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Abstract

This paper studies the problem of learning weighted automata from a finite sam-
ple of strings with real-valued labels. We consider several hypothesis classes of
weighted automata defined in terms of three different measures: the norm of an
automaton’s weights, the norm of the function computed by an automaton, and
the norm of the corresponding Hankel matrix. We present new data-dependent
generalization guarantees for learning weighted automata expressed in terms of
the Rademacher complexity of these classes. We further present upper bounds
on these Rademacher complexities, which reveal key new data-dependent terms
related to the complexity of learning weighted automata.

1. Introduction

Weighted finite automata (WFAs) provide a general and highly expressive
framework for representing functions mapping strings to real numbers. The
mathematical theory behind WFAs, that of rational power series, has been ex-
tensively studied in the past (Eilenberg, 1974; Salomaa and Soittola, 1978; Kuich
and Salomaa, 1986; Berstel and Reutenauer, 1988) and has been more recently
the topic of a dedicated handbook (Droste et al., 2009). WFAs are widely
used in modern applications, perhaps most prominently in image processing
and speech recognition where the terminology of weighted automata seems to
have been first introduced and made popular (Culik II and Kari, 1993; Mohri
et al., 1996; Pereira and Riley, 1997; Mohri, 1997; Mohri et al., 2008), in several
other speech processing applications such as speech synthesis (Sproat, 1995; Al-
lauzen et al., 2004), in phonological and morphological rule compilation (Kaplan
and Kay, 1994; Karttunen, 1995; Mohri and Sproat, 1996), in parsing (Roche,
1994; Mohri and Pereira, 1998), machine translation (de Gispert et al., 2010;
Allauzen et al., 2014), bioinformatics (Durbin et al., 1998; Allauzen et al., 2008),
sequence modeling and prediction (Cortes et al., 2004), formal verification and
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model checking (Baier et al., 2009; Aminof et al., 2011), in optical character
recognition (Breuel, 2008), and in many other areas.

The recent developments in spectral learning (Hsu et al., 2009; Bailly et al.,
2009) have triggered a renewed interest in the use of WFAs in machine learn-
ing, with several recent successes in natural language processing (Balle et al.,
2014a,b) and reinforcement learning (Boots et al., 2009; Hamilton et al., 2013).
The interest in spectral learning algorithms for WFAs is driven by the many ap-
pealing theoretical properties of such algorithms, which include their polynomial-
time complexity, the absence of local minima, statistical consistency, and finite
sample bounds à la PAC (Hsu et al., 2009). A refined analysis of such algo-
rithms provides sample bounds which are independent of the size of the Hankel
matrices used by the learning algorithm (Denis et al., 2016). However, the typi-
cal statistical guarantees given for the hypotheses used in spectral learning only
hold in the realizable case. That is, these analyses assume that the labeled
data received by the algorithm is sampled from some unknown WFA. While
this assumption is a reasonable starting point for theoretical analyses, the re-
sults obtained in this setting fail to explain the good performance of spectral
algorithms in many practical applications where the data is typically not gener-
ated by a WFA. See (Balle and Mohri, 2015a) for a recent survey of algorithms
for learning WFAs with a discussion of the different assumptions and learning
models.

There exists of course a vast literature in statistical learning theory provid-
ing tools to analyze generalization guarantees for different hypothesis classes in
classification, regression, and other learning tasks. These guarantees typically
hold in an agnostic setting where the data is drawn i.i.d. from an arbitrary
distribution. For spectral learning of WFAs, an algorithm-dependent agnostic
generalization bound was proven in (Balle and Mohri, 2012) using a stability
argument. This seems to have been the first analysis to provide statistical guar-
antees for learning WFAs in an agnostic setting. However, while Balle and Mohri
(2012) proposed a broad family of algorithms for learning WFAs parametrized
by several choices of loss functions and regularizations, their bounds hold only
for one particular algorithm within that family.

In this paper, we start the systematic development of algorithm-independent
generalization bounds for learning with WFAs, which apply to all the algo-
rithms proposed in (Balle and Mohri, 2012), as well as to others using WFAs
as their hypothesis class. Our approach consists of providing upper bounds on
the Rademacher complexity of general classes of WFAs. The use of Rademacher
complexity to derive refined generalization bounds is standard (Koltchinskii and
Panchenko, 2000) (see also (Bartlett and Mendelson, 2001) and (Mohri et al.,
2012)). It has been successfully used to derive learning guarantees for classifi-
cation, regression, kernel learning, ranking, and many other machine learning
tasks (e.g. see Mohri et al. (2012) and references therein). A key benefit of
Rademacher complexity analyses is that the resulting generalization bounds are
data-dependent.

Our main results consist of upper bounds on the Rademacher complexity of
three broad classes of WFAs. The main difference between these classes is the
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quantities used for their definition: the norm of the transition weight matrix or
initial and final weight vectors of a WFA; the norm of the function computed by
a WFA; and, the norm of the Hankel matrix associated to the function computed
by a WFA. The formal definitions of these classes is given in Section 3. Let us
point out that our analysis of the Rademacher complexity of the class of WFAs
described in terms of Hankel matrices directly yields theoretical guarantees for
a variety of spectral learning algorithms. We will return to this point when
discussing the application of our results. As an application of our Rademacher
complexity bounds we provide a variety of generalizations bounds for learning
with WFAs using a bounded Lipschitz loss function; our bounds include both
data-dependent and data-independent bounds.

Related Work.. To the best of our knowledge, this paper is the first to pro-
vide general tools for deriving learning guarantees for broad classes of WFAs.
However, there exists some related work providing complexity bounds for some
sub-classes of WFAs in agnostic settings. The VC-dimension of deterministic
finite automata (DFAs) with n states over an alphabet of size k was shown by
Ishigami and Tani (1997) to be in O(kn log n). This can be used to show that the
Rademacher complexity of this class of DFA is bounded by O(

√
nk log n/m).

For probabilistic finite automata (PFAs), it was shown by Abe and Warmuth

(1992) that, in an agnostic setting, a sample of size Õ(kT 2n2/ε2) is sufficient to
learn a PFA with n states and k symbols whose log-loss error is at most ε away
from the optimal one in the class when the error is measured on all strings of
length T . New learning bounds on the Rademacher complexity of DFAs and
PFAs follow as straightforward corollaries of the general results we present in
this paper.

Another recent line of work, which aims to provide guarantees for spectral
learning of WFAs in the non-realizable setting, is the so-called low-rank spectral
learning approach (Kulesza et al., 2014). This has led to interesting upper
bounds on the approximation error between minimal WFAs of different sizes
(Kulesza et al., 2015). See (Balle et al., 2015) for a polynomial-time algorithm
for computing these approximations. This approach, however, is more limited
than ours for two reasons: first, because it is algorithm-dependent; second,
because it assumes that the data is actually drawn from some (probabilistic)
WFA, albeit one that is larger than any of the WFAs in the hypothesis class
considered by the algorithm.

The rest of this paper is organized as follows. Section 2 introduces the no-
tation and technical concepts used throughout. Section 3 describes the three
classes of WFAs for which we provide Rademacher complexity bounds. The
bounds are formally stated and proven in Sections 4, 5, and 6. In Section 7
we provide additional bounds required for converting some sample-dependent
bounds from Sections 5 and 6 into sample-independent bounds. Finally, the gen-
eralizations bounds obtained using the machinery developed in previous sections
are given in Section 8.
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2. Preliminaries

2.1. Weighted Automata, Rational Functions, and Hankel Matrices

Let Σ be a finite alphabet of size k. Let ε denote the empty string and Σ?

the set of all finite strings over the alphabet Σ. The length of u ∈ Σ? is denoted
by |u|. Given an integer L ≥ 0, we denote by Σ≤L the set of all strings with
length at most L: Σ≤L = {x ∈ Σ? : |x| ≤ L}. Given two strings u, v ∈ Σ? we
write uv for their concatenation.

A WFA over the alphabet Σ with n ≥ 1 states is a tuple A = 〈α,β, {Aa}a∈Σ〉
where α,β ∈ Rn are the initial and final weights, and Aa ∈ Rn×n the transition
matrix whose entries give the weights of the transitions labeled with a. Every
WFA A defines a function fA : Σ? → R defined for all x = a1 · · · at ∈ Σ? by

fA(x) = fA(a1 · · · at) = α>Aa1 · · ·Aatβ = α>Axβ , (1)

where Ax = Aa1 · · ·Aat . This algebraic expression in fact corresponds to sum-
ming the weights of all possible paths in the automaton indexed by the symbols
in x, where the weight of a single path (q0, q1, . . . , qt) ∈ [n]t+1 is obtained by
multiplying the initial weight of q0, the weights of all transitions from qs−1 to
qs labeled by xs, and the final weight of state qt, that is

fA(x) =
∑

(q0,...,qt)∈[n]t+1

α(q0)

(
t∏

s=1

Axs(qs−1, qs)

)
β(qt) .

See Figure 1 for an example of WFA with 3 states given in terms of its alge-
braic representation and the equivalent representation as a weighted transition
diagram between states.

An arbitrary function f : Σ? → R is said to be rational if there exists a WFA
A such that f = fA. The rank of f is denoted by rank(f) and is defined as
the minimal number of states of a WFA A such that f = fA. Note that mini-
mal WFAs are not unique. In fact, it is not hard to see that, for any minimal
WFA A = 〈α,β, {Aa}〉 with f = fA and any invertible matrix Q ∈ Rn×n,
AQ = 〈Q>α,Q−1β, {Q−1AaQ}〉 is also another minimal WFA computing f .
We sometimes write A(x) instead of fA(x) to emphasize the fact that we are
considering a specific parametrization of fA. Note that for the purpose of this
paper we only consider weighted automata over the familiar field of real numbers
with standard addition and multiplication, (see (Eilenberg, 1974; Salomaa and
Soittola, 1978; Berstel and Reutenauer, 2011; Kuich and Salomaa, 1986; Mohri,
2009) for more general definitions of WFAs over arbitrary semirings). Functions
mapping strings to real numbers can also be viewed as non-commutative for-
mal power series, which often helps deriving rigorous proofs in formal language
theory (Salomaa and Soittola, 1978; Berstel and Reutenauer, 2011; Kuich and
Salomaa, 1986). We will not favor that point of view here, however, since we
will not need to make explicit mention of the algebraic properties offered by
that perspective.

An alternative method to represent rational functions independently of any
WFA parametrization is via their Hankel matrices. The Hankel matrix Hf ∈
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q1

1|2
q2

3|1

q3

4|1

b|1

b|2

b|4

a|3

a|3

a|1

(a)

α =

1
3
4

 Aa =

0 0 3
0 0 3
1 0 0


β =

2
1
1

 Ab =

0 1 0
2 0 0
0 0 4


(b)


ε a b aa ab ba bb

ε 9 20 29 36 52 53 74
a 20 36 52 60 60 108 208
b 29 53 74 90 100 152 282


(c)

Figure 1: (a) Example of WFA A. Within each circle we present the state name (qi for the
ith state), the initial weight (left number) and the final weight (right number). In particular,
fA(ab) = 1× 3× 4× 1 + 3× 3× 4× 1 + 4× 1× 1× 1 = 52. (b) Corresponding initial vector α,
final vector β, and transition matrices Aa and Ab. (c) Finite sub-block of the Hankel matrix
HfA .

RΣ?×Σ?

of a function f : Σ? → R is the infinite matrix with rows and columns
indexed by all strings with Hf (u, v) = f(uv) for all u, v ∈ Σ?. By the theorem
of Fliess (1974) (see also (Carlyle and Paz, 1971; Berstel and Reutenauer, 2011)
and (Balle and Mohri, 2015a) for a recent proof), Hf has finite rank n if and
only if f is rational and there exists a WFA A with n states computing f , that
is, rank(f) = rank(Hf ).

2.2. Learning Scenario

Let Z denote a measurable subset of R. We assume a standard supervised
learning scenario where training and test points are drawn i.i.d. according to
some unknown distribution D over Σ? ×Z.

Let F be a subset of the family of functions mapping from X to Y, with
Y ⊆ R, and let ` : Y × Z → R+ be a loss function measuring the divergence
between the prediction y ∈ Y made by a function in F and the target label
z ∈ Z. The learner’s objective consists of using a labeled training sample
S = ((x1, z1), . . . , (xm, zm)) of size m to select a function f ∈ F with small
expected loss, that is

LD(f) = E
(x,z)∼D

[`(f(x), z)] .

Our objective is to derive learning guarantees for broad families of weighted
automata or rational functions used as hypothesis sets in learning algorithms.

5



To do so, we will derive upper bounds on the Rademacher complexity of different
classes of rational functions f : Σ? → R. Thus, we start with a brief introduction
to the main definitions and results regarding the Rademacher complexity of an
arbitrary class of functions F = {f : X → Y} where X is the input space and
Y ⊆ R the output space. Let D be a probability distribution over X × Z for
some Z ⊆ R and denote by DX the marginal distribution over X . Suppose

S = (x1, . . . , xm)
iid∼ Dm

X is a sample of m i.i.d. examples drawn from D. The
empirical Rademacher complexity of F on S is defined as follows:

R̂S(F) = E

[
sup
f∈F

1

m

m∑
i=1

σif(xi)

]
,

where the expectation is taken over the m independent Rademacher random
variables σi ∼ Unif({+1,−1}). Note that this is equivalent to considering a
random vector σ ∼ Unif({+1,−1}m). The Rademacher complexity of F is

defined as the expectation of R̂S(F) over the draw of a sample S of size m:

Rm(F) = E
S∼Dm

X

[
R̂S(F)

]
.

The Rademacher complexity of a hypothesis class can be used to derive gen-
eralization bounds for a variety of learning tasks (Koltchinskii and Panchenko,
2000; Bartlett and Mendelson, 2001; Mohri et al., 2012). To do so, we need to
bound the Rademacher complexity of the associated loss class, for a given loss
function ` : Y × Z → R+.

For a given hypothesis class F , the corresponding loss class ` ◦ F is given
by the set of all functions ` ◦ f : X × Z → R+ of the form (x, z) 7→ `(f(x), z).
Using Talagrand’s contraction lemma (Ledoux and Talagrand, 1991, Theorem
4.12), the empirical Rademacher complexity of `◦F can be bounded in terms of

R̂S(F), when ` is µ-Lipschitz with respect to its first argument for some µ > 0,
that is when

|`(y, z)− `(y′, z)| ≤ µ|y − y′|

for all y, y′ ∈ Y and z ∈ Z. In that case, the following inequality holds:

R̂S′(` ◦ F) ≤ µR̂S(F) ,

where S′ = ((x1, z1), . . . , (xm, zm)) is a sample of size m with (xi, zi) ∈ X ×
Z and S = (x1, . . . , xm) denotes the sample of elements in X obtained from

S′. When taking expectations over S′
iid∼ Dm and S

iid∼ Dm
X we obtain the

same bound for the Rademacher complexities Rm(` ◦ F) ≤ µRm(F). A typical
example of a loss function that is µ-Lipschitz with respect to its first argument
is the absolute loss `(y, z) = |y− z|, which satisfies the condition with µ = 1 for
Y = Z = R.

We say that a loss function ` : R × Z → R+ is M -bounded if `(y, z) ≤ M
for all y ∈ R and z ∈ Z. In order to convert Rademacher complexity bounds
into generalization bounds we will use the following standard result. The proof
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follows from applying Talagrand’s contraction principle to a straightforward
extension of (Mohri et al., 2012, Theorem 3.1) for M -bounded loss functions.

Theorem 1. Let D be a probability distribution over X × Z and let S =
((xi, yi))

m
i=1 be a sample of m i.i.d. examples from D. Suppose F is a class

of functions from X to R. Assume that the loss ` : R× Z → R+ is M -bounded
and µ-Lipschitz with respect to its first argument. Then, each of the following
statements holds simultaneously for all f ∈ F with probability at least 1− δ:

LD(f) ≤ L̂S(f) + 2µRm(F) +M

√
log 1

δ

2m
,

LD(f) ≤ L̂S(f) + 2µR̂S(F) + 3M

√
log 2

δ

2m
.

3. Classes of Rational Functions

In this section, we introduce several classes of rational functions. Each of
these classes is defined in terms of a different way to measure the complexity of
rational functions. The first one is based on the weights of an explicit WFA rep-
resentation, while the other two are based on intrinsic quantities associated to
the function: the norm of the function, and the norm of the corresponding Han-
kel matrix when viewed as a linear operator on a certain Hilbert space. These
three different ways of measuring the complexity of rational functions provide
each distinct benefits in the analysis of learning with WFAs. The Rademacher
complexity of each of these classes will be analyzed in Sections 4, 5, and 6.

3.1. The Class An,p,r
We start by considering the case where each rational function is given by a

fixed WFA representation. Our learning bounds would then naturally depend
on the number of states and the weights of the WFA representations.

Fix an integer n > 0 and let An denote the set of all WFAs with n states.
Note that any A ∈ An is identified by the d = n(kn+ 2) parameters required to
specify its initial, final, and transition weights. Thus, we can identify An with
the vector space Rd by suitably defining addition and scalar multiplication. In
particular, given A,A′ ∈ An and c ∈ R, we define:

A+A′ = 〈α,β, {Aa}〉+ 〈α′,β′, {A′a}〉 = 〈α + α′,β + β′, {Aa + A′a}〉
cA = c〈α,β, {Aa}〉 = 〈cα, cβ, {cAa}〉 .

We can view An as a normed vector space by endowing it with any norm from
the following family. Let p, q ∈ [1,+∞] be Hölder conjugates, i.e. p−1 +q−1 = 1.
It is easy to check that the following defines a norm on An:

‖A‖p,q = ‖α‖p + ‖β‖q + max
a
‖Aa‖q ,
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where ‖A‖q denotes the matrix norm induced by the corresponding vector norm,
that is ‖A‖q = sup‖v‖q=1 ‖Av‖q.

Now we define the classes of automata we consider. Let p ∈ [1,+∞] and
q = 1/(1 − 1/p). Then, given the triple of radii r = (rα, rβ , rΣ) ∈ R3

+, we
denote by An,p,r the set of all WFAs A with n states and such that: ‖α‖p ≤ rα,
‖β‖q ≤ rβ , and maxa ‖Aa‖q ≤ rΣ. Thus, An,p,r is contained in the ball of
radius rα + rβ + rΣ at the origin in the normed vector space (An, ‖ · ‖p,q). We
note here that An,p,r is a compact subset of An and that for any fixed x ∈ Σ?

the function A 7→ fA(x) is a polynomial in the weights of A and is therefore
continuous in the topology induced by ‖ · ‖p,q.

3.1.1. Examples

We consider first the class of deterministic finite automata (DFA). A DFA
can be represented by a WFA where: α is the indicator vector of the initial state;
the entries of β are values in {0, 1} indicating whether a state is accepting or
rejecting; and, for any a ∈ Σ and any i ∈ [n] the ith row of Aa is either the
all-zero vector if there is no transition from the ith state labeled by a, or an
indicator vector with a one on the jth position if taking an a-transition from
state i leads to state j. Therefore, a DFA A = 〈α,β, {Aa}〉 satisfies ‖α‖1 ≤ 1,
‖β‖∞ ≤ 1, and maxa ‖Aa‖∞ ≤ 1 and An,1,(1,1,1) contains all DFA with n states.

Another important class of WFA contained in An,1,(1,1,1) is that of prob-
abilistic finite automata (PFA). To represent a PFA as a WFA, we consider
automata where: α is a probability distribution over possible initial states; the
vector β contains stopping probabilities for every state; and for every a ∈ Σ
and i, j ∈ [n] the entry Aa(i, j) represents the probability of transitioning from
state i to state j while outputting the symbol a. Any WFA satisfying these con-
straints clearly has ‖α‖1 = 1, ‖β‖∞ ≤ 1, and ‖Aa‖∞ = maxi

∑
j |Aa(i, j)| ≤ 1.

The function fA computed by a PFA A defines a probability distribution over
Σ?; i.e. we have fA(x) ≥ 0 for all x ∈ Σ? and

∑
x∈Σ? fA(x) = 1.

3.2. The Class Rp,r
Next, we consider an alternative quantity measuring the complexity of ra-

tional functions that is independent of any WFA representation: their norm.
Given p ∈ [1,∞] and f : Σ? → R we use ‖f‖p to denote the p-norm of f given
by

‖f‖p =

(∑
x∈Σ?

|f(x)|p
)1/p

,

which in the case p =∞ amounts to ‖f‖∞ = supx∈Σ? |f(x)|.
Let Rp denote the class of rational functions with finite p-norm: f ∈ Rp if

and only if f is rational and ‖f‖p < +∞. Given some r > 0 we also define Rp,r,
the class of functions with p-norm bounded by r:

Rp,r = {f : Σ? → R | f rational and ‖f‖p ≤ r} .

Note that this definition is independent of the WFA used to represent f .
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3.2.1. Examples and Membership Testing

If A is a PFA, then the function fA is a probability distribution and we have
fA ∈ R1,1 and by extension Rp,1 for all p ∈ [1,+∞]. On the other hand, if
A is a DFA such that fA(x) = 1 for infinitely many x ∈ Σ?, then fA ∈ R∞,1,
but fA /∈ Rp for any p < +∞. In fact, it is easy to see that for any n ≥ 0,
p ∈ [1,+∞], and r = (rα, rβ , 1) we have An,p,r ⊆ R∞. The discussion above
shows that PFA witness An,1,(1,1,1) ∩ R1 6= ∅ and DFA with infinite support
witness that An,1,(1,1,1)∩ (R∞ \R1) 6= ∅. Therefore, the classes Rp yield a more
fine-grained characterization of the complexity of rational functions than what
the classes An,p,r can provide in general.

On the other hand, testing the membership of a given WFA in An,p,r is a
straightforward algorithmic task, while testing membership in any of the Rp
can be challenging. Some known results include the following:

• Membership in R1,r was shown to be semi-decidable in (Bailly and Denis,
2011).

• Membership in R2,r can be decided in polynomial time (Cortes, Mohri,
and Rastogi, 2007).

• Membership in R∞,r is in general undecidable (Paz, 1971).

3.3. The Class Hp,r
Here, we introduce a third class of rational functions described via their Han-

kel matrices, a quantity that is also independent of their WFA representations.
To do so, we represent a function f using its Hankel matrix Hf , interpret this
matrix as a linear operator on a Hilbert space contained in the free vector space
RΣ?

, and consider the Schatten p-norm of Hf as a measure of complexity of f .
To make this more precise we start by noting that the set

L2 = {f : Σ? → R | ‖f‖2 <∞}

together with the inner product 〈f, g〉 =
∑
x∈Σ? f(x)g(x) forms a separable

Hilbert space. Note that we have the obvious inclusion R2 ⊂ L2, but not
all functions in L2 are rational. Given an arbitrary function f : Σ? → R we
identify the Hankel matrix Hf with a (possibly unbounded) linear operator
Hf : L2 → L2 defined by

(Hfg)(x) =
∑
y∈Σ?

f(xy)g(y) .

Recall that an operator Hf is bounded when its operator norm is finite; i.e.
‖Hf‖ = sup‖g‖2≤1 ‖Hfg‖2 < ∞. Furthermore, a bounded operator is compact
if it can be obtained as the limit of a sequence of bounded finite-rank operators
under an adequate notion of convergence. In particular, bounded finite-rank
operators are compact. Our interest in compact operators on Hilbert spaces
stems from the fact that these are precisely the operators for which a notion
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equivalent to the SVD for finite matrices can be defined. Thus, if f is a rational
function of rank n such that Hf is bounded (note this implies compactness by
Fliess’s theorem), then we can use the singular values s1 ≥ . . . ≥ sn of Hf as a
measure of the complexity of f . The following result follows from Balle et al.
(2015) and gives a useful condition for the boundedness of Hf .

Lemma 2. Suppose the function f : Σ? → R is rational. Then, Hf is bounded
if and only if ‖f‖2 <∞.

We see that every Hankel matrix Hf with f ∈ R2 has a well-defined SVD.
Therefore, for any f ∈ R2 it makes sense to define its Schatten–Hankel p-norm as
the Schatten p-norm of its Hankel matrix: ‖f‖H,p = ‖Hf‖Sp = ‖(s1, . . . , sn)‖p,
where si = si(Hf ) is the ith singular value of Hf and rank(Hf ) = n. Using
this notation, we can define several classes of rational functions. For a given
p ∈ [1,+∞], we denote by Hp the class of rational functions with ‖f‖H,p < ∞
and, for any r > 0, we write Hp,r for class of rational functions with ‖f‖H,p ≤ r.

Note that the discussion above implies Hp = R2 for every p ∈ [1,+∞], and
therefore we can see the classes Hp,r as providing an alternative stratification
of R2 than the classes R2,r. As a consequence of this containment, we also
have R1 ⊂ Hp for every p, and therefore the classes Hp include all functions
computed by probabilistic automata. Since membership in R2 is efficiently
testable (Cortes, Mohri, and Rastogi, 2007), a polynomial time algorithm by
Balle, Panangaden, and Precup (2015) can be used to compute ‖f‖H,p and thus
test membership in Hp,r.

4. Rademacher Complexity of An,p,r

In this section, we present an upper bound on the Rademacher complexity
of the class of WFAs An,p,r. To bound Rm(An,p,r), we will use an argument
based on covering numbers. We first introduce some notation, then state our
general bound and related corollaries, and finally prove the main result of this
section.

Let S = (x1, . . . , xm) ∈ (Σ?)
m

be a sample of m strings with maximum
length LS = maxi |xi|. Given z > 0 we define log+(z) = max{0, log(z)}. The
following theorem bounds the empirical Rademacher complexity of An,p,r on a
sample S for a setting with arbitrary radii r = (rα, rβ , rΣ).

Theorem 3. Let r = (rα, rβ , rΣ) and r̃ = max{
√
rα/rβ ,

√
rβ/rα,

√
rαrβ/rΣ}.

Define

C =

√
log+(rαrβ)

kn+ 2
+
√

log+(rΣ) +
√

log+(r̃) + 3
√

log(2) .

Then, the following holds for any sample S ∈ (Σ?)m:

R̂S(An,p,r) ≤ 6

√
n(kn+ 2)rαrβr

LS

Σ

m

[
C +

√
log+

(
(LS + 2)r

LS/2
Σ

)]
.
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In general, the upper bound of Theorem 3 can grow exponentially with LS
since a WFA in An,p,r can assign labels to strings x that grow with |x| whenever
rΣ > 1. When rΣ ≤ 1, which still defines a large class of interesting WFAs,
the following corollary holds. Using Jensen’s inequality, the expected maximum
length Lm = ES∼Dm [LS ] appear in the bound on the Rademacher complexity
Rm(An,p,r).

Corollary 4. Recall the notation from Theorem 3 and assume that rΣ ≤ 1.
Let Lm = ES∼Dm [LS ]. Then the following hold for any m ≥ 1 and any sample
S ∈ (Σ?)m:

R̂S(An,p,r) ≤ 6

√
n(kn+ 2)rαrβ

m

(
C +

√
log(LS + 2)

)
,

Rm(An,p,r) ≤ 6

√
n(kn+ 2)rαrβ

m

(
C +

√
log(Lm + 2)

)
.

Note that the presence of Lm in the bound introduces a dependency on
the distribution D, which will lead to different growth rates depending on the
behavior of the tails of D. For example, it is well known that if the random
variable |x| for x ∼ D is sub-Gaussian,1 then Lm = O(

√
logm). Similarly, if the

tail of D is sub-exponential, then Lm = O(logm) and if the tail is a power-law
with exponent s+ 1, s > 0, then Lm = O(m1/s). We note that in the first two
cases, we obtain a Rademacher complexity bound with rate O(

√
log logm/m),

while in the power-law case the resulting rate O(
√

logm/m). In particular,
this provides a significant improvement over our previous results in (Balle and
Mohri, 2015b) where the rate of Rm(An,p,r) under a power-law distribution with

exponent s+ 1 was shown to be O(max{
√

logm/m,m(1−s)/s}).

4.1. Proof of Theorem 3

We begin the proof by reviewing several well-known facts and definitions
related to covering numbers (see e.g. Devroye and Lugosi (2001)). Let V ⊂ Rm
be a set of m-dimensional vectors. An (`2, η)-covering for V is any set of vectors
C ⊂ Rm such that for every vector v ∈ V there exists some vector w ∈ C with
`2-distance from v at most η; that is,

‖v −w‖2 =

√√√√ m∑
i=1

(vi −wi)2 ≤ η .

The `2-covering number of V at level η is the cardinality N2(η,V) of the smallest
(`2, η)-cover for V:

N2(η,V) = min
{
|C| : C ⊂ Rm is an (`2, η)-cover for V

}
.

1Recall that a non-negative random variable X is sub-Gaussian if P[X > k] ≤ exp(−Ω(k2)),
sub-exponential if P[X > k] ≤ exp(−Ω(k)), and follows a power-law with exponent (s + 1) if
P[X > k] ≤ O(1/ks+1).
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The connection with Rademacher complexity stems from considering the
covering numbers of sets of vectors V obtained by applying all the possible
hypotheses from a class to a given set of examples. Let S = (x1, . . . , xm) ∈
(Σ?)m a sample of size m. Given a WFA A, we define fA(S) ∈ Rm by fA(S) =
(fA(x1), . . . , fA(xm)) ∈ Rm. Furthermore, we define An,p,r(S) ⊂ Rm as the
set An,p,r(S) = {fA(S) : A ∈ An,p,r}. To prove Theorem 3, we will use the
following result which provides a way to convert bounds on the covering numbers
of An,p,r(S) into bounds on the Rademacher complexity R̂S(An,p,r). This result
can be obtained using Dudley’s chaining technique Dudley (1999).

Lemma 5 (Lemma 27.5 in (Shalev-Shwartz and Ben-David, 2014)). Suppose
η0 ≥ minv∈Rm maxfA(S)∈An,p,r(S) ‖v − fA(S)‖2. Let ηi = 2−iη0 for i ≥ 0. If
there exist constants θ0, θ1 such that the `2-covering numbers of An,p,r(S) satisfy√

logN2(ηi,An,p,r(S)) ≤ θ0 + iθ1

for every i ≥ 0, then R̂S(An,p,r) ≤ 6η0(θ0 + 2θ1)/m.

In order to derive the required bounds for N2(η,An,p,r(S)) we will make use
of the following technical results.

Lemma 6 (Corollary 4.3 in Vershynin (2009)). A ball B of radius R > 0 in a
real d-dimensional Banach space can be covered by Rd(2 + 1/ρ)d balls of radius
ρ > 0 with centres inside B.

Lemma 7. Let r = (rα, rβ , rΣ) and r̄ = max{rα, rβ , rαrβ/rΣ}. If A,A′ ∈ An,p,r
then the following holds for any x ∈ Σ?:

1. |fA(x)| ≤ rαrβr|x|Σ ,

2. |fA(x)− fA′(x)| ≤ r̄r|x|Σ (‖α−α′‖p + ‖β−β′‖q + |x|maxa ‖Aa−A′a‖q) .

Proof. The first bound follows from applying Hölder’s inequality and the sub-
multiplicativity of the norms used in the definition of ‖A‖p,q to (1). The second
bound was proven in (Balle and Mohri, 2012) (see also (Balle, 2013, Lemma
5.4.2)).

The two lemmas above can be combined to obtain the following bound on
the covering numbers of An,p,r(S).

Lemma 8. Let r = (rα, rβ , rΣ) and r̄ = max{rα, rβ , rαrβ/rΣ}. The `2-covering
numbers of An,p,r can be bounded as follows:

N2(η,An,p,r(S)) ≤ rnαrnβrkn
2

Σ

(
2 +

√
m(LS + 2)r̄rLS

Σ

η

)n(kn+2)

.

Proof. Let ρα, ρβ , ρΣ > 0 be some parameters to be chosen later. Using Lemma 6,
we can find the following coverings:

12



1. Cα ⊂ Bα = {α ∈ Rn : ‖α‖p ≤ rα} of size at most rnα(2+1/ρα)n containing
the centres of a covering of Bα by balls of radius ρα.

2. Cβ ⊂ Bβ = {β ∈ Rn : ‖β‖a ≤ rβ} of size at most rnβ (2 + 1/ρβ)n containing
the centres of a covering of Bβ by balls of radius ρβ .

3. CΣ ⊂ BΣ = {(Aa1 , . . . ,Aak) ∈ (Rn×n)k : maxa ‖Aa‖q ≤ rΣ} of size at

most rkn
2

Σ (2+1/ρΣ)kn
2

containing the centres of a covering of BΣ by balls
of radius ρΣ with respect to the norm ‖(Aa1 , . . . ,Aak)‖ = maxa ‖Aa‖q.

Now, given any automaton A ∈ An,p,r with A = 〈α,β, {Aa}〉 we can define
another automaton A′ ∈ An,p,r with A = 〈α′,β′, {A′a}〉 such that α′ ∈ Cα
with ‖α − α′‖p ≤ ρα, β′ ∈ Cβ with ‖β − β′‖q ≤ ρβ , and (A′a1 , . . . ,A

′
ak

) ∈ CΣ
with maxa ‖Aa − A′a‖q ≤ ρΣ. Note that this is possible because of how the
coverings were defined. Now using Lemma 7 and LS = maxx∈S |x|, we get that
the following holds for any x ∈ S:

|fA(x)− f ′A(x)| ≤ r̄rLS

Σ (ρα + ρβ + LSρΣ) .

Let C = Cα×Cβ×CΣ be the set of WFAs obtained by taking initial weights in Cα,
final weights in Cβ and transition weights in CΣ. By definition of the coverings

we have C ⊂ An,p,r and C(S) ⊂ An,p,r(S). Therefore, if r̄rLS

Σ (ρα+ρβ+LSρΣ) ≤
η/
√
m, then C(S) is an (`2, η)-covering for An,p,r(S) of size

|C(S)| ≤ rnαrnβrkn
2

Σ

(
2 +

1

ρα

)n(
2 +

1

ρβ

)n(
2 +

1

ρΣ

)kn2

.

Finally, by taking ρα = ρβ = ρΣ = η/
√
m(LS + 2)r̄rLS

Σ we obtain a covering of
the required size.

The proof now follows by applying the bound in the previous lemma to the
chaining result provided by Lemma 5. Start by defining the following quantities:

θ′0 = log+

(
rnαr

n
β (2rΣ)

n(kn+2)
)

+ n(kn+ 2) log+

(
(LS + 2)r̃r

LS/2
Σ

)
,

θ′1 = n(kn+ 2) log(2) ,

where Let r̃ = r̄/
√
rαrβ = max{

√
rα/rβ ,

√
rβ/rα,

√
rαrβ/rΣ} as in the state-

ment of Theorem 3. We note that both θ′0 and θ′1 are non-negative. In order
to apply the chaining lemma we note that by setting v = 0 in the definition
of η0 we can apply Lemma 7 and take η0 = (mrαrβr

LS

Σ )1/2. The bound on
N2(η,An,p,r(S)) for η = ηi = 2−iη0 now yields:

logN2 (ηi,An,p,r(S)) ≤ log
(
rnαr

n
βr
n(kn+2)
Σ

)
+ n(kn+ 2) log

2 +
2i(LS + 2)r̄rLS

Σ√
rαrβr

LS

Σ


= log

(
rnαr

n
βr
n(kn+2)
Σ

)
+ n(kn+ 2) log

(
2 + 2i(LS + 2)r̃r

LS/2
Σ

)
.
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Furthermore, using the definition log+(z) = max{0, log(z)} = log(max{1, z}),
we obtain for any i ≥ 1:

log
(

2 + 2i(LS + 2)r̃r
LS/2
Σ

)
≤ log(4) + log

(
max

{
1, 2i−1(LS + 2)r̃r

LS/2
Σ

})
= log(4) + log+

(
2i−1(LS + 2)r̃r

LS/2
Σ

)
≤ log(4) + log+

(
(LS + 2)r̃r

LS/2
Σ

)
+ log+(2i−1)

= log(2) + log+

(
(LS + 2)r̃r

LS/2
Σ

)
+ i log(2) ,

where the second inequality uses log+(z1z2) ≤ log+(z1) + log+(z2). Therefore
we obtain the bound logN2(ηi,An,p,r(S)) ≤ θ′0 + iθ′1, which implies a bound of

the form required by Lemma 5 with θ0 =
√
θ′0 and θ1 =

√
θ′1. An application

of the Lemma 5 now gives:

R̂S(An,p,r) ≤ 6

√
rαrβr

LS

Σ

m
(θ0 + 2θ1) .

Finally, we obtain the bound in Theorem 3 by noting that (θ0+2θ1)/
√
n(kn+ 2)

can be further upper bounded by√
log+(rαrβ)

kn+ 2
+
√

log+(rΣ) +
√

log+(r̃) + 3
√

log(2) +

√
log+

(
(LS + 2)r

LS/2
Σ

)
.

5. Rademacher Complexity of Rp,r

In this section, we study the complexity of rational functions from a different
perspective. Instead of analyzing their complexity in terms of the parameters
of WFAs computing them, we consider an intrinsic associated quantity: their
norm. We present upper bounds on the Rademacher complexity of the classes
of rational functions Rp,r for any p ∈ [1,+∞] and r > 0.

It will be convenient for our analysis to identify a rational function f ∈ Rp,r
with an infinite-dimensional vector f ∈ RΣ?

with ‖f‖p ≤ r. That is, f is an
infinite vector indexed by strings in Σ? whose xth entry is fx = f(x). An
important observation is that using this notation, for any given x ∈ Σ?, we can
write f(x) as the inner product 〈f , ex〉, where ex ∈ RΣ?

is the indicator vector
corresponding to string x.

Theorem 9. Let p−1 +q−1 = 1. Let S = (x1, . . . , xm) be a sample of m strings.
Then, the following holds for any r > 0:

R̂S(Rp,r) =
r

m
E

[∥∥∥∥ m∑
i=1

σiexi

∥∥∥∥
q

]
,

where the expectation is over the m independent Rademacher random variables
σi ∼ Unif({+1,−1}).
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Proof. In view of the notation just introduced, we can write

R̂S(Rp,r) = E

[
sup

f∈Rp,r

1

m

m∑
i=1

〈f , σiexi
〉

]
=

1

m
E

[
sup

f∈Rp,r

〈
f ,

m∑
i=1

σiexi

〉]

=
r

m
E

[∥∥∥∥ m∑
i=1

σiexi

∥∥∥∥
q

]
,

where the last equality holds by definition of the dual norm.

The next corollaries give non-trivial bounds on the Rademacher complexity
in the case p = 1 and the case p = 2.

Corollary 10. For any m ≥ 1 and any r > 0, the following inequalities hold:

r√
2m
≤ Rm(R2,r) ≤

r√
m
.

Proof. The upper bound follows directly from Theorem 9 and Jensen’s inequal-
ity:

E

[∥∥∥∥ m∑
i=1

σiexi

∥∥∥∥
2

]
≤

√√√√E

[∥∥∥∥ m∑
i=1

σiexi

∥∥∥∥2

2

]
=
√
m .

The lower bound follows directly from Khintchine–Kahane’s inequality (see
(Mohri et al., 2012, Theorem D.4)):

E

[∥∥∥∥ m∑
i=1

σiexi

∥∥∥∥
2

]2

≥ 1

2
E

[∥∥∥∥ m∑
i=1

σiexi

∥∥∥∥2

2

]
=
m

2
,

which completes the proof.

The following definition will be needed to present our next corollary. Given
a sample S = (x1, . . . , xm) and a string x ∈ Σ?, we denote by sx = |{i : xi = x}|
the number of times x appears in S. Let CS = maxx∈Σ? sx and note we have
the straightforward bounds 1 ≤ CS ≤ m.

Corollary 11. For any m ≥ 1, any S ∈ (Σ?)m, and any r > 0, the following
upper bound holds:

R̂S(R1,r) ≤
r
√

2CS log(2m)

m
.

Proof. Let S = (x1, . . . , xm) be a sample with m strings. For any x ∈ Σ? define
the vector vx ∈ Rm given by vx(i) = Ixi=x. Let V be the set of vectors vx
which are not identically zero, and note we have |V | ≤ m. Also note that by
construction we have maxvx∈V ‖vx‖2 =

√
CS . Now we can apply Theorem 9

with q = ∞ an rewrite the supremum norm over RΣ?

as a maximum over the
entries with non-zero entries and get

R̂S(R1,r) =
r

m
E

[∥∥∥∥ m∑
i=1

σiexi

∥∥∥∥
∞

]
=

r

m
E
[

max
vx∈V ∪(−V )

〈σ,vx〉
]
,
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where we used V ∪ (−V ) to mimic the absolute value in the definition of ‖ · ‖∞.
Therefore, using Massart’s Lemma we obtain

R̂S(R1,r) ≤
r
√

2CS log(2m)

m
.

Note in this case we cannot rely on the Khintchine–Kahane inequality to
obtain lower bounds because there is no version of this inequality for the case
q =∞.

We can easily convert the above empirical bound into a standard Rademacher
complexity bound by defining the expectation Cm = ES∼Dm [CS ] over a distri-
bution D on Σ?. Note that Cm is the expected maximum number of collisions
(repeated strings) in a sample of size m drawn from D. We provide a bound for
Cm in terms of m in Section 7.

6. Rademacher Complexity of Hp,r

In this section, we present our last set of upper bounds on the Rademacher
complexity of WFAs. Here, we characterize the complexity of WFAs in terms
of the spectral properties of their Hankel matrix.

The Hankel matrix of a function f : Σ? → R is the bi-infinite matrix Hf ∈
RΣ?×Σ?

whose entries are defined by Hf (u, v) = f(uv). Note that any string
x ∈ Σ? admits |x|+ 1 decompositions x = uv into a prefix u ∈ Σ? and a suffix
v ∈ Σ?. Thus, Hf contains a high degree of redundancy: for any x ∈ Σ?, f(x)
is the value of at least |x| + 1 entries of Hf and we can write f(x) = e>uHfev
for any decomposition x = uv.

Let si(M) denote the ith singular value of a matrix M. For 1 ≤ p ≤ ∞,
let ‖M‖Sp denote the p-Schatten norm of M defined as the `p norm of the

singular values of M, i.e. ‖M‖Sp = (
∑
i≥1 si(M)p)1/p. We also recall that

given two matrices M1,M2 of the same dimensions, the matrix inner product
is defined as 〈M1,M2〉 = Tr(M>1 M2). Von Neumann’s trace inequality Mirsky
(1975) provides the following bound for the matrix inner product in terms of
the singular values of the matrices: |〈M1,M2〉| ≤

∑
i≥1 si(M1)si(M2).

Theorem 12. Let p, q ≥ 1 with p−1 + q−1 = 1 and let S = (x1, . . . , xm) be a
sample of m strings in Σ?. For any decomposition xi = uivi of the strings in S
and any r > 0, the following inequality holds:

R̂S(Hp,r) ≤
r

m
E

∥∥∥∥∥
m∑
i=1

σieuie
>
vi

∥∥∥∥∥
Sq

 .

Proof. For any 1 ≤ i ≤ m, let xi = uivi be an arbitrary decomposition and
let R =

∑m
i=1 σieuie

>
vi . Then, in view of the identity f(xi) = e>ui

Hfevi =
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Tr(evie
>
ui
Hf ), we can use the linearity of the trace to write

R̂S(Hp,r) = E

[
sup

f∈Hp,r

1

m

m∑
i=1

σie
>
ui
Hfevi

]

=
1

m
E

[
sup

f∈Hp,r

m∑
i=1

Tr
(
σievie

>
ui
Hf

)]
=

1

m
E

[
sup

f∈Hp,r

〈R,Hf 〉

]
.

Finally, by applying von Neumann’s trace inequality to this matrix inner prod-
uct, and then using Hölder’s inequality to the inner product between the singular
values of both matrices, the following holds:

E

[
sup

f∈Hp,r

〈R,Hf 〉

]
≤ E

 sup
f∈Hp,r

∑
j≥1

sj(R) · sj(Hf )


≤ E

[
sup

f∈Hp,r

‖R‖Sq‖Hf‖Sp

]
= rE

[
‖R‖Sq

]
.

Dividing the above by m yields the desired result.

Note that, in this last result, the equality condition for von Neumann’s
inequality cannot be used to obtain a lower bound on R̂S(Hp,r) since it requires
the simultaneous diagonalizability of the two matrices involved, which is difficult
to control in the case of Hankel matrices.

As in the previous sections, we now proceed to derive specialized versions
of the bound of Theorem 12 for the cases p = 1 and p = 2. First, note that
the corresponding q-Schatten norms have given names: ‖R‖S2 = ‖R‖F is the
Frobenius norm, and ‖R‖S∞ = ‖R‖op is the operator norm.

Corollary 13. For any m ≥ 1 and any r > 0, the Rademacher complexity of
H2,r can be bounded as follows:

Rm(H2,r) ≤
r√
m

.

Proof. In view of Theorem 12 and using Jensen’s inequality, we can write

Rm(H2,r) ≤
r

m
E
[
‖R‖F

]
≤ r

m

√
E
[
‖R‖2F

]
=

r

m

√√√√√E

 m∑
i,j=1

σiσj〈euie
>
vi , euje

>
vj 〉


=

r

m

√√√√E

[
m∑
i=1

〈eui
e>vi , eui

e>vi〉

]
=

r√
m

,

which concludes the proof.
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To bound the Rademacher complexity of Hp,r in the case p = 1 we will need
the following moment bound for the operator norm of a random matrix from
Tropp (2015).

Theorem 14 (Corollary 7.3.2 Tropp (2015)). Let c1 = (2 + 8/ log(2))/3 and
c2 =

√
2 + 4/

√
log(2). Suppose M =

∑
iMi is a sum of i.i.d. random matrices

with E[Mi] = 0 and ‖Mi‖op ≤ M . Let
∑
i E[MiM

>
i ] 4 V1,

∑
i E[M>i Mi] 4

V2, and V = diag(V1,V2). If d = Tr(V)/‖V‖op and ν = ‖V‖op, then we have

E[‖M‖op] ≤ c1M log(d+ 1) + c2
√
ν log(d+ 1) .

We now introduce a combinatorial number depending on S and the de-
composition selected for each string xi. Let US = maxu∈Σ? |{i : ui = u}| and
VS = maxv∈Σ? |{i : vi = v}|. Then, we define WS = min max{US , VS}, where
then minimum is taken over all possible decompositions of the strings in S. It
is easy to show that we have the bounds 1 ≤ WS ≤ m. Indeed, for the case
WS = m consider a sample with m copies of the empty string, and for the case
WS = 1 consider a sample with m different strings of length m. The following
result can be stated using this definition.

Corollary 15. Let c1 = (2 + 8/ log(2))/3 and c2 =
√

2 + 4/
√

log(2). For any
m ≥ 1, any S ∈ (Σ?)m, and any r > 0, the following upper bound holds:

R̂S(H1,r) ≤
r

m

[
c1 log(2m+ 1) + c2

√
WS log(2m+ 1)

]
.

Proof. First note that we can apply Theorem 14 to the random matrix R by
letting V1 =

∑
i eui

e>ui
and V2 =

∑
i evie

>
vi . In this case we have d = 2m,

ν = max{‖
∑
i eui

e>ui
‖op, ‖

∑
i evie

>
vi‖op}, and we get:

E[‖R‖op] ≤ c1 log(2m+ 1) + c2
√
ν log(2m+ 1) .

Next, observe that V1 =
∑
i eui

e>ui
∈ RΣ?×Σ?

is a diagonal matrix with V1(u, u) =∑
i Iu=ui

. Thus, ‖V1‖op = maxuV1(u, u) = maxu∈Σ? |{i : ui = u}| = US . Sim-
ilarly, we have ‖V2‖op = VS . Thus, since the decomposition of the strings in
S is arbitrary, we can choose it such that ν = WS . Applying Theorem 12 now
yields the desired bound.

We can again convert the above empirical bound into a standard Rademacher
complexity bound by defining the expectation Wm = ES∼Dm [WS ] over a distri-
bution D on Σ?. We provide a bound for Wm in terms of m in next section.

7. Distribution-Dependent Rademacher Complexity Bounds

The bounds on the Rademacher complexity of R1,r and H1,r we presented in
the previous section identify two important distribution-dependent parameters,
Cm = ES [CS ] and Wm = ES [WS ], that reflect the impact of the distribution D
on the complexity of learning these classes of rational functions. We now derive
upper bounds on Cm and Wm in terms of m to give more explicit bounds on
the Rademacher complexities Rm(R1,r) and Rm(H1,r).
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7.1. Distribution-Dependent Bounds for Rm(R1,r)

We start by rewriting CS in a convenient way. Let E = {ex : Σ? → R |x ∈
Σ?} be the class of all indicators on Σ? given by ex(y) = Ix=y. Recall that given
S = (x1, . . . , xm) we defined sx = |{i : xi = x}| and CS = supx∈Σ? sx. Using E
we can rewrite these as sx =

∑m
i=1 ex(xi) and

CS = sup
ex∈E

m∑
i=1

ex(xi) .

Let Dmax = maxx∈Σ? PD[x] be the maximum probability of any strings with
respect to the distribution D.

Lemma 16. The following holds for any distribution D over Σ? and any m ≥ 1:

mDmax ≤ Cm ≤ mDmax + 2mRm(E) .

Proof. We start by noting that using the expression for CS given above we can
bound Cm = ES [CS ] as follows:

Cm = E
S∼Dm

[
sup
ex∈E

m∑
i=1

ex(xi)

]

= E
S∼Dm

[
sup
ex∈E

m∑
i=1

(
ex(xi) + E

x′i∼D
[ex(x′i)]− E

x′i∼D
[ex(x′i)]

)]

≤ E
S∼Dm

[
sup
ex∈E

m∑
i=1

E
x′i∼D

[ex(x′i)]

]
+ E
S∼Dm

[
sup
ex∈E

m∑
i=1

(
ex(xi)− E

x′i∼D
[ex(x′i)]

)]

= m sup
ex∈E

E
x′∼D

[ex(x′)] + E
S∼Dm

[
sup
ex∈E

m∑
i=1

(
ex(xi)− E

x′i∼D
[ex(x′i)]

)]

≤ m sup
ex∈E

E
x′∼D

[ex(x′)] + E
S∼Dm

[
sup
ex∈E

∣∣∣∣∣
m∑
i=1

(
ex(xi)− E

x′i∼D
[ex(x′i)]

)∣∣∣∣∣
]
,

where the second line introduces fresh samples x′i ∼ D independent from S and
the third line uses the sub-additivity of the supremum. Now, note that using
the definition ex(x′) = Ix=x′ we get

sup
ex∈E

E
x′∼D

[ex(x′)] = sup
x∈Σ?

Px′∼D[x′ = x] = Dmax .

On the other hand, a standard symmetrization argument yields:

E
S∼Dm

[
sup
ex∈E

∣∣∣∣∣
m∑
i=1

(
ex(xi)− E

x′i∼D
[ex(x′i)]

)∣∣∣∣∣
]
≤ 2mRm(E) .
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To get the lower bound, note that by Jensen’s inequality we also have

mDmax = m sup
ex∈E

E
x′∼D

[ex(x′)] = sup
ex∈E

E
S∼Dm

[
m∑
i=1

ex(xi)

]

≤ E
S∼Dm

[
sup
ex∈E

m∑
i=1

ex(xi)

]
= Cm .

To bound the Rademacher complexity Rm(E) we will use the following
lemma.

Lemma 17. For any distribution D over Σ? and any sample size m ≥ 1 the
following inequality holds for the Rademacher complexity of E:

Rm(E) ≤
√

log(2)

2m
.

Proof. Let S be a sample of size m with p ≤ m distinct strings and with
n1, . . . , np occurrences for each of these strings, thus

∑p
k=1 nk = m. The empir-

ical Rademacher complexity of E can for that sample be expressed as follows:

R̂S(E) =
1

m
E
[

sup
x

m∑
i=1

σi1xi=x

]
=

1

m
E
[

max
(

max
k∈[p]

nk∑
j=1

σk,j , 0
)]

≤ 1

2m
E
[

max
k∈[p]

∣∣∣ nk∑
j=1

σk,j

∣∣∣]

=
1

2m
E
[

max
k∈[p]
s∈{±1}

s

nk∑
j=1

σk,j

]
,

where we introduced m independent Rademacher variables σk,j indexed per
string k and occurrence j instead of the original random variables σi. By the
convexity of the exponential function and Jensen’s inequality, we can write for
any t > 0,

exp

(
tE
[

max
k∈[p]
s∈{±1}

s

nk∑
j=1

σk,j

])
≤ E

[
exp

(
t max
k∈[p]
s∈{±1}

s

nk∑
j=1

σk,j

)]

= E

[
max
k∈[p]
s∈{±1}

ets
∑nk

j=1 σk,j

]

≤
∑
k∈[p]
s∈{±1}

E
[
ets

∑nk
j=1 σk,j

]
≤ 2

p∑
k=1

e
t2nk

2 ,
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where the last step holds by Hoeffding’s inequality. Let n∗k denote the largest
nk, k ∈ [p]. Then, taking the log of both sides of the inequality and choosing t
to optimize the upper bound (t =

√
2 log(2p)/n∗k) yields

E
[

max
k∈[p]
s∈{±1}

s

nk∑
j=1

σk,j

]
≤ 1

t
log

[
2

p∑
k=1

e
t2nk

2

]

≤ 1

t
log
(

2pe
t2n∗k

2

)
=

log(2p)

t
+
tn∗k
2
≤
√

2n∗k log(2p) .

Thus, the following inequality holds:

R̂S(E) ≤
√

2n∗k log(2p)

2m
.

It is straightforward to verify that the right-hand side is maximized for p = 1
and n∗k = m, that is for a sample made of a single string repeated m times. This

implies that the inequality R̂S(E) ≤
√

log(2)/2m holds for all samples S of size
m.

A straightforward application of Jensen’s inequality now yields ES [
√
CS ] ≤√

mDmax +
√

2 log(2)m. Plugging this bound into Corollary 11 we get the

following.

Corollary 18. For any m ≥ 1 and any r > 0 we have:

Rm(R1,r) ≤
r√
m

√√√√2 log(2m)

(
Dmax +

√
2 log(2)

m

)
.

7.2. Distribution-Dependent Bounds for Rm(H1,r)

Next we provide bounds for Wm. Given a sample S = (x1, . . . , xm) we will
say that the tuples of pairs of strings S′ = ((u1, v1), . . . , (um, vm)) ∈ (Σ?×Σ?)m

form a split of S if xi = uivi for all 1 ≤ i ≤ m. We denote by S∨ the set of all
possible splits of a sample S. We also define coordinate projections πj : Σ? ×
Σ? → Σ? given by π1(u, v) = u and π2(u, v) = v. Now recall that Wm = ES [WS ]
and note we can rewrite the definition of WS as

WS = min
S′∈S∨

max
j=1,2

sup
ex∈E

m∑
i=1

ex(πj(ui, vi))

= min
S′∈S∨

sup
e∈E∨

m∑
i=1

e(ui, vi) ,

where E∨ = (E ◦ π1) ∪ (E ◦ π2) and E ◦ πj is the set of functions of the form
ex(πj(u, v)). Finally, given a distribution D over Σ? we define the parameter

D∨max = sup
x∈Σ?

max

{∑
v∈Σ?

1

|x|+ |v|+ 1
PD[xv],

∑
u∈Σ?

1

|x|+ |u|+ 1
PD[ux]

}
.
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Note that the first term in the maximum above is the probability of obtaining
x by first sampling a random string from D and then sampling a prefix from
that string uniformly at random. Similarly, the second term is the probability
of obtaining x as a random suffix from a string sampled from D. With these
definitions we have the following result.

Lemma 19. The following holds for any distribution D over Σ? and any m ≥ 1:

Wm ≤ mD∨max + 2mRm(E∨) .

Proof. We start by upper bounding the minS′∈S∨ by the expectation ES′∼Unif(S∨)

over a split chosen uniformly at random:

Wm = E
S∼Dm

[
min
S′∈S∨

sup
e∈E∨

m∑
i=1

e(ui, vi)

]

≤ E
S∼Dm

E
S′∼Unif(S∨)

[
sup
e∈E∨

m∑
i=1

e(ui, vi)

]

≤ sup
e∈E∨

E
S∼Dm

E
S′∼Unif(S∨)

[
m∑
i=1

e(ui, vi)

]

+ E
S∼Dm

E
S′∼Unif(S∨)

[
sup
e∈E∨

∣∣∣∣∣
m∑
i=1

(
e(ui, vi)− E

x′i∼D
E

(u′i,v
′
i)∼Unif({x′i}∨)

[e(u′i, v
′
i)]

)∣∣∣∣∣
]
.

The same argument we used in Lemma 16 shows that the second term in the
last sum above can be bounded by 2mRm(E∨). To compute the first term in
the sum note that given a string y and a random split (u, v) ∼ Unif({y}∨), the
probability that u = x for some fixed x ∈ Σ? is 1/(|y| + 1) if x is a prefix of y
and 0 otherwise. Thus, we let e = ex ◦ π1 ∈ E∨ and write

E
S∼Dm

E
S′∼Unif(S∨)

[
m∑
i=1

e(ui, vi)

]
= m E

x′∼D
E

(u,v)∼Unif({x′}∨)
ex(u)

= mPx′∼D,(u,v)∼Unif({x′}∨)Iu=x

= m
∑

x′∈xΣ?

1

|x′|+ 1
PD[x′]

= m
∑
v∈Σ?

1

|x|+ |v|+ 1
PD[xv] .

Similarly, if we have e = ex ◦ π2 ∈ E∨ then

E
S∼Dm

E
S′∼Unif(S∨)

[
m∑
i=1

e(ui, vi)

]
= m

∑
u∈Σ?

1

|x|+ |u|+ 1
PD[ux] .

Thus, we can combine these equations to show that Wm ≤ mD∨max+2mRm(E∨).
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Next lemma shows how to use Lemma 17 in order to bound the Rademacher
complexity Rm(E∨).

Lemma 20. For any distribution D over Σ? and any sample size m ≥ 1 the
following inequality holds for the Rademacher complexity of E∨:

Rm(E∨) ≤
√

2 log(2)

m
.

Proof. Let S∨ = ((u1, v1), . . . , (um, vm)) be a sample of size m. Then, by defi-
nition of E∨, we can write

R̂S∨(E∨) =
1

m
E
[

sup
x

m∑
i=1

σi1ui=x + sup
x

m∑
i=1

σi1vi=x

]

=
1

m
E
[

sup
x

m∑
i=1

σi1ui=x

]
+

1

m
E
[

sup
x

m∑
i=1

σi1vi=x

]
= R̂S1(E) + R̂S2(E),

where S1 = (u1, . . . , um) and S2 = (v1, . . . , vm). This implies Rm(E∨) ≤
2Rm(E). The result then follows by the bound on Rm(E) of Lemma 17.

Finally, using Jensen’s inequality on the bound from Corollary 15 we obtain
the following.

Corollary 21. Let c1 = (2 + 8/ log(2))/3 and c2 =
√

2 + 4/
√

log(2). For any
m ≥ 1 and any r > 0 we have:

Rm(H1,r) ≤
c1r log(2m+ 1)

m
+
c2r√
m

√√√√log(2m+ 1)

(
D∨max +

√
8 log(2)

m

)
.

8. Learning and Sample Complexity Bounds

We now have all the ingredients to derive generalization bounds for learning
with weighted automata for all the classes of weighted automata and rational
functions introduced in the previous sections. Our learning bounds hold for
loss functions that are bounded and Lipschitz. In cases where we have different
bounds for the empirical and expected Rademacher complexities we also give
two versions of the generalization bounds. All these bounds can be used to
derive learning algorithms for weighted automata provided the right-hand side
can be optimized over the corresponding hypothesis class. We will discuss in
the next section some open problems related to devising efficient algorithms to
solve these optimization problems. The proofs of these theorems are straight-
forward combinations of the bounds on the Rademacher complexity proven in
the previous sections with the generalization bounds of Theorem 1.
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Theorem 22. Let D be a probability distribution over Σ? × Z and let S =
((xi, yi))

m
i=1 be a sample of m i.i.d. examples from D. Assume that the loss

` : R×Z → R+ is M -bounded and µ-Lipschitz with respect to its first argument.
Fix δ > 0. Then, the following statements hold:

1. For all n ≥ 1 and p ∈ [1,+∞], with probability at least 1− δ, the following
holds simultaneously for all A ∈ An,p,r with r = (rα, rβ , rΣ) and rΣ ≤ 1:

LD(A) ≤ L̂S(A) + 12µc0

√
n(kn+ 2)rαrβ

m
+M

√
log 1

δ

2m
,

where

c0 =

√
log+(rαrβ)

kn+ 2
+
√

log+(rΣ)+
√

log+(r̃)+3
√

log(2)+
√

log(Lm + 2) .

2. For all r > 0, with probability at least 1 − δ, the following holds simulta-
neously for all f ∈ R2,r:

LD(f) ≤ L̂S(f) +
2µr√
m

+M

√
log 1

δ

2m
.

3. For all r > 0, with probability at least 1 − δ, the following holds simulta-
neously for all f ∈ R1,r:

LD(f) ≤ L̂S(f) +
2µr√
m

√√√√2 log(2m)

(
Dmax +

√
2 log(2)

m

)
+M

√
log 1

δ

2m
.

4. For all r > 0, with probability at least 1 − δ, the following holds simulta-
neously for all f ∈ H2,r:

LD(f) ≤ L̂S(f) +
2µr√
m

+M

√
log 1

δ

2m
.

5. For all r > 0, with probability at least 1 − δ, the following holds simulta-
neously for all f ∈ H1,r:

LD(f) ≤ L̂S(f) +
2c1µr log(2m+ 1)

m

+
2µc2r√
m

√√√√log(2m+ 1)

(
D∨max +

√
8 log(2)

m

)
+M

√
log 1

δ

2m
,

where c1 = (2 + 8/ log(2))/3 and c2 =
√

2 + 4/
√

log(2).
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Theorem 23. Let D be a probability distribution over Σ? × R and let S =
((xi, yi))

m
i=1 be an i.i.d. sample of size m drawn from D. Assume that the loss

` : R×R→ R+ is M -bounded and µ-Lipschitz with respect to its first argument.
Fix δ > 0. Then, the following statements hold:

1. For all n ≥ 1 and p ∈ [1,+∞], with probability at least 1− δ, the following
holds simultaneously for all A ∈ An,p,r with r = (rα, rβ , rΣ) and rΣ ≤ 1:

LD(A) ≤ L̂S(A) + 12µc0

√
n(kn+ 2)rαrβ

m
+ 3M

√
log 1

δ

2m
,

where

c0 =

√
log+(rαrβ)

kn+ 2
+
√

log+(rΣ)+
√

log+(r̃)+3
√

log(2)+
√

log(LS + 2) .

2. For all r > 0, with probability at least 1 − δ, the following holds simulta-
neously for all f ∈ R1,r:

LD(f) ≤ L̂S(f) +
2µr
√

2CS log(2m)

m
+ 3M

√
log 2

δ

2m
.

3. For all r > 0, with probability at least 1 − δ, the following holds simulta-
neously for all f ∈ H1,r:

LD(f) ≤ L̂S(f) +
2µc1r log(2m+ 1)

m

+
2µc2r

√
WS log(2m+ 1)

m
+ 3M

√
log 2

δ

2m
,

where c1 = (2 + 8/ log(2))/3 and c2 =
√

2 + 4/
√

log(2).

9. Conclusion

We presented the first algorithm-independent generalization bounds for learn-
ing with wide classes of WFAs. We introduced three ways to parametrize the
complexity of WFAs and rational functions, each described by a different nat-
ural quantity associated with the automaton or function. We pointed out the
merits of each description in the analysis of the problem of learning with WFAs,
and proved upper bounds on the Rademacher complexity of several classes de-
fined in terms of these parameters. An interesting property of these bounds is
the appearance of different combinatorial parameters that tie the sample to the
convergence rate: the length of the longest string LS for An,p,r; the maximum
number of collisions CS for Rp,r; and, the minimum number of prefix or suffix
collisions over all possible splits WS for Hp,r.
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Another important feature of our bounds for the classes Hp,r is that they
depend on spectral properties of Hankel matrices, which are commonly used
in spectral learning algorithms for WFAs (Hsu et al., 2009; Balle and Mohri,
2012). We hope to exploit this connection in the future to provide more refined
analyses of these learning algorithms. Our results can also be used to improve
some aspects of existing spectral learning algorithms. For example, it might
be possible to use the analysis of Theorem 12 for deriving strategies to help
decide which prefixes and suffixes to select in algorithms working with finite
sub-blocks of an infinite Hankel matrix. This is a problem of practical relevance
when working with large amounts of data which require balancing trade-offs
between computation and accuracy (Balle et al., 2014a).

In (Balle and Mohri, 2012), we proposed an efficient algorithm for learn-
ing WFAs that works in two steps: a matrix completion procedure applied to
Hankel matrices followed by a spectral method to obtain a WFA from such Han-
kel matrix. Although each of these two steps solves an optimization problem
without local minima, it is not clear from the analysis that the solution of the
combined procedure is close to the empirical risk minimizer of any of the classes
introduced in this paper. Nonetheless, we expect that the tools developed in this
paper will prove useful in analyzing variants of this algorithm and will further
help design new algorithms for efficiently learning interesting classes of WFA.
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