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Abstract
We study the key framework of learning with abstention in the multi-class classification setting.

In this setting, the learner can choose to abstain from making a prediction with some pre-defined
cost. We present a series of new theoretical and algorithmic results for this learning problem in the
predictor-rejector framework. We introduce several new families of surrogate losses for which we
prove strong non-asymptotic and hypothesis set-specific consistency guarantees, thereby resolving
positively two existing open questions. These guarantees provide upper bounds on the estimation
error of the abstention loss function in terms of that of the surrogate loss. We analyze both a single-
stage setting where the predictor and rejector are learned simultaneously and a two-stage setting
crucial in applications, where the predictor is learned in a first stage using a standard surrogate loss
such as cross-entropy. These guarantees suggest new multi-class abstention algorithms based on
minimizing these surrogate losses. We also report the results of extensive experiments comparing
these algorithms to the current state-of-the-art algorithms on CIFAR-10, CIFAR-100 and SVHN
datasets. Our results demonstrate empirically the benefit of our new surrogate losses and show the
remarkable performance of our broadly applicable two-stage abstention algorithm.
Keywords: abstention, learning to abstain, consistency, learning theory

1. Introduction

The problem of learning with abstention has become increasingly crucial in various applications.
In natural language generation or question-answering, it is not always possible to provide accurate
or factual responses. Therefore, it is of utmost importance to develop the ability to abstain from
generating a response in such cases to prevent the occurrence of misleading or incorrect information,
often referred to as hallucinations (Wei et al., 2022; Filippova, 2020; Maynez et al., 2020). Abstention
plays a critical role in several other application areas. For instance, in the field of autonomous vehicle
control, an incorrect prediction can pose a significant threat to human lives. Similarly, in decision-
making systems, incorrect choices can have severe ethical implications. These scenarios highlight
the necessity of incorporating abstention mechanisms to ensure the safety, reliability, and ethical
soundness of the learning process.

We can distinguish several broad methods for learning with abstention in the literature: confidence-
based methods, which consist of abstaining when the score returned by a pre-trained model falls
below some threshold (Chow, 1957, 1970; Bartlett and Wegkamp, 2008; Yuan and Wegkamp, 2010,
2011; Ramaswamy et al., 2018; Ni et al., 2019); selective classification, which analyzes a set-up with
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a predictor and a selector and defines a selection risk or loss normalized by the expected selection or
coverage (El-Yaniv et al., 2010; Wiener and El-Yaniv, 2011; El-Yaniv and Wiener, 2012; Wiener
and El-Yaniv, 2015; Geifman and El-Yaniv, 2017, 2019); a predictor-rejector formulation, which is
based on learning both a predictor and a rejector, each from a different family of functions, and that
takes into account explicitly the abstention cost c (Cortes et al., 2016a,b, 2023; Mohri et al., 2024);
and a more recent score-based formulation that consists of augmenting the multi-class categories
with a rejection label and of abstaining when the score assigned to the rejection label is the highest
(Mozannar and Sontag, 2020; Cao et al., 2022; Mao et al., 2024b). Another problem closely related
to abstention is that of deferring to an alternative model, or even to a human in some instances. This
can also be considered as a special case of the general abstention scenario and tackled in a similar
way (Madras et al., 2018; Raghu et al., 2019a; Mozannar and Sontag, 2020; Okati et al., 2021; Wilder
et al., 2021; Verma and Nalisnick, 2022; Narasimhan et al., 2022; Verma et al., 2023; Mao et al.,
2023a, 2024a).

We will be particularly interested in the predictor-rejector formulation, which explicitly models
the cost of abstention. The selective classification of El-Yaniv et al. (2010) is also interesting, but it
does not explicitly factor in the cost c and is based on a distinct objective. Confidence-based methods
are also very natural and straightforward, but they may fail when the predictor is not calibrated,
a property that often does not hold. Additionally, they have been shown to be suboptimal when
the predictor differs from the Bayes classifier (Cortes et al., 2016a). The score-based formulation
(Mozannar and Sontag, 2020) admits very common properties and also explicitly takes into account
the rejection cost c. We will compare the predictor-rejector formulation with the score-based one. We
will show via an example that the predictor-rejector is more natural in some instances and will also
compare the two formulations in our experiments. We further elaborate on the difference between
the two formulations in Appendix D.

How should the problem of multi-class classification with abstention be formulated and when
is it appropriate to abstain? The extension of the results of Cortes et al. (2016a) to multi-class
classification was found to be very challenging by Ni et al. (2019). In fact, these authors left the
following as an open question: can we define Bayes-consistent surrogate losses for the predictor-
rejector abstention formulation in the multi-class setting? This paper deals precisely with this topic:
we present a series of new theoretical, algorithmic, and empirical results for multi-class learning with
abstention in predictor-rejector formulation and, in particular, resolve this open question in a strongly
positive way.

For the score-based formulation, a surrogate loss function based on cross-entropy was introduced
by Mozannar and Sontag (2020), which was proven to be Bayes-consistent. Building upon this work,
Cao et al. (2022) presented a more comprehensive collection of Bayes-consistent surrogate losses for
the score-based formulation. These surrogate losses can be constructed using any consistent loss
function for the standard multi-class classification problem. More recently, Mao et al. (2024b) gave
an extensive analysis of surrogate losses for the score-based formulation supported by H-consistency
bounds. In a recent study, Mozannar et al. (2023) demonstrated that existing score-based surrogate
losses for abstention are not realizable consistent with respect to the abstention loss, as defined by
Long and Servedio (2013). Instead, they proposed a novel surrogate loss that achieves realizable
(H,R)-consistency, provided that the sets of predictors H and rejectors R are closed under scaling.
However, the authors expressed uncertainty regarding the Bayes-consistency of their proposed
surrogate losses and left open the question of identifying abstention surrogate losses that are both
consistent and realizable (H,R)-consistent when H and R satisfy the scaling closure property. We
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address this open question by demonstrating that our newly proposed surrogate losses benefit from
both Bayes-consistency and realizable consistency. We give a more comprehensive discussion of
related work in Appendix A.

We show in Section 3 that in some instances the optimal solution cannot be derived in the score-
based formulation, unless we resort to more complex scoring functions. In contrast, the solution
can be straightforwardly derived in the predictor-rejector formulation. In Section 4, we present and
analyze a new family of surrogate loss functions for multi-class abstention in the predictor-rejector
formulation, first in the single-stage setting, where the predictor h and the rejector r are selected
simultaneously, next in a two-stage setting, where first the predictor h is chosen and fixed and
subsequently the rejector r is determined. The two-stage setting is crucial in many applications since
the predictor h is often already learned after a costly training of several hours or days. Re-training to
ensure a simultaneous learning of h and r is then inconceivable due to its prohibitive cost.

In the single-stage setting (Section 4.1), we first give a negative result, ruling out abstention
surrogate losses that do not verify a technical condition. Next, we present several positive results
for abstention surrogate losses verifying that condition, for which we prove non-asymptotic (H,R)-
consistency bounds (Awasthi et al., 2022a,b) that are stronger than Bayes-consistency. Next, in
Section 4.2, we also prove (H,R)-consistency bounds for the two-stage setting. Minimizing these
new surrogate losses directly result in new algorithms for multi-class abstention.

In Section 4.3, we prove realizable consistency guarantees for both single-stage and two-stage
predictor-rejector surrogate losses. In Section 5, we empirically show that our two-stage predictor-
rejector surrogate loss consistently outperforms state-of-the-art scored-based surrogate losses, while
our single-stage one achieves comparable results. Our main contributions are summarized below:

• Counterexample for score-based abstention formulation.

• Negative results for single-stage predictor-rejector surrogate losses.

• New families of single-stage predictor-rejector surrogate losses for which we prove strong non-
asymptotic and hypothesis set-specific consistency guarantees, thereby resolving positively an
open question mentioned by Ni et al. (2019).

• Two-stage predictor-rejector formulations and their H-consistency bounds guarantees.

• Realizable consistency guarantees for both single-stage and two-stage surrogate losses, which
resolve positively the recent open question posed by Mozannar et al. (2023).

• Experiments on CIFAR-10, CIFAR-100 and SVHN datasets empirically demonstrating the
usefulness of our proposed surrogate losses.

2. Preliminaries

We first introduce some preliminary concepts and definitions, including the description of the
predictor-rejector formulation and background on H-consistency bounds. We examine the standard
multi-class classification scenario with an input space X and a set of n ≥ 2 classes or labels
Y = {1, . . . , n}. We will denote by D a distribution over X × Y and by p(x, y) = D(Y = y ∣
X = x) the conditional probability of Y = y given X = x. We will also adopt the shorthand
p(x) = (p(x,1), . . . , p(x,n)) to denote the vector of conditional probabilities, given x ∈ X. We
study more specifically the learning scenario of multi-class classification with abstention, within the
predictor-rejector formulation introduced by Cortes et al. (2016b).
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Predictor-rejector formulation. In this formulation of the abstention problem, we have a
hypothesis set H of prediction functions mapping from X×Y to R, along with a family R of abstention
functions, or rejectors, which map from X to R. For an input x ∈ X and a hypothesis h ∈ H, the
predicted label h(x) is defined as the one with the highest score, h(x) = argmaxy∈Y h(x, y), using
an arbitrary yet fixed deterministic strategy to break ties. A rejector r ∈ R is used to abstain from
predicting on input x if r(x) is non-positive, r(x) ≤ 0, at a cost c(x) ∈ [0,1]. The predictor-rejector
abstention loss Labs for this formulation is thus defined for any (h, r) ∈H ×R and (x, y) ∈ X × Y as

Labs(h, r, x, y) = 1h(x)≠y1r(x)>0 + c(x)1r(x)≤0. (1)

When the learner does not abstain (r(x) > 0), it incurs the familiar zero-one classification loss.
Otherwise, it abstains (r(x) ≤ 0) at the expense of a cost c(x). The learning problem consists
of using a finite sample of size m drawn i.i.d. from D to select a predictor h and rejector r with
small expected Labs loss, E(x,y)∼D[Labs(h, r, x, y)]. For simplification, in the following, we assume
a constant cost function c ∈ (0,1). This assumption is not necessary however, and all (H,R)-
consistency bounds results in Sections 4.1 and 4.2 extend straightforwardly to general cost functions.

Optimizing the predictor-rejector abstention loss is intractable for most hypothesis sets. Thus,
learning algorithms in this context must rely on a surrogate loss L for Labs. In the subsequent sections,
we study the consistency properties of several surrogate losses. Given a surrogate loss function L
in the predictor-rejector framework, we denote by EL(h, r) = E(x,y)∼D[L(h, r, x, y)] the L-expected
loss of a pair (h, r) ∈H ×R and by E∗L(H,R) = infh∈H,r∈R EL(h, r) its infimum over H ×R.

(H,R)-consistency bounds. We will prove (H,R)-consistency bounds for several surrogate
losses in the predictor-rejector framework, which extend to the predictor-rejector framework the
H-consistency bounds of Awasthi et al. (2021a,b, 2022a,b, 2023, 2024); Mao et al. (2023c,d,e);
Zheng et al. (2023); Mao et al. (2023b,f). These are inequalities upper-bounding the predictor-rejector
abstention estimation loss Labs of a hypothesis h ∈H and rejector r ∈ R with respect to their surrogate
estimation loss. They admit the following form:

ELabs
(h, r) − E∗Labs

(H,R) ≤ f(EL(h, r) − E∗L(H,R)),

where f is a non-decreasing function. Thus, the estimation error (ELabs
(h, r)−E∗Labs

(H,R)) is then
bounded by f(ε) if the surrogate estimation loss (EL(h, r)−E∗L(H,R)) is reduced to ε. An important
term that appears in these bounds is the minimizability gap, which is defined by ML(H,R) =
E∗L(H,R) −Ex[infh∈H,r∈REy[L(h, r,X, y) ∣X = x]]. When the loss function L depends solely on
h(x, ⋅) and r(x), which holds for most loss functions used in applications, and when H and R include
all measurable functions, the minimizability gap is null (Steinwart, 2007, lemma 2.5). However, it
is generally non-zero for restricted hypothesis sets H and R. The minimizability gap can be upper-
bounded by the approximation error AL(H,R) = E∗L(H,R) −Ex[infh,r Ey[L(h, r,X, y) ∣X = x]],
where the infimum is taken over all measurable functions. But, the minimizability gap is a finer
quantity and leads to more favorable guarantees.

3. Counterexample for score-based abstention losses

We first discuss a natural example here that can be tackled straightforwardly in the predictor-rejector
formulation but for which the same solution cannot be derived in the score-based formulation setting,
unless we resort to more complex functions. This natural example motivates our study of surrogate
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losses for the predictor-rejector formulation in Section 4. We begin by discussing the score-based
formulation and subsequently highlight its relationship with the predictor-rejector formulation.

Score-based abstention formulation. In this version of the abstention problem, the label set
Y is expanded by adding an extra category (n + 1), which represents abstention. We indicate the
augmented set as Ỹ = {1, . . . , n, n + 1} and consider a hypothesis set H̃ comprising functions that
map from X× Ỹ to R. The label assigned to an input x ∈ X by h̃ ∈ H̃ is denoted as h̃(x). It is defined
as h̃(x) = n + 1 if h̃(x,n + 1) ≥ maxy∈Y h̃(x, y); otherwise, h̃(x) is determined as an element in Y

with the highest score, h̃(x) = argmaxy∈Y h̃(x, y), using an arbitrary yet fixed deterministic strategy
to break ties. When h̃(x) = n + 1, the learner chooses to abstain from predicting for x and incurs a
cost c. In contrast, it predicts the label y = h̃(x) if otherwise. The score-based abstention loss L̃abs

for this formulation is defined for any h̃ ∈ H̃ and (x, y) ∈ X × Y as follows:

L̃abs(h̃, x, y) = 1h̃(x)≠y1h̃(x)≠n+1 + c1h̃(x)=n+1. (2)

Thus, as in the predictor-rejector context, when the learner does not abstain (h̃(x) ≠ n+ 1), it reduces
to the familiar zero-one classification loss. Conversely, when it abstains (h̃(x) = n + 1), it incurs the
cost c. With a finite sample drawn i.i.d. from D, the learning problem involves choosing a hypothesis
h̃ within H̃ that yields a minimal expected score-based abstention loss, E(x,y)∼D[L̃abs(h̃, x, y)].

Relationship between the two formulations. In the score-based formulation, rejection is
defined by the condition h̃(x,n + 1) −maxy∈Y h̃(x, y) ≥ 0. Thus, a predictor-rejector formulation
with (h, r) ∈ H × R can be equivalently formulated as a score-based problem with h̃ defined by
h̃(x, y) = h(x, y) for y ∈ Y and h̃(x,n+1) = maxy∈Y h(x, y)−r(x): L̃abs(h̃, x, y) = Labs(h, r, x, y)
for all (x, y) × X × Y. Note, however, that function h̃(⋅, n + 1) is in general more complex. As
an example, while h and r may both be in a family of linear functions, in general, h̃(⋅, n + 1)
defined in this way is no more linear. Thus, a score-based formulation might require working with
more complex functions. We further elaborate on the difference between the two formulations in
Appendix D.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

fpred(x) = 0
fabs(x) = 0

Figure 1: Counterexample for
score-based abstention losses.

Counterexample setting. Let Y = {1,2} and let x
follow the uniform distribution on the unit ball B2(1) =
{x∶ ∥x∥2 ≤ 1}. We will consider the linear models f ∈ Flin =
{x→w ⋅ x + b ∣ ∥w∥2 = 1}. We set the label of a point x as fol-
lows: fix two linear functions fabs(x) = wabs ⋅ x + babs and
fpred(x) = wpred ⋅ x + bpred in Flin , if fabs(x) ≤ 0, then set
y = 1 with probability 1

2 and y = 2 with probability 1
2 ; if fabs(x) >

0 and fpred(x) > 0, then set y = 1; if fabs(x) > 0 and fpred(x) ≤ 0,
then set y = 2; see Figure 1.

We denote by Hlin the hypothesis set of linear scoring functions
h with two labels: h(⋅,1) and h(⋅,2) are in Flin with the natural
constraint h(⋅,1) + h(⋅,2) = 0 as in Lee et al. (2004). We also
denote by H̃lin the linear hypothesis set of functions h̃ with three scores h̃(⋅,1), h̃(⋅,2), h̃(⋅,3) in
Flin with the same constraint h̃(⋅,1) + h̃(⋅,2) = 0 while h̃(⋅,3) is independent of h̃(⋅,1) and h̃(⋅,2).
Note that here the constraint is imposed only to simplify the analysis and is not necessary for the
counter-example to hold. Thus, for any cost c ∈ [0, 1

2
), the Bayes solution in this setting consists of

abstaining on {x ∈ B2(1) ∶ fabs(x) ≤ 0} and otherwise making a prediction according to the decision
surface fpred(x) = 0.
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In the predictor-rejector formulation, the learner seeks to select a hypothesis h in Hlin and a
rejector r in Flin with small expected predictor-rejector loss, E(x,y)∼D[Labs(h, r, x, y)]. In the score-
based abstention formulation, the learner seeks to select a hypothesis h̃ in H̃lin with small expected
score-based abstention loss, E(x,y)∼D[L̃abs(h̃, x, y)]. We will show that, in the predictor-rejector
formulation, it is straightforward to find the Bayes solution but, in the score-based formulation, the
same solution cannot be achieved, unless a more complex family of functions is adopted for h̃(⋅,3).

Predictor-rejector formulation succeeds. For the predictor-rejector abstention loss Labs, it
is straightforward to see that for any cost c ∈ [0, 1

2
), the best-in-class predictor and rejector h∗Hlin

and r∗Flin
can be expressed as follows: h∗Hlin

(⋅,1) = fpred(⋅), h∗Hlin
(⋅,2) = −fpred(⋅), r∗Flin

= fabs.
Moreover, it is clear that h∗Hlin

and r∗Flin
match the Bayes solution.

Score-based abstention formulation fails. For the score-based abstention loss L̃abs, for any cost
c ∈ [0, 1

2
), the best-in-class classifier h̃∗

H̃lin
has the following form: h̃∗

H̃lin
(⋅,1) = f1(⋅), h̃∗H̃lin

(⋅,2) =
−f1(⋅), h̃∗H̃lin

(⋅,3) = f2(⋅), for some f1, f2 ∈ Flin. Thus, h̃∗
H̃lin

abstains from making a prediction on
{x ∈ B2(1) ∶ f2(x) ≤ ∣f1(x)∣} and otherwise predicts according to the decision surface f1(x) = 0.
To match the Bayes solution, f1 must equal fpred and f2 must satisfy the following condition:
f2(x) ≥ ∣fpred(x)∣ ⇔ fabs(x) ≤ 0, which does not hold. Therefore, unless we resort to more
complex functions for h̃(⋅,3), the score-based formulation cannot result in the Bayes solution.

4. Predictor-rejector surrogate losses

In this section, we present and analyze a new family of surrogate loss functions L for Labs, first in the
single-stage setting, where the predictor h and the rejector r are selected simultaneously, next in a
two-stage setting, where first the predictor h is chosen and fixed and subsequently the rejector r is
determined. We give (H,R)-consistency bounds and guarantees for both settings.

4.1. Single-stage predictor-rejector surrogate losses

In view of the expression of the predictor-rejector abstention loss Labs(h, r, x, y) = 1h(x)≠y1r(x)>0 +
c1r(x)≤0, if ` is a surrogate loss for the zero-one multi-class classification loss over the set of labels
Y, then, L defined as follows is a natural surrogate loss for Labs: for all (x, y) ∈ X × Y,

L(h, r, x, y) = `(h,x, y)Φ(−αr(x)) +Ψ(c)Φ(βr(x)), (3)

where Ψ is a non-decreasing function, Φ is a non-increasing auxiliary function upper bounding
t↦ 1t≤0 and α, β are positive constants. The formulation (3) of L is a multi-class generalization of the
binary abstention surrogate loss proposed in (Cortes et al., 2016b,a), where the binary margin-based
loss Φ̃(yh(x)) and Ψ(t) = t are used instead:

Lbin(h, r, x, y) = Φ̃(yh(x))Φ(−αr(x)) + cΦ(βr(x)). (4)

Minimizing Lbin with a regularization term was shown to achieve state-of-the-art results in the binary
case with margin-based losses Φ̃ such as the exponential loss Φ̃exp(t) = exp(−t) and the hinge loss
Φ̃hinge(t) = max{1 − t,0} (Cortes et al., 2016b,a). However, we will show below that its multi-class
generalization L imposes a more stringent condition on the choice of the surrogate loss `, which
rules out for example the multi-class exponential loss. We will show, however, that several other
loss functions do satisfy that condition, for example the multi-class hinge loss. In the following, for
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simplicity, we consider Φ(t) = exp(−t) as in (Cortes et al., 2016b) for the main analysis, though
a similar analysis can be given for other functions Φ. We first present a negative result, ruling out
surrogate losses L that are based on a loss ` that does not verify a certain condition.

As with (Awasthi et al., 2022b), we assume that the hypothesis sets are symmetric and complete.
We say that a hypothesis set G is symmetric if there exists a family F of functions f mapping
from X to R such that {[g(x,1), . . . , g(x,n)]∶ g ∈ G} = {[f1(x), . . . , fn(x)]∶ f1, . . . , fn ∈ F}, for
any x ∈ X. We say that a hypothesis set H is complete if the set of scores it generates spans R, that is,
{g(x, y)∶ g ∈ G} = R, for any (x, y) ∈ X × Y. The hypothesis sets widely used in practice including
linear models and multilayer feedforward neural networks are all symmetric and complete.

Theorem 1 (Negative result for single-stage surrogates) Assume that H is symmetric and com-
plete, and that R is complete. If there exists x ∈ X such that infh∈H Ey[`(h,X, y) ∣X = x] ≠
βΨ(1−maxy∈Y p(x,y))

α , then, there does not exist a non-decreasing function Γ∶R+ → R+ with the prop-
erty limt→0+ Γ(t) = 0 such that the following (H,R)-consistency bound holds: for all h ∈H, r ∈ R,
and any distribution,

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) ≤ Γ(EL(h, r) − E∗L(H,R) +ML(H,R)).

The proof (Appendix G.1) proceeds by contradiction. Assuming that the (H,R)-consistency
bound is valid would entail that the pointwise best-in-class predictor and best-in-class rejector for
the single-stage surrogate loss align with those of the abstention loss, which can be characterized by
Lemma 20 in Appendix F. Incorporating those explicit forms into the analysis of the conditional risk
of the surrogate loss leads to a contradiction upon examination of its derivatives.

In view of Theorem 1, to find a surrogate loss L that admits a meaningful (H,R)-consistency
bound, we need to consider multi-class surrogate losses ` for which the following condition holds for
any x ∈ X, for some Ψ and pair (α,β) ∈ R2

+:

inf
h∈H

E
y
[`(h,X, y) ∣X = x] =

βΨ(1 −maxy∈Y p(x, y))
α

.

In the binary case, this condition is easily verifiable, as maxy∈Y p(x, y) uniquely determines the
other probabilities. However, in the multi-class scenario, a fixed maxy∈Y p(x, y) still allows for
variation in the other probabilities within infh∈H Ey [`(h,X, y) ∣X = x]. This leads to the difficulties
in extending the binary framework to the multi-class classification.

Nevertheless, we will show that this necessary condition is satisfied by three common multi-class
surrogate losses `. Furthermore, we will prove (H,R)-consistency bounds for the predictor-rejector
surrogate losses L based on any of these three choices of ` defined for all h ∈H and (x, y) as follows:

(i) The mean absolute error loss (Ghosh et al., 2017): `mae(h,x, y) = 1 − eh(x,y)

∑y′∈Y eh(x,y
′) ;

(ii) The constrained ρ-hinge loss: `ρ−hinge(h,x, y) = ∑y′≠y Φρ−hinge(−h(x, y′)), ρ > 0, with
Φρ−hinge(t) = max{0,1 − t

ρ
} the ρ-hinge loss, and the constraint ∑y∈Y h(x, y) = 0.

(iii) The ρ-Margin loss: `ρ(h,x, y) = Φρ(ρh(x, y)), with ρh(x, y) = h(x, y)−maxy′≠y h(x, y′)
the confidence margin and Φρ(t) = min{max{0,1 − t

ρ
},1}, ρ > 0 the ρ-margin loss.

Theorem 2 ((H,R)-consistency bounds for single-stage surrogates) Assume that H is symmet-
ric and complete and R is complete. Then, for α = β, and ` = `mae, or ` = `ρ with Ψ(t) = t, or
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` = `ρ−hinge with Ψ(t) = nt, the following (H,R)-consistency bound holds for all h ∈H, r ∈ R and
any distribution:

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) ≤ Γ(EL(h, r) − E∗L(H,R) +ML(H,R)),

where Γ(t) = max{2n
√
t, n t} for ` = `mae; Γ(t) = max{2

√
t, t} for ` = `ρ; and Γ(t) =

max{2
√
nt, t} for ` = `ρ−hinge.

The theorem provides strong guarantees for the predictor-rejector surrogate losses we described
in the single-stage setting. The technique used in the proof (Appendix G.2) is novel and requires
careful analysis of various cases involving the pointwise best-in-class predictor and rejector. This
analysis is challenging and needs to take into account the conditional risk and calibration gap (see
Appendix F) of specific loss functions. The approach is substantially different from the standard
scenarios examined in (Awasthi et al., 2022b), due to the simultaneous minimization of both the
predictor and rejector in the abstention setting. Discussions on Theorem 2 are given in Remark 14
in Appendix B. The following is a direct consequence of Theorem 2 when H and R include all
measurable functions, since the minimizability gaps MLabs

and ML are then zero.

Corollary 3 (Excess error bounds for single-stage surrogates) For α = β, and ` = `mae, or ` =
`ρ with Ψ(t) = t, or ` = `ρ−hinge with Ψ(t) = nt, the following excess error bound holds for all
h ∈Hall, r ∈ Rall and any distribution:

ELabs
(h, r) − E∗Labs

(Hall,Rall) ≤ Γ(EL(h, r) − E∗L(Hall,Rall)),

where Γ has the same form as in Theorem 2.

The corollary resolves in a positive way the open question mentioned by Ni et al. (2019). In fact
it provides a stronger result since it gives non-asymptotic excess error bounds for the three abstention
surrogate losses previously described. These are stronger guarantees than Bayes-consistency of these
loss functions, which follow immediately by taking the limit.

It should be noted that our novel single-stage predictor-rejector surrogate losses might present
some challenges for optimization. This is due to several factors: the difficulty of optimizing the mean
absolute error loss (Zhang and Sabuncu, 2018) (also see Section 5), the restriction imposed by the
constrained hinge loss, which is incompatible with the standard use of the softmax function in neural
network hypotheses, and the non-convexity of the ρ-margin loss. However, our primary objective
has been a theoretical analysis and the significance of these surrogate losses lies in their novelty
and strong guarantees. As shown in Corollary 3, they are the first Bayes-consistent surrogate losses
within the predictor-rejector formulation for multi-class abstention, addressing an open question in
the literature (Ni et al., 2019).

4.2. Two-stage predictor-rejector surrogate losses

Here, we explore a two-stage algorithmic approach, for which we introduce surrogate losses with
more flexible choices of ` that admit better optimization properties, and establish (H,R)-consistency
bounds for them. This is a key scenario since, in practice, often a large pre-trained prediction model
is already available (first stage), and retraining it would be prohibitively expensive. The problem
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then consists of leaving the first stage prediction model unchanged and of subsequently learning a
useful rejection model (second stage).

Let ` be a surrogate loss for standard multi-class classification and Φ a function like the exponen-
tial function that determines a margin-based loss Φ(yr(x)) in binary classification, with y ∈ {−1,+1}
for a function r. We propose a two-stage algorithmic approach and a surrogate loss to minimize in
the second stage: first, find a predictor h by minimizing `; second, with h fixed, find r by minimizing
`Φ,h, a surrogate loss function of r for all (x, y), defined by

`Φ,h(r, x, y) = 1h(x)≠yΦ(−r(x)) + cΦ(r(x)), (5)

where t ↦ Φ(t) is a non-increasing auxiliary function upper bounding 1t≤0. This algorithmic
approach is straightforward since the first stage involves the familiar task of finding a predictor using
a standard surrogate loss, such as logistic loss (or cross-entropy with softmax). The second stage
is also relatively simple as h remains fixed and the form of `Φ,h is uncomplicated, with Φ possibly
being the logistic or exponential loss. It is important to underscore that the judicious selection of
the indicator function in the initial term of (5) plays a crucial role in guaranteeing that the two-stage
surrogate loss benefits from (H,R)-consistency bounds. If a surrogate loss is used in the first stage,
this may not necessarily hold.

Note that in (5), h is fixed and only r is learned by minimizing the surrogate loss corresponding
to that h, while in contrast both h and r are jointly learned in the abstention loss (1). We denote by
`abs,h the two-stage version of the abstention loss (1) with a fixed predictor h, defined as: for any
r ∈ R, x ∈ X and y ∈ Y:

`abs,h(r, x, y) = 1h(x)≠y1r(x)>0 + c1r(x)≤0. (6)

In other words, both `Φ,h and `abs,h are loss functions of the abstention function r, while Labs is a
loss function of the pair (h, r) ∈ (H,R).

Define the binary zero-one classification loss as `binary
0−1 (r, x, y) = 1y≠sign(r(x)), where sign(t) =

1t>0 − 1t≤0. As with the single-stage surrogate losses, the two-stage surrogate losses benefit from
strong consistency guarantees as well. We first show that in the second stage where a predictor h is
fixed, the surrogate loss function `Φ,h benefits from R-consistency bounds with respect to `abs,h if, Φ

admits an R-consistency bound with respect to the binary zero-one loss `binary
0−1 .

Theorem 4 (R-consistency bounds for second-stage surrogates) Fix a predictor h. Assume that
Φ admits an R-consistency bound with respect to `binary

0−1 . Thus, there exists a non-decreasing concave
function Γ such that, for all r ∈ R,

E
`binary
0−1

(r) − E∗
`binary
0−1

(R) +M
`binary
0−1

(R) ≤ Γ(EΦ(r) − E∗Φ(R) +MΦ(R)).

Then, the following R-consistency bound holds for all r ∈ R and any distribution:

E`abs,h
(r) − E∗`abs,h

(R) +M`abs,h
(R) ≤ Γ((E`Φ,h

(r) − E∗`Φ,h
(R) +M`Φ,h

(R))/c).

The proof (Appendix G.3) consists of analyzing the calibration gap of the abstention loss and
second-stage surrogate loss, for a fixed predictor h. The calibration gap here is more complex than
that in the standard setting as it takes into account the conditional probability, the error of that fixed
predictor and the cost, and thus requires a completely different analysis. To establish R-consistency
bounds, we need to upper bound the calibration gap of the abstention loss by that of the surrogate
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loss. However, directly working with them is rather difficult due to their complex forms. Instead,
a key observation is that both forms share structural similarities with the calibration gaps in the
standard classification. Motivated by the above observation, we construct an appropriate conditional
distribution to transform the two calibration gaps into standard ones. Then, by applying Lemma 21 in
Appendix F, we manage to leverage the R-consistency bound of Φ with respect to the binary zero-one
classification loss to upper bound the target calibration gap by that of the surrogate calibration gap.

We further discuss Theorem 4 in Remark 15 (Appendix B). In the special case where H and R

are the family of all measurable functions, all the minimizability gap terms in Theorem 4 vanish.
Thus, we obtain the following corollary.

Corollary 5 Fix a predictor h. Assume that Φ admits an excess error bound with respect to `binary
0−1 .

Thus, there exists a non-decreasing concave functions Γ such that, for all r ∈ Rall,

E
`binary
0−1

(r) − E∗
`binary
0−1

(Rall) ≤ Γ(EΦ(r) − E∗Φ(Rall)).

Then, the following excess error bound holds for all r ∈ Rall and any distribution:

E`abs,h
(r) − E∗`abs,h

(Rall) ≤ Γ((E`Φ,h
(r) − E∗`Φ,h

(Rall))/c).

See Remark 16 (Appendix B) for a brief discussion of Corollary 5.
We now present (H,R)-consistency bounds for the whole two-stage approach with respect to

the abstention loss function Labs. Let `0−1 be the multi-class zero-one loss: `0−1(h,x, y) = 1h(x)≠y.
We will consider hypothesis sets R that are regular for abstention, that is such that for any x ∈ X,
there exist f, g ∈ R with f(x) > 0 and g(x) ≤ 0. If R is regular for abstention, then, for any x, there
is an option to accept and an option to reject.

Theorem 6 ((H,R)-consistency bounds for two-stage approach) Suppose that R is regular. As-
sume that ` admits an H-consistency bound with respect to `0−1 and that Φ admits an R-consistency
bound with respect to `binary

0−1 . Thus, there are non-decreasing concave functions Γ1 and Γ2 such that,
for all h ∈H and r ∈ R,

E`0−1(h) − E∗`0−1
(H) +M`0−1(H) ≤ Γ1(E`(h) − E∗` (H) +M`(H))

E
`binary
0−1

(r) − E∗
`binary
0−1

(R) +M
`binary
0−1

(R) ≤ Γ2(EΦ(r) − E∗Φ(R) +MΦ(R)).

Then, the following (H,R)-consistency bound holds for all h ∈H, r ∈ R and any distribution:

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) ≤ Γ1(E`(h) − E∗` (H) +M`(H))

+ (1 + c)Γ2((E`Φ,h
(r) − E∗`Φ,h

(R) +M`Φ,h
(R))/c),

where the constant factors (1 + c) and 1
c can be removed when Γ2 is linear.

In the proof (Appendix G.4), we express the pointwise estimation error term for the target
abstention loss as the sum of two terms. The first term represents the pointwise estimation error of
the abstention loss with a fixed h, while the second term denotes that with a fixed r∗. This proof is
entirely novel and distinct from the approach used for a standard loss without abstention in (Awasthi
et al., 2022b). Discussions on Theorem 6 are given in Remark 17 in Appendix B. As before, when H

and R are the family of all measurable functions, the following result on excess error bounds holds.

10
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Corollary 7 Assume that ` admits an excess error bound with respect to `0−1 and that Φ admits an
excess error bound with respect to `binary

0−1 . Thus, there are non-decreasing concave functions Γ1 and
Γ2 such that, for all h ∈Hall and r ∈ Rall,

E`0−1(h) − E∗`0−1
(Hall) ≤ Γ1(E`(h) − E∗` (Hall))

E
`binary
0−1

(r) − E∗
`binary
0−1

(Rall) ≤ Γ2(EΦ(r) − E∗Φ(Rall)).

Then, the following excess error bound holds for all h ∈Hall and r ∈ Rall and any distribution:

ELabs
(h, r) − E∗Labs

(Hall,Rall) ≤ Γ1(E`(h) − E∗` (Hall)) + (1 + c)Γ2((E`Φ,h
(r) − E∗`Φ,h

(Rall))/c),

where the constant factors (1 + c) and 1
c can be removed when Γ2 is linear.

See Remark 18 (Appendix B) for a brief discussion of Corollary 7.
These results provide a strong guarantee for surrogate losses in the two-stage setting. Additionally,

while the choice of ` in the single-stage setting was subject to certain conditions, here, the multi-class
surrogate loss ` can be chosen more flexibly. Specifically, it can be selected as the logistic loss
(or cross-entropy with softmax), which is not only easier to optimize but is also better tailored for
complex neural networks. In the second stage, the formulation is straightforward, and the choice of
function Φ is flexible, resulting in a simple smooth convex optimization problem with respect to the
rejector function r. Moreover, the second stage simplifies the process as h remains constant and only
the rejector is optimized. This approach can enhance optimization efficiency. In Appendix C, we
further highlight the significance of our findings regarding the two-stage formulation in comparison
with single-stage surrogate losses.

4.3. Other advantages of the predictor-rejector formulation

In this section, we prove another advantage of our predictor-rejector surrogate losses, that is realizable
consistency (Long and Servedio, 2013; Zhang and Agarwal, 2020). The property involves (H,R)-
realizable distributions, under which there exist h∗ ∈H and r∗ ∈ R such that ELabs

(h∗, r∗) = 0. The
realizable distribution allows the optimal solution to abstain on points where the cost c(x) is zero.

Definition 8 L is realizable (H,R)-consistent with respect to Labs if, for any (H,R)-realizable
distribution, limn→+∞ EL(hn, rn) = E∗L(H,R) Ô⇒ limn→+∞ ELabs

(hn, rn) = E∗Labs
(H,R).

In the following, we will establish that our predictor-rejector surrogate losses, both the single-stage
and two-stage variants, are realizable (H,R)-consistent when H and R are closed under scaling. A
hypothesis set G is closed under scaling if, g ∈ G implies that νg is also in G for any ν ∈ R. We will
adopt the following mild assumption for the auxiliary function Φ in the predictor-rejector surrogate
losses.

Assumption 1 For any t ∈ R, Φ(t) ≥ 1t≤0 and limt→+∞ Φ(t) = 0.

In other words, Φ upper bounds the indicator function and approaches zero as t goes to infinity.
We first prove a general result showing that single-stage predictor-rejector surrogate losses are
realizable (H,R)-consistent with respect to Labs if the adopted ` satisfies Assumption 2.

Assumption 2 When h(x, y) −maxy′≠y h(x, y′) > 0, limν→+∞ `(νh, x, y) = 0 and ` ≥ `0−1.

11
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The assumption implies that for a sample (x, y) for which a predictor h achieves zero error, the
infimum value of the loss function ` is zero for any hypothesis set H that includes the predictor h,
provided that H is closed under scaling.

Theorem 9 Assume that H and R are closed under scaling. Let Ψ(0) = 0 and Φ satisfy Assump-
tion 1. Then, for any ` that satisfies Assumption 2, the following (H,R)-consistency bound holds for
any (H,R)-realizable distribution, h ∈H and r ∈ R:

ELabs
(h, r) − E∗Labs

(H,R) ≤ EL(h, r) − E∗L(H,R).

The proof is included in Appendix G.5. We first establish upper bounds for E∗L(H,R) using the
optimal predictor and rejector for the abstention loss, subsequently expressing the upper bound as
the sum of two terms. By applying the Lebesgue dominated convergence theorem, we show that
both terms vanish, and thus E∗L(H,R) = 0. It is worth noting that (H,R)-consistency bounds in
Theorem 2 imply the realizable-consistency for considered loss functions. This is because under
the realizable assumption, the minimizability gaps vanish for these loss functions. Nevertheless,
Theorem 9 proves that a more general family of loss functions can actually achieve realizable
consistency.

According to Theorem 9, for any distribution that is (H,R)-realizable, minimizing the single-
stage surrogate estimation loss EL(h, r) − E∗L(H,R) results in the minimization of the abstention
estimation loss ELabs

(h, r) − E∗Labs
(H,R). This suggests that the single-stage predictor-rejector

surrogate loss functions are realizable (H,R)-consistent. In particular, when ` is chosen as 2`mae,
` = `ρ and ` = `ρ−hinge as suggested in Section 4.1, Assumption 1 is satisfied. Thus, we obtain the
following corollary.

Corollary 10 Under the same assumption as in Theorem 9, for ` = 2`mae, ` = `ρ and ` = `ρ−hinge,
the single-stage predictor-rejector surrogate L is realizable (H,R)-consistent with respect to Labs.

Next, we prove a similar result showing that the two-stage predictor-rejector surrogate losses
are realizable (H,R)-consistent with respect to Labs if the multi-class surrogate loss ` is realizable
H-consistent with respect to the multi-class zero-one loss `0−1 when H is closed under scaling.

Definition 11 We say that ` is realizable H-consistent with respect to `0−1 if, for any distribution
such that E∗`0−1

(H) = 0, limn→+∞ E`(hn) = E∗` (H) Ô⇒ limn→+∞ E`0−1(hn) = E∗`0−1
(H) = 0.

Theorem 12 Assume that H and R are closed under scaling. Let ` be any multi-class surrogate
loss that is realizable H-consistent with respect to `0−1 when H is closed under scaling and Φ
satisfies Assumption 1. Let ĥ be the minimizer of E` and r̂ be the minimizer of E`

Φ,ĥ
. Then, for any

(H,R)-realizable distribution, ELabs
(ĥ, r̂) = 0.

The proof is included in Appendix G.6. We first establish the upper bound ELabs
(ĥ, r̂) ≤ E`

Φ,ĥ
(r̂).

Next, we analyze two cases: whether abstention occurs or not. By applying the Lebesgue dominated
convergence theorem, we show that E`

Φ,ĥ
(r̂) = 0 in both cases, consequently leading to ELabs

(ĥ, r̂) =
0. By Theorem 12, under the realizability assumption, minimizing a two-stage predictor-rejector
surrogate loss leads to zero abstention loss. This implies that the two-stage predictor-rejector
surrogate loss functions are also realizable (H,R)-consistent. Kuznetsov et al. (2014) prove the
realizable H-consistency of a broad family of multi-class surrogate losses including the logistic loss
commonly used in practice. Thus, we obtain the following corollary.
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Table 1: Abstention loss of our predictor-rejector surrogate losses against baselines: the state-of-the-
art score-based abstention surrogate losses in (Mozannar and Sontag, 2020; Cao et al., 2022).

Dataset Method Abstention loss

SVHN

(Mozannar and Sontag, 2020) 1.61% ± 0.06%
(Cao et al., 2022) 2.16% ± 0.04%
single-stage predictor-rejector (`mae) 2.22% ± 0.01%
two-stage predictor-rejector 0.94%± 0.02%

CIFAR-10

(Mozannar and Sontag, 2020) 4.48% ± 0.10%
(Cao et al., 2022) 3.62% ± 0.07%
single-stage predictor-rejector (`mae) 3.64% ± 0.05%
two-stage predictor-rejector 3.31%± 0.02%

CIFAR-100

(Mozannar and Sontag, 2020) 10.40% ± 0.10%
(Cao et al., 2022) 14.99% ± 0.01%
single-stage predictor-rejector (`mae) 14.99% ± 0.01%
two-stage predictor-rejector 9.23%± 0.03%

Corollary 13 Under the same assumption as in Theorem 12, for ` being the logistic loss, the
two-stage predictor-rejector surrogate loss is realizable (H,R)-consistent with respect to Labs.

Note that existing score-based abstention surrogate losses were shown to be not realizable
consistent in (Mozannar et al., 2023). Recall that in Section 4.1 and Section 4.2, the (H,R)-
consistency bounds guarantees (applicable to all distributions without any assumptions) indicate that
both our single-stage and two-stage predictor-rejector surrogate losses are also Bayes-consistent,
while it is unknown if the surrogate loss proposed by Mozannar et al. (2023) is. By combining
the results from Section 4.1, Section 4.2 and Section 4.3, we demonstrate the advantages of the
predictor-rejector formulation. As a by-product of our results, we address two open questions in the
literature (Ni et al., 2019) and (Mozannar et al., 2023) indicated in Section 1.

5. Experiments

In this section, we present experimental results for the single-stage and two-stage predictor-rejector
surrogate losses, as well as for the state-of-the-art score-based abstention surrogate losses (Mozannar
and Sontag, 2020; Cao et al., 2022) on three popular datasets: SVHN (Netzer et al., 2011), CIFAR-10
and CIFAR-100 (Krizhevsky, 2009). Note that the basic confidence-based approach has already
been shown in (Cao et al., 2022) to be empirically inferior to state-of-the-art score-based abstention
surrogate losses. More details on the experiments are included in Appendix E.

Results. In Table 1, we report the mean and standard deviation of the abstention loss over
three runs for our algorithms and the baselines. Table 1 shows that our two-stage predictor-rejector
surrogate loss consistently outperforms the state-of-the-art score-based abstention surrogate losses
in (Mozannar and Sontag, 2020; Cao et al., 2022) across all cases. The single-stage predictor-
rejector surrogate loss with ` set as the mean absolute error loss achieves comparable results. Our
predictor-rejector surrogate losses, both the single-stage and two-stage variants, benefit from (H,R)-
consistency bounds and realizable (H,R)-consistency guarantees. While the optimization of mean
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absolute error loss is known to be challenging, as highlighted in the study by Zhang et al. (2018), our
two-stage algorithm sidesteps this hurdle since it can use the more tractable logistic loss.

6. Conclusion

We presented a series of theoretical, algorithmic, and empirical results for multi-class classification
with abstention. Our theoretical analysis, including proofs of (H,R)-consistency bounds and
realizable (H,R)-consistency, covers both single-stage and two-stage predictor-rejector surrogate
losses. These results further provide valuable tools applicable to the analysis of other loss functions
in learning with abstention.

Our two-stage algorithmic approach provides practical and efficient solutions for multi-class
abstention across various tasks. This approach proves particularly advantageous in scenarios where a
large pre-trained prediction model is readily available, and the expense associated with retraining is
prohibitive. Our empirical findings corroborate the efficacy of these algorithms, further reinforcing
their practical usefulness. Additionally, our work reveals some limitations of the score-based
abstention formulation, such as its inability to consistently yield optimal solutions in certain cases.
In contrast, we present a collection of positive outcomes for various families of predictor-rejector
surrogate loss functions. Importantly, our findings also provide resolutions to two open questions
within the literature.

We believe that our analysis and the novel loss functions we introduced can guide the design of
algorithms across a broad spectrum of scenarios beyond classification with abstention.
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Appendix A. Related work

Several broad methods for learning with abstention can be distinguished in the literature: confidence-
based methods, which consist of abstaining when the score returned by a pre-trained model falls
below some threshold (Chow, 1957, 1970; Bartlett and Wegkamp, 2008; Yuan and Wegkamp, 2010,
2011; Ramaswamy et al., 2018; Ni et al., 2019); selective classification, which analyzes a set-up with
a predictor and a selector and defines a selection risk or loss normalized by the expected selection or
coverage (El-Yaniv et al., 2010; Wiener and El-Yaniv, 2011; El-Yaniv and Wiener, 2012; Wiener
and El-Yaniv, 2015; Geifman and El-Yaniv, 2017, 2019); a predictor-rejector formulation, which is
based on learning both a predictor and a rejector, each from a different family of functions, and that
takes into account explicitly the cost of abstention (Cortes et al., 2016a,b, 2023; Mohri et al., 2024);
and a more recent score-based formulation that consists of augmenting the multi-class categories
with a rejection label and of abstaining when the score assigned to the rejection label is the highest
(Mozannar and Sontag, 2020; Cao et al., 2022; Mao et al., 2024b). Another problem closely related
to abstention is that of deferring to an alternative model, or even to a human in some instances. This
can also be considered as a special case of the general abstention scenario and tackled in a similar
way (Madras et al., 2018; Raghu et al., 2019a; Mozannar and Sontag, 2020; Okati et al., 2021; Wilder
et al., 2021; Verma and Nalisnick, 2022; Narasimhan et al., 2022; Verma et al., 2023; Mao et al.,
2023a, 2024a).

The study of confidence-based methods was initiated by Chow (1957, 1970) who explored
the trade-off between error rate and rejection rate, and also presented an analysis of the Bayes
optimal decision in this context. Later, Fumera et al. (2000) proposed a multiple thresholds rule for
situations where a posteriori probabilities were impacted by errors. Tortorella (2001) introduced
an optimal rejection rule for binary classifiers, relying on the Receiver Operating Characteristic
(ROC) curve. Additionally, Pereira and Pires (2005) compared their methodology with that of
Chow (1970). Numerous publications have proposed various rejection techniques to reduce the
misclassification rate, though without theoretical analysis (Fumera and Roli, 2002; Pietraszek, 2005;
Bounsiar et al., 2007; Landgrebe et al., 2005; Melvin et al., 2008). Herbei and Wegkamp (2005)
examined classification with a rejection option involving a cost and provided excess error bounds for
these ternary functions. Bartlett and Wegkamp (2008) developed a loss function for this scenario that
takes into account the abstention cost c. They proposed learning a predictor using a double hinge
loss and demonstrated its consistency benefits. This approach has been further explored in several
subsequent publications (Grandvalet et al., 2008; Yuan and Wegkamp, 2010, 2011). Ramaswamy
et al. (2018) further examined confidence-based abstention in multi-class classification, showing
that certain multi-class hinge loss formulations and a newly constructed polyhedral binary-encoded
predictions (BEP) surrogate loss are Bayes-consistent. Charoenphakdee et al. (2021) suggested a
cost-sensitive approach for multi-class abstention by breaking down the multi-class problem into
multiple binary cost-sensitive classification problems (Elkan, 2001). They introduced a family of
cost-sensitive one-versus-all surrogate losses, which are Bayes-consistent in that context. Narasimhan
et al. (2023) investigated the connection between learning with abstention and out-of-distribution
detection. They developed a plug-in method aimed at approximating the Bayes-optimal classifier, and
demonstrated its application in the context of learning an out-of-distribution (OOD) aware classifier.

Selective classification methods were introduced by El-Yaniv et al. (2010) who investigated the
trade-off between classifier coverage and accuracy. In a follow-up study, Wiener and El-Yaniv (2011)
developed a strategy for learning a specific kind of selective classification called weakly optimal,
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which has a diminishing rejection rate under certain Bernstein-type conditions. Many successful
connections to selective classification have been established, including active learning (El-Yaniv and
Wiener, 2012; Wiener et al., 2015; Wiener and El-Yaniv, 2015; Puchkin and Zhivotovskiy, 2021;
Denis et al., 2022; Zhu and Nowak, 2022), multi-class rejection (Tax and Duin, 2008; Dubuisson
and Masson, 1993; Le Capitaine and Frelicot, 2010), reinforcement learning (Li et al., 2008), online
learning (Zhang and Chaudhuri, 2016), modern confidence-based rejection methods (Geifman and
El-Yaniv, 2017), neural network architectures (Geifman and El-Yaniv, 2019), loss functions based
on gambling’s doubling rate (Ziyin et al., 2019), disparity-free approaches (Schreuder and Chzhen,
2021), and the abstention problem in a "confidence set" framework (Gangrade et al., 2021; Chzhen
et al., 2021).

The predictor-rejector formulation was advocated by Cortes, DeSalvo, and Mohri (2016a) who
contended that confidence-based abstention is generally suboptimal, unless the learned predictor
is the Bayes classifier. They demonstrated that, in most cases, no threshold-based abstention can
achieve the desired outcome. They proposed a new abstention framework that involves learning both
a predictor h and a rejector r simultaneously, which can generally differ from a threshold-based
function. They defined a predictor-rejector formulation loss function for the pair (h, r), considering
the abstention cost c. The authors provided Rademacher complexity-based generalization bounds
for this learning problem and proposed various surrogate loss functions for the binary classification
abstention loss. They demonstrated that these surrogate losses offered consistency guarantees and
developed algorithms based on these surrogate losses, which empirically outperformed confidence-
based abstention benchmarks. This work led to several follow-up studies, including a theoretical
and algorithmic investigation of boosting with abstention (Cortes et al., 2016b) and an analysis of
extending the results to a multi-class setting (Ni et al., 2019). These authors acknowledged the
difficulty in designing calibrated or Bayes-consistent surrogate losses based on the predictor-rejector
abstention by Cortes et al. (2016a) and left it as an open question.

Mozannar and Sontag (2020) introduced an alternative score-based formulation for multi-class
abstention. In this approach, besides the standard scoring functions associated with each label, a new
scoring function is linked to a new rejection label. Rejection occurs when the score assigned to the
rejection label exceeds other scores, implicitly defining the rejector through this specific rule. The
authors proposed a surrogate loss for their method based on cross-entropy (logistic loss with softmax
applied to neural network outputs), which they demonstrated to be Bayes-consistent. Building
upon this work, Cao et al. (2022) presented a more comprehensive collection of Bayes-consistent
surrogate losses for the score-based formulation. These surrogate losses can be constructed using any
consistent loss function for the standard multi-class classification problem. More recently, Mao et al.
(2024b) gave an extensive analysis of surrogate losses for the score-based formulation supported by
H-consistency bounds.

The problem of learning to defer is closely related to our study and can be seen as a specific
instance of learning with abstention. Several recent publications have investigated this problem,
including (Madras et al., 2018; Raghu et al., 2019a,b; Mozannar and Sontag, 2020; Okati et al.,
2021; Wilder et al., 2021; Bansal et al., 2021; Verma and Nalisnick, 2022; Narasimhan et al., 2022;
Verma et al., 2023). Confidence-based methods for deferral decisions were examined by Raghu et al.
(2019b); Wilder et al. (2021); Bansal et al. (2021), but these methods may not be optimal for low
capital models (Cortes et al., 2016a). To address this issue, Mozannar and Sontag (2020) proposed a
cost-sensitive logistic loss and Verma and Nalisnick (2022) proposed a cost-sensitive one-versus-all
proper composite loss (Reid and Williamson, 2010), both in the score-based formulation. Verma
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et al. (2023) generalized the surrogate loss in (Verma and Nalisnick, 2022) to the deferral setting with
multiple experts. Recently, Narasimhan et al. (2022) pointed out that the existing surrogate losses for
learning to defer (Mozannar and Sontag, 2020; Verma and Nalisnick, 2022) may underfit in some
practical settings and proposed a post-hoc correction for these loss functions.

We will be particularly interested in the predictor-rejector formulation, which explicitly models
the cost of abstention. The selective classification of El-Yaniv et al. (2010) is also interesting, but it
does not explicitly factor in the cost c and is based on a distinct objective. Confidence-based methods
are also very natural and straightforward, but they may fail when the predictor is not calibrated,
a property that often does not hold. Additionally, they have been shown to be suboptimal when
the predictor differs from the Bayes classifier (Cortes et al., 2016a). The score-based formulation
(Mozannar and Sontag, 2020) admits very common properties and also explicitly takes into account
the rejection cost c. We will compare the predictor-rejector formulation with the score-based one. We
will show via an example that the predictor-rejector is more natural in some instances and will also
compare the two formulations in our experiments. We further elaborate on the difference between
the two formulations in Appendix D.

Appendix B. Remarks on some key results

Remark 14 When the best-in-class error coincides with the Bayes error E∗L(H,R) = E∗L(Hall,Rall),
the minimizability gaps ML(H,R) vanish. In those cases, the (H,R)-consistency bound in Theo-
rem 2 guarantees that when the surrogate estimation error EL(h, r) − E∗L(H,R) is optimized up to ε,
the estimation error of the abstention loss ELabs

(h, r) − E∗Labs
(H,R) is upper bounded by Γ(ε). For

all the three loss functions, when ε is sufficiently small, the dependence of Γ on ε exhibits a square
root relationship. However, if this is not the case, the dependence becomes linear. Note that the
dependence is subject to the number of classes n for ` = `mae and ` = `ρ−hinge.

Remark 15 When the best-in-class error coincides with the Bayes error E∗` (R) = E∗` (Rall) for
` = `Φ,h and ` = `abs,h, the minimizability gaps M`Φ,h

(R) and M`abs,h
(R) vanish. In those cases, the

R-consistency bound in Theorem 4 guarantees that when the surrogate estimation error E`Φ,h
(r) −

E∗`Φ,h
(R) is optimized up to ε, the target estimation error E`abs,h

(r) − E∗`abs,h
(R) is upper bounded

by Γ( εc).

Remark 16 Corollary 5 shows that `Φ,h admits an excess error bound with respect to `abs,h with
functional form Γ( ⋅c) when Φ admits an excess error bound with respect to `binary

0−1 with functional
form Γ(⋅).

Remark 17 Note that the minimizability gaps vanish when H and R are families of all measurable
functions or when they include the Bayes predictor and rejector. In their absence, Theorem 6 shows
that if the estimation prediction loss (E`(h) − E∗` (H)) is reduced to ε1 and the estimation rejection
loss (E`Φ,h

(r) − E∗`Φ,h
(R)) to ε2, then the abstention estimation loss (ELabs

(h, r) − E∗Labs
(H,R)) is,

up to constant factors, bounded by Γ1(ε1) + Γ2(ε2).

Remark 18 Corollary 7 shows that the proposed two-stage approach admits an excess error bound
with respect to Labs with functional form Γ1(⋅) + (1 + c)Γ2( ⋅c) when ` admits an excess error bound
with respect to `0−1 with functional form Γ1(⋅) and Φ admits an excess error bound with respect to
`binary
0−1 with functional form Γ2(⋅).
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Appendix C. Significance of two-stage formulation compared with single-stage losses

Here, we wish to further highlight the significance of our findings regarding the two-stage formulation.
The (H,R)-consistency bounds we established for this scenario directly motivate an algorithm for a
crucial scenario. As already indicated, in applications, often a prediction function is already available
and has been trained using a standard loss function such as cross-entropy. Training may take days or
months for some large models. The cost of a one-stage approach, which involves "retraining" to find
a pair (h, r) with a new h, can thus be prohibitive. Instead, we demonstrate that a rejector r can be
learned using a suitable surrogate loss function based on the existing predictor h and that the solution
formed by the existing h and this rejector r benefits from (H,R)-consistency bounds.

Both our one-stage and two-stage solutions using our surrogate losses benefit from strong (H,R)-
consistency bounds: in the limit of large samples, both methods, one-stage and two-stage converge to
the same joint minimizer of the target abstention loss. However, as already emphasized, the two-stage
approach is advantageous in some scenarios where a predictor h is already available. Moreover, the
two-stage solution is more beneficial from the optimization point of view: the first-stage optimization
can be standard and based on say cross-entropy, and the second stage is based on a loss function (5)
that is straightforward to minimize. In contrast, the one-stage minimization with the MAE loss is
known to be more difficult, see (Zhang and Sabuncu, 2018). In Section 5, our empirical results show
a more favorable performance for the two-stage solution, which we believe reflects this difference in
optimization.

Appendix D. Difference between predictor-rejector and score-based formulations

Here, we hope to further emphasize our contributions by pointing out that the score-based formulation
does not offer a direct loss function applicable to the predictor-rejector formulation. It is important to
emphasize that the hypothesis set used in the score-based setting constitutes a subset of real-valued
functions defined over X × Ỹ, where Ỹ is the original label set Y augmented with an additional label
corresponding to rejection. In contrast, the predictor-rejector function involves selecting a predictor
h out of a collection of real-valued functions defined over X × Y and a rejector r from a sub-family
of real-valued functions defined over X. Thus, the hypothesis sets in these two frameworks differ
entirely. Consequently, a score-based loss function cannot be directly applied to the hypothesis set of
the predictor-rejector formulation.

One can instead, given the hypothesis sets H and R for the predictor and rejector functions in the
predictor-rejector formulation, define a distinct hypothesis set H̃ of real-valued functions defined
over X × Ỹ. Functions h̃ ∈ H̃ are defined from a pair (h, r) ∈H ×R. The score-based loss function
for h̃ ∈ H̃ then coincides with the predictor-rejector loss of (h, r). However, the family H̃ is complex.
As pointed out in Section 3, for instance, when H and R are families of linear functions, H̃ is not
linear and is more complex.

Moreover, there is a non-trivial coupling relating the scoring functions defined for the rejection
label (n + 1) and other scoring functions, while such a coupling is not present in the standard
score-based formulation. This makes it more difficult to minimize the loss function ̃̀(h̃, x, y).
Indeed, the minimization problem requires that the constraint h̃(x,n+1) = maxy∈Y h̃(x, y)−r(x) be
satisfied. This constraint relates the first n scoring functions h̃(⋅, y), y ∈ Y, to the last scoring function
h̃(⋅, n + 1), via a maximum operator (and the function r). The constraint is non-differentiable and
non-convex, which makes the minimization problem more challenging.
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This augmented complexity and coupling fundamentally differentiate the two formulations. Our
counterexample in Section 3 underscores this intrinsic distinction between these two formulations:
While the predictor-rejector formulation can easily handle certain instances, the score-based frame-
work falls short to tackle them unless a more complex hypothesis set is adopted. This key difference
between the two formulations is also the underlying reason for the historical difficulty in devising a
consistent surrogate loss function for the predictor-rejector formulation within the standard multi-
class setting, while the task has been comparatively more straightforward within the score-based
formulation.

It is important to highlight that our novel families of predictor-rejector surrogate losses, alongside
similar variants, establish the first Bayes-consistent and realizable consistent surrogate losses within
the predictor-rejector formulation and they address two previously open questions in the literature
(Ni et al., 2019) and (Mozannar et al., 2023) (see Section 4). Moreover, they outperform the state-of-
the-art surrogate losses found in the score-based formulation (see Section 5). This underscores both
the innovative nature and the significant contribution of our work.

In the following section, we will further showcase the advantages of the predictor-rejector
formulation through empirical evidence.

Appendix E. Experimental details

Setup. We adopt ResNet-34 (He et al., 2016), a residual network with 34 convolutional layers, for
SVHN and CIFAR-10, and WRN-28-10 (Zagoruyko and Komodakis, 2016), a residual network with
28 convolutional layers and a widening factor of 10, for CIFAR-100 both with ReLU activations
(Zagoruyko and Komodakis, 2016). We train for 200 epochs using Stochastic Gradient Descent
(SGD) with Nesterov momentum (Nesterov, 1983) following the cosine decay learning rate schedule
(Loshchilov and Hutter, 2016) of an initial learning rate 0.1. During the training, the batch size
is set to 1,024 and the weight decay is 1 × 10−4. Except for SVHN, we adopt the standard data
augmentation: a four pixel padding with 32 × 32 random crops and random horizontal flips.

We compare with a score-based surrogate loss proposed in (Mozannar and Sontag, 2020) based
on cross-entropy and a score-based surrogate loss used in (Cao et al., 2022) based on generalized
cross-entropy (Zhang and Sabuncu, 2018). For our single-stage predictor-rejector surrogate loss, we
set ` to be the mean absolute error loss `mae since the constrained hinge loss imposes a restriction
incompatible with the standard use of the softmax function with neural network hypotheses, and
the ρ-margin loss is non-convex. For our two-stage predictor-rejector surrogate loss, we first use
standard training with the logistic loss to learn a predictor h∗, and then in the second stage, optimize
the loss function `Φ,h∗ with Φ(t) = exp(−t) to learn a rejector. We set the cost c to 0.03 for SVHN,
0.05 for CIFAR-10 and 0.15 for CIFAR-100. We observe that the performance remains close for
other neighboring values of c. We highlight this particular choice of cost because a cost value that
is not too far from the best-in-class zero-one classification loss encourages in practice a reasonable
amount of input instances to be abstained.

Metrics. We use as evaluation metrics the average abstention loss, Labs for predictor-rejector
surrogate losses and L̃abs for score-based abstention surrogate losses, which share the same semantic
meaning. It’s important to emphasize that the two abstention losses, Labs and L̃abs are indeed the same
metric, albeit tailored for two distinct formulations. Consequently, their average numerical values
can be directly compared. Note that both Labs and L̃abs account for the zero-one misclassification
error when the sample is accepted, and the cost when the sample is rejected. The reason they are
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Table 2: Abstention loss, zero-one misclassification error on the accepted data and rejection ratio of
our predictor-rejector surrogate losses against baselines: the state-of-the-art score-based abstention
surrogate losses in (Mozannar and Sontag, 2020; Cao et al., 2022) on CIFAR-10.

Method Abstention loss Misclassification error Rejection ratio

(Mozannar and Sontag, 2020) 4.48% ± 0.10% 4.30% ± 0.14% 25.99% ± 0.41%
(Cao et al., 2022) 3.62% ± 0.07% 3.08% ± 0.10% 28.27% ± 0.18%
single-stage predictor-rejector (`mae) 3.64% ± 0.05% 3.54% ± 0.05% 17.21% ± 0.22%
two-stage predictor-rejector 3.31%± 0.02% 2.69% ± 0.05% 22.83% ± 0.21%

adapted to the two formulations is due to the difference in the rejection method: r(x) ≤ 0 in the
predictor-rejector formulation and h̃(x) = n + 1 in the score-based abstention formulation. It should
also be noted that the abstention loss serves as a comprehensive metric that integrates the rejection
ratio and zero-one misclassification error on the accepted data, thereby providing a singular, fair
ground for comparison in Table 1. Nevertheless, we include all three metrics in Table 2 as a detailed
comparison.

Appendix F. Useful lemmas

We first introduce some notation before presenting a lemma that will be used in our proofs. Recall
that we denote by p(x, y) = D(Y = y ∣ X = x) the conditional probability of Y = y given
X = x. Thus, the generalization error for a general abstention surrogate loss can be rewritten as
EL(h, r) = EX[CL(h, r, x)], where CL(h, r, x) is the conditional risk of L, defined by

CL(h, r, x) =∑
y∈Y

p(x, y)L(h, r, x, y).

We denote by C∗L(H,R, x) = infh∈H,r∈R CL(h, r, x) the best-in-class conditional risk of L. Then, the
minimizability gap can be rewritten as follows:

ML(H,R) = E∗L(H,R) −EX[C∗L(H,R, x)].

We further refer to CL(h, r, x)−C∗L(H,R, x) as the calibration gap and denote it by ∆CL,H,R(h, r, x).
We first prove a lemma on the calibration gap of the general abstention loss. For any x ∈ X, we
define the set of labels generated by hypotheses in H as H(x) ∶= {h(x)∶h ∈H}. We will consider
hypothesis sets R which are regular for abstention.

Definition 19 (Regularity for Abstention) We say that a hypothesis set R is regular for abstention
if for any x ∈ X, there exist f, g ∈ R such that f(x) > 0 and g(x) ≤ 0.

In other words, if R is regular for abstention, then, for any instance x, there is an option to accept
and an option to reject.

F.1. Lemma 20 and proof

The following lemma characterizes the calibration gap of the predictor-rejector abstention.
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Lemma 20 Assume that R is regular for abstention. For any x ∈ X, the minimal conditional
Labs-risk and the calibration gap for Labs can be expressed as follows:

C∗Labs
(H,R, x) = 1 −max{ max

y∈H(x)
p(x, y),1 − c},

∆CLabs,H,R(h, r, x) =
⎧⎪⎪⎨⎪⎪⎩

max{maxy∈H(x) p(x, y),1 − c} − p(x,h(x)) r(x) > 0

max{maxy∈H(x) p(x, y) − 1 + c,0} r(x) ≤ 0.

Proof By the definition, the conditional Labs-risk can be expressed as follows:

CLabs
(h, r, x) =∑

y∈Y
p(x, y)1h(x)≠y1r(x)>0 + c1r(x)≤0 =

⎧⎪⎪⎨⎪⎪⎩

1 − p(x,h(x)) if r(x) > 0

c if r(x) ≤ 0.
(7)

Since R is regular for abstention, the minimal conditional Labs-risk can be expressed as follows:

C∗Labs
(H,R, x) = 1 −max{ max

y∈H(x)
p(x, y),1 − c},

which proves the first part of the lemma. By the definition of the calibration gap, we have

∆CLabs,H,R(h, r, x) = CLabs
(h, r, x) − C∗Labs

(H,R, x)

=
⎧⎪⎪⎨⎪⎪⎩

max{maxy∈H(x) p(x, y),1 − c} − p(x,h(x)) if r(x) > 0

max{maxy∈H(x) p(x, y) − 1 + c,0} if r(x) ≤ 0,

which completes the proof.

F.2. Lemma 21 and proof

The following lemma would be useful in the proofs for two-stage surrogate losses.

Lemma 21 Assume that the following R-consistency bound holds for all r ∈ R and any distribution,

E`0−1(r) − E∗`0−1
(R) +M`0−1(R) ≤ Γ(EΦ(r) − E∗Φ(R) +MΦ(R)).

Then, for any p1, p2 ∈ [0,1] such that p1 + p2 = 1 and x ∈ X, we have

p11r(x)>0 + p21r(x)≤0 − inf
r∈R

(p11r(x)>0 + p21r(x)≤0)

≤ Γ(p1Φ(−r(x)) + p2Φ(r(x)) − inf
r∈R

(p1Φ(−r(x)) + p2Φ(r(x))))

Proof For any x ∈ X, consider a distribution δx that concentrates on that point. Let p1 = P(y = −1 ∣ x)
and p2 = P(y = +1 ∣ x). Then, by definition, E`0−1(r) − E∗`0−1

(R) +M`0−1(R) can be expressed as

E`0−1(r) − E∗`0−1
(R) +M`0−1(R) = p11r(x)>0 + p21r(x)≤0 − inf

r∈R
(p11r(x)>0 + 1r(x)≤0).

Similarly, EΦ(r) − E∗Φ(R) +MΦ(R) can be expressed as

EΦ(r) − E∗Φ(R) +MΦ(R) = p1Φ(−r(x)) + p2Φ(r(x)) − inf
r∈R

(p1Φ(−r(x)) + p2Φ(r(x))).

Since the R-consistency bound holds by the assumption, we complete the proof.
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Appendix G. Proofs of main theorems

G.1. Proof of negative result for single-stage surrogates (Theorem 1)

Theorem 1 (Negative result for single-stage surrogates) Assume that H is symmetric and com-
plete, and that R is complete. If there exists x ∈ X such that infh∈H Ey[`(h,X, y) ∣X = x] ≠
βΨ(1−maxy∈Y p(x,y))

α , then, there does not exist a non-decreasing function Γ∶R+ → R+ with the prop-
erty limt→0+ Γ(t) = 0 such that the following (H,R)-consistency bound holds: for all h ∈H, r ∈ R,
and any distribution,

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) ≤ Γ(EL(h, r) − E∗L(H,R) +ML(H,R)).

Proof We prove by contradiction. Assume that the bound holds with some non-decreasing function
Γ with limt→0+ Γ(t) = 0, then, for all h ∈ H, r ∈ R, and any distribution, EL(h, r) − E∗L(H,R) +
ML(H,R) → 0 Ô⇒ ELabs

(h, r) − E∗Labs
(H,R) +MLabs

(H,R) → 0. This further implies that for
any x ∈ X, the minimizer h∗ and r∗ of CL(h, r, x) within H and R also achieves the minimum of
CLabs

(h, r, x) within H and R. When H is symmetric and complete, we have H(x) = Y. Since R

is complete, R is regular for abstention. By Lemma 20, h∗ and r∗ need to satisfy the following
conditions:

p(x,h∗(x)) = max
y∈Y

p(x, y), sign(r∗(x)) = sign(max
y∈Y

p(x, y) − (1 − c)). (8)

Next, we will show that (8) contradicts the assumption that there exists x ∈ X such that

inf
h∈H

E
y
[`(h,X, y) ∣X = x] ≠

βΨ(1 −maxy∈Y p(x, y))
α

.

By definition, the conditional L-risk can be expressed as follows:

CL(h, r, x) = exp(αr(x))Ey[`(h,X, y) ∣X = x] +Ψ(c) exp(−βr(x)).

Then, for any fixed r ∈ R, α > 0 and β > 0, we have

inf
h∈H

CL(h, r, x) = exp(αr(x)) inf
h∈H

Ey[`(h,X, y) ∣X = x] +Ψ(c) exp(−βr(x)) ∶= F(r(x)).

By taking the derivative, we obtain

F′(r(x)) = α exp(αr(x)) inf
h∈H

Ey[`(h,X, y) ∣X = x] − βΨ(c) exp(−βr(x)).

Since F(r(x)) is convex with respect to r(x), we know that F′(r(x)) is non-decreasing with
respect to r(x). The equation (8) implies that F(r(x)) is attained at r∗(x) such that sign(r∗(x)) =
sign(maxy∈Y p(x, y) − (1 − c)). Thus, we have

max
y∈Y

p(x, y) ≥ (1 − c) Ô⇒ r∗(x) ≥ 0 Ô⇒ F′(0) ≤ F′(r∗(x)) = 0

max
y∈Y

p(x, y) < (1 − c) Ô⇒ r∗(x) < 0 Ô⇒ F′(0) ≥ F′(r∗(x)) = 0.
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This implies that

α inf
h∈H

Ey[`(h,X, y) ∣X = x] − βΨ(c) ≤ 0 whenever max
y∈Y

p(x, y) ≥ (1 − c)

α inf
h∈H

Ey[`(h,X, y) ∣X = x] − βΨ(c) ≥ 0 whenever max
y∈Y

p(x, y) ≤ (1 − c),

which leads to

α inf
h∈H

Ey[`(h,X, y) ∣X = x] − βΨ(c) = 0 whenever max
y∈Y

p(x, y) = (1 − c). (9)

It is clear that (9) contradicts the assumption that ∃x ∈ X such that infh∈H Ey[`(h,X, y) ∣X = x] ≠
βΨ(1−maxy∈Y p(x,y))

α .

G.2. Proof of (H,R)-consistency bounds for single-stage surrogates (Theorem 2)

Theorem 2 ((H,R)-consistency bounds for single-stage surrogates) Assume that H is symmet-
ric and complete and R is complete. Then, for α = β, and ` = `mae, or ` = `ρ with Ψ(t) = t, or
` = `ρ−hinge with Ψ(t) = nt, the following (H,R)-consistency bound holds for all h ∈H, r ∈ R and
any distribution:

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) ≤ Γ(EL(h, r) − E∗L(H,R) +ML(H,R)),

where Γ(t) = max{2n
√
t, n t} for ` = `mae; Γ(t) = max{2

√
t, t} for ` = `ρ; and Γ(t) =

max{2
√
nt, t} for ` = `ρ−hinge.

Proof When H is symmetric and complete, H(x) = Y. Since R is complete, R is regular for
abstention. By Lemma 20,

C∗Labs
(H,R, x) = 1 −max{max

y∈Y
p(x, y),1 − c},

∆CLabs,H,R(h, r, x) =
⎧⎪⎪⎨⎪⎪⎩

max{maxy∈Y p(x, y),1 − c} − p(x,h(x)) r(x) > 0

max{maxy∈Y p(x, y) − 1 + c,0} r(x) ≤ 0.

(10)

Then, the idea of proof for each loss ` is similar, which consists of the analysis in four cases depending
on the sign of maxy∈Y p(x, y) − (1 − c) and the sign of r(x), as shown below.

Mean absolute error loss: ` = `mae. When ` = `mae with Ψ(t) = t, let sh(x, y) =
eh(x,y)

∑y′∈Y eh(x,y
′) , by the assumption that H is symmetric and complete and R is complete, we obtain

infh∈H Ey[`mae(h,X, y) ∣X = x] = 1 −maxy∈Y p(x, y) and

CL(h, r, x) =∑
y∈Y

p(x, y)(1 − sh(x, y))eαr(x) + ce−αr(x)

C∗L(H,R, x) = 2

¿
ÁÁÀc(1 −max

y∈Y
p(x, y)).
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Note that for any h ∈H,

∑
y∈Y

p(x, y)(1 − sh(x, y)) − (1 −max
y∈Y

p(x, y))

= max
y∈Y

p(x, y) −∑
y∈Y

p(x, y)sh(x, y)

≥ max
y∈Y

p(x, y) − p(x,h(x)sh(x,h(x)) −max
y∈Y

p(x, y)(1 − sh(x,h(x)))

(p(x, y) ≤ maxy∈Y p(x, y), ∀y ≠ h(x))

= sh(x,h(x))(max
y∈Y

p(x, y) − p(x,h(x))

≥ 1

n
(max
y∈Y

p(x, y) − p(x,h(x)). (sh(x,h(x)) = maxy∈Y sh(x, y) ≥ 1
n )

We will then analyze the following four cases.

(i) maxy∈Y p(x, y) > (1 − c) and r(x) > 0. In this case, by (10), we have C∗Labs
(H,R, x) =

1 −maxy∈Y p(x, y) and ∆CLabs,H,R(h, r, x) = maxy∈Y p(x, y) − p(x,h(x)). For the surrogate loss,
we have

∆CL,H,R(h, r, x)

=∑
y∈Y

p(x, y)(1 − sh(x, y))eαr(x) + ce−αr(x) − 2

¿
ÁÁÀc(1 −max

y∈Y
p(x, y))

≥∑
y∈Y

p(x, y)(1 − sh(x, y))eαr(x) + ce−αr(x) − (1 −max
y∈Y

p(x, y))eαr(x) − ce−αr(x)

(AM–GM inequality)

≥∑
y∈Y

p(x, y)(1 − sh(x, y)) − (1 −max
y∈Y

p(x, y)) (r(x) > 0)

≥ 1

n
(max
y∈Y

p(x, y) − p(x,h(x))

(∑y∈Y p(x, y)(1 − sh(x, y)) − (1 −maxy∈Y p(x, y)) ≥ 1
n
(maxy∈Y p(x, y) − p(x,h(x)))

= 1

n
∆CLabs,H,R(h, r, x).

Therefore,

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) = EX[∆CLabs,H,R(h, r, x)]

≤ EX[Γ1(∆CL,H,R(h, r, x))]
≤ Γ1(EX[∆CL,H,R(h, r, x)]) (Γ1 is concave)

= Γ1(EL(h, r) − E∗L(H,R) +ML(H,R))

where Γ1(t) = n t.
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(ii) maxy∈Y p(x, y) ≤ (1 − c) and r(x) > 0. In this case, by (10), we have C∗Labs
(H,R, x) = c and

∆CLabs,H,R(h, r, x) = 1 − c − p(x,h(x)). For the surrogate loss, we have

∆CL,H,R(h, r, x)

=∑
y∈Y

p(x, y)(1 − sh(x, y))eαr(x) + ce−αr(x) − 2

¿
ÁÁÀc(1 −max

y∈Y
p(x, y))

≥∑
y∈Y

p(x, y)(1 − sh(x, y))eαr(x) + ce−αr(x) − 2

¿
ÁÁÁÀc

⎛
⎝∑y∈Y

p(x, y)(1 − sh(x, y))
⎞
⎠

(∑y∈Y p(x, y)(1 − sh(x, y)) ≥ 1 −maxy∈Y p(x, y))

≥∑
y∈Y

p(x, y)(1 − sh(x, y)) + c − 2

¿
ÁÁÁÀc

⎛
⎝∑y∈Y

p(x, y)(1 − sh(x, y))
⎞
⎠

(increasing for r(x) ≥ 0)

=
⎛
⎝

√
∑
y∈Y

p(x, y)(1 − sh(x, y)) −
√
c
⎞
⎠

2

=
⎛
⎝
∑y∈Y p(x, y)(1 − sh(x, y)) − c√
∑y∈Y p(x, y)(1 − sh(x, y)) +

√
c

⎞
⎠

2

≥
⎛
⎝
∑y∈Y p(x, y)(1 − sh(x, y)) − (1 −maxy∈Y p(x, y)) + (1 −maxy∈Y p(x, y) − c)

2

⎞
⎠

2

(
√
∑y∈Y p(x, y)(1 − sh(x, y)) +

√
c ≤ 2)

≥
⎛
⎝

1
n
(maxy∈Y p(x, y) − p(x,h(x)) + 1

n
(1 −maxy∈Y p(x, y) − c)

2

⎞
⎠

2

(∑y∈Y p(x, y)(1 − sh(x, y)) − (1 −maxy∈Y p(x, y)) ≥ 1
n
(maxy∈Y p(x, y) − p(x,h(x)) and 1 −maxy∈Y p(x, y) − c ≥ 0)

= 1

4n2
(1 − c − p(x,h(x)))2

= ∆CLabs,H,R(h, r, x)2

4n2

Therefore,

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) = EX[∆CLabs,H,R(h, r, x)]

≤ EX[Γ2(∆CL,H,R(h, r, x))]
≤ Γ2(EX[∆CL,H,R(h, r, x)]) (Γ2 is concave)

= Γ2(EL(h, r) − E∗L(H,R) +ML(H,R))

where Γ2(t) = 2n
√
t.

(iii) maxy∈Y p(x, y) ≤ (1 − c) and r(x) ≤ 0. In this case, by (10), we have C∗Labs
(H,R, x) =

c and ∆CLabs,H,R(h, r, x) = 0, which implies that ELabs
(h, r) − E∗Labs

(H,R) + MLabs
(H,R) =

EX[∆CLabs,H,R(h, r, x)] = 0 ≤ Γ(EL(h, r) − E∗L(H,R) +ML(H,R)) for any Γ ≥ 0.
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(iv) maxy∈Y p(x, y) > (1 − c) and r(x) ≤ 0. In this case, by (10), we have C∗Labs
(H,R, x) =

1−maxy∈Y p(x, y) and ∆CLabs,H,R(h, r, x) = maxy∈Y p(x, y)−1+c. For the surrogate loss, we have

∆CL,H,R(h, r, x)

=∑
y∈Y

p(x, y)(1 − sh(x, y))eαr(x) + ce−αr(x) − 2

¿
ÁÁÀc(1 −max

y∈Y
p(x, y))

≥ (1 −max
y∈Y

p(x, y))eαr(x) + ce−αr(x) − 2

¿
ÁÁÀc(1 −max

y∈Y
p(x, y))

(∑y∈Y p(x, y)(1 − sh(x, y)) ≥ 1 −maxy∈Y p(x, y))

≥ 1 −max
y∈Y

p(x, y) + c − 2

¿
ÁÁÀc(1 −max

y∈Y
p(x, y)) (decreasing for r(x) ≤ 0)

= (
√

1 −max
y∈Y

p(x, y) −
√
c)

2

=
⎛
⎝

1 −maxy∈Y p(x, y) − c√
1 −maxy∈Y p(x, y) +

√
c

⎞
⎠

2

≥ (maxy∈Y p(x, y) − 1 + c
2

)
2

(
√

1 −maxy∈Y p(x, y) +
√
c ≤ 2)

= ∆CLabs,H,R(h, r, x)2

4
.

Therefore,

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) = EX[∆CLabs,H,R(h, r, x)]

≤ EX[Γ3(∆CL,H,R(h, r, x))]
≤ Γ3(EX[∆CL,H,R(h, r, x)]) (Γ3 is concave)

= Γ3(EL(h, r) − E∗L(H,R) +ML(H,R))

where Γ3(t) = 2
√
t.

Overall, we obtain

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) ≤ Γ(EL(h, r) − E∗L(H,R) +ML(H,R))

where Γ(t) = max{Γ1(t),Γ2(t),Γ3(t)} = max{2n
√
t, n t}, which completes the proof.

ρ-Margin loss: ` = `ρ. When ` = `ρ with Ψ(t) = t, by the assumption that H is symmetric and
complete and R is complete, we obtain infh∈H Ey[`ρ(h,X, y) ∣X = x] = 1 −maxy∈Y p(x, y) and

CL(h, r, x) =∑
y∈Y

p(x, y)min{max{0,1 − ρh(x, y)
ρ

},1}eαr(x) + ce−αr(x)

= (1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x)))eαr(x) + ce−αr(x)

C∗L(H,R, x) = 2

¿
ÁÁÀc(1 −max

y∈Y
p(x, y)).
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where ρh(x, y) = h(x, y) −maxy′≠y h(x, y′) is the margin. Note that for any h ∈H,

1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x)) − (1 −max

y∈Y
p(x, y))

= max
y∈Y

p(x, y) −min{1,
ρh(x,h(x))

ρ
}p(x,h(x))

≥ max
y∈Y

p(x, y) − p(x,h(x). (min{1,
ρh(x,h(x))

ρ } ≤ 1)

We will then analyze the following four cases.

(i) maxy∈Y p(x, y) ≤ (1 − c) and r(x) > 0. In this case, by (10), we have C∗Labs
(H,R, x) = c and

∆CLabs,H,R(h, r, x) = 1 − c − p(x,h(x)). For the surrogate loss, we have

∆CL,H,R(h, r, x)

= (1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x)))eαr(x) + ce−αr(x) − 2

¿
ÁÁÀc(1 −max

y∈Y
p(x, y))

≥ (1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x)))eαr(x) + ce−αr(x) − 2

¿
ÁÁÀc(1 −min{1,

ρh(x,h(x))
ρ

}p(x,h(x)))

(1 −min{1,
ρh(x,h(x))

ρ }p(x,h(x)) ≥ 1 −maxy∈Y p(x, y))

≥ 1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x)) + c − 2

¿
ÁÁÀc(1 −min{1,

ρh(x,h(x))
ρ

}p(x,h(x)))

(increasing for r(x) ≥ 0)

=
⎛
⎜
⎝

¿
ÁÁÀ1 −min{1,

ρh(x,h(x))
ρ

}p(x,h(x)) −
√
c
⎞
⎟
⎠

2

=
⎛
⎜⎜⎜
⎝

1 −min{1,
ρh(x,h(x))

ρ }p(x,h(x)) − c
√

1 −min{1,
ρh(x,h(x))

ρ }p(x,h(x)) +√
c

⎞
⎟⎟⎟
⎠

2

≥
⎛
⎜
⎝

1 −min{1,
ρh(x,h(x))

ρ }p(x,h(x)) − (1 −maxy∈Y p(x, y)) + (1 −maxy∈Y p(x, y) − c)
2

⎞
⎟
⎠

2

(
√

1 −min{1,
ρh(x,h(x))

ρ }p(x,h(x)) +√
c ≤ 2)

≥
⎛
⎝

maxy∈Y p(x, y) − p(x,h(x) + (1 −maxy∈Y p(x, y) − c)
2

⎞
⎠

2

(1 −min{1,
ρh(x,h(x))

ρ }p(x,h(x)) − (1 −maxy∈Y p(x, y)) ≥ maxy∈Y p(x, y) − p(x,h(x))

= 1

4
(1 − c − p(x,h(x)))2

= ∆CLabs,H,R(h, r, x)2

4
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Therefore,

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) = EX[∆CLabs,H,R(h, r, x)]

≤ EX[Γ2(∆CL,H,R(h, r, x))]
≤ Γ2(EX[∆CL,H,R(h, r, x)]) (Γ2 is concave)

= Γ2(EL(h, r) − E∗L(H,R) +ML(H,R))

where Γ2(t) = 2
√
t.

(ii) maxy∈Y p(x, y) > (1 − c) and r(x) > 0. In this case, by (10), we have C∗Labs
(H,R, x) =

1 −maxy∈Y p(x, y) and ∆CLabs,H,R(h, r, x) = maxy∈Y p(x, y) − p(x,h(x)). For the surrogate loss,
we have

∆CL,H,R(h, r, x)

= (1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x)))eαr(x) + ce−αr(x) − 2

¿
ÁÁÀc(1 −max

y∈Y
p(x, y))

≥ (1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x)))eαr(x) + ce−αr(x) − (1 −max

y∈Y
p(x, y))eαr(x) − ce−αr(x)

(AM–GM inequality)

≥ 1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x)) − (1 −max

y∈Y
p(x, y)) (r(x) > 0)

≥ max
y∈Y

p(x, y) − p(x,h(x)

(1 −min{1,
ρh(x,h(x))

ρ }p(x,h(x)) − (1 −maxy∈Y p(x, y)) ≥ maxy∈Y p(x, y) − p(x,h(x))

= ∆CLabs,H,R(h, r, x).

Therefore, ELabs
(h, r)−E∗Labs

(H,R)+MLabs
(H,R) = EX[∆CLabs,H,R(h, r, x)] ≤ EX[Γ1(∆CL,H,R(h, r, x))] ≤

Γ1(EX[∆CL,H,R(h, r, x)]) = Γ1(EL(h, r) − E∗L(H,R) +ML(H,R)), where Γ1(t) = t is concave.

(iii) maxy∈Y p(x, y) ≤ (1 − c) and r(x) ≤ 0. In this case, by (10), we have C∗Labs
(H,R, x) =

c and ∆CLabs,H,R(h, r, x) = 0, which implies that ELabs
(h, r) − E∗Labs

(H,R) + MLabs
(H,R) =

EX[∆CLabs,H,R(h, r, x)] = 0 ≤ Γ(EL(h, r) − E∗L(H,R) +ML(H,R)) for any Γ ≥ 0.

35



MAO MOHRI ZHONG

(iv) maxy∈Y p(x, y) > (1 − c) and r(x) ≤ 0. In this case, by (10), we have C∗Labs
(H,R, x) =

1−maxy∈Y p(x, y) and ∆CLabs,H,R(h, r, x) = maxy∈Y p(x, y)−1+c. For the surrogate loss, we have

∆CL,H,R(h, r, x)

= (1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x)))eαr(x) + ce−αr(x) − 2

¿
ÁÁÀc(1 −max

y∈Y
p(x, y))

≥ (1 −max
y∈Y

p(x, y))eαr(x) + ce−αr(x) − 2

¿
ÁÁÀc(1 −max

y∈Y
p(x, y))

(1 −min{1,
ρh(x,h(x))

ρ }p(x,h(x)) ≥ 1 −maxy∈Y p(x, y))

≥ 1 −max
y∈Y

p(x, y) + c − 2

¿
ÁÁÀc(1 −max

y∈Y
p(x, y)) (decreasing for r(x) ≤ 0)

= (
√

1 −max
y∈Y

p(x, y) −
√
c)

2

=
⎛
⎝

1 −maxy∈Y p(x, y) − c√
1 −maxy∈Y p(x, y) +

√
c

⎞
⎠

2

≥ (maxy∈Y p(x, y) − 1 + c
2

)
2

(
√

1 −maxy∈Y p(x, y) +
√
c ≤ 2)

= ∆CLabs,H,R(h, r, x)2

4
.

Therefore,

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) = EX[∆CLabs,H,R(h, r, x)]

≤ EX[Γ3(∆CL,H,R(h, r, x))]
≤ Γ3(EX[∆CL,H,R(h, r, x)]) (Γ3 is concave)

= Γ3(EL(h, r) − E∗L(H,R) +ML(H,R))

where Γ3(t) = 2
√
t.

Overall, we obtain

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) ≤ Γ(EL(h, r) − E∗L(H,R) +ML(H,R))

where Γ(t) = max{Γ1(t),Γ2(t),Γ3(t)} = max{2
√
t, t}, which completes the proof.

Constrained ρ-hinge loss: ` = `ρ−hinge. When ` = `ρ−hinge with Ψ(t) = nt, by the assumption
that H is symmetric and complete and R is complete, we obtain infh∈H Ey[`ρ−hinge(h,X, y) ∣X = x] =
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n(1 −maxy∈Y p(x, y)) and with the constraint ∑y∈Y h(x, y) = 0,

CL(h, r, x) =∑
y∈Y

p(x, y) ∑
y′≠y

max{0,1 + h(x, y
′)

ρ
}eαr(x) + nce−αr(x)

=∑
y∈Y

(1 − p(x, y))max{0,1 + h(x, y)
ρ

}eαr(x) + nce−αr(x)

C∗L(H,R, x) = 2

¿
ÁÁÀn2c(1 −max

y∈Y
p(x, y)).

Take hρ ∈ H such that hρ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
−ρ if y = h(x)
h(x, ymax) + h(x,h(x)) + ρ if y = ymax.

with the

constraint ∑y∈Y hρ(x, y) = 0, where ymax = argmaxy∈Y p(x, y). Note that for any h ∈H,

∑
y∈Y

(1 − p(x, y))max{0,1 + h(x, y)
ρ

} − n(1 −max
y∈Y

p(x, y))

≥∑
y∈Y

(1 − p(x, y))min{n,max{0,1 + h(x, y)
ρ

}} − n(1 −max
y∈Y

p(x, y))

≥∑
y∈Y

(1 − p(x, y))min{n,max{0,1 + h(x, y)
ρ

}} −∑
y∈Y

(1 − p(x, y))min{n,max{0,1 + hρ(x, y)
ρ

}}

≥ min{n,1 + h(x,h(x))
ρ

}(max
y∈Y

p(x, y) − p(x,h(x))) (plug in hρ(x, y))

≥ max
y∈Y

p(x, y) − p(x,h(x). (h(x,h(x)) ≥ 0)

We will then analyze the following four cases.

(i) maxy∈Y p(x, y) > (1 − c) and r(x) > 0. In this case, by (10), we have C∗Labs
(H,R, x) =

1 −maxy∈Y p(x, y) and ∆CLabs,H,R(h, r, x) = maxy∈Y p(x, y) − p(x,h(x)). For the surrogate loss,
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we have

∆CL,H,R(h, r, x)

=∑
y∈Y

(1 − p(x, y))max{0,1 + h(x, y)
ρ

}eαr(x) + nce−αr(x) − 2

¿
ÁÁÀn2c(1 −max

y∈Y
p(x, y))

≥∑
y∈Y

(1 − p(x, y))max{0,1 + h(x, y)
ρ

}eαr(x) + nce−αr(x) − n(1 −max
y∈Y

p(x, y))eαr(x) − nce−αr(x)

(AM–GM inequality)

=∑
y∈Y

(1 − p(x, y))max{0,1 + h(x, y)
ρ

} − n(1 −max
y∈Y

p(x, y)) (r(x) > 0)

≥ max
y∈Y

p(x, y) − p(x,h(x)

(∑y∈Y(1 − p(x, y))max{0,1 + h(x,y)
ρ } − n(1 −maxy∈Y p(x, y)) ≥ maxy∈Y p(x, y) − p(x,h(x))

= ∆CLabs,H,R(h, r, x).

Therefore,

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) = EX[∆CLabs,H,R(h, r, x)]

≤ EX[Γ1(∆CL,H,R(h, r, x))]
≤ Γ1(EX[∆CL,H,R(h, r, x)]) (Γ1 is concave)

= Γ1(EL(h, r) − E∗L(H,R) +ML(H,R))

where Γ1(t) = t.
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(ii) maxy∈Y p(x, y) ≤ (1 − c) and r(x) > 0. In this case, by (10), we have C∗Labs
(H,R, x) = c and

∆CLabs,H,R(h, r, x) = 1 − c − p(x,h(x)). For the surrogate loss, we have

∆CL,H,R(h, r, x)

=∑
y∈Y

(1 − p(x, y))max{0,1 + h(x, y)
ρ

}eαr(x) + nce−αr(x) − 2

¿
ÁÁÀn2c(1 −max

y∈Y
p(x, y))

≥∑
y∈Y

(1 − p(x, y))max{0,1 + h(x, y)
ρ

}eαr(x) + nce−αr(x) − 2

¿
ÁÁÁÀnc

⎛
⎝∑y∈Y

(1 − p(x, y))max{0,1 + h(x, y)
ρ

}
⎞
⎠

(∑y∈Y(1 − p(x, y))max{0,1 + h(x,y)
ρ } ≥ n(1 −maxy∈Y p(x, y)))

≥∑
y∈Y

(1 − p(x, y))max{0,1 + h(x, y)
ρ

} + nc − 2

¿
ÁÁÁÀnc

⎛
⎝∑y∈Y

(1 − p(x, y))max{0,1 + h(x, y)
ρ

}
⎞
⎠

(increasing for r(x) ≥ 0)

=
⎛
⎝

¿
ÁÁÀ∑

y∈Y
(1 − p(x, y))max{0,1 + h(x, y)

ρ
} −

√
nc

⎞
⎠

2

≥
⎛
⎝

¿
ÁÁÀ∑

y∈Y
(1 − p(x, y))min{n,max{0,1 + h(x, y)

ρ
}} −

√
nc

⎞
⎠

2

=
⎛
⎜⎜⎜
⎝

∑y∈Y(1 − p(x, y))min{n,max{0,1 + h(x,y)
ρ }} − nc

√
∑y∈Y(1 − p(x, y))min{n,max{0,1 + h(x,y)

ρ }} +√
nc

⎞
⎟⎟⎟
⎠

2

≥
⎛
⎜
⎝

∑y∈Y(1 − p(x, y))min{n,max{0,1 + h(x,y)
ρ }} − n(1 −maxy∈Y p(x, y)) + n(1 −maxy∈Y p(x, y) − c)

2
√
n

⎞
⎟
⎠

2

(
√
∑y∈Y(1 − p(x, y))min{n,max{0,1 + h(x,y)

ρ }} +√
nc ≤ 2

√
n)

≥ (maxy∈Y p(x, y) − p(x,h(x) + 1 −maxy∈Y p(x, y) − c
2
√
n

)
2

(∑y∈Y(1 − p(x, y))min{n,max{0,1 + h(x,y)
ρ }} − n(1 −maxy∈Y p(x, y)) ≥ maxy∈Y p(x, y) − p(x,h(x))

= 1

4n
(1 − c − p(x,h(x)))2

= ∆CLabs,H,R(h, r, x)2

4n

Therefore,

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) = EX[∆CLabs,H,R(h, r, x)]

≤ EX[Γ2(∆CL,H,R(h, r, x))]
≤ Γ2(EX[∆CL,H,R(h, r, x)]) (Γ2 is concave)

= Γ2(EL(h, r) − E∗L(H,R) +ML(H,R))
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where Γ2(t) = 2
√
nt.

(iii) maxy∈Y p(x, y) ≤ (1 − c) and r(x) ≤ 0. In this case, by (10), we have C∗Labs
(H,R, x) =

c and ∆CLabs,H,R(h, r, x) = 0, which implies that ELabs
(h, r) − E∗Labs

(H,R) + MLabs
(H,R) =

EX[∆CLabs,H,R(h, r, x)] = 0 ≤ Γ(EL(h, r) − E∗L(H,R) +ML(H,R)) for any Γ ≥ 0.

(iv) maxy∈Y p(x, y) > (1 − c) and r(x) ≤ 0. In this case, by (10), we have C∗Labs
(H,R, x) =

1−maxy∈Y p(x, y) and ∆CLabs,H,R(h, r, x) = maxy∈Y p(x, y)−1+c. For the surrogate loss, we have

∆CL,H,R(h, r, x)

=∑
y∈Y

(1 − p(x, y))max{0,1 + h(x, y)
ρ

}eαr(x) + nce−αr(x) − 2

¿
ÁÁÀn2c(1 −max

y∈Y
p(x, y))

≥ n(1 −max
y∈Y

p(x, y))eαr(x) + nce−αr(x) − 2

¿
ÁÁÀn2c(1 −max

y∈Y
p(x, y))

(∑y∈Y(1 − p(x, y))max{0,1 + h(x,y)
ρ } ≥ n(1 −maxy∈Y p(x, y)))

≥ n(1 −max
y∈Y

p(x, y)) + nc − 2

¿
ÁÁÀn2c(1 −max

y∈Y
p(x, y)) (decreasing for r(x) ≤ 0)

= n(
√

1 −max
y∈Y

p(x, y) −
√
c)

2

= n
⎛
⎝

1 −maxy∈Y p(x, y) − c√
1 −maxy∈Y p(x, y) +

√
c

⎞
⎠

2

≥ n(maxy∈Y p(x, y) − 1 + c
2

)
2

(
√

1 −maxy∈Y p(x, y) +
√
c ≤ 2)

= n∆CLabs,H,R(h, r, x)2

4
.

Therefore,

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) = EX[∆CLabs,H,R(h, r, x)]

≤ EX[Γ3(∆CL,H,R(h, r, x))]
≤ Γ3(EX[∆CL,H,R(h, r, x)]) (Γ3 is concave)

= Γ3(EL(h, r) − E∗L(H,R) +ML(H,R))

where Γ3(t) = 2
√
t/n.

Overall, we obtain

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) ≤ Γ(EL(h, r) − E∗L(H,R) +ML(H,R))

where Γ(t) = max{Γ1(t),Γ2(t),Γ3(t)} = max{2
√
nt, t}, which completes the proof.
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G.3. Proof of R-consistency bounds for second-stage surrogates (Theorem 4)

Theorem 4 (R-consistency bounds for second-stage surrogates) Fix a predictor h. Assume that
Φ admits an R-consistency bound with respect to `binary

0−1 . Thus, there exists a non-decreasing concave
function Γ such that, for all r ∈ R,

E
`binary
0−1

(r) − E∗
`binary
0−1

(R) +M
`binary
0−1

(R) ≤ Γ(EΦ(r) − E∗Φ(R) +MΦ(R)).

Then, the following R-consistency bound holds for all r ∈ R and any distribution:

E`abs,h
(r) − E∗`abs,h

(R) +M`abs,h
(R) ≤ Γ((E`Φ,h

(r) − E∗`Φ,h
(R) +M`Φ,h

(R))/c).

Proof Given any fixed predictor h. For any r ∈ R, x ∈ X and y ∈ Y, the conditional risk of `abs,h and
`Φ,h can be written as

C`abs,h
(r, x) =∑

y∈Y
p(x, y)1h(x)≠y1r(x)>0 + c1r(x)≤0

C`Φ,h
(r, x) =∑

y∈Y
p(x, y)1h(x)≠yΦ(−r(x)) + cΦ(r(x)).

(11)

Thus, the best-in class conditional risk of `abs,h and `Φ,h can be expressed as

C∗`abs,h
(R, x) = inf

r∈R

⎛
⎝∑y∈Y

p(x, y)1h(x)≠y1r(x)>0 + c1r(x)≤0

⎞
⎠

C∗`Φ,h
(R, x) = inf

r∈R

⎛
⎝∑y∈Y

p(x, y)1h(x)≠yΦ(−r(x)) + cΦ(r(x))
⎞
⎠
.

(12)

Let p1 = ∑y∈Y p(x,y)1h(x)≠y
∑y∈Y p(x,y)1h(x)≠y+c and p2 = c

∑y∈Y p(x,y)1h(x)≠y+c . Then, the calibration gap of `abs,h can be
written as

C`Φ,h
(r, x) − C∗`Φ,h

(R, x)

=
⎛
⎝∑y∈Y

p(x, y)1h(x)≠y + c
⎞
⎠
[p1Φ(−r(x)) + p2Φ(r(x)) − inf

r∈R
(p1Φ(−r(x)) + p2Φ(r(x)))].

By Lemma 21, we have

C`abs,h
(r, x) − C∗`abs,h

(R, x)
= p11r(x)>0 + p21r(x)≤0 − inf

r∈R
(p11r(x)>0 + p21r(x)≤0)

≤ Γ(p1Φ(−r(x)) + p2Φ(r(x)) − inf
r∈R

(p1Φ(−r(x)) + p2Φ(r(x))))

= Γ(
C`Φ,h

(r, x) − infr∈R C`Φ,h
(r, x)

∑y∈Y p(x, y)1h(x)≠y + c
)

≤ Γ(
C`Φ,h

(r, x) − infr∈R C`Φ,h
(r, x)

c
),
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where we use the fact that Γ is non-decreasing and ∑y∈Y p(x, y)1h(x)≠y + c ≥ c in the last inequality.
Since Γ is concave, taking the expectation on both sides and using Jensen’s inequality, we obtain

E
X
[C`abs,h

(r, x) − C∗`abs,h
(R, x)] ≤ Γ

⎛
⎝
EX[C`Φ,h

(r, x) − infr∈R C`Φ,h
(r, x)]

c

⎞
⎠
.

Since the term EX[C`abs,h
(r, x) − C∗`abs,h

(R, x)] and EX[C`Φ,h
(r, x) − infr∈R C`Φ,h

(r, x)] can be
expressed as

E
X
[C`abs,h

(r, x) − C∗`abs,h
(R, x)] = E`abs,h

(r) − E∗`abs,h
(R) +M`abs,h

(R)

E
X
[C`Φ,h

(r, x) − inf
r∈R

C`Φ,h
(r, x)] = E`Φ,h

(r) − E∗`Φ,h
(R) +M`Φ,h

(R),

we have

E`abs,h
(r) − E∗`abs,h

(R) +M`abs,h
(R) ≤ Γ

⎛
⎝
E`Φ,h

(r) − E∗`Φ,h
(R) +M`Φ,h

(R)
c

⎞
⎠
,

which completes the proof.

G.4. Proof of (H,R)-consistency bounds for two-stage surrogates (Theorem 6)

Theorem 6 ((H,R)-consistency bounds for two-stage approach) Suppose that R is regular. As-
sume that ` admits an H-consistency bound with respect to `0−1 and that Φ admits an R-consistency
bound with respect to `binary

0−1 . Thus, there are non-decreasing concave functions Γ1 and Γ2 such that,
for all h ∈H and r ∈ R,

E`0−1(h) − E∗`0−1
(H) +M`0−1(H) ≤ Γ1(E`(h) − E∗` (H) +M`(H))

E
`binary
0−1

(r) − E∗
`binary
0−1

(R) +M
`binary
0−1

(R) ≤ Γ2(EΦ(r) − E∗Φ(R) +MΦ(R)).

Then, the following (H,R)-consistency bound holds for all h ∈H, r ∈ R and any distribution:

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) ≤ Γ1(E`(h) − E∗` (H) +M`(H))

+ (1 + c)Γ2((E`Φ,h
(r) − E∗`Φ,h

(R) +M`Φ,h
(R))/c),

where the constant factors (1 + c) and 1
c can be removed when Γ2 is linear.

Proof Since R is regular, the conditional risk and the best-in-class conditional risk of the abstention
loss Labs can be expressed as

CLabs
(h, r, x) =∑

y∈Y
p(x, y)1h(x)≠y1r(x)>0 + c1r(x)≤0

C∗Labs
(H,R, x) = min

⎧⎪⎪⎨⎪⎪⎩
inf
h∈H
∑
y∈Y

p(x, y)1h(x)≠y, c
⎫⎪⎪⎬⎪⎪⎭
.

(13)
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Thus, by introducing the term min{∑y∈Y p(x, y)1h(x)≠y, c} and subsequently subtracting it after
rearranging, the calibration gap of the abstention loss Labs can be written as follows

CLabs
(h, r, x) − C∗Labs

(H,R, x)

=∑
y∈Y

p(x, y)1h(x)≠y1r(x)>0 + c1r(x)≤0 −min

⎧⎪⎪⎨⎪⎪⎩
inf
h∈H
∑
y∈Y

p(x, y)1h(x)≠y, c
⎫⎪⎪⎬⎪⎪⎭

=∑
y∈Y

p(x, y)1h(x)≠y1r(x)>0 + c1r(x)≤0 −min

⎧⎪⎪⎨⎪⎪⎩
∑
y∈Y

p(x, y)1h(x)≠y, c
⎫⎪⎪⎬⎪⎪⎭

+min

⎧⎪⎪⎨⎪⎪⎩
∑
y∈Y

p(x, y)1h(x)≠y, c
⎫⎪⎪⎬⎪⎪⎭
−min

⎧⎪⎪⎨⎪⎪⎩
inf
h∈H
∑
y∈Y

p(x, y)1h(x)≠y, c
⎫⎪⎪⎬⎪⎪⎭
.

(14)

Note that by the property of the minimum, the second term can be upper bounded as

min

⎧⎪⎪⎨⎪⎪⎩
∑
y∈Y

p(x, y)1h(x)≠y, c
⎫⎪⎪⎬⎪⎪⎭
−min

⎧⎪⎪⎨⎪⎪⎩
inf
h∈H
∑
y∈Y

p(x, y)1h(x)≠y, c
⎫⎪⎪⎬⎪⎪⎭

≤∑
y∈Y

p(x, y)1h(x)≠y − inf
h∈H
∑
y∈Y

p(x, y)1h(x)≠y

= C`0−1(h,x) − C∗`0−1
(H, x)

≤ Γ1(C`(h,x) − C∗` (H, x)),

where we use the H-consistency bound of ` on the pointwise distribution δx that concentrates on a
point x in the last inequality. Next, we will upper bound the first term. Note that the conditional risk
and the best-in class conditional risk of `Φ,h can be expressed as

C`Φ,h
(r, x) =∑

y∈Y
p(x, y)1h(x)≠yΦ(−r(x)) + cΦ(r(x))

C∗`Φ,h
(R, x) = inf

r∈R

⎛
⎝∑y∈Y

p(x, y)1h(x)≠yΦ(−r(x)) + cΦ(r(x))
⎞
⎠
.

(15)

Let p1 = ∑y∈Y p(x,y)1h(x)≠y
∑y∈Y p(x,y)1h(x)≠y+c and p2 = c

∑y∈Y p(x,y)1h(x)≠y+c . Then, the first term can be rewritten as

∑
y∈Y

p(x, y)1h(x)≠y1r(x)>0 + c1r(x)≤0 −min

⎧⎪⎪⎨⎪⎪⎩
∑
y∈Y

p(x, y)1h(x)≠y, c
⎫⎪⎪⎬⎪⎪⎭

=
⎛
⎝∑y∈Y

p(x, y)1h(x)≠y + c
⎞
⎠
[p11r(x)>0 + p21r(x)≤0 − inf

r∈R
(p11r(x)>0 + p21r(x)≤0)]

By Lemma 21, we have

p11r(x)>0 + p21r(x)≤0 − inf
r∈R

(p11r(x)>0 + p21r(x)≤0)

≤ Γ2(p1Φ(−r(x)) + p2Φ(r(x)) − inf
r∈R

(p1Φ(−r(x)) + p2Φ(r(x))))

= Γ2
⎛
⎝
C`Φ,h

(r, x) − C∗`Φ,h
(R, x)

∑y∈Y p(x, y)1h(x)≠y + c
⎞
⎠
.
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Therefore, the first term can be upper bounded as

∑
y∈Y

p(x, y)1h(x)≠y1r(x)>0 + c1r(x)≤0 −min

⎧⎪⎪⎨⎪⎪⎩
∑
y∈Y

p(x, y)1h(x)≠y, c
⎫⎪⎪⎬⎪⎪⎭

=
⎛
⎝∑y∈Y

p(x, y)1h(x)≠y + c
⎞
⎠
[p11r(x)>0 + p21r(x)≤0 − inf

r∈R
(p11r(x)>0 + p21r(x)≤0)]

≤
⎛
⎝∑y∈Y

p(x, y)1h(x)≠y + c
⎞
⎠

Γ2
⎛
⎝
C`Φ,h

(r, x) − C∗`Φ,h
(R, x)

∑y∈Y p(x, y)1h(x)≠y + c
⎞
⎠

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Γ2(C`Φ,h
(r, x) − C∗`Φ,h

(R, x)) when Γ2 is linear

(1 + c)Γ2(
C`Φ,h

(r,x)−C∗`Φ,h
(R,x)

c ) otherwise

where we use the fact that c ≤ ∑y∈Y p(x, y)1h(x)≠y + c ≤ 1 + c and Γ2 is non-decreasing in the last
inequality. After upper bounding the first term and the second term in (14) as above, taking the
expectation on both sides, using the fact that Γ1 and Γ2 are concave, we obtain

E
X
[CLabs

(h, r, x) − C∗Labs
(H,R, x)]

≤
⎧⎪⎪⎨⎪⎪⎩

Γ2(EX[C`Φ,h
(r, x) − C∗`Φ,h

(R, x)]) + Γ1(EX[C`(h,x) − C∗` (H, x)]) Γ2 is linear

(1 + c)Γ2(1
c EX[C`Φ,h

(r, x) − C∗`Φ,h
(R, x))]) + Γ1(EX[C`(h,x) − C∗` (H, x)]) otherwise

Since the three expected terms can be expressed as

E
X
[CLabs

(h, r, x) − C∗Labs
(H,R, x)] = ELabs

(h, r) − E∗Labs
(H,R) +MLabs

(H,R)

E
X
[C`Φ,h

(r, x) − C∗`Φ,h
(R, x)] = E`Φ,h

(r) − E∗`Φ,h
(R) +M`Φ,h

(R)

E
X
[C`(h,x) − C∗` (H, x)] = E`(h) − E∗` (H) +M`(H),

we have

ELabs
(h, r) − E∗Labs

(H,R) +MLabs
(H,R) ≤ Γ1(E`(h) − E∗` (H) +M`(H))

+ (1 + c)Γ2
⎛
⎝
E`Φ,h

(r) − E∗`Φ,h
(R) +M`Φ,h

(R)
c

⎞
⎠
,

where the constant factors (1 + c) and 1
c can be removed when Γ2 is linear.

G.5. Proof of realizable (H,R)-consistency bounds for single-stage surrogates (Theorem 9)

Theorem 9 Assume that H and R are closed under scaling. Let Ψ(0) = 0 and Φ satisfy Assumption 1.
Then, for any ` that satisfies Assumption 2, the following (H,R)-consistency bound holds for any
(H,R)-realizable distribution, h ∈H and r ∈ R:

ELabs
(h, r) − E∗Labs

(H,R) ≤ EL(h, r) − E∗L(H,R).
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Proof It is straightforward to see that L serves as an upper bound for Labs when ` serves as an upper
bound for `0−1 under Assumption 1. By definition, for any (H,R)-realizable distribution, there
exists h∗ ∈H and r∗ ∈ R such that ELabs

(h∗, r∗) = E∗Labs
(H,R) = 0. Then, by the assumption that

H and R are closed under scaling, for any ν > 0,

E∗L(H,R) ≤ EL(νh∗, νr∗)
= E[L(νh∗, νr∗, x, y) ∣ r∗ < 0]P(r∗ < 0) +E[L(νh∗, νr∗, x, y) ∣ r∗ > 0]P(r∗ > 0)

Next, we investigate the two terms. The first term is when r∗ < 0, then we must have c = 0 since the
data is realizable. By taking the limit, we obtain:

lim
ν→+∞

E[L(νh∗, νr∗, x, y) ∣ r∗ < 0]P(r∗ < 0)

= lim
ν→+∞

E[`(νh∗, x, y)Φ(−ανr∗(x)) +Ψ(c)Φ(βνr∗(x)) ∣ r∗ < 0]P(r∗ < 0)

= lim
ν→+∞

E[`(νh∗, x, y)Φ(−ανr∗(x)) ∣ r∗ < 0]P(r∗ < 0) (c = 0 and Ψ(0) = 0)

= 0. (by the Lebesgue dominated convergence theorem and limt→+∞ Φ(t) = 0)

The second term is when r∗ > 0, then we must have h∗(x, y) −maxy′≠y h
∗(x, y′) > 0 since the data

is realizable. Thus, using the fact that limν→+∞ `(νh∗, x, y) = 0 and taking the limit, we obtain

lim
ν→+∞

E[L(νh∗, νr∗, x, y) ∣ r∗ < 0]P(r∗ < 0)

= lim
ν→+∞

E[`(νh∗, x, y)Φ(−ανr∗(x)) +Ψ(c)Φ(βνr∗(x)) ∣ r∗ < 0]P(r∗ < 0)

= 0.
(by the Lebesgue dominated convergence theorem, limt→+∞ Φ(t) = 0, limν→+∞ `(νh∗, x, y) = 0)

Therefore, by combining the above two analysis, we obtain

E∗L(H,R) ≤ lim
ν→+∞

EL(νh∗, νr∗) = 0.

By using the fact that L serves as an upper bound for Labs and E∗Labs
(H,R) = 0, we conclude that

ELabs
(h, r) − E∗Labs

(H,R) ≤ EL(h, r) − E∗L(H,R).

G.6. Proof of realizable (H,R)-consistency for two-stage surrogates (Theorem 12)

Theorem 12 Assume that H and R are closed under scaling. Let ` be any multi-class surrogate
loss that is realizable H-consistent with respect to `0−1 when H is closed under scaling and Φ
satisfies Assumption 1. Let ĥ be the minimizer of E` and r̂ be the minimizer of E`

Φ,ĥ
. Then, for any

(H,R)-realizable distribution, ELabs
(ĥ, r̂) = 0.

Proof It is straightforward to see that `Φ,h upper bounds the abstention loss Labs under Assumption 1.
By definition, for any (H,R)-realizable distribution, there exists h∗ ∈ H and r∗ ∈ R such that
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ELabs
(h∗, r∗) = 0. Let ĥ be the minimizer of E` and r̂ be the minimizer of E`

Φ,ĥ
. Then, using the

fact that `Φ,h upper bounds the abstention loss ELabs
, we have EELabs

(ĥ, r̂) ≤ E`
Φ,ĥ

(r̂).
Next, we analyze two cases. If for a point x, abstention happens, that is r∗(x) < 0, then we must

have c = 0 since the data is realizable. Therefore, there exists an optimal r∗∗ abstaining all the points
with zero cost: r∗∗(x) < 0 for all x ∈ X. Then, by the assumption that R is closed under scaling and
the Lebesgue dominated convergence theorem, using the fact that limt→+∞ Φ(t) = 0, we obtain

ELabs
(ĥ, r̂) ≤ E`

Φ,ĥ
(r̂)

≤ lim
ν→+∞

E`
Φ,ĥ

(νr∗∗) (r̂ is the minimizer of E`
Φ,ĥ

)

= lim
ν→+∞

E[1ĥ(x)≠yΦ(−νr∗∗(x)) + cΦ(νr∗∗(x))] (By (5))

= lim
ν→+∞

E[1ĥ(x)≠yΦ(−νr∗∗(x))] (c = 0)

= 0. (by the Lebesgue dominated convergence theorem and limt→+∞ Φ(t) = 0)

On the other hand, if no abstention occurs for any point, that is r∗(x) > 0 for any x ∈ X, then we
must have 1h∗(x)≠y = 0 for all (x, y) ∈ X × Y since the data is realizable. Using the fact that ` is
realizable H-consistent with respect to `0−1 when H is closed under scaling, we obtain 1ĥ(x)≠y = 0

for all (x, y) ∈ X × Y. Then, by the assumption that R is closed under scaling and the Lebesgue
dominated convergence theorem, using the fact that limt→+∞ Φ(t) = 0, we obtain

ELabs
(ĥ, r̂) ≤ E`

Φ,ĥ
(r̂)

≤ lim
ν→+∞

E`
Φ,ĥ

(νr∗) (r̂ is the minimizer of E`
Φ,ĥ

)

= lim
ν→+∞

E[1ĥ(x)≠yΦ(−νr∗(x)) + cΦ(νr∗(x))] (By (5))

= lim
ν→+∞

E[cΦ(νr∗(x))] (1ĥ(x)≠y = 0)

= 0. (by the Lebesgue dominated convergence theorem and limt→+∞ Φ(t) = 0)

This completes the proof.
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