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Abstract

This paper studies the problem of learning weighted automata from a finite sam-
ple of strings with real-valued labels. We consider several hypothesis classes of
weighted automata defined in terms of three different measures: the norm of an
automaton’s weights, the norm of the function computed by an automaton, and
the norm of the corresponding Hankel matrix. We present new data-dependent
generalization guarantees for learning weighted automata expressed in terms of
the Rademacher complexity of these classes. We further present upper bounds
on these Rademacher complexities, which reveal key new data-dependent terms
related to the complexity of learning weighted automata.

1. Introduction

Weighted finite automata (WFAs) provide a general and highly expressive
framework for representing functions mapping strings to real numbers. The
mathematical theory behind WFAs, that of rational power series, has been ex-
tensively studied in the past (Eilenberg, 1974; Salomaa and Soittola, 1978; Kuich
and Salomaa, 1986; Berstel and Reutenauer, 1988) and has been more recently
the topic of a dedicated handbook (Droste et al., 2009). WFAs are widely
used in modern applications, perhaps most prominently in image processing
and speech recognition where the terminology of weighted automata seems to
have been first introduced and made popular (Culik IT and Kari, 1993; Mohri
et al., 1996; Pereira and Riley, 1997; Mohri, 1997; Mohri et al., 2008), in several
other speech processing applications such as speech synthesis (Sproat, 1995; Al-
lauzen et al., 2004), in phonological and morphological rule compilation (Kaplan
and Kay, 1994; Karttunen, 1995; Mohri and Sproat, 1996), in parsing (Roche,
1994; Mohri and Pereira, 1998), machine translation (de Gispert et al., 2010;
Allauzen et al., 2014), bioinformatics (Durbin et al., 1998; Allauzen et al., 2008),
sequence modeling and prediction (Cortes et al., 2004), formal verification and
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model checking (Baier et al., 2009; Aminof et al., 2011), in optical character
recognition (Breuel, 2008), and in many other areas.

The recent developments in spectral learning (Hsu et al., 2009; Bailly et al.,
2009) have triggered a renewed interest in the use of WFAs in machine learn-
ing, with several recent successes in natural language processing (Balle et al.,
2014a,b) and reinforcement learning (Boots et al., 2009; Hamilton et al., 2013).
The interest in spectral learning algorithms for WFAs is driven by the many ap-
pealing theoretical properties of such algorithms, which include their polynomial-
time complexity, the absence of local minima, statistical consistency, and finite
sample bounds a la PAC (Hsu et al., 2009). A refined analysis of such algo-
rithms provides sample bounds which are independent of the size of the Hankel
matrices used by the learning algorithm (Denis et al., 2016). However, the typi-
cal statistical guarantees given for the hypotheses used in spectral learning only
hold in the realizable case. That is, these analyses assume that the labeled
data received by the algorithm is sampled from some unknown WFA. While
this assumption is a reasonable starting point for theoretical analyses, the re-
sults obtained in this setting fail to explain the good performance of spectral
algorithms in many practical applications where the data is typically not gener-
ated by a WFA. See (Balle and Mohri, 2015a) for a recent survey of algorithms
for learning WFAs with a discussion of the different assumptions and learning
models.

There exists of course a vast literature in statistical learning theory provid-
ing tools to analyze generalization guarantees for different hypothesis classes in
classification, regression, and other learning tasks. These guarantees typically
hold in an agnostic setting where the data is drawn i.i.d. from an arbitrary
distribution. For spectral learning of WFAs, an algorithm-dependent agnostic
generalization bound was proven in (Balle and Mohri, 2012) using a stability
argument. This seems to have been the first analysis to provide statistical guar-
antees for learning WFAs in an agnostic setting. However, while Balle and Mohri
(2012) proposed a broad family of algorithms for learning WFAs parametrized
by several choices of loss functions and regularizations, their bounds hold only
for one particular algorithm within that family.

In this paper, we start the systematic development of algorithm-independent
generalization bounds for learning with WFAs, which apply to all the algo-
rithms proposed in (Balle and Mohri, 2012), as well as to others using WFAs
as their hypothesis class. Our approach consists of providing upper bounds on
the Rademacher complexity of general classes of WFAs. The use of Rademacher
complexity to derive refined generalization bounds is standard (Koltchinskii and
Panchenko, 2000) (see also (Bartlett and Mendelson, 2001) and (Mohri et al.,
2012)). It has been successfully used to derive learning guarantees for classifi-
cation, regression, kernel learning, ranking, and many other machine learning
tasks (e.g. see Mohri et al. (2012) and references therein). A key benefit of
Rademacher complexity analyses is that the resulting generalization bounds are
data-dependent.

Our main results consist of upper bounds on the Rademacher complexity of
three broad classes of WFAs. The main difference between these classes is the



quantities used for their definition: the norm of the transition weight matrix or
initial and final weight vectors of a WFA; the norm of the function computed by
a WFA; and, the norm of the Hankel matrix associated to the function computed
by a WFA. The formal definitions of these classes is given in Section 3. Let us
point out that our analysis of the Rademacher complexity of the class of WFAs
described in terms of Hankel matrices directly yields theoretical guarantees for
a variety of spectral learning algorithms. We will return to this point when
discussing the application of our results. As an application of our Rademacher
complexity bounds we provide a variety of generalizations bounds for learning
with WFAs using a bounded Lipschitz loss function; our bounds include both
data-dependent and data-independent bounds.

Related Work.. To the best of our knowledge, this paper is the first to pro-
vide general tools for deriving learning guarantees for broad classes of WFAs.
However, there exists some related work providing complexity bounds for some
sub-classes of WFAs in agnostic settings. The VC-dimension of deterministic
finite automata (DFAs) with n states over an alphabet of size k was shown by
Ishigami and Tani (1997) to be in O(knlogn). This can be used to show that the
Rademacher complexity of this class of DFA is bounded by O(y/nklogn/m).
For probabilistic finite automata (PFAs), it was shown by Abe and Warmuth
(1992) that, in an agnostic setting, a sample of size O(kT?n? /2) is sufficient to
learn a PFA with n states and k symbols whose log-loss error is at most € away
from the optimal one in the class when the error is measured on all strings of
length T. New learning bounds on the Rademacher complexity of DFAs and
PFAs follow as straightforward corollaries of the general results we present in
this paper.

Another recent line of work, which aims to provide guarantees for spectral
learning of WFAs in the non-realizable setting, is the so-called low-rank spectral
learning approach (Kulesza et al., 2014). This has led to interesting upper
bounds on the approximation error between minimal WFAs of different sizes
(Kulesza et al., 2015). See (Balle et al., 2015) for a polynomial-time algorithm
for computing these approximations. This approach, however, is more limited
than ours for two reasons: first, because it is algorithm-dependent; second,
because it assumes that the data is actually drawn from some (probabilistic)
WFA, albeit one that is larger than any of the WFAs in the hypothesis class
considered by the algorithm.

The rest of this paper is organized as follows. Section 2 introduces the no-
tation and technical concepts used throughout. Section 3 describes the three
classes of WFAs for which we provide Rademacher complexity bounds. The
bounds are formally stated and proven in Sections 4, 5, and 6. In Section 7
we provide additional bounds required for converting some sample-dependent
bounds from Sections 5 and 6 into sample-independent bounds. Finally, the gen-
eralizations bounds obtained using the machinery developed in previous sections
are given in Section 8.



2. Preliminaries

2.1. Weighted Automata, Rational Functions, and Hankel Matrices

Let X be a finite alphabet of size k. Let ¢ denote the empty string and >*
the set of all finite strings over the alphabet X. The length of u € ¥* is denoted
by |u|. Given an integer L > 0, we denote by Y=L the set of all strings with
length at most L: £ = {z € ¥*: |x| < L}. Given two strings u,v € X* we
write uv for their concatenation.

A WFA over the alphabet ¥ with n > 1 states is a tuple A = (e, 8, {Ay }aex)
where a, 3 € R™ are the initial and final weights, and A, € R™*" the transition
matrix whose entries give the weights of the transitions labeled with a. Every
WFA A defines a function f4: ¥* — R defined for all z = a; - - - a; € ¥* by

fA(x) :fA(al"'at) :aTAal "'Aatﬁ:aTAmB ) (1)

where A, = A,, --- A,,. This algebraic expression in fact corresponds to sum-
ming the weights of all possible paths in the automaton indexed by the symbols
in z, where the weight of a single path (qo,q1,...,q:) € [n]'T! is obtained by
multiplying the initial weight of go, the weights of all transitions from ¢,_; to
qs labeled by x4, and the final weight of state ¢;, that is

fA(x) = Z a(QO) (H Aacs (q‘s—laq(@)> /B(Qt) .

(qo,--»qe) E[n]*HT

See Figure 1 for an example of WFA with 3 states given in terms of its alge-
braic representation and the equivalent representation as a weighted transition
diagram between states.

An arbitrary function f: ¥* — R is said to be rational if there exists a WFA
A such that f = f4. The rank of f is denoted by rank(f) and is defined as
the minimal number of states of a WFA A such that f = f4. Note that mini-
mal WFAs are not unique. In fact, it is not hard to see that, for any minimal
WFA A = (o, 3,{A.}) with f = f4 and any invertible matrix Q € R"*",
AQ® = (QTa,Q7'3,{Q'A,Q)}) is also another minimal WFA computing f.
We sometimes write A(z) instead of f4(x) to emphasize the fact that we are
considering a specific parametrization of f4. Note that for the purpose of this
paper we only consider weighted automata over the familiar field of real numbers
with standard addition and multiplication, (see (Eilenberg, 1974; Salomaa and
Soittola, 1978; Berstel and Reutenauer, 2011; Kuich and Salomaa, 1986; Mohri,
2009) for more general definitions of WFAs over arbitrary semirings). Functions
mapping strings to real numbers can also be viewed as non-commutative for-
mal power series, which often helps deriving rigorous proofs in formal language
theory (Salomaa and Soittola, 1978; Berstel and Reutenauer, 2011; Kuich and
Salomaa, 1986). We will not favor that point of view here, however, since we
will not need to make explicit mention of the algebraic properties offered by
that perspective.

An alternative method to represent rational functions independently of any
WFA parametrization is via their Hankel matrices. The Hankel matrix Hy €
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Figure 1: (a) Example of WFA A. Within each circle we present the state name (g; for the
ith state), the initial weight (left number) and the final weight (right number). In particular,
fa(ab) =1x3x4x143%x3%x4x1+4x1x1x1=52. (b) Corresponding initial vector e,
final vector B, and transition matrices A, and Ay. (c) Finite sub-block of the Hankel matrix
Hy,.

R>"*>" of a function f: ¥* — R is the infinite matrix with rows and columns
indexed by all strings with Hy(u,v) = f(uv) for all u,v € £*. By the theorem
of Fliess (1974) (see also (Carlyle and Paz, 1971; Berstel and Reutenauer, 2011)
and (Balle and Mohri, 2015a) for a recent proof), H; has finite rank n if and
only if f is rational and there exists a WFA A with n states computing f, that
is, rank(f) = rank(Hy).

2.2. Learning Scenario

Let Z denote a measurable subset of R. We assume a standard supervised
learning scenario where training and test points are drawn i.i.d. according to
some unknown distribution D over ¥* x Z.

Let F be a subset of the family of functions mapping from X to ), with
Y C R, and let £: Y x Z — Ry be a loss function measuring the divergence
between the prediction y € ) made by a function in F and the target label
z € Z. The learner’s objective consists of using a labeled training sample
S = ((z1,21),-- -, (Tm, zm)) of size m to select a function f € F with small
expected loss, that is

Our objective is to derive learning guarantees for broad families of weighted
automata or rational functions used as hypothesis sets in learning algorithms.



To do so, we will derive upper bounds on the Rademacher complexity of different
classes of rational functions f: ¥* — R. Thus, we start with a brief introduction
to the main definitions and results regarding the Rademacher complexity of an
arbitrary class of functions F = {f: X — Y} where X is the input space and
Y C R the output space. Let D be a probability distribution over X x Z for
some Z C R and denote by Dy the marginal distribution over X. Suppose
S = (z1,...,Tm) S D% is a sample of m i.i.d. examples drawn from D. The
empirical Rademacher complezity of F on S is defined as follows:

Sup L Z Uif(xi)] ,

Rs(F) =E
fer M=

where the expectation is taken over the m independent Rademacher random
variables o; ~ Unif({+1,—1}). Note that this is equivalent to considering a
random vector o ~ Unif({+1,—1}"). The Rademacher complexity of F is
defined as the expectation of i%s(]: ) over the draw of a sample S of size m:

Ro(F) = B, [Rs(F)]
The Rademacher complexity of a hypothesis class can be used to derive gen-
eralization bounds for a variety of learning tasks (Koltchinskii and Panchenko,
2000; Bartlett and Mendelson, 2001; Mohri et al., 2012). To do so, we need to
bound the Rademacher complexity of the associated loss class, for a given loss
function ¢: Y x Z — R;.

For a given hypothesis class F, the corresponding loss class £ o F is given
by the set of all functions £o f: X x Z — Ry of the form (z,z) — £(f(z), 2).
Using Talagrand’s contraction lemma (Ledoux and Talagrand, 1991, Theorem
4.12), the empirical Rademacher complexity of £o F can be bounded in terms of
5‘\{5(}" ), when ¢ is p-Lipschitz with respect to its first argument for some p > 0,
that is when

[0y, z) = Uy, 2)| < ply — /|

for all y,3’ € Y and 2z € Z. In that case, the following inequality holds:
Ry (Lo F) < uRs(F) ,

where S = ((1,21),. .., (Tm, 2m)) is a sample of size m with (z;,z;) € X x
Z and S = (x1,...,T,) denotes the sample of elements in X obtained from
S’. When taking expectations over S’ X pmoand § 8 D% we obtain the
same bound for the Rademacher complexities R, (£ o F) < pR,,(F). A typical
example of a loss function that is u-Lipschitz with respect to its first argument
is the absolute loss ¢(y, z) = |y — z|, which satisfies the condition with g = 1 for
Y=Z=R.

We say that a loss function ¢: R x Z — R, is M-bounded if ¢(y,z) < M
for all y € R and z € Z. In order to convert Rademacher complexity bounds
into generalization bounds we will use the following standard result. The proof



follows from applying Talagrand’s contraction principle to a straightforward
extension of (Mohri et al., 2012, Theorem 3.1) for M-bounded loss functions.

Theorem 1. Let D be a probability distribution over X x Z and let S =
((xz4,9:))™ be a sample of m i.i.d. examples from D. Suppose F is a class
of functions from X to R. Assume that the loss £: R x Z — Ry is M-bounded
and p-Lipschitz with respect to its first argument. Then, each of the following
statements holds simultaneously for all f € F with probability at least 1 — §:

p(f) < Ls(f) + 2uRn(F) + -2
QA = log 2
Lp(f) < Ls(f) +2uRs(F) +3M e

3. Classes of Rational Functions

In this section, we introduce several classes of rational functions. Each of
these classes is defined in terms of a different way to measure the complexity of
rational functions. The first one is based on the weights of an explicit WFA rep-
resentation, while the other two are based on intrinsic quantities associated to
the function: the norm of the function, and the norm of the corresponding Han-
kel matrix when viewed as a linear operator on a certain Hilbert space. These
three different ways of measuring the complexity of rational functions provide
each distinct benefits in the analysis of learning with WFAs. The Rademacher
complexity of each of these classes will be analyzed in Sections 4, 5, and 6.

3.1. The Class Ap p.r

We start by considering the case where each rational function is given by a
fixed WFA representation. Our learning bounds would then naturally depend
on the number of states and the weights of the WFA representations.

Fix an integer n > 0 and let A,, denote the set of all WFAs with n states.
Note that any A € A, is identified by the d = n(kn + 2) parameters required to
specify its initial, final, and transition weights. Thus, we can identify A,, with
the vector space R? by suitably defining addition and scalar multiplication. In
particular, given A, A’ € A,, and ¢ € R, we define:

A+ A = (o, B, {Aa}> + <alvﬁ/v {A;}> ={a+ o, B+ /6/7 {Aa + A;}>
cA= C<a7/33 {Aa}> = (ca,cﬁ, {CA(L}> :
We can view A,, as a normed vector space by endowing it with any norm from

the following family. Let p, ¢ € [1,+o00] be Holder conjugates, i.e. p~t+¢~1 = 1.
It is easy to check that the following defines a norm on A,:

A |p7q = ”aHp + ”/BHQ + mgx HAqu )




where ||A ||, denotes the matrix norm induced by the corresponding vector norm,
that is [|Allq = supjy), =1 [[AV][g.

Now we define the classes of automata we consider. Let p € [1,+oc0] and
g = 1/(1 —1/p). Then, given the triple of radii r = (rq,rg,rs) € R, we
denote by A,, ,, » the set of all WFAs A with n states and such that: ||a|, < ra,
1Blly < rg, and max, ||Agll; < rs. Thus, A, . is contained in the ball of
radius ro + rg + ry at the origin in the normed vector space (A, || - ||p.q). We
note here that A, ,, is a compact subset of A, and that for any fixed x € ¥*
the function A — fa(z) is a polynomial in the weights of A and is therefore
continuous in the topology induced by || - ||,q-

3.1.1. Examples

We consider first the class of deterministic finite automata (DFA). A DFA
can be represented by a WFA where: a is the indicator vector of the initial state;
the entries of 3 are values in {0,1} indicating whether a state is accepting or
rejecting; and, for any a € ¥ and any 7 € [n] the ith row of A, is either the
all-zero vector if there is no transition from the ith state labeled by a, or an
indicator vector with a one on the jth position if taking an a-transition from
state i leads to state j. Therefore, a DFA A = (a, B, {A,}) satisfies ||a|; <1,
1Blloc <1, and max, [[Aqllec < 1and A, 1 (1,1,1) contains all DFA with n states.

Another important class of WFA contained in A, 1 (1,1,1) is that of prob-
abilistic finite automata (PFA). To represent a PFA as a WFA, we consider
automata where: « is a probability distribution over possible initial states; the
vector 3 contains stopping probabilities for every state; and for every a €
and ¢,j € [n] the entry A,(i,j) represents the probability of transitioning from
state 7 to state j while outputting the symbol a. Any WFA satisfying these con-
straints clearly has [|af|i = 1, [[Blcc < 1, and [[Ag[[oc = max; Y, [Aq (i, 5)] < 1.
The function fs computed by a PFA A defines a probability distribution over
¥*; ie. we have fa(x) >0 forall z € ¥* and ) 5. fa(z) = 1.

3.2. The Class Ry »

Next, we consider an alternative quantity measuring the complexity of ra-
tional functions that is independent of any WFA representation: their norm.
Given p € [1,00] and f: ¥* — R we use ||f||, to denote the p-norm of f given
by

1/p
1£llp = (Z If(x)l”> :
TEX*

which in the case p = co amounts to || f||c = supges- |f(x)].

Let R, denote the class of rational functions with finite p-norm: f € R, if
and only if f is rational and || f||, < 4+oc0. Given some r > 0 we also define R, .,
the class of functions with p-norm bounded by r:

Rpr={f: X" = R| f rational and ||f]|, <r} .

Note that this definition is independent of the WFA used to represent f.



3.2.1. FExamples and Membership Testing

If Ais a PFA, then the function f4 is a probability distribution and we have
fa € Ri1 and by extension R, for all p € [1,+00]. On the other hand, if
A is a DFA such that f4(x) = 1 for infinitely many = € X*, then f4 € Reo,1,
but fa ¢ R, for any p < 4o0. In fact, it is easy to see that for any n > 0,
p € [1,400], and 7 = (rq,73,1) we have A, , » C Roo. The discussion above
shows that PFA witness A, 1,(1,1,1) N R1 #  and DFA with infinite support
witness that A, 1,(1,1,1)N(Ro \R1) # 0. Therefore, the classes R,, yield a more
fine-grained characterization of the complexity of rational functions than what
the classes A, p,,» can provide in general.

On the other hand, testing the membership of a given WFA in A, ,,, is a
straightforward algorithmic task, while testing membership in any of the R,
can be challenging. Some known results include the following;:

e Membership in R; , was shown to be semi-decidable in (Bailly and Denis,
2011).

e Membership in R, can be decided in polynomial time (Cortes, Mohri,
and Rastogi, 2007).

e Membership in R, is in general undecidable (Paz, 1971).

3.83. The Class Hpr

Here, we introduce a third class of rational functions described via their Han-
kel matrices, a quantity that is also independent of their WFA representations.
To do so, we represent a function f using its Hankel matrix Hy, interpret this
matrix as a linear operator on a Hilbert space contained in the free vector space
R®", and consider the Schatten p-norm of H ¢ as a measure of complexity of f.
To make this more precise we start by noting that the set

Lo={f:Z" = R|[f]l2 < oo}

together with the inner product (f,g) = > cy. f(z)g(z) forms a separable
Hilbert space. Note that we have the obvious inclusion Ry C Lo, but not
all functions in Lo are rational. Given an arbitrary function f: ¥* — R we
identify the Hankel matrix H; with a (possibly unbounded) linear operator
Hy: Ly — L5 defined by

(Hyg)(x) = Y flzy)gy) -

yex*

Recall that an operator Hy is bounded when its operator norm is finite; i.e.
[Hy| = sup)g,<1 [[Hygll2 < oo. Furthermore, a bounded operator is compact
if it can be obtained as the limit of a sequence of bounded finite-rank operators
under an adequate notion of convergence. In particular, bounded finite-rank
operators are compact. Our interest in compact operators on Hilbert spaces
stems from the fact that these are precisely the operators for which a notion



equivalent to the SVD for finite matrices can be defined. Thus, if f is a rational
function of rank n such that Hy is bounded (note this implies compactness by
Fliess’s theorem), then we can use the singular values 51 > ... > s, of Hy as a
measure of the complexity of f. The following result follows from Balle et al.
(2015) and gives a useful condition for the boundedness of Hy.

Lemma 2. Suppose the function f: ¥* — R is rational. Then, Hy is bounded
if and only if || f]l2 < oo.

We see that every Hankel matrix Hy with f € Ry has a well-defined SVD.
Therefore, for any f € R it makes sense to define its Schatten—Hankel p-norm as
the Schatten p-norm of its Hankel matrix: |||, = [[Hylls, = [|(s1,---,50)p
where s; = 5;(H/) is the ith singular value of H; and rank(H;) = n. Using
this notation, we can define several classes of rational functions. For a given
p € [1,400], we denote by #, the class of rational functions with || f|lu,p < oo
and, for any r > 0, we write H,, . for class of rational functions with || f|la, < 7.

Note that the discussion above implies H, = Rq for every p € [1, 4], and
therefore we can see the classes H, , as providing an alternative stratification
of Ry than the classes Ro,. As a consequence of this containment, we also
have Ry C H, for every p, and therefore the classes #, include all functions
computed by probabilistic automata. Since membership in R is efficiently
testable (Cortes, Mohri, and Rastogi, 2007), a polynomial time algorithm by
Balle, Panangaden, and Precup (2015) can be used to compute || f||u,, and thus
test membership in H,, .

4. Rademacher Complexity of A, ,, »

In this section, we present an upper bound on the Rademacher complexity
of the class of WFAs A,, , -. To bound R,, (A p.), we will use an argument
based on covering numbers. We first introduce some notation, then state our
general bound and related corollaries, and finally prove the main result of this
section.

Let S = (21,...,2,) € (%) be a sample of m strings with maximum
length Lg = max; |z;]. Given z > 0 we define log, (2) = max{0,log(z)}. The
following theorem bounds the empirical Rademacher complexity of A,, , . on a
sample S for a setting with arbitrary radii r = (4, rs,75).

Theorem 3. Let r = (rq,73,7x) and 7 = max{\/7o /78, \/T8/Tas /TaT3/Ts}

Define
1 ror ~
C= % i \/10g+(7«2) + \/log+(7") +3y/log(2) .

Then, the following holds for any sample S € (X*)™:

~ k 2 " Ls
Rs(Anp.r) < 6\/n( nt 77); dELD I Fop \/log+ ((LS + Z)TIE’S/z)]

10



In general, the upper bound of Theorem 3 can grow exponentially with Lg
since a WFA in A,, ,, - can assign labels to strings x that grow with |z| whenever
ry > 1. When ry < 1, which still defines a large class of interesting WFAs,
the following corollary holds. Using Jensen’s inequality, the expected maximum
length L,, = Eg.pm[Ls| appear in the bound on the Rademacher complexity
R (Anpr)-

Corollary 4. Recall the notation from Theorem 3 and assume that ry < 1.
Let L, = Eg.pm[Ls]. Then the following hold for any m > 1 and any sample
S e (X)m:

Rs(Anpr) < 6 W“Lmz)’"“”’ (C + /log(Ls + 2)) ,

() < 6y I DIE (0 i 2))

Note that the presence of L,, in the bound introduces a dependency on
the distribution D, which will lead to different growth rates depending on the
behavior of the tails of D. For example, it is well known that if the random
variable |z| for z ~ D is sub-Gaussian,* then L,, = O(y/logm). Similarly, if the
tail of D is sub-exponential, then L,, = O(logm) and if the tail is a power-law
with exponent s + 1, s > 0, then L,, = O(m!/*). We note that in the first two
cases, we obtain a Rademacher complexity bound with rate O(y/loglogm/m),
while in the power-law case the resulting rate O(y/logm/m). In particular,
this provides a significant improvement over our previous results in (Balle and
Mohri, 2015b) where the rate of R,,, (A, p ) under a power-law distribution with

exponent s + 1 was shown to be O(max{\/logm/m, m(*=*)/5}).

4.1. Proof of Theorem 3

We begin the proof by reviewing several well-known facts and definitions
related to covering numbers (see e.g. Devroye and Lugosi (2001)). Let ¥V C R™
be a set of m-dimensional vectors. An (€2, n)-covering for V is any set of vectors
C C R™ such that for every vector v € V there exists some vector w € C with
{s-distance from v at most 7; that is,

v —wl2 =

The fo-covering number of V at level 7 is the cardinality A5 (n, V) of the smallest
(€2, m)-cover for V:

No(n, V) = min{|C|: C C R™ is an ({3, n)-cover for V} .

IRecall that a non-negative random variable X is sub-Gaussian if P[X > k] < exp(—Q(k2)),
sub-exponential if P[X > k] < exp(—Q(k)), and follows a power-law with exponent (s + 1) if
PIX > k] < O(1/k5+1).

11



The connection with Rademacher complexity stems from considering the
covering numbers of sets of vectors V obtained by applying all the possible
hypotheses from a class to a given set of examples. Let S = (x1,...,2,) €
(X*)™ a sample of size m. Given a WFA A, we define f4(S) € R™ by fa(S) =
(fa(z1),..., fa(zm)) € R™. Furthermore, we define A, ,,(S) C R™ as the
set Ay pr(S) = {fa(S): A € A, p+}. To prove Theorem 3, we will use the
following result which provides a way to convert bounds on the covering numbers
of A, p.»(S) into bounds on the Rademacher complexity g (A, p,). This result
can be obtained using Dudley’s chaining technique Dudley (1999).

Lemma 5 (Lemma 27.5 in (Shalev-Shwartz and Ben-David, 2014)). Suppose

Mo > Minyepm MaxXy, () A, . (5) [V = fa(S)2. Let n; = 27"y for i > 0. If
there exist constants 0y, 61 such that the ly-covering numbers of A, , »(S) satisfy

VI8 N2 (i, A . 1(5)) < B + iy

for every i > 0, then %S(A,L7p7,») < 610(00 + 261)/m.

In order to derive the required bounds for Na(n, A, , »(S)) we will make use
of the following technical results.

Lemma 6 (Corollary 4.3 in Vershynin (2009)). A ball B of radius R > 0 in a
real d-dimensional Banach space can be covered by R (2 + 1/p)? balls of radius
p > 0 with centres inside B.

Lemma 7. Let r = (1o, 7r3,rs) and 7 = max{rq,rg,rarg/rs}. If A, A" € Ay pr
then the following holds for any x € ¥*:

||

L [fa(@)| < rarpry
2. [fa@) — far(@)| <P (la— |l + 18— Bl + || max, A, — ALll,)

Proof. The first bound follows from applying Hélder’s inequality and the sub-
multiplicativity of the norms used in the definition of || A]|, 4 to (1). The second
bound was proven in (Balle and Mohri, 2012) (see also (Balle, 2013, Lemma
5.4.2)). O

The two lemmas above can be combined to obtain the following bound on
the covering numbers of A,, , »(5).

Lemma 8. Letr = (ro,73,rs) and 7 = max{rqs,rg,7ar3/rs}. The ls-covering
numbers of Ay, pr can be bounded as follows:

n(kn+2
J(Ls +2)fr§s> e

Na (), Anpr(S)) < 1l (2 + g

Proof. Let po, pg, ps > 0 be some parameters to be chosen later. Using Lemma 6,
we can find the following coverings:

12



1. Co C By ={a €R": ||a|p < 7o} of size at most 77 (2+1/p,)™ containing
the centres of a covering of B, by balls of radius pg.

2. Cs CBg={B € R": |Blla <rp} of size at most 73(2+1/ps)" containing
the centres of a covering of Bg by balls of radius pg .

3. Cx C Bs = {(A4,---,Ag) € (R™M™F: max, [|[A,ll, < rs} of size at
most r§"2 (2+1/ pg)k”2 containing the centres of a covering of By, by balls
of radius py with respect to the norm ||(Ag,, ..., Aq, )| = max, ||Aglly-

Now, given any automaton A € A, , . with A = (a,3,{A,}) we can define
another automaton A’ € A, ,, with A = (a/,3,{AL}) such that o’ € C,
with [la — o/||, < pa, B’ € Cs with |8 = 8’|l < pg, and (A}, ,..., A, ) € Cx
with max, |[A, — ALl < ps. Note that this is possible because of how the
coverings were defined. Now using Lemma 7 and Lg = max,egs |z|, we get that
the following holds for any x € S:

|[fa(x) = Fa(@)| < 7755 (pa + ps + Lsps) -

Let C = Co xCg x Cx; be the set of WFAs obtained by taking initial weights in Cq,
final weights in Cg and transition weights in Cx. By definition of the coverings
we have C C A, . and C(S) C A, . (S). Therefore, if 755 (po +ps+ Lsps) <
n/v/m, then C(S) is an ({3, n)-covering for A, ,, ,(S) of size

n,n, kn? 1 " 1 " 1 fn®
IC(S)| <rgrprs™ {2+ — 2+ — 2+ —
Pa Pp 19>

Finally, by taking p, = ps = ps = n/v/m(Ls + 2)Fr5® we obtain a covering of
the required size. O

The proof now follows by applying the bound in the previous lemma to the
chaining result provided by Lemma 5. Start by defining the following quantities:

0y = log,, (7“27"3 (QTE)n(knJrQ)) +n(kn +2)log, ((Ls + Q)frés/z) ’
01 = n(kn + 2)log(2) ,

where Let 7 = 7/, /Farg = max{\/7a/78,\/78/Ta,/TaT3/Ts} as in the state-

ment of Theorem 3. We note that both 6, and 0] are non-negative. In order
to apply the chaining lemma we note that by setting v = 0 in the definition
of 9 we can apply Lemma 7 and take 19 = (mrargrés)lﬂ. The bound on

Na(n, Ap pr(S)) for n =mn; = 27"y now yields:

2i(Lg + 2)7rLs

\/rargrés

= log (rgrgrg(kn+2)> + n(kn + 2)log (2 +2(Ls + 2)7:7"55/2)

log Na (15, An p,r(S)) < log (rzrgrg(k"+2)> +n(kn+2)log | 2+

13



Furthermore, using the definition log, (2) = max{0,log(z)} = log(max{1,z}),
we obtain for any ¢ > 1:

log (2 +24(Lg + 2)fr§S/2> <log(4) + log (max {17 271 (Ls + 2)717“;5/2})
— log(4) + log, (QH(LS + 2)fr§S/2)
< log(4) + log, ((LS + 2)irks/ 2) +log, (27°1)
= log(2) + log,. ((LS + 2)7:7"§S/2) +ilog(2) ,

where the second inequality uses log, (z122) < log, (21) + log, (22). Therefore
we obtain the bound log N2 (n;, Ay p.r(S)) < 6 + 4607, which implies a bound of
the form required by Lemma 5 with 6y = 1/0) and 6; = 1/0}. An application
of the Lemma 5 now gives:

o~ Ls
ERS(-An,p,?") <6 “ % (90 + 291)

Finally, we obtain the bound in Theorem 3 by noting that (69+2601)/+/n(kn + 2)
can be further upper bounded by

log, (rars) - P
Tt Vo rs) 4 flog, () + 3vIoB@) + y o ((Ls + 2r*?)

5. Rademacher Complexity of R, .

In this section, we study the complexity of rational functions from a different
perspective. Instead of analyzing their complexity in terms of the parameters
of WFAs computing them, we consider an intrinsic associated quantity: their
norm. We present upper bounds on the Rademacher complexity of the classes
of rational functions R, , for any p € [1,+o0] and r > 0.

It will be convenient for our analysis to identify a rational function f € R,
with an infinite-dimensional vector f € R*" with ||f||, < r. That is, f is an
infinite vector indexed by strings in X* whose xth entry is f, = f(z). An
important observation is that using this notation, for any given x € ¥*, we can
write f(z) as the inner product (f,e,), where e, € R> is the indicator vector
corresponding to string x.

Theorem 9. Letp t4+q ' =1. Let S = (x1,...,2.m) be a sample of m strings.
Then, the following holds for any r > 0:

Z 0i€y; ] )

i=1 q

where the expectation is over the m independent Rademacher random variables
o; ~ Unif({+1, —1}).

r
mS(Rpm) == E]E l

14



Proof. In view of the notation just introduced, we can write

R 1 m 1 m
Rs(Rpr) =E| sup — Z(f,aiegg,i>] = EE l sup <f,z;aiezi>]
1=

FERp,» T i fERp»
r
m E [ ‘| ,
q

where the last equality holds by definition of the dual norm. O

i€z,

The next corollaries give non-trivial bounds on the Rademacher complexity
in the case p = 1 and the case p = 2.

Corollary 10. For any m > 1 and any r > 0, the following inequalities hold:

\/% =~ m(RZ,T) S ﬁ

Proof. The upper bound follows directly from Theorem 9 and Jensen’s inequal-

ity:
m m 2
E l Zaiewi Zaiem
i=1 2 i=1 2

The lower bound follows directly from Khintchine-Kahane’s inequality (see
(Mohri et al., 2012, Theorem D.4)):
2
_m
2] 2’

m 2 1
E 0i€g, Z - E l
=1

which completes the proof. O

<,|E =vm .

i€z,

The following definition will be needed to present our next corollary. Given
a sample S = (z1,...,%,) and a string z € ¥*, we denote by s, = |{i: z; = x}|
the number of times = appears in S. Let C's = max,ecx+ s, and note we have
the straightforward bounds 1 < Cg < m.

Corollary 11. For any m > 1, any S € (X*)™, and any r > 0, the following
upper bound holds:
&S(Rl,r) < rv/2Cg log(2m) .
m

Proof. Let S = (z1,...,2,) be a sample with m strings. For any x € ¥* define
the vector v, € R™ given by v, (i) = I;,—,. Let V be the set of vectors v,
which are not identically zero, and note we have |V| < m. Also note that by
construction we have maxy, cy ||[vz|l2 = v/Cs. Now we can apply Theorem 9
with ¢ = co an rewrite the supremum norm over R*" as a maximum over the
entries with non-zero entries and get

i€x;

Rs(Ra,r) :E[

]:T]E{ max (o,vg)| ,
m v €VU(-V)
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where we used V U (—=V) to mimic the absolute value in the definition of || - || -
Therefore, using Massart’s Lemma we obtain

%S(Rl,r) < r/2Cg log(2m) . 0
m

Note in this case we cannot rely on the Khintchine-Kahane inequality to
obtain lower bounds because there is no version of this inequality for the case
q = 0.

‘We can easily convert the above empirical bound into a standard Rademacher
complexity bound by defining the expectation C,, = Eg..pm[Cg] over a distri-
bution D on ¥*. Note that C,, is the expected maximum number of collisions
(repeated strings) in a sample of size m drawn from D. We provide a bound for
C,, in terms of m in Section 7.

6. Rademacher Complexity of H, .

In this section, we present our last set of upper bounds on the Rademacher
complexity of WFAs. Here, we characterize the complexity of WFAs in terms
of the spectral properties of their Hankel matrix.

The Hankel matrix of a function f: ¥* — R is the bi-infinite matrix Hy €
R¥"*>" whose entries are defined by Hy(u,v) = f(uv). Note that any string
x € ¥* admits |z| + 1 decompositions x = uwv into a prefix u € ¥* and a suffix
v € ¥*. Thus, Hy contains a high degree of redundancy: for any x € ¥*, f(z)
is the value of at least |z| + 1 entries of H; and we can write f(z) = e, Hye,
for any decomposition = = uv.

Let 5,(M) denote the ith singular value of a matrix M. For 1 < p < oo,
let |[M]||s, denote the p-Schatten norm of M defined as the £, norm of the
singular values of M, ie. [Mls, = (3,5, 8(M)?)/P. We also recall that
given two matrices My, My of the same dimensions, the matrix inner product
is defined as (M, My) = Tr(M{ M;). Von Neumann’s trace inequality Mirsky
(1975) provides the following bound for the matrix inner product in terms of
the singular values of the matrices: |[(My, Ma)| < >, 8:(M;)s;(My).

Theorem 12. Let p,q > 1 withp~' +q ' =1 and let S = (x1,...,7.,) be a
sample of m strings in ¥*. For any decomposition x; = w;v; of the strings in S
and any r > 0, the following inequality holds:

m

T
E aieuievi
=1

~

r
mS(Hp)T) S E E

Sq

Proof. For any 1 < i < m, let x; = w;v; be an arbitrary decomposition and
let R = Y1 oiey,e, . Then, in view of the identity f(z;) = e Hye, =

vi®
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Tr(ey, e, Hy), we can use the linearity of the trace to write

~ 1 &
Rs(Hpr) =E| sup — ) osel Hre,,
P rer,, m ; it

m

1
3 T iev.erH =—E
gg§f@ziﬂ -

1
= —E
m

sup (R, Hy)
fer,r

Finally, by applying von Neumann’s trace inequality to this matrix inner prod-
uct, and then using Holder’s inequality to the inner product between the singular
values of both matrices, the following holds:

<E| sup Y s;(R)-s;(Hy)

E| sup (R,Hy)
fEHp,'r JZl

fEHp,r

<E

JSup IR|s,[IHf s, | =rE[IR]s,] -

Dividing the above by m yields the desired result. O

Note that, in this last result, the equality condition for von Neumann’s
inequality cannot be used to obtain a lower bound on Rg(H, ) since it requires
the simultaneous diagonalizability of the two matrices involved, which is difficult
to control in the case of Hankel matrices.

As in the previous sections, we now proceed to derive specialized versions
of the bound of Theorem 12 for the cases p = 1 and p = 2. First, note that
the corresponding g-Schatten norms have given names: |R|s, = |R||r is the
Frobenius norm, and ||R||s.. = |R||op is the operator norm.

Corollary 13. For any m > 1 and any r > 0, the Rademacher complexity of
Ha,r can be bounded as follows:

r
9%m (HQJ') S ﬁ .
Proof. In view of Theorem 12 and using Jensen’s inequality, we can write

T T
Rn(Har) < —E[[R]p] < —/E[IR]}]

[ m
E T T T
E 0i0; <euie’Ui ) €u; evj>

ij=1

S~

S

['m
T
-2 e[S o] -

=1

which concludes the proof. O
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To bound the Rademacher complexity of H,, , in the case p = 1 we will need
the following moment bound for the operator norm of a random matrix from
Tropp (2015).

Theorem 14 (Corollary 7.3.2 Tropp (2015)). Let ¢; = (2 + 8/10g(2))/3 and
ca =V2+4//log(2). Suppose M =", M; is a sum of i.i.d. random matrices
with E[M,] = 0 and |M||op < M. Let S, EIM;M]] < Vi, 3. E[M] M,] <
Vo, and V = diag(V1, Va). If d = Tr(V) /|| Vl]ep and v = ||V|op, then we have

E[||M|lop] < c1Mlog(d + 1) + cor/vlog(d+1) .

We now introduce a combinatorial number depending on S and the de-
composition selected for each string x;. Let Us = maxy,ex+ [{i: u; = u}| and
Vs = maxyexs |[{i: v; = v}|. Then, we define Wg = minmax{Ug, Vs}, where
then minimum is taken over all possible decompositions of the strings in S. It
is easy to show that we have the bounds 1 < Wg < m. Indeed, for the case
Ws = m consider a sample with m copies of the empty string, and for the case
Ws =1 consider a sample with m different strings of length m. The following
result can be stated using this definition.

Corollary 15. Let ¢; = (2 +8/10g(2))/3 and co = v/2 + 4/+/10g(2). For any
m > 1, any S € (%)™, and any r > 0, the following upper bound holds:

%S(HM) < % [cl log(2m + 1) + co/ Wg log(2m + 1)}

Proof. First note that we can apply Theorem 14 to the random matrix R by
letting Vi = >, ey,e,; and Vo = Y e, e, . In this case we have d = 2m,

Vi

v =max{| >, euie; lops I >2s eme; lop}, and we get:

E[||R]lop] < c1log(2m + 1) + cav/vilog(2m +1) .

Next, observe that Vi = 3, ey, el € R¥ *®" is a diagonal matrix with Vi (u, u) =
> i Lu=u,. Thus, [|[Vi|lop = max, Vi(u,u) = maxyesn« [{i: u; = u}| = Us. Sim-
ilarly, we have ||Val|lop = Vs. Thus, since the decomposition of the strings in
S is arbitrary, we can choose it such that v = Wg. Applying Theorem 12 now
yields the desired bound. O

We can again convert the above empirical bound into a standard Rademacher
complexity bound by defining the expectation W,,, = Eg..pm[Wg] over a distri-
bution D on ¥*. We provide a bound for W,,, in terms of m in next section.

7. Distribution-Dependent Rademacher Complexity Bounds

The bounds on the Rademacher complexity of R, and H; , we presented in
the previous section identify two important distribution-dependent parameters,
Cm = Eg[Cs] and W,,, = Eg[Wgs], that reflect the impact of the distribution D
on the complexity of learning these classes of rational functions. We now derive
upper bounds on C), and W,, in terms of m to give more explicit bounds on
the Rademacher complexities R,,,(R1,) and R, (H1,r).

18



7.1. Distribution-Dependent Bounds for Ry, (R1.r)

We start by rewriting Cg in a convenient way. Let £ = {e,: ¥* - R|z €
Y*} be the class of all indicators on ¥* given by e, (y) = I,—,. Recall that given
S = (x1,...,%m) we defined s, = [{i: z; = x}| and Cg = sup 5« . Using €
we can rewrite these as s, = > " e, (2;) and

m
Co = swp 3 calr)
€850

Let Dpax = maxgexn+ Pplz] be the maximum probability of any strings with
respect to the distribution D.

Lemma 16. The following holds for any distribution D over ¥* and anym > 1:
MDmax < Cpy < MDpax + 2mR, (€) -

Proof. We start by noting that using the expression for C's given above we can
bound C,,, = Eg[Cs] as follows:

r m
O = o By | 30 ;ez(m]

S~Dm _CmES = i~ ;ND
LS : ’
S g [ 2 Bl 4 B s D (ex(xi) - m/;gD[ex(x;)Q
a =1 - 2€ =1 2

=msup E les(z/)]+ E -supi<6m(xi) E [%(%)])]

e g’ ~D S~D™ |, cg = xi~D
m
< E ' E > )— E ;
o mesa-llelog m/ND[eI (:L‘ )] + S~Dm _P?'tueljg =1 <6I (:L"L) I;ND[e:E (xl)] 7

where the second line introduces fresh samples z ~ D independent from S and
the third line uses the sub-additivity of the supremum. Now, note that using
the definition e, (z') = I,—, we get

sup E_fe,(2')] = sup Ppupl2’ = 2] = Diax -
eq€€2'~D TED*

On the other hand, a standard symmetrization argument yields:

i (%Wi) - E [ez(aré)])H < 2mR,(€)

E sup
S~Dm enCE = :E;ND
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To get the lower bound, note that by Jensen’s inequality we also have

Z ew(xi)l

MDpax =msup E [ey(z')]=sup E

ey €€’ ~D ey €ES~D™
m

< E supg ex(z;)| =Chn .
S~Dm efegi:l

O

To bound the Rademacher complexity QR,,(E) we will use the following
lemma.

Lemma 17. For any distribution D over ¥* and any sample size m > 1 the
following inequality holds for the Rademacher complexity of €:

log(2)

mm (5) 2m

IN

Proof. Let S be a sample of size m with p < m distinct strings and with
n1,...,n, occurrences for each of these strings, thus 2221 ng = m. The empir-
ical Rademacher complexity of £ can for that sample be expressed as follows:

Rg(E) = %E {Supzm:gilm_x] = %E [max (maﬁiohjﬂ)]
T =1 Jj=

I
g~
=
| p——|

=B

=8

wn
INgE
Eal

Q

=

<

—_

where we introduced m independent Rademacher variables oy ; indexed per
string k£ and occurrence j instead of the original random variables o;. By the
convexity of the exponential function and Jensen’s inequality, we can write for
any t > 0,

Nk Nk
exp (t]E{ iré?ﬁ sZJm}) <E [exp <t iréz[iﬁ szak,g)}

se{1} I= se{x1} =1

=E| max e*X5tio%s
kelp]
se{£1}

+2

< Z E{etszyilvk,j] §2i€ 7 )
]

kep k=1
se{£1}
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where the last step holds by Hoeffding’s inequality. Let nj denote the largest
ng, k € [p]. Then, taking the log of both sides of the inequality and choosing ¢
to optimize the upper bound (¢t = \/2log(2p)/n}) yields

Nk 1 p
o s o3 ] < o327

se{£1} J=1

?nj, log(2 tn}
flog <2p k) = M + % <y/2nj log(2p) .

Thus, the following inequality holds:
~ 2n7 log(2
Rs(E) < ny log(2p) )
2m

It is straightforward to verify that the right-hand side is maximized for p = 1
and nj = m, that is for a sample made of a single string repeated m times. This

implies that the inequality Rg (&) < 4/log(2)/2m holds for all samples S of size
m. O
A straightforward application of Jensen’s inequality now yields Eg[v/Cs] <

MmDmax + v/2log(2)m. Plugging this bound into Corollary 11 we get the
following.

Corollary 18. For any m > 1 and any r > 0 we have:

Rm(Rir) < T 2log(2m) (Dmax + 21(:71g;(2)>
7.2. Distribution-Dependent Bounds for R, (Hi )

Next we provide bounds for W,,,. Given a sample S = (z1,...,2,,) we will
say that the tuples of pairs of strings S" = ((u1,v1), ..., (Um, Um)) € (Z* x T*)™
form a split of S if x; = u;v; for all 1 < i < m. We denote by SV the set of all
possible splits of a sample S. We also define coordinate projections 7;: ¥* x
¥* — ¥* given by m (u,v) = u and 72 (u, v) = v. Now recall that W,,, = Eg[Wg]
and note we can rewrite the definition of Wy as

Wsg = mln max sup E ex(mj(ui,v;))
Vi=1,2¢, 65

where €Y = (£ om) U (€ oma) and € o 7, is the set of functions of the form
ex(m;(u,v)). Finally, given a distribution D over £* we define the parameter

DY = sup max uT
mas = SUD {Z|x|+v+1D Z|x|+|u|+1D[ ]}

zeX” ueD*
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Note that the first term in the maximum above is the probability of obtaining
x by first sampling a random string from D and then sampling a prefix from
that string uniformly at random. Similarly, the second term is the probability
of obtaining z as a random suffix from a string sampled from D. With these
definitions we have the following result.

Lemma 19. The following holds for any distribution D over ¥X* and anym > 1:

W,, < mDY

max

+2mR,, (EY) .

Proof. We start by upper bounding the ming/csv by the expectation Eg/unig(sv)
over a split chosen uniformly at random:

m
W,,= E min su g eu v
™ s~Dm |siesv (,egpv, — v
m
< E E su E e(u;, v;
= §~D™ §'~Unif(SV) egpv — e(wi, vi)
<

m
su E E e(u;, v;
eegpv S~D™ S'~Unif(SV) [Z; ( ! 7')‘|
m

e(uj,v;)) — E E e(u}, v, )
;<( )7 B ity ) H

The same argument we used in Lemma 16 shows that the second term in the
last sum above can be bounded by 2mfR,, (V). To compute the first term in
the sum note that given a string y and a random split (u,v) ~ Unif({y}"), the
probability that v = x for some fixed x € ¥* is 1/(Jy| + 1) if = is a prefix of y
and 0 otherwise. Thus, we let e = e, om € £V and write

E E sup
S~D™ S'~Unif (SVY) |ecgVv

E 1y Y1 - ]E E T
S~Dm S’NUnlf(SV) lz U vi ‘| z’ND (u,'U)NUnif({x’}V)e (U)

= mPa: '~D,(u, U)~Unif({a:’}v)]1u:x

=m 3 Pl

x/ex*
1
=m 7]? TU| .
Z |z + [v] + 1 plzv]

Similarly, if we have e = e, o w3 € £V then

= 1
E E iy Vi —P .
o B By, Lz; G(Uzyvz)] mugz:* FESTES! pluz]

+2mR,, (EY).
O

Thus, we can combine these equations to show that W,,, < mDy .
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Next lemma shows how to use Lemma 17 in order to bound the Rademacher
complexity R,,(EY).

Lemma 20. For any distribution D over ¥* and any sample size m > 1 the
following inequality holds for the Rademacher complexity of EV :

R (£Y) < 210g(2).

Proof. Let SV = ((u1,v1), .-, (Um,vmn)) be a sample of size m. Then, by defi-
nition of £V, we can write

N 1 m m
Rsv (EY) = — E [supZoilui_w + supZailvi_w]
T o= Toi=1

1 G 1 “
—E [supZUilui_z} + —E [supZoilvi_w}
m =1 m =1

= Re1(E) + Re2 (E),

where S = (uy,...,u,) and S? = (v1,...,vy,). This implies R,,(£Y) <
2R,,,(£). The result then follows by the bound on R,,(£) of Lemma 17. O

Finally, using Jensen’s inequality on the bound from Corollary 15 we obtain
the following.

Corollary 21. Let ¢; = (2 +8/10g(2))/3 and cz = v/2 + 4/+/log(2). For any
m > 1 and any r > 0 we have:

cirlog(2m +1)  cor 8log(2)
< —=——2 4+ — |log(2 1) DY — ] .
mm(Hl,T) — m + \/m Og( m+ ) max + m

8. Learning and Sample Complexity Bounds

We now have all the ingredients to derive generalization bounds for learning
with weighted automata for all the classes of weighted automata and rational
functions introduced in the previous sections. Our learning bounds hold for
loss functions that are bounded and Lipschitz. In cases where we have different
bounds for the empirical and expected Rademacher complexities we also give
two versions of the generalization bounds. All these bounds can be used to
derive learning algorithms for weighted automata provided the right-hand side
can be optimized over the corresponding hypothesis class. We will discuss in
the next section some open problems related to devising efficient algorithms to
solve these optimization problems. The proofs of these theorems are straight-
forward combinations of the bounds on the Rademacher complexity proven in
the previous sections with the generalization bounds of Theorem 1.
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Theorem 22. Let D be a probability distribution over ¥* x Z and let S =
((z4,9:))™, be a sample of m i.i.d. examples from D. Assume that the loss
{: Rx Z — Ry is M-bounded and p-Lipschitz with respect to its first argument.
Fix § > 0. Then, the following statements hold:

1. For alln > 1 and p € [1, +00], with probability at least 1 — 8, the following
holds simultaneously for all A € Ay, pr with r = (rq,78,1s) and ry < 1:

. 2 log %
€ (A) < Bs(A) + 120y | "IN FDrars gy Jl085
m 2m
where
_ |log (rars) -
o = \| HEEE 4 flog )+ log, (7) +3V/108(2)+ v/ I0g (L +2) -

2. For all r > 0, with probability at least 1 — ¢, the following holds simulta-
neously for all f € Ra:

-~ 2ur log 5
£p(f) Sﬂs(f)JrﬁJrM o

3. For all r > 0, with probability at least 1 — §, the following holds simulta-
neously for all f € Ry -

1
£p(f) sﬁm%% 2log(2m) (Dmax+ 21°mg(2>> +M 1‘% .

4. For all r > 0, with probability at least 1 — &, the following holds simulta-
neously for all f € Har:

. log 1
ep(f) gss(f)+%+M %

5. For all r > 0, with probability at least 1 — &, the following holds simulta-
neously for all f € Hqr:

n 2¢ciprlog(2m + 1)
m

2ucar 8log(2) log 5
log(2 1) | DY —_— My —=
+ ﬁm\log(mﬁ—)(max—&— + 5 ,

£o(f) < Ls(f)

where c; = (2 + 8/10g(2))/3 and cy = V2 + 4/+/1og(2).
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Theorem 23. Let D be a probability distribution over X* X R and let S =
((x5,9:))™, be an i.i.d. sample of size m drawn from D. Assume that the loss
£: RxR — Ry is M-bounded and u-Lipschitz with respect to its first argument.
Fix § > 0. Then, the following statements hold:

1. For alln > 1 and p € [1,4+00], with probability at least 1 — 8, the following
holds simultaneously for all A € Ay, pr withr = (rq,78,7s) and ry < 1:

log %

£p(A) < £5(A) + 12ucq o >

+3M

n(kn + 2)ryrs
m

where

co = U%—l—\/log+(r2)+\/10g+(f)+3\/10g(2)+\/log(Ls +2) .

2. For all r > 0, with probability at least 1 — ¢, the following holds simulta-
neously for all f € Ry -

~ 2 2C ¢ log(2 log 2
ep(f) < Be(f) 4 IV 2Cslog(m) 4, [log5
m 2m

3. For all r > 0, with probability at least 1 — §, the following holds simulta-
neously for all f € Hqr:

n 2ucirlog(2m + 1)
m

£p(f) < £s(f)

N 2ucary/Wglog(2m + 1) sl log 2

m 2m

where c; = (2 + 8/10g(2))/3 and cy = V2 + 4/+/1og(2).

)

9. Conclusion

We presented the first algorithm-independent generalization bounds for learn-
ing with wide classes of WFAs. We introduced three ways to parametrize the
complexity of WFAs and rational functions, each described by a different nat-
ural quantity associated with the automaton or function. We pointed out the
merits of each description in the analysis of the problem of learning with WFAs,
and proved upper bounds on the Rademacher complexity of several classes de-
fined in terms of these parameters. An interesting property of these bounds is
the appearance of different combinatorial parameters that tie the sample to the
convergence rate: the length of the longest string Lg for A, ,,; the maximum
number of collisions Cg for R, »; and, the minimum number of prefix or suffix
collisions over all possible splits W for H, .

25



Another important feature of our bounds for the classes H, , is that they
depend on spectral properties of Hankel matrices, which are commonly used
in spectral learning algorithms for WFAs (Hsu et al., 2009; Balle and Mohri,
2012). We hope to exploit this connection in the future to provide more refined
analyses of these learning algorithms. Our results can also be used to improve
some aspects of existing spectral learning algorithms. For example, it might
be possible to use the analysis of Theorem 12 for deriving strategies to help
decide which prefixes and suffixes to select in algorithms working with finite
sub-blocks of an infinite Hankel matrix. This is a problem of practical relevance
when working with large amounts of data which require balancing trade-offs
between computation and accuracy (Balle et al., 2014a).

In (Balle and Mohri, 2012), we proposed an efficient algorithm for learn-
ing WFAs that works in two steps: a matrix completion procedure applied to
Hankel matrices followed by a spectral method to obtain a WFA from such Han-
kel matrix. Although each of these two steps solves an optimization problem
without local minima, it is not clear from the analysis that the solution of the
combined procedure is close to the empirical risk minimizer of any of the classes
introduced in this paper. Nonetheless, we expect that the tools developed in this
paper will prove useful in analyzing variants of this algorithm and will further
help design new algorithms for efficiently learning interesting classes of WFA.
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