

Next, observe that (gz(x)− y)2 = Fz(x, y)−Gz(x), where, for all (x, y) ∈ X× Y, Fz and Gz are functions defined for
all z ∈ ∆ by

Fz(x, y) = (gz(x)− y)
2 − 2M log Q̂z(x) and Gz(x) = −2M log Q̂z(x).

We will show that Fz(x, y) and Gz(x) are convex functions of z. Since composition with an affine function preserves
convexity, this will show that Fz(x, y) and Gz(x) are also convex functions of z. The convexity of Fz(x, y) and Gz(x)
holds since their Hessians with respect to z are positive semi-definite:

HFz(x,y) =
2

Q̂2
z(x)

[
hd,z(x)h>d,z(x) +

(
M − (y − gz(x))2

)
D(x)D>(x)

]
,

HGz(x) =
2M

Q̂2
z(x)

D(x)D(x)>,

where hd,z(x) is the p-dimensional vector defined as [hd,z]k(x) = Q̂(k|x) (hk(x) + y − 2gz(x)) for k ∈ [p], and D(x) =

(Q̂(1|x), . . . , Q̂(p|x))>. Using the fact that M ≥ (y−gz(x, y))2, HFz(x,y) and HGz(x,y) are positive semi-definite matrices,
and thus Fz and Gz are convex functions of z for all (x, y) ∈ X× Y.

uk(z) is a convex function of z, since it can be expressed as an expectation of Fz:

uk(z) =
∑

(x,y)∈X×Y

D̂k(x, y)
[
(y − gz(x))2 − 2M log Q̂z(x)

]
=

∑
(x,y)∈X×Y

D̂k(x, y)Fz(x, y).

Next, denote by jz(x) =
∑p
k=1 zkQ̂(k|x)hk(x) and kz(x) = Q̂z(x) =

∑p
k=1 zkQ̂(k|x). By definition of ĝz , we have

ĝz(x) = jz(x)/kz(x).

Similarly, we can write the second term of vk(z) as
∑
x∈X D̂k(x)Gz(x), which is a convex function of z as an expectation

of Gz . Using the notation previously introduced, to analyze the vk(z), notice that we can write∑
(x,y)∈X×Y

D̂z(x, y)
[
y − jz(x)

kz(x)

]2
=

∑
(x,y)∈X×Y

p∑
k=1

zk
Q̂(k|x)D(x, y)

Q̂(k)

[
y − jz(x)

kz(x)

]2
=

∑
(x,y)∈X×Y

D(x, y)
(jz(x)2

kz(x)
− 2yjz(x) + y2kz(x)

)
.
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The Hessian matrix of jz(x)2/kz(x) with respect to z is

∇2
z

( j2
z (x)

kz(x)

)
=

1

kz(x)
(hD(x)− gz(x)D(x))(hD(x)− gz(x)D(x))>

where hD(x) = (h1(x)Q̂(1|x), . . . , hp(x)Q̂(p|x))> and D(x) = (Q̂(1|x), . . . , Q̂(p|x))>. Thus, jz(x)2/kz(x) is convex
and so is jz(x)2/kz(x), by composition with an affine function. −2yjz(x) + y2kz(x) is an affine function of z and is
therefore convex. Thus, the first term of vk(z) is also a convex function of z, which completes the proof.

Proposition 4 (Probability model). Let ` be the cross-entropy loss. Then, for k ∈ [p], L(D̂k, gz′) − L(D̂z, gz′) =
uk(z)− vk(z), where uk and vk are convex functions defined for all z by

uk(z) =
∑

(x,y)∈Y×Y

−D̂k(x, y) log

[
p∑
k=1

z′kQ̂(k|y)hk(x, y)

]

vk(z) = L(D̂z, gz′)−
∑

(x,y)∈X×Y

D̂k(x, y) logQz′(x),

where z′k = zk/Q̂(k)∑p
j=1 zj/Q̂(j)

, D̂z =
∑p
k=1 zkD̂k, and Q̂z(x) =

∑p
j=1 zjQ̂(j|x).

Proof. Let jz and kz be defined for all (x, y) ∈ X × Y and z ∈ ∆ by jz(x, y) =
∑p
k=1 zkQ̂(k|x)hk(x, y), and kz(x) =

Q̂z(x). By definition, gz(x, y) = jz(x, y)/kz(x). We can write

L(D̂k, gz)− L(D̂z, gz)

=
∑

(x,y)∈X×Y

(
D̂z(x, y)− D̂k(x, y)

)
log

[
jz(x, y)

kz(x)

]

=

 ∑
(x,y)∈X×Y

−D̂k(x, y) log jz(x, y)

−
 ∑

(x,y)∈X×Y

D̂z(x, y) log
[ kz(x)

jz(x, y)

]
− D̂k(x, y) log kz(x)


= uk(z)− vk(z).

uk is convex since − log jz is convex as the composition of the convex function − log with an affine function. Similarly,
− log kz is convex, which shows that the second term in the expression of vk is a convex function.

Observe that we can write:

kz(x)

jz(x, y)
=

∑p
k=1 zkQ̂(k|x)∑p

k=1 zkQ̂(k|x)hk(x, y)
=

∑p
k=1 zkQ̂(k|x)D(x, y)∑p

k=1 zkQ̂(k|x)hk(x, y)D(x, y)
=

∑p
k=1 zkD̂k(x, y)∑p

k=1 zkD̂k(x, y)hk(x, y)
=
Kz(x, y)

Jz(x, y)

where Jz(x, y) =
∑p
k=1 zkD̂k(x, y)hk(x, y), and Kz(x, y) = D̂z(x, y). Thus, the first term of vk can be written in terms

of the unnormalized relative entropy B(· ‖ ·) as follows:

∑
(x,y)∈X×Y

D̂z(x, y) log
[ kz(x)

jz(x, y)

]
=

∑
(x,y)∈X×Y

Kz(x, y) log
[Kz(x, y)

Jz(x, y)

]
= B(Kz ‖ Jz) +

∑
(x,y)∈X×Y

(Kz − Jz)(x, y).

The rest of the proof follows from (Hoffman et al., 2018): The unnormalized relative entropy B(· ‖ ·) is jointly convex, thus
B(Kz ‖ Jz) is convex; (Kz − Jz) is an affine function of z and is therefore convex too.
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Given the DC decompositions from Proposition 3 and 4, one can cast the min-max optimization problem (6) into the
following variational form of a DC-programming problem (Tao and An, 1997; 1998; Sriperumbudur and Lanckriet, 2012):

min
z∈∆,γ∈R

γ (8)

s.t.
(
uk(z)− vk(z) ≤ γ

)
∧
(
− zk ≤ 0

)
, ∀k ∈ [p],∑p

k=1 zk − 1 = 0.

The DC-programming algorithm works by repeatedly solving the following convex optimization problem:

zt+1 ∈ argmin
z,γ∈R

γ (9)

s.t. uk(z)− vk(zt)− (z − zt)∇vk(zt) ≤ γ
− zk ≤ 0,

∑p
k=1 zk − 1 = 0, ∀k ∈ [p],

where z0 ∈ ∆ is an arbitrary starting value, and (zt)t denotes the sequence of solutions. Then, (zt)t is guaranteed to
converge to a local minimum of problem (6) (Sriperumbudur and Lanckriet, 2012). This leads to an efficient DC algorithm
that guarantees convergence to a stationary point. Furthermore, since the minimal objective value of (6) is zero, it is
straightforward to check the global optimality of a solution z. In our experiments, we have found the result of the DC
algorithm to be almost always optimal.
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E. Guarantees for GMSA
E.1. Convergence Results for Kernel Density Estimation

In this section, we show that the true marginal distribution D can be closely approximated via kernel density estimation
(KDE), where the quality of approximation depends on the choice of the kernel function Kσ(·, ·).

Kernel density estimation (KDE) is a widely used nonparametric method for estimating densities. Let Kσ(·, ·) ≥ 0 be a
normalized kernel function that satisfies

∫
x∈XKσ(x, x′)dx = 1 for all x′ ∈ X, where σ is the bandwidth parameter. A

well-known kernel function is the Gaussian kernel: Kσ(x, x′) =
(

1√
2πσ

)d
exp
{
−‖x−x

′‖2
2σ2

}
, where d is the dimension of

the input space X ⊆ Rd. Let Sn = {x1, . . . , xn} be a sample of size n drawn from the true distribution D. Then, the kernel
density estimation based on the sample Sn is defined by D̂Sn(·) = 1

n

∑n
i=1Kσ(·, xi). With a slight abuse of notation, we

adopt the shorthand DS∞(·) = Ex∼D[Kσ(·, x)], the kernel density estimation based on the entire population.

Consider two samples Sn and S′n that only differ by one point: Sn = Sn−1 ∪ {xn}, S′n = Sn−1 ∪ {x′n}, where xn 6= x′n.
Assume that for all such pairs of samples Sn, S′n, we have d∞(D̂Sn ‖ D̂S′n

) ≤ Bn for some positive constant Bn. Then,
the following result holds, which depends on Bn and the choice of the kernel function (Hoffman et al., 2021)[Theorem 10].
Observe that we can choose Bn = κn.

Theorem 8. For any δ > 0, with probability at least 1− δ, each of the following two inequalities holds:

dα
(
D̂Sn ‖ D

)
≤ E
x∼D

[
dα
(
Kσ(·, x) ‖ D

)]
B

α
α−1

√
n log 1

δ /2
n , for all α ∈ [1, 2] ,

dα
(
D ‖ D̂Sn

)
≤ E
x∼D

[
dα
(
D ‖ Kσ(·, x)

)]
B

√
n log 1

δ /2
n , for all α ≥ 1.

Theorem 8 shows that the Rényi divergence between D̂Sn and D is upper bounded by the product of two terms: the first
term is the expected pointwise divergence, or, more precisely, the expected Rényi divergence between the kernel function
centered at x, Kσ(·, x), and the true distribution D, with the expectation taken over x ∼ D. Thus, the first term is purely
determined by the choice of the kernel function Kσ(·, ·). The second term is a polynomial function of B

√
n

n . As shown
by Hoffman et al. (2021)[Theorem 12], we have Bn = 1 + O( 1

n ) under mild conditions, which implies B
√
n

n → 1 as n
increases, and thus the second term converges to 1. Therefore, as the sample size n goes to infinity, we have

dα
(
D̂Sn ‖ D

)
≤ E
x∼D

[
dα
(
Kσ(·, x) ‖ D

)]
for all 1 ≤ α ≤ 2, (10)

dα
(
D ‖ D̂Sn

)
≤ E
x∼D

[
dα
(
D ‖ Kσ(·, x)

)]
for all α ≥ 1. (11)

Thus, the kernel density estimation is accurate, provided that the expected pointwise Rényi divergence is small with a
suitably chosen kernel function Kσ(·, ·).

E.2. Guarantees for GMSA with Kernel Density Estimation

The following is an analogue of Theorem 3 for GMSA.

Theorem 9. For any δ > 0, there exists z ∈ ∆ such that the following inequality holds for any α > 1 and arbitrary target
distribution DT :

L(DT , ĥz) ≤ [(ε̂+ δ) d̂′]
α−1
α [d2α(DT ‖ D)]

2α−1
2α M

1
α ,

where ε̂ = (εd̂)
α−1
α M

1
α , d̂ = maxk∈[p] dα(D̂k ‖ Dk), and d̂′ = maxk∈[p] d2α−1(Dk ‖ D̂k).

Proof. By Theorem 1, there exists z ∈ ∆ such that the following inequality holds for any α > 1 and arbitrary target mixture
DT ∈ D:

L(DT , ĥz) ≤ ε̂
α−1
α M

1
α

[
max
k∈[p]

d2α−1(Dk ‖ D̂k)
]
,

where ε̂ = maxk∈[p]

[
ε dα(D̂k ‖ Dk)

]α−1
α

M
1
α . The rest of the proof is identical to that of Theorem 3.
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Using this theorem and the previous results for KDE, we can show the following.

Theorem 6 (GMSA). There exists z ∈ ∆ such that, for any δ > 0, with probability at least 1− δ the following inequality
holds for GMSA used KDE, for an arbitrary target mixture DT :

L(DT , ĥz) ≤ ε
1
4M

3
4 e

6κ√
2(m/p)

√
log p+log(1/δ)

d∗d′∗,

with κ = maxx,x′,x′′∈X
Kσ(x,x′)
Kσ(x,x′′) , and

d∗ = max
k∈[p]

E
x∼Dk

[d+∞
(
Kσ(·, x) ‖ Dk

)
],

d′∗ = max
k∈[p]

E
x∼Dk

[d+∞
(
Dk ‖ Kσ(·, x)

)
].

We will prove in fact the more general result below. Setting α = 2 in the following theorem and upper bounding the α-Rényi
divergences by the +∞-Rényi divergences yields immediately the result of Theorem 6. The result assumes that the number
of samples used in each domain for density estimation is (m/p).

Theorem 10 (GMSA). There exists z ∈ ∆ such that, for any δ > 0, with probability at least 1− δ the following inequality
holds for any α ∈ (1, 2] and arbitrary target mixture DT :

L(DT , ĥz) ≤ ε
(α−1)2

α2 M
2α−1

α2 e
2κ(2+ 1

α−1 )
√

log
p
δ

2(m/p) d∗(α) d′∗(α),

with κ = maxx,x′,x′′∈X
Kσ(x,x′)
Kσ(x,x′′) , and

d∗(α) = max
k∈[p]

E
x∼Dk

[
dα
(
Kσ(·, x) ‖ Dk

)]
,

d′∗(α) = max
k∈[p]

E
x∼Dk

[
d2α−1

(
Dk ‖ Kσ(·, x)

)]
.

Proof. By Theorem 8, for any δ > 0, with probability at least 1− δ, each of the following two inequalities holds for all
domains:

dα
(
D̂k ‖ Dk

)
≤ E
x∼Dk

[
dα
(
Kσ(·, x) ‖ Dk

)]
κ

α
α−1

√
(m/p) log p

δ /2
m for all 1 ≤ α ≤ 2

dα
(
Dk ‖ D̂k

)
≤ E
x∼Dk

[
dα
(
Dk ‖ Kσ(·, x)

)]
κ

√
(m/p) log p

δ /2
m , for all α ≥ 1

with κm = 1 + 2
(m/p)

[
maxxi,xj ,x∈X

Kσ(x,xi)
Kσ(x,xj)

]
. It follows that, for all 1 < α ≤ 2,

max
k∈[p]

dα
(
D̂k ‖ Dk

)
≤ max

k∈[p]
E

x∼Dk

[
dα
(
Kσ(·, x) ‖ Dk

)]
κ

α
α−1

√
(m/p) log p

δ /2
m ,

max
k∈[p]

dα
(
Dk ‖ D̂k

)
≤ max

k∈[p]
E

x∼Dk

[
dα
(
Dk ‖ Kσ(·, x)

)]
κ

√
(m/p) log p

δ /2
m .

Plugging in these inequalities into the bound of Theorem 9, for 1 < α ≤ 2, we obtain the following:

L(DT , ĥz) ≤ ε
(α−1)2

α2 M
2α−1

α2

[
max
k∈[p]

dα(D̂k ‖ Dk)
] (α−1)2

(α)2
[

max
k∈[p]

d2α−1(Dk ‖ D̂k)
]α−1

α

≤ ε
(α−1)2

α2 M
2α−1

α2

[
max
k∈[p]

dα(D̂k ‖ Dk)
][

max
k∈[p]

d2α−1(Dk ‖ D̂k)
]

(since dα(Dk ‖ D̂k) ≥ 1 and dα(D̂k ‖ Dk) ≥ 1)

≤ ε
(α−1)2

α2 M
2α−1

α2 κ
(2+ 1

α−1 )
√

(m/p) log p
δ /2

m d∗(α) d′∗(α),
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with

d∗(α) = max
k∈[p]

E
x∼Dk

[
dα
(
Kσ(·, x) ‖ Dk

)]
, d′∗(α) = max

k∈[p]
E

x∼Dk

[
d2α−1

(
Dk ‖ Kσ(·, x)

)]
.

The bound can be further simplified as follows:

L(DT , ĥz) ≤ ε
(α−1)2

α2 M
2α−1

α2 κ
(2+ 1

α−1 )
√

(m/p) log p
δ /2

m d∗(α) d′∗(α)

= ε
(α−1)2

α2 M
2α−1

α2 e(2+ 1
α−1 )
√

(m/p) log p
δ /2 log(1+ 2κ

(m/p) )d∗(α) d′∗(α)

≤ ε
(α−1)2

α2 M
2α−1

α2 e
2κ(2+ 1

α−1 )
√

log
p
δ

2(m/p) d∗(α) d′∗(α),

which completes the proof.
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F. Additional Experiments
In this section, we report experimental results for the scenario where the target domain is close to being a mixture of the
source domains but where it may not necessarily be such a mixture, a scenario not covered by (Hoffman et al., 2018).

We begin with the three datasets used in Section 5: Google Street View House Numbers (SVHN), MNIST, and USPS. For
these experiments, the learner is only given access to feature vectors and base predictors for two of the three domains, and is
asked to predict on all three domains combined. Thus, the target domain is not a mixture of the source domains, but is not
too far away from that. Table 5 presents the accuracy on all test data combined, for various baselines: the base predictors,
the uniform combination of two base predictors, and DMSA trained on two domains. DMSA outperforms unif in two of the
three cases, and is very close to unif in the other case.

To further evaluate the performance of DMSA, we also increased the number of source domains by introducing two additional
digit datasets: MNIST-M (MNIST digits superimposed on patches randomly extracted from color photos), and a synthetic
dataset (for details for these two additional datasets, see http://yaroslav.ganin.net/). Again, we left out one domain
and trained on the other four, and then tested on all domains combined. The results are given in Table 6. With more source
domains, DMSA significantly outperforms other baselines in all cases. This robust performance of the algorithm on domains
that are poorly represented or even unrepresented during training makes the algorithm a strong candidate for tackling fairness
questions.

Table 5. Train on two domains and test on all domains combined. Column name dom means that the learner is given features and base
predictors from all domains except from domain dom.

Train data svhn mnist usps

CNN-svhn - 84.2 84.2
CNN-mnist 41.0 - 41.0
CNN-usps 32.9 32.9 -
CNN-unif 43.8 85.1 90.9
DMSA 43.4 85.4 93.3

Table 6. Train on four domains and test on all domains combined. Column name dom means that the learner is given features and base
predictors from all domains except from domain dom.

Train data svhn mnist usps mnistm synth

CNN-svhn - 78.0 78.0 78.0 78.0
CNN-mnist 43.5 - 43.5 43.5 43.5
CNN-usps 28.4 28.4 - 28.4 28.4
CNN-mnistm 59.4 59.4 59.4 - 59.4
CNN-synth 83.8 83.8 83.8 83.8 -
CNN-unif 77.0 91.7 90.3 87.7 77.2
DMSA 91.1 93.5 94.0 89.8 92.4

http://yaroslav.ganin.net/
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