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Abstract
Learning linear predictors with the logistic loss—both in stochastic and online settings—is a

fundamental task in machine learning and statistics, with direct connections to classification and
boosting. Existing “fast rates” for this setting exhibit exponential dependence on the predictor norm,
and Hazan et al. (2014) showed that this is unfortunately unimprovable. Starting with the simple
observation that the logistic loss is 1-mixable, we design a new efficient improper learning algorithm
for online logistic regression that circumvents the aforementioned lower bound with a regret bound
exhibiting a doubly-exponential improvement in dependence on the predictor norm. This provides a
positive resolution to a variant of the COLT 2012 open problem of McMahan and Streeter (2012)
when improper learning is allowed. This improvement is obtained both in the online setting and,
with some extra work, in the batch statistical setting with high probability. We also show that the
improved dependence on predictor norm is near-optimal.

Leveraging this improved dependency on the predictor norm yields the following applications:
(a) we give algorithms for online bandit multiclass learning with the logistic loss with an Õ(√n)
relative mistake bound across essentially all parameter ranges, thus providing a solution to the
COLT 2009 open problem of Abernethy and Rakhlin (2009), and (b) we give an adaptive algorithm
for online multiclass boosting with optimal sample complexity, thus partially resolving an open
problem of Beygelzimer et al. (2015) and Jung et al. (2017). Finally, we give information-theoretic
bounds on the optimal rates for improper logistic regression with general function classes, thereby
characterizing the extent to which our improvement for linear classes extends to other parametric
and even nonparametric settings.

1. Introduction

Logistic regression is a classical model in statistics used for estimating conditional probabilities
(Berkson, 1944). The model, also known as conditional maximum entropy model (Berger et al.,
1996), has been extensively studied in statistical and online learning and has been widely used in
practice both for binary classification and multi-class classification in a variety of applications.
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LOGISTIC REGRESSION: THE IMPORTANCE OF BEING IMPROPER

This paper presents a new study of logistic regression in online learning. The basic logistic
regression problem consists of learning a linear predictor with performance measured by the logistic
loss. In the online setting, when the hypothesis class is that of d-dimensional linear predictors with
`2 norm bounded by B, there are two main algorithmic approaches to logistic regression: Online
Gradient Descent (Zinkevich, 2003; Shalev-Shwartz and Singer, 2007; Nemirovski et al., 2009),
which admits a regret guarantee of O(B√

n) over n rounds, and Online Newton Step (Hazan et al.,
2007), whose regret bound is in O(deB log(n)). While the latter bound is logarithmic in n, its poor
dependence on B makes it weaker and guarantees an improvement only when B ≪ 1

2 log(n). The
question of whether this dependence on B could be improved was posed as an open problem in
COLT 2012 by McMahan and Streeter (2012). Hazan et al. (2014) answered this in the negative,
showing a lower bound of Ω(√n) for B ≥ Ω(log(n)).

The starting point for this work is a simple observation: the logistic loss, when viewed as a
function of the prediction and the true outcome, is 1-mixable1 (see Section 1.1 for definitions). This
observation can be used in conjunction with Vovk’s Aggregating Algorithm (Vovk, 1995), which
leverages mixability in order to achieve regret bounds scaling logarithmically in an appropriate notion
of complexity of the space of predictors, and can be implemented in polynomial time in relevant
parameters using MCMC methods (Section 2). Mixability and efficient implementability open the
door to fast rates for online logistic regression and related problems via improper learning: using
predictions that may not be linear in the instances xts.

The power of improper learning manifests itself in solutions we present for three open problems.
First, we give an efficient online learning algorithm that circumvents the lower bound of Hazan
et al. (2014) via improper learning and attains a substantially more favorable regret guarantee of
O(d log(Bn)); this is a doubly-exponential improvement of the dependence on the scale parameter
B. This algorithm provides a positive resolution to to a variant of the open problem of McMahan
and Streeter (2012) where improper predictions are allowed. Second, the same technique provides
an algorithm (Section 3) for the online multiclass learning with bandit feedback problem (Kakade
et al., 2008) with an Õ(√n) relative mistake bound with respect to the multiclass logistic loss. This
algorithm provides a solution to an open problem of Abernethy and Rakhlin (2009), improving
upon the previous algorithm of Hazan and Kale (2011) by providing the Õ(√n) mistake bound
guarantee for all possible ranges of parameter sets. Third, the technique provides a new online
multiclass boosting algorithm (Section 4) with optimal sample complexity, thus partially resolving
an open problem from (Beygelzimer et al., 2015; Jung et al., 2017) (the algorithm is sub-optimal
in the number of weak learners it uses, though it is no worse in this regard than previous adaptive
algorithms). For clarity of exposition, descriptions of all of these applications are given as concisely
as possible without presenting the results in the most general form possible.

We further present a series of new results for batch statistical learning. We show how to convert
our online improper logistic regression algorithm into a solution admitting a high-probability excess
risk guarantee of O(d log(Bn)/n) (Section 5). While it is straightforward to achieve such a result in
expectation using standard online-to-batch conversion techniques, the a high-probability bound is
more technically challenging. We achieve this using a new technique based on a modified version of
the “boosting the confidence” scheme proposed by Mehta (2017) for exp-concave losses. We also
prove a lower bound showing that the logarithmic dependence on B of the guarantee of our new
algorithm cannot be improved. Finally, we show how to (non-constructively) generalize the log(B)

1. To the best of our knowledge, the mixability of the logistic loss has surprisingly not appeared in the literature, although
similar observations were made in (Kakade and Ng, 2005).
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dependence on predictor norm from linear to arbitrary function classes via sequential symmetrization
and chaining arguments (Section 6). Our general bound indicates that the extent to which dependence
on the predictor range B can be improved for general classes is completely determined by their
(sequential) metric entropy. We also show how to extend this technique to the log loss, where we
obtain a minimax rate for general function classes that uniformly improves on the minimax log loss
rates in Rakhlin and Sridharan (2015a).

1.1. Preliminaries

Notation. Let Rd be the d-dimensional Euclidean space with ⟨⋅, ⋅⟩ denoting the standard inner
product in Rd. Let ∥ ⋅ ∥ be a norm on Rd with dual norm denoted by ∥ ⋅ ∥⋆. In the multiclass learning
problem, the input feature space is the set X = {x ∈ Rd∣ ∥x∥⋆ ≤ R} for some unknown R > 0. The
number of output classes is K and the set of output classes is denoted by [K] ∶= {1,2, . . . ,K}. The
set of distributions over [K] is denoted ∆K . Linear predictors are parameterized by weight matrices
in RK×d so that for an input vector x ∈ X , Wx ∈ RK is the vector of scores assigned by W to the
classes in [K]. For a weight matrix W and k ∈ [K], we denote by Wk the k-th row of W . The space
of parameter weight matrices is a convex setW ⊆ {W ∈ RK×D ∣ ∀k ∈ [K], ∥Wk∥ ≤ B} for some
known parameter B > 0. Thus for all x ∈ X and W ∈ W , we have ∥Wx∥∞ ≤ BR.

Define the softmax function σ ∶ RK → ∆K via σ(z)k = ezk

∑j∈[K] e
zj for k ∈ [K]. We also

define a pseudoinverse for σ via σ+(p)k = log(pk) which has the property that for all p ∈ ∆K ,
we have σ(σ+(p)) = p and ∑k∈[K] e

σ+(p)k = 1. The multiclass logistic loss, also referred to as
softmax-cross-entropy loss, is defined as ` ∶ RK × [K] → R as `(z, y) ∶= − log(σ(z)y).

It will be convenient to overload notation and define a weighted version of the multiclass
logistic loss function as follows: let Y ∶= {y ∈ RK+ ∣ ∥y∥1 ≤ L} for some known parameter L > 0.
Then the weighted multiclass logistic loss function ` ∶ RK × Y → R is defined by `(z, y) =
−∑k∈[K] yk log(σ(z)k). It can also be seen by straightforward manipulation that the above definition
is equivalent to `(z, y) = ∑j∈[K] yj log(1 +∑k≠j ezk−zj).

In the binary classification setting, the standard definition of the logistic loss function is (super-
ficially) different: the label set is is {−1,1}, and the logistic loss ` ∶ R × {−1,1} → R is defined as
`bin(z, y) = log(1 + exp(−yz)). Linear predictors are parameterized by weight vectors w ∈ Rd with
∥w∥2 ≤ B, and the loss for a predictor with parameter w ∈ Rd on an example (x, y) ∈ Rd × {−1,1}
is `bin(⟨w,x⟩, y). This loss can be equivalently viewed in the multiclass framework above setting
K = 2,W = {W ∈ R2×d∣ ∥W1∥2 ≤ B,W2 = 0}, and mapping the labels 1↦ 1 and −1↦ 2.

Finally, we make frequent use of a smoothing operator smoothµ ∶ ∆K → ∆K for a parameter
µ ∈ [0,1/2], defined via smoothµ(p) = (1 − µ)p + µ1/K where 1 ∈ RK is the all ones vector. We
use the notation 1[⋅] to denote the indicator random variable for an event.

Online multiclass logistic regression. We use the following multiclass logistic regression protocol.
Learning proceeds over a series of rounds indexed by t = 1, . . . , n. In each round t, nature provides
xt ∈ X , and the learner selects prediction ẑt ∈ RK in response. Then nature provides an outcome
yt ∈ [K] or yt ∈ Y , depending on application, and the learner incurs multiclass logistic loss `(ẑt, yt).
The regret of the learner is defined to be ∑nt=1 `(ẑt, yt) − infW ∈W ∑nt=1 `(Wxt, yt).

The learner is said to be proper if it generates ẑt by choosing a weight matrix Wt ∈ W before
observing the pair (xt, yt) and setting ẑt =Wtxt. This is the standard protocol when the problem is
viewed as an instance of online convex optimization, and is the setting for previous investigations
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into fast rates for logistic regression (Bach, 2010; McMahan and Streeter, 2012; Bach and Moulines,
2013; Bach, 2014), including the negative result of Hazan et al. (2014). The more general online
learning setting that is described above allows improper learners which may generate ẑt arbitrarily
using knowledge of xt.

Fast rates and mixability. Conditions under which fast rates for online/statistical learning (mean-
ing that average regret or generalization error scales as Õ(1/n) rather than O(1/√n)) are achievable
have been studied extensively (see (Van Erven et al., 2015) and the references therein). For the
purpose of this paper, a rather general condition on the structure of the problem that leads to fast
rates is Vovk’s notion of mixability (Vovk, 1995), which we define in an abstract setting below.
Consider a prediction problem where the set of outcomes is Y and the set of predictions is Z ,
and the loss of a prediction on an outcome is given by a function ` ∶ Z × Y → R. For a param-
eter η > 0, the loss function ` is said to be η-mixable if for any probability distribution π over
Z , there exists a “mixed” prediction zπ ∈ Z such that for all possible outcomes y ∈ Y , we have
Ez∼π[exp(−η`(z, y))] ≤ exp(−η`(zmix, y)).

Now suppose that we are given a finite reference class of predictors F consisting of functions
f ∶ X → Z , where X is the input space. The problem of online learning over F with an η-mixable
loss function admits an improper algorithm, viz. Vovk’s Aggregating Algorithm (Vovk, 1995),
with regret bounded by log ∣F∣

η , a constant independent of the number of prediction rounds n. The
algorithm simply runs the standard exponential weights/Hedge algorithm (Cesa-Bianchi and Lugosi,
2006) with learning rate set to η. In each round t, given an input xt, the distribution over F generated
by the exponential weights algorithm induces a distribution over Z via the outputs of the predictors
on xt, and the Aggregating Algorithm plays the mixed prediction for this distribution over Z . Finally,
if F is infinite, under appropriate conditions on F fast rates can be obtained by running a continuous
version of the same algorithm. This is the strategy we employ in this paper for the logistic loss.

2. Improved Rates for Online Logistic Regression

We start by providing a simple proof of the mixability of the multiclass logisitic loss function for the
case when the outcomes y is a class in [K] (i.e. the unweighted case).

Proposition 1 The unweighted multiclass logistic loss ` ∶ RK × [K] → R defined as `(z, y) =
− log(σ(z)y) is 1-mixable.

Proof The proof is by construction. Given a distribution π on RK , define zπ = σ+(Ez∼π[σ(z)]).
Now, for any y ∈ [K], we have Ez∼π[exp(−`(z, y))] = Ez∼π[σ(z)y] = σ(zπ)y = exp(−`(zπ, y)).
The second equality above uses the fact that for any p ∈ ∆K , σ(σ+(p)) = p. Thus, ` is 1-mixable.

With a little more work, we can prove that the weighted multiclass logistic loss function is also
mixable with a constant that inversely depends on the total weight. The proof appears in Appendix A.

Proposition 2 Let Y ∶= {y ∈ RK+ ∣ ∥y∥1 ≤ L} for some parameter L > 0. The weighted multiclass
logistic loss ` ∶ RK × Y → R defined as `(z, y) = −∑k∈[K] yk log(σ(z)k) is 1

L -mixable. For any
distribution π on RK , the mixed prediction zπ = σ+(Ez∼π[σ(z)]) certifies 1

L -mixability of `.

We are now ready to state a variant of Vovk’s Aggregating Algorithm, Algorithm 1 for the online
multiclass logistic regression problem from Section 1.1, operating over a class of linear predictors
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parameterized by weight matrices W in some convex setW . The algorithm and its regret bound
(proved in Appendix A) are given in some generality that is useful for applications.

Algorithm 1
1: procedure (decision setW , smoothing parameter µ ∈ [0,1/2].)
2: Initialize P1 to be the uniform distribution overW .
3: for t = 1, . . . , n do
4: Obtain xt and predict ẑt = σ+(smoothµ(EW∼Pt[σ(Wxt)])).
5: Obtain yt and define Pt+1 as the distribution over W with density

Pt+1(W ) ∝ exp(− 1
L∑

t
s=1`(Wxs, ys)).

6: end for
7: end procedure

Theorem 3 The regret of Algorithm 1 is bounded by

n

∑
t=1

`(ẑt, yt) − inf
W ∈W

n

∑
t=1

`(Wxt, yt) ≤ 5LDW ⋅ log(BRn
DW

+ e) + 2µ
n

∑
t=1

∥yt∥1, (1)

where DW ∶= dim(W) ≤ dK is the linear-algebraic dimension of W . The predictions (ẑt)t≤n
generated by the algorithm satisfy ∥ẑt∥∞ ≤ log(K/µ).

Increasing the smoothing parameter µ only degrades the performance of Algorithm 1. However,
smoothing ensures that each prediction ẑt is bounded, which is important for our applications.

For the special case of multiclass prediction when y ∈ [K], this algorithm enjoys a regret bound
of O(dK log(BRndK + e)). It thus provides a positive resolution to the open problem of McMahan and
Streeter (2012) (in fact, with an exponentially better dependence on B than what the open problem
asked for), using improper predictions to circumvent the lower bound of Hazan et al. (2014).

Turning to efficient implementation, it has been noted (e.g. (Hazan et al., 2007)) that log-concave
sampling or integration techniques (Lovász and Vempala, 2006, 2007) can be applied to compute the
expectation in Algorithm 1 in polynomial time. The following proposition makes this idea rigorous2

and is proven formally in Appendix B. We note that this is not a practical algorithm, however, and
obtaining a truly practical algorithm with a modest polynomial dependence on the dimension is a
significant open problem.

Proposition 4 Algorithm 1 can be implemented approximately so that the regret bound (1) is
obtained up to additive constants in time poly(d,n,B,R,K,L).

Finally, to conclude this section we state a lower bound, which shows that the log(B) factor
in the regret bound in Theorem 3 cannot be improved for most values of B. This lower bound
is by reduction to learning halfspaces with a margin in a Perceptron-type setting: We first show
that Algorithm 1 can be configured to give a mistake bound of O(d log(log(n)/γ)) for binary
classification with halfspaces and margin γ,3 then give a lower bound against this type of rate.

For simplicity, the lower bound is only stated in the binary outcome settting and we use the
standard definition of the binary logistic loss, `bin from Section 1.1. The proof is in Appendix A.

2. A subtlety is that since ẑt is evaluated inside the nonlinear logistic loss we cannot exploit linearity of expectation.
3. It is a folklore result that this type of margin bound can be obtained by running a variant of the ellipsoid method online.
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Theorem 5 (Lower bound) Consider the binary logistic regression problem over the class of linear
predictors with parameter set W = {w ∈ Rd∣ ∥w∥2 ≤ B} with B = Ω(

√
d log(n)). Then for any

algorithm for prediction with the binary logistic loss, there is a sequence of examples (xt, yt) ∈
Rd × {−1,1} for t ∈ [n] with ∥xt∥2 ≤ 1 such that the regret of the algorithm is Ω(d log( B√

d log(n)
)).

3. Application: Bandit Multiclass Learning

The now apply our techniques to the bandit multiclass problem. This problem, first studied by
Kakade et al. (2008), considers the protocol of online multiclass learning in Section 1.1 with nature
choosing yt ∈ [K] in each round, but with the added twist of bandit feedback: in each round, the
learner predicts a class ŷt ∼ pt and receives feedback only on whether the prediction was correct
or not, i.e. 1[ŷt ≠ yt]. The goal is to minimize regret with respect to a reference class of linear
predictors, using some appropriate surrogate loss function for the 0-1 loss.

Kakade et al. (2009) used the multiclass hinge loss `hinge(W, (xt, yt)) = maxk∈[K]∖{yt}[1 +
⟨Wk, xt⟩−⟨Wyt , xt⟩]+ and gave an algorithm based on the multiclass Perceptron algorithm achieving
O(n2/3) regret. For a Lipschitz continuous surrogate loss function, running the EXP4 algorithm
(Auer et al., 2002) on a suitable discretization of the space of all linear predictors obtains Õ(√n)
regret, albeit very inefficiently, i.e. with exponential dependence on the dimension. In COLT
2009, Abernethy and Rakhlin (2009) posed the open problem of obtaining an efficient algorithm
for the problem with O(√n) regret. Specifically, they suggested the multiclass logistic loss as an
appropriate surrogate loss function for the problem. Hazan and Kale (2011) solved the open problem
and obtained an algorithm, Newtron, based on the Online Newton Step algorithm (Hazan et al., 2007)
with Õ(√n) regret for the case when norm of the linear predictors scales at most logarithmically in
n. Beygelzimer et al. (2017) also solved the open problem presenting a different algorithm called
SOBA. SOBA is analyzed using a different family of surrogate loss functions parameterized by a
scalar η ∈ [0,1] with η = 0 corresponding to the hinge loss and η = 1 corresponding to the squared
hinge loss. For all values of η ∈ [0,1], SOBA simultaneously obtains relative bound mistake bounds
of Õ( 1

η

√
n) with the comparator’s loss measured with respect to the corresponding loss function.

Now we present an algorithm, OBAMA (for Online Bandit Aggregation Multiclass Algorithm),
depicted in Algorithm 2 in Appendix A.2, that obtains an Õ(√n) relative mistake bound for the
multiclass logistic loss, thus providing another solution to the open problem of Abernethy and
Rakhlin (2009). The mistake bound of OBAMA trumps that of Newtron, since both algorithms rely
on the same loss function, and OBAMA obtains an Õ(√n) relative mistake bound on a larger range
of parameter values compared to Newtron. While SOBA also has an Õ(√n) relative mistake bound,
the two bounds are incomparable since they are relative to the comparator’s loss measured using
different loss functions.

Theorem 6 There is a setting of the smoothing parameter µ such that OBAMA enjoys the following
mistake bound:
n

∑
t=1

1[ŷt ≠ yt] ≤ inf
W ∈W

n

∑
t=1

`(Wxt, yt)+O (min{dK2e2BR log(BRndK + e),
√
dK2 log(BRndK + e)n}) .

This bound significantly improves upon that of Newtron (Hazan and Kale, 2011), which is of order
O(dK3 min{exp(BR) log(n),BRn 2

3 }) under the same setting and surrogate loss. The proof of
Theorem 6 appears in Appendix A.2.
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4. Application: Online Multiclass Boosting

Another application of our techniques is to derive adaptive online boosting algorithms with optimal
sample complexity, which improves the AdaBoost.OL algorithm of Beygelzimer et al. (2015) for the
binary classification setting as well as its multiclass extension AdaBoost.OLM of Jung et al. (2017).
We state our improved online boosting algorithm in the multiclass setting for maximum generality,
following the exposition and notation of Jung et al. (2017) fairly closely.

We consider the following online multiclass prediction setting with 0-1 loss. In each round t,
t = 1, . . . , n, the learner receives an instance xt ∈ X , then selects a class ŷt ∈ [K] , and finally observes
the true class yt ∈ [K]. The goal is to minimize the total number of mistakes ∑nt=1 1{ŷt ≠ yt}.

In the boosting setup, we are interested in obtaining strong mistake bounds with the help of weak
learners. Specifically, the learner is given access to N copies of a weak learning algorithm for a
cost-sensitive classification task. Each weak learner i ∈ [N] works in the following protocol: for time
t = 1, . . . , n, 1) receive xt ∈ X and cost matrix Cit ∈ C; 2) predict class lit ∈ [K]; 3) receive true class
yt ∈ [K] and suffer loss Cit(yt, lit). Here C is some fixed cost matrices class and we follow (Jung
et al., 2017) to restrict to C = {C ∈ RK×K

+ ∣ ∀y ∈ [K],C(y, y) = 0 and ∥C(y, ⋅)∥1 ≤ 1 }.
To state the weak learning condition, we define a randomized baseline uγ,y ∈ ∆K for some

edge parameter γ ∈ [0,1] and some class y ∈ [K], so that uγ,y(k) = (1 − γ)/K for k ≠ y and
uγ,y(k) = (1 − γ)/K + γ for k = y. In other words, uγ,y puts equal weight to all classes except for
the class y which gets γ more weight. The assumption we impose on the weak learners is then that
their performance is comparable to that of a baseline which always picks the true class with slightly
higher probability than the others, formally stated below.

Definition 7 (Weak Learning Condition (Jung et al., 2017)) An environment and a learner out-
putting (lt)t≤n satisfy the multiclass weak learning condition with edge γ and sample complexity
S if for all outcomes (yt)t≤n and cost matrices (Ct)t≤n from the set C adaptively chosen by the
environment, we have4 ∑nt=1Ct(yt, lt) ≤ ∑nt=1 Ek∼uγ,yt [Ct(yt, k)] + S.

4.1. AdaBoost.OLM++

The high level idea of our algorithm is similar to that of AdaBoost.OL and AdaBoost.OLM: find a
weighted combination of weak learners to minimize some version of the logistic loss in an online
manner. The key difference is that previous works use simple gradient descent to find the weight for
each weak learner via proper learning, while we translate the problem into the framework discussed
in Section 2 and deploy the proposed improper learning techniques to obtain an improvement on the
regret for learning these weights, which then leads to better and in fact optimal sample complexity.

Another difference compared to (Jung et al., 2017) is that the logistic loss we use here is more
suitable for the multiclass problem than the one they use.5 This simple modification leads to
exponential improvement in the number of classes K for the number of weak learners required.

We now describe our algorithm, called AdaBoost.OLM++, in more detail (see Algorithm 3 in
Appendix A.3). We denote the i-th weak learner as WLi, which is seen as a stateful object and
supports two operations: WLi.Predict(x,C) predicts a class given an instance and a cost matrix but
does not update its internal state; WLi.Update(x,C, y) updates the state given an instance, a cost

4. This is in fact a weaker weak learning condition than that of (Jung et al., 2017), which also allows weights.
5. The loss Jung et al. (2017) use moves the sum over the incorrect classes outside the log, that is, `(z, y) =
∑k≠y log(1 + ezk−zy).
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matrix and the true class y. To keep track of the state we use the notation WLit to imply that it has
been updated for t − 1 times.

For each weak learner, the algorithm also maintains an instance of Algorithm 1, denoted by
Logistici, to improperly learn the aforementioned weight for this weak learner. Similarly, we use
Logistici.Predict(x) to denote the prediction step (step 4) in Algorithm 1 and Logistici.Update(x, y)
to denote the update step (i.e. step 5). The notation Logisticit again implies that the state has been
updated for t − 1 times.

Our algorithm maintains a variable sit ∈ RK which stands for the weighted accumulated scores of
the first i weak learners for instance xt. When updating sit from si−1

t given the prediction lit ∈ [K] of
weak learner i, our goal is to have the total loss ∑nt=1 `(sit, yt) close to ∑nt=1 `(si−1

t + αelit , yt) for the
best α within some range ([−2,2] suffices). Previous works therefore try to learn this weight α via
standard online learning approaches. However, realizing si−1

t + αelit can be written as Wx̃it for W =
(αIK×K , IK×K) ∈ RK×2K and x̃it = (elit , s

i−1
t ) ∈ R2K , in light of Theorem 3 we can in fact apply

Algorithm 1 to learn sit if we let the decision set beW = {(αIK×K , IK×K) ∈ RK×2K ∣ α ∈ [−2,2]}.
To make sure that x̃it has bounded norm, we also set the smoothing parameter µ to be 1/n.

With the weighted score sit, the prediction coming from the first i weak learner is naturally define
as ŷit = arg maxk s

i
t(k), the class with the largest score. As in AdaBoost.OL and AdaBoost.OLM,

these predictions (ŷit)i≤N are treated as N experts and the final prediction yt is determined by the
classic Hedge algorithm (Freund and Schapire, 1997) over these experts (Lines 13 and 18).

Finally, the cost matrices fed to the weak learners are closely related to the gradient of the loss
function. Formally, define the auxiliary cost matrix Ĉit such that Ĉit(y, k) =

∂`(z,y)
∂zk

∣z=si−1t , which is
simply σ(si−1

t )k for k ≠ y and σ(si−1
t )y − 1 otherwise. The actual cost matrix is then a translated

and scaled version of Ĉit(y, k) so that it belongs to the class C:

Cit(y, k) =
1

K
(Ĉit(y, k) − Ĉit(y, y)) ∈ C. (2)

We now give a mistake bound for AdaBoost.OLM++, which holds even without the weak learning
condition and is adaptive to the empirical edge of the weak learners.6 All proofs in this section
appear in Appendix A.3.

Theorem 8 With probability at least 1 − δ, the predictions (ŷt)t≤n generated by Algorithm 3 satisfy
n

∑
t=1

1{ŷt ≠ yt} = Õ( n

∑Ni=1 γ
2
i

+ N

∑Ni=1 γ
2
i

), (3)

where γi = ∑
n
t=1 Ĉ

i
t(yt,lit)

∑nt=1 Ĉit(yt,yt)
∈ [−1,1] is the empirical edge of weak learner i.

We can now relate the empirical edges to the edge defined in the weak learning condition.

Proposition 9 Suppose all weak learners satisfy the weak learning condition with edge γ and
sample complexity S (Definition 7). Then with probability at least 1 − δ, the predictions (ŷt)t≤n
generated by Algorithm 3 satisfy

n

∑
t=1

1{ŷt ≠ yt} = Õ( n

Nγ2
+ 1

γ2
+ KS

γ
). (4)

Thus, to achieve a target error rate ε, it suffices to take N = Ω̃( 1
εγ2

) and n = Ω̃( 1
εγ2

+ KS
εγ ).

6. We use notation Õ and Ω̃ to hide dependence logarithmic in n,N,K and 1/δ.
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Comparison with prior algorithms Compared to (Jung et al., 2017), our sample complexity on
n improves the dependence on K (for OnlineMBBM) and also ε and γ (for AdaBoost.OLM), and
is in fact optimal according to their lower bound (Theorem 4). Our bound on the number of weak
learners, on the other hand, is weaker compared to the non-adaptive algorithm OnlineMBBM (which
has a logarithmic dependence on 1/ε), but is still much stronger than that of AdaBoost.OLM since it
improves the dependence on K from linear to log(K). Although not stated explicitly, our results
also apply to the binary setting considered in (Beygelzimer et al., 2015) and improve the sample
complexity of their AdaBoost.OL algorithm to the optimal bound Ω̃( 1

εγ2
+ S
εγ ). Overall, our results

significantly reduce the gap between optimal and adaptive online boosting algorithms.
As a final remark, the same technique used here also readily applies to the online boosting setting

for the multi-label ranking problem recently studied by Jung and Tewari (2018). Details are omitted.

5. High-Probability Online-to-Batch Conversion

Before the present work, the issue of improving on the O(eB) fast rate for logistic regression was
not addressed even in the batch statistical learning setting. This is perhaps not surprising since the
proper lower bound proven by Hazan et al. (2014) applies in this setting as well.

Using our improved online algorithm as a starting point, we will show that it is possible to
obtain a predictor with excess risk bounded in high-probability by O(d log(Bn)/n) for the batch
logistic regression problem. While it is quite straightforward to show that the standard online-
to-batch conversion technique applied to Algorithm 1 provides a predictor that obtains such an
excess risk bound in expectation, obtaining a high-probability bound is far less trivial, as we must
ensure that deviations scale at most as O(log(B)). Indeed, a different algorithm is necessary, and
our approach is to use a modified version of the “boosting the confidence” scheme proposed by
Mehta (2017) for exp-concave losses. Our main result for linear classes is Theorem 10 below. For
notational convenience will use the shorthand E(x,y)[⋅] to denote E(x,y)∼D[⋅] whereD is an unknown
distribution over X × [K].

Theorem 10 (High-probability excess risk bound) Let D be an unknown distribution over X ×
[K]. For any δ > 0 and n samples {(xt, yt)}nt=1 drawn from D, we can construct g ∶ X → RK such
that w.p. at least 1− δ, the excess risk E(x,y)[`(g(x), y)] − infW ∈W E(x,y)[`(Wx,y)] is bounded by

O
⎛
⎜
⎝

dK log( BRn
log(1/δ)dK + e) log(1

δ
) + log(Kn) log( log(n)

δ )
n

⎞
⎟
⎠
.

Theorem 10 is a consequence of the more general Theorem 26—stated and proved in Appendix A.4—
concerning prediction with the log loss `log ∶ ∆K × [K] → R defined as `log(p, y) = − log(py). The
theorem asserts that we can convert any online algorithm for multiclass learning with log loss that
predicts distributions in ∆K for any given input into a predictor for the batch problem with an excess
bound essentially equal to the average regret with high probability.

6. Beyond Linear Classes

We now turn to the question of extending our techniques to general, non-linear predictors. We
characterize the minimax regret for learning with the unweighted multiclass logistic loss7 for a

7. We only consider the unweighted case in this section to avoid excessive notation.
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general class F of predictors f ∶ X → RK and abstract instance space X . This is the same
setting as in Section 1.1, but with the benchmark class {x↦Wx ∣W ∈ W} replaced with an
arbitrary class F , where the loss of a predictor f ∈ F on an example (x, y) ∈ X × [K] is given
by `(f(x), y) = − log(σ(f(x))y). The bounds we present in this section—based on sequential
covering numbers—substantially increase the scope of results from earlier sections. We note however
that they are purely information-theoretic results in the vein of Rakhlin et al. (2015a); Rakhlin and
Sridharan (2014, 2015a), not algorithmic.

Recall that the minimax regret—the best regret bound achievable against the worst-case adaptively
chosen sequence of examples—is given by

Vn(F) = ⟪sup
xt∈X

inf
ẑt∈RK

max
yt∈[K]

⟫
n

t=1

[
n

∑
t=1

`(ẑt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt)] , (5)

where, following Rakhlin et al. (2015a), the ⟪⋆⟫nt=1 notation indicates sequential application of the
operators contained within n times.

Our bounds on Vn(F) exploit that the logistic loss can be viewed in two complementary ways:
since the loss is 1-mixable, one can attain a bound of O(log ∣F∣) for finite function classes F using
the Aggregating Algorithm, and since the loss is 2-Lipschitz (in the `∞ norm), for more complex
classes one can obtain bounds using sequential complexity measures such as sequential Rademacher
complexity (Rakhlin et al., 2015a). Our analysis uses both properties simultaneously.

Here is a sketch of the idea for a special case in which we make the simplifying assumption thatF
admits a pointwise cover. Recall that a pointwise cover forF at scale γ is a set V of functions g ∶ X →
RK such that for any f ∈ F , there is a g ∈ V such that for all x ∈ X , ∥f(x) − g(x)∥∞ ≤ γ. Let N(γ)
be the size of a minimal such cover. For every g ∈ V , let Fg = {f ∈ F ∣ supx∈X ∥f(x) − g(x)∥∞ ≤ γ}.
Now consider the following two-level algorithm. Within each Fg, run the minimax online learning
algorithm for this set, then aggregate the predictions for these algorithms over all g ∈ V using the
Aggregating Algorithm to produce the final prediction ẑt.

For each g ∈ V , the regret of the minimax optimal online learning algorithm competing with Fg
can be bounded by the sequential Rademacher complexity of Fg, which can in turn be bounded by
the Dudley integral complexity using that the loss is 2-Lipschitz and that the L∞ “radius” of Fg is at
most γ (Rakhlin et al., 2015a). The Aggregating Algorithm, via 1-mixability, ensures a regret bound
of logN(γ) against any sub-algorithm. This algorithm has the following regret bound:
n

∑
t=1

`(ẑt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤ inf
γ>0

{logN(γ) + inf
α>0

{8αn + 24
√
n∫

γ

α

√
logN(δ)dδ}} . (6)

This procedure already yields the same bound for the d-dimensional linear setting explored earlier:

For a class x↦Wx with ∥W ∥2 ≤ B it holds that N(γ) ≤ (Bγ )
Kd

, and we can use this bound in con-
junction with (6) and the setting α = γ = 1/n to get the desired regret bound of O(dK log(Bn/dK))
on the minimax regret.

Unfortunately, this simple approach fails on classes F for which the pointwise cover is infinite.
This can happen for well-behaved function classes that have small sequential covering number, even
though bounded sequential covering number is sufficient for learnability in the online setting (Rakhlin
et al., 2015a). We now provide a bound that replaces the pointwise covering number in the argument
above with the sequential covering number. The definition of the L2 covering number N2(α, ` ○ F)
that appears in the statement of the theorem below is based on a multiclass generalization of a
sequential cover and appears in Appendix A.5 due to space limitations.

10
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Theorem 11 Any function class F that is uniformly bounded8 over X enjoys the minimax value
bound:

Vn(F) ≤ inf
γ>0

{logN2(γ, ` ○ F) + inf
γ≥α>0

{8αn + 24
√
n∫

γ

α

√
log(N2(δ, ` ○ F) ⋅ n)dδ}} + 4. (7)

This rate overcomes several shortcomings faced when trying to apply previously developed minimax
bounds for general function classes to the logistic loss. Specifically, Rakhlin et al. (2015a) applies
to our logistic loss setup but ignores the curvature of the loss and so cannot obtain fast rates, while
Rakhlin and Sridharan (2015a) obtain fast rates but scale with eB , where B is a bound on the
magnitude of the predictions, because they use exp-concavity.

Our general function class bound is especially interesting in light of rates obtained in Rakhlin
and Sridharan (2014) for the square loss, which are also based on sequential covering numbers. In
the binary case the bound (7) precisely matches the general class bound of (Rakhlin and Sridharan,
2014, Lemma 5) in terms of dependence on the sequential metric entropy. However, (7) does not
depend on B explicitly, whereas their Lemma 5 bound for the square loss explicitly scales with B2.
In other words, compared to other common curved losses the logistic loss has a desirable property:

The minimax rate for logistic regression only depends on scale through capacity of the class F .

Let us examine some rates obtained from this bound for concrete settings. These examples are
based on sequential covering bounds that appeared in Rakhlin and Sridharan (2014, 2015a).

Example 1 (Sparse linear predictors) Let G = {g1, . . . , gM} be a set of M functions gi ∶ X ↦
[−B,B]. Define F to be the set of all convex combinations of at most s out of these M functions.
The sequential covering number can be easily upper bounded: We can choose s out of M functions
in (M

s
) ways. For each choice, the sequential covering number for the set of all convex combinations

of these s bounded functions at scale β is bounded as Bs

βs . Hence, using that the logistic loss is

Lipschitz, we conclude that N2(F , β) = O(( eM
s

)s ⋅ β−sBs). Using this bound with Theorem 11 we
obtain Vn(F) ≤ O (s log(BMn/s)).

The bounds from Rakhlin et al. (2015a); Rakhlin and Sridharan (2014, 2015a) either pay O(B√
n)

or O(eB) on this example, whereas the new bound from (7) correctly obtains O(log(B)) scaling.

Example 2 (Besov classes) Let X be a compact subset of Rd. Let F be the ball of radius B in
Besov space Bs

p,q(X). When s > d/p it can be shown that the pointwise log covering number of the
space at scale β is of order (B/β)d/s. When p ≥ 2 one can obtain a sequential covering number
bound of order (B/β)p (Rakhlin and Sridharan, 2015b, Section 5.8). These bounds imply:

1. If s ≥ d/2, then Vn(F) ≤ Õ (B 2d
d+2sn

d
d+2s ).

2. s < d/2, then: if p > 1 + d/2s then Vn(F) ≤ Õ (Bn1− s
d ); if not, Vn(F) ≤ Õ(Bn1−1/p).

Remark 12 Using the machinery from the previous section, we can generically lift the general
function class bounds given by Theorem 11 to high-probability bounds for the i.i.d. batch setting.

8. Boundedness is required to apply the minimax theorem, but does not explicitly enter our quantitative bounds.
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7. General Function Class Bounds for Log Loss

In this section we show that our analysis techniques can also be used to obtain improved rates for
prediction with the log loss `log ∶ ∆K × [K] → R, defined via `log(p, y) = − log(py). Characterizing
optimal rates for online prediction with the log loss is a fundamental problem (Merhav and Feder,
1998), but there have been very few successful attempts to provide rates for general classes of
functions. Cesa-Bianchi and Lugosi (1999) studied the multiclass case,9 but provide bounds only in
terms of pointwise covering numbers; this can lead to vacuous bounds even for well-behaved classes
such as Hilbert spaces. More recently, Rakhlin and Sridharan (2015a) provided a bound for general
classes in terms of sequential covering numbers, but their bound is known to not be tight for certain
classes (see the discussion in their Section 6). We improve on their rates uniformly.

Note that the problems of learning with the logistic loss and learning with the log loss can easily
be mapped onto each other to provide coarse rates. One can trivially write `log(p, y) as `(σ+(p), y)
for any distribution p ∈ ∆K , and likewise it holds that `(z, y) = `log(σ(z), y) for any z ∈ RK . To
obtain rates for competing with a class F ∶ X →∆K under the log loss, we can use this relationship
to get a bound by applying Theorem 11 with the class σ+ ○ F . This bound improves over Rakhlin
and Sridharan (2015a) in the low complexity regime, though it is worse for high complexity classes.

By combining the style of proof in Theorem 11 with key technical observations from Rakhlin and
Sridharan (2015a), we provide a bound on minimax rate for log loss that both uniformly improves on
the rate in Rakhlin and Sridharan (2015a) for binary outcome case and also extends in general to K >
2. For brevity we present results only for the binary case. In this case we can restrict to real-valued
outputs: We let `log ∶ [0,1] × {0,1} → R be defined by `log(p, y) = −y log(p) − (1 − y) log(1 − p),
and take both F and the learner’s predictions to be [0,1]-valued. The minimax regret for learning
with the log loss is given by

V log
n (F) = ⟪sup

xt∈X
inf

p̂t∈[0,1]
max
yt∈{0,1}

⟫
n

t=1

[
n

∑
t=1

`(p̂t, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt)] . (8)

The following theorem provides an upper bound on the minimax regret in terms of L∞ covering
numbers N∞(α,F) (definition deferred to Appendix A.6).

Theorem 13 For any class F ⊆ [0,1]X and any δ ∈ (0,1/2], V log
n (F) is bounded by

Õ( inf
γ≥α>0

{logN∞(γ,F) + αn
δ
+
√
n

δ
∫

γ

α

√
logN∞(ρ,F)dρ + 1

δ
∫

γ

α
logN∞(ρ,F)dρ} + δn).

where Õ supresses log(n) and log(1/δ) factors.

Comparing to (Rakhlin and Sridharan, 2015a, Theorem 4), the only difference is that their bound
has an extra 1

δ factor in the leading logN∞(γ,F) term above. Theorem 13 is strictly better for

low-complexity classes, e.g. when logN∞(γ,F) ≍ (Cγ )
p

for p ≤ 1.
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Appendix A. Proofs

A.1. Proofs from Section 2

Lemma 14 The generalized multiclass logisitic loss is 2L-Lipschitz with respect to `∞ norm.

Proof It is straightforward to verify the identity

∇z`(z, y) = (∑
k

yk)σ(z) − y.

It follows that ∥∇z`(z, y)∥1 ≤ ∥y∥1∥σ(z)∥1 + ∥y∥1 ≤ 2L. By duality, this implies 2L-Lipschitzness
with respect to `∞.

Lemma 15 The function f(x) = ∏k∈[d] xαkk is concave over Rd+ whenever αk ≥ 0 ∀k and
∑k∈[d] αk ≤ 1.

Proof We will prove that the Hessian of f is negative semidefinite. The Hessian can be written as

∇2f(x) = f(x) ⋅G(x),

where the matrix G(x) ∈ Rd×d is given by G(x)ii = αi(αi−1)x−2
i and G(x)ij = αiαjx−1

i x
−1
j . Since

f is nonnegative, it suffices to show that G is negative semidefinite. Using the reparameterization
yi = x−1

i and the notation ⊙ for the element-wise product, we can write

G(y) = (α⊙ y)⊗2 − diag(α⊙ y2).

For any fixed y ∈ Rd+ and any v ∈ Rd, we have

⟨v,G(y)v⟩ = (
d

∑
k=1

αkykvk)
2

−
d

∑
k=1

αky
2
kv

2
k

≤ (
d

∑
k=1

αky
2
kv

2
k)(

d

∑
k=1

αk) −
d

∑
k=1

αky
2
kv

2
k

≤ 0.
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The first inequality above uses Cauchy-Schwarz and the second uses that ∑αk ≤ 1.

Proof [Proof of Proposition 2] We first show that the generalized multiclass log loss `log(p, y) ∶=
−∑k∈[K] yk log(pk) is 1/L-mixable over predictions p ∈ ∆K and outcomes y ∈ Y . Recall that
to show η-mixability it is sufficient to demonstrate that ` is η-exp-concave with respect to p (e.g.
(Cesa-Bianchi and Lugosi, 2006)) for any y ∈ Y .

Observe that we have
e−η`(p,y) = ∏

k∈[K]
pηykk .

When η ≤ 1/L, we have ∑k∈[K] ηyk ≤ 1. Since p ∈ ∆K and by the definition of Y , Lemma 15
implies the function p↦∏k∈[K] p

ηyk
k is concave, which proves the result.

Exp-concavity implies that for any distribution π̃ over ∆K , the predicition pπ̃ = Ep∼π̃[p] certifies
the inequality

E
p∼π̃

[exp(−η`log(p, y))] ≤ exp(−η`log(pπ̃, y)) y ∈ Y.

Now, turning to the multiclass logistic loss ` ∶ RK×Y → R defined as `(z, y) = −∑k∈[K] yk log(σ(z)k),
let π be any distribution on RK . Let π̃ be the induced distribution on ∆K via the softmax func-
tion, i.e. a sample from π̃ is generated by sampling z ∼ π and computing p = σ(z). Then define
zπ = σ+(Ez∼π[σ(z)]). Since σ(zπ) = Ez∼π[σ(z)] = pπ̃ and `(z, y) = `log(σ(z), y), the above
inequality implies that

E
z∼π

[exp(−η`(z, y))] ≤ exp(−η`(zπ, y)) y ∈ Y.

Lemma 16 Suppose a strategy (z̃t))t≤n guarantees a regret inequality

n

∑
t=1

`(z̃t, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤R.

Then for 0 ≤ µ ≤ 1/2 the strategy ẑt ∶= σ+(smoothµ(σ(ẑt))) guarantees

n

∑
t=1

`(z̃t, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤R + 2µ
n

∑
t=1

∥yt∥1.

and satisfies ∥ẑt∥∞ ≤ log(K/µ).

Proof [Proof of Lemma 16]
We write regret as

n

∑
t=1

`(ẑt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt)

=
n

∑
t=1

`(z̃t, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) +
n

∑
t=1

`(ẑt, yt) −
n

∑
t=1

`(z̃t, yt)

≤R +
n

∑
t=1

`(ẑt, yt) −
n

∑
t=1

`(z̃t, yt).
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For the last two terms, fix any round t and define p̃ = σ(z̃t). Since σ(ẑt) = (1 − µ)p̃ + µ1/K, we
have

`(ẑt, yt) − `(z̃t, yt) = ∑
k∈[K]

yt,k log( p̃k
(1 − µ)p̃k + µ/K

) ≤ log( 1

1 − µ) ∑
k∈[K]

yt,k ≤ 2µ∥yt∥1.

The last inequality uses that log(1/(1− x)) ≤ 2x for x ≤ 1/2. Summing up over all rounds t gives us
the desired regret bound.

To establish boundedness of the predictions, recall that σ+k(p) = log(pk). Letting p = (1 −
µ)EW∼Pt[σ(Wxt)] + µ1/K, it clearly holds that pk ≥ µ/K, and so ∣σ+k(p)∣ ≤ log(K/µ).

Proof [Proof of Theorem 3] Let η = 1/L. Let z̃t = σ+(EW∼Pt[σ(Wxt)]) — that is, the prediction
for the setting µ = 0. We will first establish a regret bound for the case µ = 0, then reduce the general
case to it by approximation.

First observe that due to mixability for η ≤ 1/L (from Proposition 2), we have

n

∑
t=1

`(z̃t, yt) ≤ − 1

η

n

∑
t=1

log(∫
W

exp(−η`(Wxt, yt))dPt(W )).

Let Zt = ∫W exp(−η∑ts=1 `(Wxs, ys))dW with the convention Z0 = ∫W dW . Using the definition
of Pt, the right-hand-side in the displayed equation above is then equal to

−1

η

n

∑
t=1

log(Zt/Zt−1) = −
1

η
log(Zn/Z0) = −

1

η
log(∫

W
exp(−η

n

∑
t=1

`(Wxt, yt))dW)+1

η
log(Vol(W))

We will focus on coming up with an upper bound on the term − log(∫W exp(−η∑nt=1 `(Wxt, yt))dW ).
Let W ⋆ = arg minW ∈W ∑nt=1 `(Wxt, yt). Fix θ ∈ [0,1) and let S = {θW ⋆ + (1 − θ)W ∣W ∈ W} ⊆
W . To upper bound the negative-log-integral term, we will lower bound the integral appearing inside.

∫
W

exp(−η
n

∑
t=1

`(Wxt, yt))dW ≥ ∫
S

exp(−η
n

∑
t=1

`(Wxt, yt))dW.

Using a change of variables and noting that since W ∈ RK×d the Jacobian of the mapping W ↦
(1 − θ)W + θW ⋆ has determinant (1 − θ)DW , the right-hand-side above equals

= (1 − θ)DW ∫
W

exp(−η
n

∑
t=1

`((θW ⋆ + (1 − θ)W )xt, yt))dW.

Observe that ∥(θW ⋆ + (1 − θ)W )xt −W ⋆xt∥∞ = (1−θ)maxk∈[K]∣⟨W ⋆
k −Wk, xt⟩∣ ≤ 2(1−θ)B∥xt∥⋆.

Using this observation with the 2L-Lipschitzness of ` with respect to `∞ from Lemma 14 implies
that the above displayed expression is at most

(1 − θ)DW ∫
W

exp(−η
n

∑
t=1

`(W ⋆xt, yt) − 4(1 − θ)BLη
n

∑
t=1

∥xt∥⋆)dW.

= (1 − θ)DW ⋅Vol(W) ⋅ exp(−η
n

∑
t=1

`(W ⋆xt, yt)) ⋅ exp(−4(1 − θ)BLη
n

∑
t=1

∥xt∥⋆).

17
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Combining all of the observations so far, we have proven the following regret bound:

n

∑
t=1

`(ŷt, yt) −
n

∑
t=1

`(W ⋆xt, yt)

≤ 1

η
log(Vol(W)) −

n

∑
t=1

`(W ⋆xt, yt)

+ 1

η
(DW log( 1

1 − θ) − log(Vol(W)) + η
n

∑
t=1

`(W ⋆xt, yt) + 4(1 − θ)BLη
n

∑
t=1

∥xt∥⋆)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bound on negative log-integral-exp.

= DW
η

log( 1

1 − θ) + 4(1 − θ)BL
n

∑
t=1

∥xt∥⋆.

To conclude, we choose θ to satisfy 1 − θ = min{DW/(B∑nt=1∥xt∥⋆),1}. Note that regardless of
which argument obtains the minimum, we have 4(1 − θ)BL∑nt=1∥xt∥⋆ ≤ 4DWL. The choice of θ
also means that log( 1

1−θ) = log(1 ∨B∑nt=1∥xt∥⋆/DW). This leads to a final bound of

DWL ⋅ log(1 ∨ B∑
n
t=1∥xt∥⋆
DW

) + 4DWL.

To simplify we upper bound this by

5DWL ⋅ log(B∑
n
t=1∥xt∥⋆
DW

+ e) = 5DWL ⋅ log(BRn
DW

+ e).

To handle the general case where µ > 0 we simply appeal to Lemma 16 and use that σ(σ+(p)) =
p ∀p ∈ ∆K .

We now state the proof of Theorem 5. This proof is a simple corollary of Theorem 18, a lower
bound on mistakes for online binary classification with a margin. Theorem 18 is proven in the
remainder of this section of the appendix. To begin, we need the following definition:

Definition 17 Let F ∶ X → [−1,1] be some function class. A dataset (x1, y1), . . . , (xn, yn) ∈
∪nt=1X × {±1} is shattered with γ margin if there exists f ∈ F such that

f(xt)yt ≥ γ.

Proof [Proof of Theorem 5] Let ẑt for t ∈ [n] be the sequence of predictions made by the algorithm
for a sequence of examples (xt, yt), for t ∈ [n]. It is easy to check that

n

∑
t=1

`bin(ẑt, yt) ≥ log(2)
n

∑
t=1

1{sgn(ẑt) ≠ yt}.

Let 1/γ = B/ log(n). From Theorem 18, it holds that whenever γ ≤ O(1/
√
d), there exists an

adversarial sequence (xt, yt), for t ∈ [n], for which

n

∑
t=1

1{sgn(ŷt) ≠ yt} ≥
d

4
⌊log2(

1

5γd1/2)⌋,
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and for which the dataset is γ-shattered by some w ∈ Rd with ∥w∥2 ≤ 1. Since the dataset is
γ-shattered we also have

inf
w∶∥w∥2≤B

n

∑
t=1

`bin(⟨w,xt⟩, yt) ≤
n

∑
t=1

log(1 + e−γB) =
n

∑
t=1

log(1 + 1

n
) ≤ 1.

This yields the desired lower bound on the regret.

Theorem 18 Fix a margin γ ∈ (0, 1

4
√

5d
]. Then for any randomized strategy (ŷt)t≤n there exists an

adversary (xt)t≤n, (yt)t≤n with ∥xt∥2 ≤ 2 for which

E[
n

∑
t=1

1{sgn(ŷt) ≠ yt}] ≥
d

4
⌊log2(

1

5γd1/2)⌋, (9)

and the data sequence is realizable by a unit vector w ∈ Rd+1 with margin γ.

Remark 19 This lower bound only applies in the regime where 1
γ2

≥ d, meaning that it does not
contradict the dimension-independent Perceptron bound.

To prove Theorem 18, we first state a standard lower bound based on Littlestone’s dimension.

Definition 20 An X -valued tree is a sequence of mappings xt ∶ {±1}t−1 → X for 1 ≤ t ≤ n.

We use the abbreviation of xt(ε) = xt(ε1, . . . , εt−1) for such a tree, where ε ∈ {±1}n.

Lemma 21 Let F ∶ X → [−1,1] be some function class. Suppose there exists a X -valued tree x of
depth Dγ such that

∀ε ∈ {±1}Dγ ∃f ∈ F s.t. f(xt(ε))εt ≥ γ. (10)

Then

inf
q1,...,qn

sup
(x1,y1),...,(xn,yn)

separable with γ margin

E
ŷ1∼qt,...,ŷn∼qn

[
n

∑
t=1

1{ŷt ≠ yt}] ≥
1

2
min{Dγ , n},

where the infimum and supremum above are understood to range over policies.

Proof [Proof of Lemma 21] Suppose that n ≤ Dγ . We will sample Rademacher random variables
ε ∈ {±1}n and play yt = εt and xt = xt(ε1∶t−1). This immediately implies that the expected number
of mistakes is equal to n

2 . Moreover, since n ≤ Dγ , the assumption in the statement of the lemma
implies that there exists f ∈ F such that f(xt(ε))yt ≥ γ, so the data is indeed separable with γ
margin.

If n >Dγ we can follow the strategy above, then continue to play (xDγ , yDγ) for all t >Dγ .

Proof [Proof of Theorem 18] By Lemma 21 it suffices to exhibit a tree x for which (10) is satisfied
with Dγ = Ω(d log(1/(

√
dγ))).

We first restate a well-known tree instance for the one-dimensional case. Consider a class of
thresholds Fthresh = {fθ ∶ [0,1] → {±1}} defined by fθ(z) = 1 − 21{x < θ}. The claim is as follows:
For any δ ∈ (0,1], there exists a [0,1]-valued tree z of depth Dδ ∶= ⌊log2(2/δ)⌋ such that
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1. ∀ε ∈ {±1}Dδ ∃θ s.t. fθ(zt(ε))εt = 1.

2. ∣zt(ε) − zs(ε)∣ ≥ δ ∀s ≠ t.
The construction is as follows. Let u1 = 1, l1 = 0. Recursively for t = 1, . . . , n:

• zt(ε1∶t−1) = lt+ut
2 .

• If εt = −1 set lt+1 = zt(ε1∶t−1) and ut+1 = ut, else set ut+1 = zt(ε1∶t−1) and lt+1 = lt.
Under this construction the sequence z1(⋅), . . . ,zDδ(ε1∶Dδ−1) can always be shattered. Furthermore
z⋆(ε) ∶= zDδ+1(ε1∶Dδ) satisfies the additional property that zt > z⋆(ε) Ô⇒ εt = 1 and zt <
z⋆(ε) Ô⇒ εt = −1. Also, ∣z⋆ − zt∣ ≥ δ

2 ∀t ≤Dδ.
We now show how to extend this instance to d + 1 dimensions for any d ≥ 1. The approach is to

concatenate d instances of the z tree constructed above, one for each of the first d coordinates. The
final coordinate is left as a constant so that a bias can be implemented.

Let n = d ⋅Dδ be the tree depth for our d+1-dimensional instance. For any time t, let k ∈ [d] and
τ ∈ [Dδ] be such that t = (k − 1)Dδ + τ . Let any sequence ε ∈ {±1}n be partitioned as (ε1, . . . , εd)
with each εk ∈ {±1}Dδ . Letting ek denote the kth standard basis vector, we define a shattered tree x
as follows:

xt(ε1∶t−1) = ed+1 + ekzτ(εk1∶τ−1).
We construct a vector w ∈ Rd+1 whose sign correctly classifies each xt as follows:

• wd+1 = −δ.

• wk = δ/z⋆(εk).

For any t = (k − 1)Dδ + τ this choice gives

⟨w,xt(ε)⟩εt = δ(zτ(εk1∶τ−1)/z⋆(εk) − 1)εt.

As described above, zt > z⋆(ε) Ô⇒ εt = 1 and zt < z⋆(ε) Ô⇒ εt = −1, which immediately
implies that the inner product is always non-negative, and so the dataset is shattered. Using that
∣z⋆(ε) − zt(ε)∣ ≥ δ

2 and that both numbers lie in [0,1], we can lower bound the magnitude with
which the shattering takes place:

∣zτ(εk1∶τ−1)/z⋆(εk) − 1∣ = 1

z⋆(εk)
∣zτ(εk1∶τ−1) − z⋆(εk)∣ ≥

1

z⋆(εk)
δ

2
≥ δ

4
,

and so the shattering takes place with margin at least δ2/4.
Lastly, the norm of w is given by

∥w∥2 =

¿
ÁÁÁÀδ2 +

d

∑
k=1

( δ

z⋆(εk))
2

≤
√
δ2 + 4d ≤

√
5d,

where the first inequality uses that z⋆(ε) ≥ δ/2 and the second uses that d ≥ 1

Rescaling, we have that the vectorw/∥w∥2 shatters the tree with margin at least δ2

4
√

5d
. To rephrase

the result as a function of a desired margin: For any margin γ ∈ (0, 1

4
√

5d
], setting δ =

√
γ4

√
5d ≤ 1,

we have constructed a tree of depth ⌊log2(2/
√
γ4

√
5d)⌋ that can be shattered with margin γ.
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A.2. OBAMA Algorithm and Proof of Theorem 6

Algorithm 2
1: procedure OBAMA(decision setW , smoothing parameter µ.)
2: Let A be Algorithm 1 initialized withW and µ.
3: for t = 1, . . . , n do
4: Obtain xt, pass it to A and let ẑt ∈ RK be the output of A.
5: Play ŷt ∼ pt ∶= σ(ẑt) and obtain 1[ŷt ≠ yt].
6: Define ỹt ∈ RK as ỹt(k) ∶= 1[k=ŷt]1[ŷt=yt]

pt(ŷt) for k ∈ [K] and pass it as feedback to A.
7: end for
8: end procedure

Proof [Proof of Theorem 6] First, note that an easy calculation on the softmax function σ implies that
for all k ∈ [K], pt(k) ≥ (1−µ) exp(−2BR)+µ

K . So, defining L = K
(1−µ) exp(−2BR)+µ , we have ∥ỹt∥1 ≤ L.

Thus, Theorem 3 applied to A guarantees that for any W ∈ W ,

n

∑
t=1

`(ẑt, ỹt) −
n

∑
t=1

`(Wxt, ỹt) ≤ 5LdK ⋅ log(BRndK + e) + 2µ
n

∑
t=1

∥ỹt∥1.

Fix a round t and let Et[⋅] denote expecation conditioned on ŷ1, ŷ2, . . . , ŷt−1. The construction
of the feedback vectors ỹt via importance weighting guarantees Et[ỹt] = 1yt , where 1k denotes
the indicator vector supported on coordinate k. Hence, Et[`(ẑt, ỹt)] = `(ẑt, yt) = − log(pt(yt))
and Et[`(Wxt, ỹt)] = `(Wxt, yt). Furthermore, it is easy to check that Et[∥ỹt∥1] = 1. Thus, we
conclude that

n

∑
t=1

E[− log(pt(yt))] −
n

∑
t=1

`(Wxt, yt) ≤ 5LdK ⋅ log(BRndK + e) + 2µn.

Now if we set µ = 0, then the right-hand side is bounded by O(dK2 exp(2BR) log(BRndK + e)).

If we set µ =

√
dK2 log(BRndK +e)

n , the right-hand side is bounded by O (
√
dK2 log(BRndK + e)n).

Choosing the setting of µ that gives the smaller upper bound, and the fact that the log loss upper
bounds the probability of making a mistake (because − log(pt(yt)) ≥ 1 − pt(yt)), we get the stated
bound on the expected number of mistakes.

A.3. Pseudocode and Proofs from Section 4

Proof [Proof of Theorem 8] Denote the number of mistakes of the i-th expert (which is the combina-
tion of the first i weak learners) by

Mi =
n

∑
t=1

1{ŷit ≠ yt} =
n

∑
t=1

1{arg max
k

sit(k) ≠ yt},

with the convention that M0 = n. The weights vit simply implement the multiplicative weights
strategy, and so Lemma 23, which gives a concentration bound based on Freedman’s inequality
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Algorithm 3 AdaBoost.OLM++
1: procedure ADABOOST.OLM++(weak learners WL1, . . . ,WLN )
2: For all i ∈ [N], set vi1 ← 1, initialize weak learner WLi1, and initialize logistic learner

Logistici1 withW = {(αIK×K , IK×K) ∈ RK×2K ∣ α ∈ [−2,2]} and µ = 1/n.
3: for t = 1, . . . , n do
4: Receive instance xt.
5: s0

t ← 0 ∈ RK .
6: for i = 1, . . . ,N do
7: Compute cost matrix Cit from si−1

t using (2).
8: lit ←WLit.Predict(xt,Cit).
9: x̃it ← (elit , s

i−1
t ) ∈ R2K .

10: sit ← Logisticit.Predict(x̃it).
11: ŷit ← arg maxk s

i
t(k).

12: end for
13: Sample it with Pr(it = i) ∝ vit.
14: Predict ŷt = ŷitt and receive true class yt ∈ [K].
15: for i = 1, . . . ,N do
16: WLit+1 ←WLit.Update(xt,Cit , yt).
17: Logisticit+1 ← Logisticit.Update(x̃it,1yt).
18: vit+1 ← vit ⋅ exp(−1{ŷit ≠ yt}).
19: end for
20: end for
21: end procedure

implies that with probability at least 1 − δ,10

n

∑
t=1

1{ŷt ≠ yt} ≤ 4 min
i
Mi + 2 log(N/δ). (11)

Note that if k⋆ ∶= arg maxk s
i−1
t (k) ≠ yt, then σ(si−1

t )k⋆ ≥ σ(si−1
t )yt and σ(si−1

t ) ∈ ∆K imply
σ(si−1

t )yt ≤ 1/2, which then implies ∑k≠yt σ(si−1
t )k ≥ 1/2 and finally

−
n

∑
t=1

Ĉit(yt, yt) =
n

∑
t=1
∑
k≠yt

σ(si−1
t )k ≥

Mi−1

2
. (12)

This also holds for i = 1 because s0
t = 0 and −C1

t (yt, yt) = (K − 1)/K ≥ 1/2.
We now examine the regret guarantee provided by each logistic regression instance. For each

i ∈ [N] we have

n

∑
t=1

`(sit, yt) − inf
W ∈W

n

∑
t=1

`(Wx̃it, yt) ≤ O(log(n log(nK)))

10. Note that previous online boosting works (Beygelzimer et al., 2015; Jung et al., 2017) use a simpler Hoeffding bound
at this stage, which picks up an extra

√

n term. For their results this is not a dominant term, but in our case it can spoil
the improvement given by improper logistic regression, and so we use Freedman’s inequality to remove it.

22



LOGISTIC REGRESSION: THE IMPORTANCE OF BEING IMPROPER

This follows from Theorem 3 using L = 1, DW = 1, B = 3 for `1 norm, ∥yt∥1 = 1, µ = 1/n,
and ∥x̃it∥∞ ≤ log(nK), where the last fact is implied by the second statement of Theorem 3:

∥sit∥∞ ≤ log(K/µ) = log(nK) and thus ∥x̃it∥∞ = ∥(elit , s
i−1
t )∥

∞
≤ log(nK). Now define the

difference between the total loss of the i-th and (i − 1)-th expert to be

∆i =
n

∑
t=1

`(sit, yt) − `(si−1
t , yt).

Since infW ∈W ∑nt=1 `(Wx̃it, yt) = infα∈[−2,2]∑nt=1 `(αelit + s
i−1
t , yt), the regret bound above implies

∆i ≤ inf
α∈[−2,2]

[
n

∑
t=1

`(αelit + s
i−1
t , yt) − `(si−1

t , yt)] +O(log(n log(nK))).

By Lemma 24 each term in the sum above satisfies

`(αelit + s
i−1
t , yt) − `(si−1

t , yt) ≤ { (eα − 1)σ(si−1
t )lit = (eα − 1)Ĉit(yt, lit), lit ≠ yt,

(e−α − 1)(1 −σ(si−1
t )yt) = −(e−α − 1)Ĉit(yt, yt), lit = yt.

With notation wi = −∑nt=1 Ĉ
i
t(yt, yt), ci+ = − 1

wi ∑t∶lit=yt Ĉ
i
t(yt, yt), and ci− = 1

wi ∑t∶lit≠yt Ĉ
i
t(yt, lit),

we rewrite

inf
α∈[−2,2]

[
n

∑
t=1

`(αelit + s
i−1
t , yt) − `(si−1

t , yt)] = wi ⋅ inf
α∈[−2,2]

[(eα − 1)ci− + (e−α − 1)ci+].

One can verify that wi > 0, ci−, c
i
+ ≥ 0, ci+ − ci− = γi ∈ [−1,1] and ci+ + ci− ≤ 1. By Lemma 25, it

follows that

wi ⋅ inf
α∈[−2,2]

[(e−α − 1)ci− + (eα − 1)ci+] ≤ − w
iγ2
i

2
.

Summing ∆i over i ∈ [N], we have

n

∑
t=1

`(sNt , yt) −
n

∑
t=1

`(s0
t , yt) =

N

∑
i=1

∆i ≤ − 1

2

N

∑
i=1

wiγ2
i +O(N log(n log(nK))). (13)

We lower bound the left hand side as
n

∑
t=1

`(sNt , yt) −
n

∑
t=1

`(s0
t , yt) ≥ −

n

∑
t=1

`(s0
t , yt) = −n log(K),

where the inequality uses non-negativity of the logistic loss and the equality is a direct calculation
from s0

t = 0. Next we upper bound the right-hand side of (13). Since wi = −∑nt=1 Ĉ
i
t(yt, yt), Eq. (12)

implies

−1

2

N

∑
i=1

wiγ2
i ≤ −

1

4

N

∑
i=1

Mi−1γ
2
i ≤ − min

i∈[N]
Mi−1 ⋅

1

4

N

∑
i=1

γ2
i ≤ − min

i∈[N]
Mi ⋅

1

4

N

∑
i=1

γ2
i .

Combining our upper and lower bounds on ∑Ni=1 ∆i now gives

−n log(K) ≤ − 1

2

N

∑
i=1

wiγ2
i +O(N log(n log(K))) ≤ − min

i∈[N]
Mi ⋅

1

4

N

∑
i=1

γ2
i +O(N log(n log(nK))).

(14)
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Rearranging, we have

min
i∈[N]

Mi ≤ O(n log(K)
∑Ni=1 γ

2
i

) +O(N log(n log(nK))
∑Ni=1 γ

2
i

).

Returning to (11), this implies that with probability at least 1 − δ,

n

∑
t=1

1{ŷt ≠ yt} ≤ O(n log(K)
∑Ni=1 γ

2
i

) +O(N log(n log(nK))
∑Ni=1 γ

2
i

) + 2 log(N/δ),

which finishes the proof.

Proof [Proof of Proposition 9] By the definition of the cost matrices, the weak learning condition

n

∑
t=1

Cit(yt, lit) ≤
n

∑
t=1

E
k∼uγ,yt

[Cit(yt, k)] + S

implies
n

∑
t=1

Ĉit(yt, lit) ≤
n

∑
t=1

E
k∼uγ,yt

[Ĉit(yt, k)] +KS

Expanding the definitions of uγ,yt and Ĉit , we have

E
k∼uγ,yt

[Ĉit(yt, k)] = (1 − γ
K

)
⎛
⎝
(σ(si−1

t )yt − 1) + ∑
k≠yt

σ(si−1
t )k

⎞
⎠
+ γ(σ(si−1

t )yt − 1) = γĈit(yt, yt).

So we have
n

∑
t=1

Ĉit(yt, lit) ≤ γ
n

∑
t=1

Ĉit(yt, yt) +KS,

or, since Ĉit(yt, yt) < 0,

γi ≥ γ −
KS

wi
,

where wi = −∑nt=1C
i
t(yt, yt) as in the proof of Theorem 8. Since a ≥ b − c implies a2 ≥ b2 − 2bc for

non-negative a, b and c, we further have γ2
i ≥ γ2 − 2γKS

wi
.

Returning to the inequality (14), the bound we just proved implies

−n log(K) ≤ − 1

2

N

∑
i=1

wiγ2 + γKSN +O(N log(n log(nK)))

≤ − γ
2

4

N

∑
i=1

Mi−1 + γKSN +O(N log(n log(nK))) (by (12))

≤ − min
i∈[N]

Mi ⋅
γ2N

4
+ γKSN +O(N log(n log(nK))).

From here we proceed as in the proof of Theorem 8 to get the result.
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Lemma 22 (Freedman’s Inequality (Beygelzimer et al., 2011)) Let (Zt)t≤n be a real-valued mar-
tingale difference sequence adapted to a filtration (Jt)t≤n with ∣Zt∣ ≤ R almost surely. For any
η ∈ [0,1/R], with probability at least 1 − δ,

n

∑
t=1

Zt ≤ η(e − 2)
n

∑
t=1

E[Z2
t ∣ Jt] +

log(1/δ)
η

(15)

for all η ∈ [0,1/R].

Lemma 23 With probability at least 1 − δ, the predictions (ŷt)t≤n generated by Algorithm 3 satisfy

n

∑
t=1

1{ŷt ≠ yt} ≤ 4 min
i

n

∑
t=1

1{ŷit ≠ yt} + 2 log(N/δ).

Proof Define a filtration (Jt)t≤n via

Jt = σ((x1, (li1)i≤N , y1, i1), . . . , (xt−1, (lit−1)i≤N , yt−1, it−1), xt, (lit)i≤N).

Since Line 18 of Algorithm 3 implements the multiplicative weights strategy with learning rate 1,
the standard analysis (e.g. Cesa-Bianchi and Lugosi (2006)) implies that the conditional expectations
under this strategy enjoy a regret bound of

n

∑
t=1

E[1{ŷt ≠ yt} ∣ Jt] ≤ 2 min
i

n

∑
t=1

1{ŷit ≠ yt} + log(N).

Let Zt = 1{ŷt ≠ yt} −E[1{ŷt ≠ yt} ∣ Jt]. Lemma 22 applied with η = 1 shows that with probability
at least 1 − δ,

n

∑
t=1

Zt ≤
n

∑
t=1

E[Z2
t ∣ Jt] + log(1/δ).

Since variance is bounded by second moment, we have

n

∑
t=1

E[Z2
t ∣ Jt] ≤

n

∑
t=1

E[(1{ŷt ≠ yt})2 ∣ Jt] =
n

∑
t=1

E[1{ŷt ≠ yt} ∣ Jt].

Rearranging, we have proved that with probability 1 − δ,

n

∑
t=1

1{ŷt ≠ yt} ≤ 2
n

∑
t=1

E[1{ŷt ≠ yt} ∣ Jt] + log(1/δ) ≤ 4 min
i

n

∑
t=1

1{ŷit ≠ yt} + 2 log(N/δ).

Lemma 24 The multiclass logistic loss satisfies for any z ∈ RK and y ∈ [K],

`(z + αel, y) − `(z, y) ≤ { (eα − 1)σ(z)l, l ≠ y,
(e−α − 1)(1 −σ(z)y), l = y.
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Proof When l ≠ y we have

`(z + αel, y) − `(z, y) = log(
1 +∑k≠y,l ezk−zy + ezl+α−zy

1 +∑k≠y ezk−zy
)

= log(1 + (eα − 1) ezl−zy

1 +∑k≠y ezk−zy
)

= log(1 + (eα − 1)σ(z)l)
≤ (eα − 1)σ(z)l. (log(1 + x) ≤ x)

When l = y we have

`(z + αel, y) − `(z, y) = log(
1 + e−α∑k≠y ezk−zy

1 +∑k≠y ezk−zy
)

= log(1 + (e−α − 1) ∑k≠y
ezk−zy

1 +∑k≠y ezk−zy
)

= log
⎛
⎝

1 + (e−α − 1) ∑
k≠y
σ(z)k

⎞
⎠

= log(1 + (e−α − 1)(1 −σ(z)y))
≤ (e−α − 1)(1 −σ(z)y). (log(1 + x) ≤ x)

Lemma 25 (Jung et al. (2017)) For any A,B ≥ 0 with A −B ∈ [−1,+1] and A +B ≤ 1,

inf
α∈[−2,2]

[A(eα − 1) +B(e−α − 1)] ≤ − (A −B)2

2
.

A.4. Proof from Section 5

Theorem 26 Let F be a class of functions f ∶ X → ∆K . Suppose there is an online multiclass
learning algorithm over F using the log loss that for any data sequence (xt, yt) ∈ X × [K] for
t = 1,2, . . . , n produces distributions pt ∈ ∆K such that the following regret bound holds:

n

∑
t=1

`log(pt, yt) − inf
f∈F

n

∑
t=1

`log(f(xt), yt) ≤ R(n).

Here R(n) is some function of n and other relevant problem dependent parameters. Then for any
given δ > 0 and any (unknown) distribution D over X × [K], it is possible to construct a predictor
g ∶ X → ∆K using n samples {(xt, yt)}nt=1 drawn from D such that with probability at least 1 − δ,
the excess risk of g is bounded as

E
(x,y)

[`log(g(x), y)] ≤ inf
f∈F

E
(x,y)

[`log(f(x), y)] +O
⎛
⎜
⎝

log(1
δ
)R( n

log(1/δ)) + log(Kn) log( log(n)
δ )

n

⎞
⎟
⎠
.
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Proof [Proof of Theorem 26] Recall that the standard online-to-batch conversion (Helmbold and
Warmuth, 1995) produces an (improper) predictor using n data samples by running the online
algorithm on those samples and stopping at a random time. Then predictor is online algorithm with
its the internal state frozen. This predictor has excess risk bounded by the average regret over n
rounds, in expectation over the n data samples.

The algorithm to generate the predictor g with the specified excess risk bound in the theorem
statement is given below:

1. Let M = ⌈log(2/δ)⌉. Produce M predictors h1, . . . , hM ∶ X → ∆K by using the online-to-
batch conversion on the online multiclass learning algorithm run using M disjoint sets of
n/2M samples each. Call the ith such set of samples Si

2. For i ∈ [M], define h̃i ∶ X →∆K as h̃i(x) = smoothµ(hi(x)) for µ = R(n/M)
2n/M .

3. Construct an online convex optimization instance as follows. The learner’s decision set is ∆M ,
the set of all distributions on [M]. For every data point (x, y) ∈ X × [K], associate the loss
function `(x,y) ∶ ∆M → R defined as `(x,y)(q) = − log(Ei∼q[(h̃i(x))y]). These loss functions
are 1-exp-concave, so run the EWOO algorithm (Hazan et al., 2007) using the remaining n/2
examples sequentially to generate loss functions. Let q̄ be the average of all the distributions
in ∆M generated by EWOO. Define g ∶= Ei∼q̄[h̃i].

We now proceed to analyse the excess risk of g. First, using the regret bound for the online multi-
class learning algorithm, and in-expecation bound on the excess risk for online-to-batch conversion,
for every i ∈ [M], we have

E
Si
[ E
(x,y)

[`log(hi(x), y)]] ≤ inf
f∈F

E
(x,y)

[`log(f(x), y)] +
R(n/M)
n/M .

For any p ∈ ∆K , if p̃ = smoothµ(p), then for any y ∈ [K] we have − log(p̃y) + log(py) =
log( py

(1−µ)py+µ/K ) ≤ 2µ. So for every i ∈ [M], we have

E
Si
[ E
(x,y)

[`log(h̃i(x), y)]] ≤ E
Si
[ E
(x,y)

[`log(hi(x), y)]] + 2µ.

Putting the above two bounds together, using the specified value of µ and an application of Markov’s
inequality, with probability at least 1 − e−M = 1 − δ

2 , there exists some i⋆ ∈ [M] such that

E
(x,y)

[`log(h̃i⋆(x), y)] ≤ inf
f∈F

E
(x,y)

[`log(f(x), y)] +
2eR(n/M)

n/M . (16)

The EWOO algorithm in step 3 of the procedure enjoys a regret bound of O(M log(n)) (the
online convex optimization problem is an instance of online portfolio selection over M instruments,
see (Hazan et al., 2007)). Furthermore, the application of smoothµ makes the range for the log loss
be bounded by log(K/µ). Thus, by Corollary 2 of Mehta (2017), with probability at least 1 − δ

2 ,

E
(x,y)

[`log(g(x), y)] = E
(x,y)

[− log(E
i∼q̄

[(h̃i(x))y])]

≤ E
(x,y)

[− log((h̃i⋆(x))y)] +O(M log(n) + log(K/µ) log(log(n)/δ)
n

) (17)
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Note that `log(h̃i⋆(x), y) = − log((h̃i⋆(x))y). Applying the union bound and combining inequalities
(16) and (17) with some simplification of the bounds using the value of M , with probability at least
1 − δ we have

E
(x,y)

[`log(g(x), y)] ≤ inf
f∈F

E
(x,y)

[`log(f(x), y)] +O
⎛
⎜
⎝

log(1
δ
)R( n

log(1/δ)) + log(Kn) log( log(n)
δ )

n

⎞
⎟
⎠
.

A.5. Details from Section 6

For this section we let ` denote the unweighted multiclass logistic loss: the multiclass logistic loss
defined in Section 1.1 for the special case where Y = {ei}i∈[K]. Before proving Theorem 11 we need
a few preliminaries. First, we state a version of the Aggregating Algorithm with the logistic loss for
finite classes.

Lemma 27 Let F be any finite class of sequences of the form f = (ft)t≤n with ft ∈ RK , where each
ft is available at time t and may depend on y1∶t−1. Define a strategy

1. Pt(f) ∝ exp(−∑t−1
s=1 `(fs, ys)) (so P1 = Uniform(F)).

2. ẑt = σ+(smooth 1
n
(Ef∼Pt[σ(ft)])).

This strategy enjoys a regret bound of

n

∑
t=1

`(ẑt, yt) −min
f∈F

n

∑
t=1

`(ft, yt) ≤ log∣F∣ + 2. (18)

Furthermore, the predictions satisfy ∥ẑt∥∞ ≤ log(Kn).

Proof [Proof of Lemma 27] First consider the closely related strategy z̃t ∶= σ+(Ef∼Pt[σ(f(xt))]).
In light of the 1-mixability for the logistic loss proven in Proposition 1, z̃t is precisely the finite class
version of the Aggregating Algorithm, which guarantees (Cesa-Bianchi and Lugosi, 2006):

n

∑
t=1

`(z̃t, yt) −min
f∈F

n

∑
t=1

`(ft, yt) ≤ log∣F∣.

To establish the final result we simply appeal to Lemma 16, using that σ(σ+(p)) = p ∀p ∈ ∆K .

We now formally define a multiclass generalization of a sequential cover.

Definition 28 For any set Z , a Z-valued K-ary tree of depth n is a sequence z = (z1, . . . ,zn) of n
mappings with zt ∶ [K]t−1 → Z .

Definition 29 A set V of RK-valued K-ary trees is an α-cover (w.r.t. the Lp norm) of F on an
X -valued K-ary tree x of depth n with loss ` if

∀f ∈ F , y ∈ [K]n, ∃v ∈ V s.t. ( 1

n

n

∑
t=1

max
y′t∈[K]

∣`(f(xt(y)), y′t) − `(vt(y), y′t)∣
p)

1/p

≤ α.
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Definition 30 The Lp covering number of F on tree x is defined as

Np(α, ` ○ F ,x) ∶= min{∣V ∣ ∶ V is an α-cover of F on x w.r.t. the Lp norm}.

Further, define Np(α, ` ○ F) = supxNp(α, ` ○ F ,x).

If K = 2 then the above definition coincides with the definition of sequential cover in Rakhlin et al.
(2015a) which was defined for real valued function classes.

We also need a slight generalization of the notion of covering number defined in Definition 29
for intermediate results.

Definition 31 Let U be a collection of RK-valued K-ary trees. A set V of RK-valued K-ary trees
is an α-cover with respect to the Lp norm for U if

∀u ∈ U, y ∈ [K]n, ∃v ∈ V s.t. ( 1

n

n

∑
t=1

max
y′t∈[K]

∣`(ut(y), y′t) − `(vt(y), y′t)∣
p)

1/p

≤ α.

Definition 32 The Lp covering number for a collection of trees U with loss ` is

Np(α, ` ○U) ∶= min{∣V ∣ ∶ V is an α-cover of U w.r.t. the Lp norm}.

Proof [Proof of Theorem 11] Define a subset of the output space:

Z ∶= {z ∈ RK ∣ ∥z∥∞ ≤ log(Kn)}.

We move to an upper bound on the minimax value by restricting predictions to Z:

Vn(F) = ⟪sup
xt∈X

inf
ẑt∈RK

max
yt∈[K]

⟫
n

t=1

[
n

∑
t=1

`(ẑt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt)]

≤ ⟪sup
xt∈X

inf
ẑt∈Z

max
yt∈[K]

⟫
n

t=1

[
n

∑
t=1

`(ẑt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt)] .

Note that Z is a compact subset of a separable metric space and that ` is convex with respect to
ẑ. Therefore, using repeated application of minimax theorem following Rakhlin et al. (2010)11 the
minimax value can be written as:

= ⟪sup
xt∈X

sup
pt∈∆K

inf
ẑt∈Z

Eyt∼pt⟫
n

t=1

[
n

∑
t=1

`(ẑt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt)] .

Now we perform a standard manipulation of the sup and loss terms as in Rakhlin et al. (2010):

= ⟪sup
xt∈X

sup
pt∈∆K

Eyt∼pt⟫
n

t=1

[
n

∑
t=1

inf
ẑt∈Z

Eyt∼pt [`(ẑt, yt)] − inf
f∈F

n

∑
t=1

`(f(xt), yt)] (19)

= sup
x,p

Ey∼p [
n

∑
t=1

inf
ẑt∈Z

Eyt∼pt(y) [`(ẑt, yt)] − inf
f∈F

n

∑
t=1

`(f(xt(y)), yt)] . (20)

11. See Rakhlin et al. (2010) for an extensive discussion of the technicalities.

29



LOGISTIC REGRESSION: THE IMPORTANCE OF BEING IMPROPER

In the final line above we have introduced new notation. x and p are X - and ∆K-valued K-ary
trees of depth n. That is, x = (x1, . . . ,xn) where xt ∶ [K]t−1 → X and similarly for the tree
p = (p1, . . . ,pn), pt ∶ [K]t−1 → ∆K . The notation “y ∼ p” refers to the process in which we first
draw y1 ∼ p1, then draw yt ∼ pt(y1, . . . , yt−1) for subsequent timesteps t. We also overload the
notation as pt(y) ∶= pt(y1∶t−1), and likewise for x.

With this notation, (20) is seen to be (19) rewritten using that at time t, based on draw of previous
ys, xt and pt are chosen to maximize the remaining game value; this process be represented via
K-ary tree.

Note that the sequence (ẑt)t≤n being minimized over in (19) can depend on the full trees x and
p, but that it is adapted to the path (yt)t≤n, meaning that the value at time t (ẑt) can only depend on
the y1∶t−1. This property is imporant because the choice we exhibit for (ẑt)t≤n will indeed depend on
the full trees.

In light of the discussion in Section 6, the key advantage of having moved to the dual game above
is that we can condition on the K-ary tree x and cover F only on this tree. Let V γ be a minimal
γ-sequential cover of ` ○ F on the tree x with respect to the L2 norm (in the sense of Definition 29).

Keeping the tree x fixed, for each tree v ∈ V γ , each f ∈ F , we define a class of trees Fv

“centered” at v—in a sense that will be made precise in a moment—via the following procedure.

• Fv = ∅.

• For each f ∈ F and y ∈ [K]n with
√

1
n ∑

n
t=1 maxy′′t ∈[K](`(f(xt(y)), y′′t ) − `(vt(y), y′′t ))2 ≤ γ:

– Define a RK-valued K-ary tree uf,y via: For each y′ ∈ [K]n,

(uf,y)t(y′) ∶= f(xt(y′))1{y′1 = y1, . . . , y
′
t−1 = yt−1}+vt(y′)1{¬(y′1 = y1, . . . , y

′
t−1 = yt−1)}.

In other words, uf,y is equal to f ○ x on the path y, and equal to v everywhere else.

– Add uf,y to Fv.

The class Fv has two important properties which are formally proven in an auxiliary lemma,
Lemma 33: First, its L2 covering number is (up to low order terms) bounded in terms of the L2

covering number of the class F ○x, so it has similar complexity to this class. Second, its L2 radius is
bounded by γ, in the sense that its covering number at scale γ is at most 1.

Note that on any path y ∈ [K]n and for each f ∈ F , there exist v ∈ V γ and u ∈ Fv such that
f(xt(y)) = ut(y). This is because a v that is γ-close to f on the path y through x is guaranteed by
the cover property of V γ , and so we can take uf,y in Fv as the desired u. This implies that

inf
f∈F

n

∑
t=1

`(f(xt(y)), yt) ≥ min
v∈V γ

inf
u∈Fv

n

∑
t=1

`(ut(y), yt).

With this we are ready to return to the minimax rate. We already established that

Vn(F) ≤ sup
x,p

Ey∼p [
n

∑
t=1

inf
ẑt∈Z

Eyt∼pt(y) [`(ẑt, yt)] − inf
f∈F

n

∑
t=1

`(f(xt(y)), yt)] .
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We now move to an upper bound based on the constructions for the tree collections V γ and {Fv}v∈V γ .
These collections depend only on the tree x at the outer supremum above. Writing the choice of
these collections as an infimum to make its dependence on the other quantities in the random process
as explicit as possible, and using the containment just shown:

≤ sup
x

inf
V γ

inf
{Fv}v∈V γ

sup
p

Ey∼p [
n

∑
t=1

inf
ẑt∈Z

Eyt∼pt(y) [`(ẑt, yt)] − min
v∈V γ

inf
u∈Fv

n

∑
t=1

`(ut(y), yt)] .

For the last time in the proof, we introduce a new collection of trees. For each v ∈ V γ we introduce a
Z-valued K-ary tree ŷv, with ŷv

t ∶ [K]t−1 → Z . We postpone explicitly constructing the trees for
now, but the reader may think of each tree ŷv as representing the optimal strategy for the set Fv in a
sense that will be made precise in a moment.

= sup
x

inf
V γ

inf
{Fv}v∈V γ

inf
{ŷv

}v∈V γ

sup
p

Ey∼p[
n

∑
t=1

inf
ẑt∈Z

Eyt∼pt(y) [`(ẑt, yt)]

− min
v∈V γ

{
n

∑
t=1

`(ŷv
t (y), yt) −

n

∑
t=1

`(ŷv
t (y), yt) + inf

u∈Fv

n

∑
t=1

`(ut(y), yt)}]

≤ sup
x

inf
V γ

inf
{Fv}v∈V γ

inf
{ŷv

}v∈V γ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
p

Ey∼p[
n

∑
t=1

inf
ẑt∈Z

Eyt∼pt(y) [`(ẑt, yt)] − min
v∈V γ

n

∑
t=1

`(ŷv
t (y), yt)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(⋆)

+ sup
p

Ey∼p [max
v∈V γ

{
n

∑
t=1

`(ŷv
t (y), yt) − inf

u∈Fv

n

∑
t=1

`(ut(y), yt)}]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(⋆⋆)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (21)

We now bound terms (⋆) and (⋆⋆) individually by instantiating specific choices for (ẑt)t≤n and
{ŷv}.

Term (⋆) We select (ẑt)t≤n using the Aggregating Algorithm as configured in Lemma 27, taking
F to be the finite collection of sequences {ŷv}v∈V γ . Since each tree has the property that ŷv

t only
depends on y1∶t−1, Lemma 27 indeed applies, which means that for any sequence y1∶n ∈ [K]n of
labels the algorithm deterministically satisfies the regret inequality

n

∑
t=1

`(ẑt, yt) − min
v∈V γ

n

∑
t=1

`(ŷv
t (y), yt) ≤ log∣V γ ∣ + 2.

Since the algorithm guarantees ∥ẑt∥∞ ≤ log(Kn), one can verify that ẑt ∈ Z . Furthermore, ẑt
depends only on y1∶t−1, and so the predictions of the Aggregating Algorithm are a valid choice for
the infimum in (⋆). This implies that

(⋆) ≤ sup
x

log∣V γ ∣ + 2 ≤ logN2(γ, ` ○ F) + 2,

since the regret inequality holds for every possible draw of y1∶n in the expression (⋆).

Term (⋆⋆) First, observe that each tree class Fv is uniformly bounded in the sense that

sup
u∈Fv

sup
y∈[K]n

max
t∈[n]

∥ut(y)∥∞ < ∞.
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This holds because ut(y) is either equal to vt(y), which is finite, or is equal to f(xt(y)) for some
f ∈ F , and the class F was already assumed to be uniformly bounded.

To bound this term we need a variant of the sequential Rademacher complexity regret bound of
(Rakhlin et al., 2010), which shows that there exists a deterministic strategy for competing against
any collection of trees. This is proven in the auxiliary Lemma 34 following this proof.

In particular, for each tree class Fv, there exists a deterministic strategy ŷvt that guarantees the
inequality

n

∑
t=1

`(ŷvt , yt) − inf
u∈Fv

n

∑
t=1

`(ut(y), yt) ≤ 2 ⋅max
y,y′

Eε sup
u∈Fv

[
n

∑
t=1

εt`(ut(y1∶t−1(ε)),y′t(ε))] + 2,

holds for every sequence, where the supremum on the right-hand-side ranges over [K]-valued binary
trees. Futhermore, ŷvt is guaranteed by Lemma 34 to lie in the class Z . We choose this strategy for
the collection {ŷv} being minimized over in (21). Since the regret inequality from Lemma 34 holds
deterministically for all sequences y for each v, we have that

(⋆⋆) ≤ 2 ⋅max
v∈V γ

max
y,y′

Eε sup
u∈Fv

[
n

∑
t=1

εt`(ut(y1∶t−1(ε)),y′t(ε))] + 2.

For each choice of v, y, y′ at the outer supremum, we define a class of real-valued trees Wv,y,y′ via
{(wt)t≤n ∶ wt(ε) ∶= `(ut(y(ε1∶t−1)),y′t(ε)) ∣ u ∈ Fv}. Lemma 35 then implies

(⋆⋆) ≤ 2 max
v∈V γ

max
y,y′

inf
α>0

{4αn + 12∫
rad2(Wv,y,y′)

α

√
n logN2(δ,Wv,y,y′)dδ} + 2,

with the real-valued covering number N2 and radius rad2 defined as in Lemma 35.
We now show how to bound this covering number in terms of the covering number for Fv.

Suppose that Z is a collection of RK-valued K-ary trees that form a δ-cover for Fv in the sense of
Definition 31. Then we have

sup
u∈Fv

max
ε∈{±1}n

inf
z∈Z

¿
ÁÁÀ 1

n

n

∑
t=1

(`(ut(y(ε)),y′t(ε)) − `(zt(y(ε)),y′t(ε)))
2

≤ sup
u∈Fv

max
ε∈{±1}n

inf
z∈Z

¿
ÁÁÀ 1

n

n

∑
t=1

max
y′t∈[K]

(`(ut(y(ε)), y′t) − `(zt(y(ε)), y′t))
2

≤ sup
u∈Fv

max
y∈[K]n

inf
z∈Z

¿
ÁÁÀ 1

n

n

∑
t=1

max
y′t∈[K]

(`(ut(y), y′t) − `(zt(y), y′t))
2

≤ δ.

This implies that for any cover ofFv in the sense of Definition 31 we can construct a cover forWv,y,y′

at the same scale using the construction {(wt)t≤n ∶ wt(ε) ∶= `(zt(y(ε1∶t−1)),y′t(ε)) ∣ z ∈ Z}. Con-
sequently, we have

(⋆⋆) ≤ 2 max
v∈V γ

inf
α>0

{4αn + 12∫
rad2(Fv)

α

√
n logN2(δ, ` ○ Fv)dδ} + 2.
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In light of Lemma 33, this is further upper bounded by

(⋆⋆) ≤ 2 inf
α>0

{4αn + 12∫
γ

α

√
n log(N2(δ, ` ○ F ,x)n)dδ} + 2

≤ 2 inf
α>0

{4αn + 12∫
γ

α

√
n log(N2(δ, ` ○ F)n)dδ} + 2.

Final bound Combining (⋆) and (⋆⋆), we have

Vn(F) ≤ logN2(γ, ` ○ F) + inf
γ≥α>0

{8αn + 24∫
γ

α

√
n log(N2(δ, ` ○ F)n)dδ} + 4.

for any fixed γ. Optimizing over γ yields the result.

Lemma 33 Let Fv be defined as in the proof of Theorem 11 for trees v and x and scale γ. Then it
holds that

1. N2(γ, ` ○ Fv) ≤ 1.

2. N2(α, ` ○ Fv) ≤ n ⋅ N2(α, ` ○ F ,x) for all α > 0.

Proof [Proof of Lemma 33]
First claim This is essentially by construction. Recall that each element of Fv is of the form

(uf,y)t(y′) ∶= f(xt(y′))1{y′1 = y1, . . . , y
′
t−1 = yt−1} + vt(y′)1{¬(y′1 = y1, . . . , y

′
t−1 = yt−1)}.

for some path y ∈ [K]n and f ∈ F for which
¿
ÁÁÀ 1

n

n

∑
t=1

max
y′′t ∈[K]

(`(f(xt(y)), y′′t ) − `(vt(y), y′′t ))2 ≤ γ. (22)

These properties imply that {v} is a sequential γ-cover. Indeed, using the explicit form for uf,y
above, it can be seen that for each path y′ ∈ [K]n, there exists some time 1 < τ ≤ n + 1 such that

(uf,y)t(y′) = { f(xt(y′)), if t < τ,
vt(y′), if t ≥ τ.

it also holds that yt = y′t for all t < τ − 1.
Using this representation we have that for any path y′ ∈ [K]n:

¿
ÁÁÀ 1

n

n

∑
t=1

max
y′′t ∈[K]

(`((uf,y)t(y′), y′′t ) − `(vt(y′), y′′t ))2

=

¿
ÁÁÀ 1

n

τ−1

∑
t=1

max
y′′t ∈[K]

(`(f(xt(y′), y′′t ) − `(vt(y′), y′′t ))2.
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Now use that x1, . . . ,xτ−1 and v1, . . . ,vτ−1 only depend on y′1, . . . , y
′
τ−2, and that y′1, . . . , y

′
τ−2 =

y1, . . . , yτ−2:

=

¿
ÁÁÀ 1

n

τ−1

∑
t=1

max
y′′t ∈[K]

(`(f(xt(y), y′′t ) − `(vt(y), y′′t ))2

≤
¿
ÁÁÀ 1

n

n

∑
t=1

max
y′′t ∈[K]

(`(f(xt(y), y′′t ) − `(vt(y), y′′t ))2

≤ γ.

Second claim Let V be a cover for ` ○F on x of sizeN2(α, ` ○F ,x). Assume ∣V ∣ < ∞ as the
claim holds trivially otherwise. We will construct from V a cover Ṽ for ` ○ Fv with the following
procedure:

• Ṽ = ∅.

• For each K-ary RK-valued tree z ∈ V and each time τ ∈ {2, . . . , n + 1}:

– Construct tree K-ary RK-valued tree z(τ) via

z
(τ)
t (y) = zt(y)1{t < τ} + vt(y)1{t ≥ τ}.

– Add z(τ) to Ṽ .

Clearly ∣Ṽ ∣ ≤ n ⋅ ∣V ∣. We now show that Ṽ is an α-cover for ` ○ Fv.
Let uf,y be an element ofFv of the form described in the proof of the first claim and let y′ ∈ [K]n

be a particular path. Let τ be such that (uf,y)t(y′) = f(xt(y′))1{t < τ} + vt(y′)1{t ≥ τ}. Let
z ∈ V be α-close to f on the path y′ through x, i.e.

¿
ÁÁÀ 1

n

n

∑
t=1

max
y′′t ∈[K]

(`(f(xt(y′), y′′t ) − `(zt(y′), y′′t ))2 ≤ α.

Existence of such a z is guaranteed by the cover property of V . We will show that z(τ) is α-close to
uf,y on y′. Indeed, we have
¿
ÁÁÀ 1

n

n

∑
t=1

max
y′′t ∈[K]

(`((uf,y)t(y′), y′′t ) − `(z
(τ)
t (y′), y′′t ))2

=

¿
ÁÁÀ 1

n

τ−1

∑
t=1

max
y′′t ∈[K]

(`(f(xt(y′), y′′t ) − `(zt(y′), y′′t ))2 + 1

n

n

∑
t=τ

max
y′′t ∈[K]

(`(vt(y′), y′′t ) − `(vt(y′), y′′t ))2

=

¿
ÁÁÀ 1

n

τ−1

∑
t=1

max
y′′t ∈[K]

(`(f(xt(y′), y′′t ) − `(zt(y′), y′′t ))2

≤
¿
ÁÁÀ 1

n

n

∑
t=1

max
y′′t ∈[K]

(`(f(xt(y′), y′′t ) − `(zt(y′), y′′t ))2

≤ α.
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Since this argument works for any uf,y ∈ Fv this establishes that Ṽ is an α-cover of Fv.

The next lemma is almost the same as the sequential Rademacher complexity bound in Rakhlin
et al. (2010), with the only technical difference being that the learner competes with a class of trees
rather than a class of fixed functions. It is proven using the same argument as in that paper.

Lemma 34 Let U be any collection of RK-valued K-ary trees of depth n. Suppose that C ∶=
supu∈U supy∈[K]n maxt∈[n]∥ut(y)∥∞ < ∞. Then there exists a strategy ẑt that guarantees

n

∑
t=1

`(ẑt, yt) − inf
u∈U

n

∑
t=1

`(ut(y), yt) ≤ 2 ⋅max
y,y′

Eε sup
u∈U

[
n

∑
t=1

εt`(ut(y1∶t−1(ε)),y′t(ε))] + 2,

where y and y′ are [K]-valued binary trees of depth n and ε = (ε1, . . . , εn) are Rademacher random
variables.

Furthermore, the predictions (ẑt)t≤n satisfy ∥ẑt∥∞ ≤ log(Kn).

Proof [Proof of Lemma 34] DefineZ ∶= {z ∈ RK ∣ ∥z∥∞ ≤ C}. The minimax optimal regret amongst
deterministic strategies taking values in Z is given by

Vn(U) ∶= ⟪ inf
ẑt∈RK

max
yt∈[K]

⟫
n

t=1

[
n

∑
t=1

`(ẑt, yt) − inf
u∈U

n

∑
t=1

`(ut(y), yt)] .

Once again, this proof closely follows the sequential Rademacher complexity bound from Rakhlin
et al. (2010). We only sketch the first few steps for this proof as they are identical to the first few
steps of the proof of Theorem 11, which is admissible due to compactness of Z . Using the minimax
swap as in that theorem, we can move to an upper bound of

≤ ⟪ sup
pt∈∆K

Eyt∼pt⟫
n

t=1

[
n

∑
t=1

inf
ẑt∈Z

Eyt∼pt [`(ẑt, yt)] − inf
u∈U

n

∑
t=1

`(ut(y), yt)]

= ⟪ sup
pt∈∆K

Eyt∼pt⟫
n

t=1

sup
u∈U

[
n

∑
t=1

inf
ẑt∈Z

Eyt∼pt [`(ẑt, yt)] −
n

∑
t=1

`(ut(y), yt)] .

Now we choose ẑt to match the value of ut(y) = ut(y1∶t−1), which is possible by definition of Z:

≤ ⟪ sup
pt∈∆K

Eyt∼pt⟫
n

t=1

sup
u∈U

[
n

∑
t=1

Eyt∼pt [`(ut(y), yt)] −
n

∑
t=1

`(ut(y), yt)] .

Using Jensen’s inequality, we pull the conditional expectaitons in the first term outside the supremum
over u by introducing a tangent sequence (y′t)t≤n, where y′t follows the distribution pt conditioned
on y1∶t−1.

≤ ⟪ sup
pt∈∆K

Eyt,y′t∼pt⟫
n

t=1

sup
u∈U

[
n

∑
t=1

`(ut(y), y′t) −
n

∑
t=1

`(ut(y), yt)] .

Since yt and y′t are conditionally i.i.d., we can introduce a Rademacher random variable εt at each
timestep t as follows:

= ⟪ sup
pt∈∆K

Eyt,y′t∼pt Eεt⟫
n

t=1

sup
u∈U

[
n

∑
t=1

εt(`(ut(y), y′t) − `(ut(y), yt))] .
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To decouple the arguments to the losses from the arugments to the tree u, we move to a pessimistic
upper bound:

≤ ⟪ sup
pt∈∆K

Eyt∼pt max
y′t,y

′′
t ∈[K]

Eεt⟫
n

t=1

sup
u∈U

[
n

∑
t=1

εt(`(ut(y), y′t) − `(ut(y), y′′t ))]

= ⟪ max
yt,y′t,y

′′
t ∈[K]

Eεt⟫
n

t=1

sup
u∈U

[
n

∑
t=1

εt(`(ut(y), y′t) − `(ut(y), y′′t ))] .

We now complete the symmetrization as follows:

≤ ⟪ max
yt,y′t,y

′′
t ∈[K]

Eεt⟫
n

t=1

sup
u∈U

[
n

∑
t=1

εt`(ut(y), y′t)] + ⟪ max
yt,y′t,y

′′
t ∈[K]

Eεt⟫
n

t=1

sup
u∈U

[
n

∑
t=1

εt`(ut(y), y′′t )]

= 2 ⋅ ⟪ max
yt,y′t∈[K]

Eεt⟫
n

t=1

sup
u∈U

[
n

∑
t=1

εt`(ut(y), y′t)]

= 2 ⋅max
y,y′

Eε sup
u∈U

[
n

∑
t=1

εt`(ut(y1∶t−1(ε)),y′t(ε))] .

In the last line y and y′ are taken to be [K]-valued binary trees of depth n, so that yt(ε) =
yt(ε1, . . . εt−1) and likewise for y′.

Finally, to guarantee the boundedness of predictions claimed in the lemma statement, we apply
Lemma 16 to the minimax optimal strategy, for which we just showed regret is bounded by the
sequential Rademacher complexity.

The last auxiliary lemma in this section is a slight variant of the Dudley entropy integral bound
for sequential Rademacher complexity. This lemma can be extracted from the proof of Theorem 4 in
Rakhlin et al. (2015b). We do not repeat the proof here.

Lemma 35 Let W be a collection of R-valued binary trees. Define Np(α,W ) to be the size of the
smallest class of trees V such that

∀w ∈W,ε ∈ {±1}n, ∃v ∈ V s.t. ( 1

n

n

∑
t=1

(wt(ε) − vt(ε))p)
1/p

≤ α. (23)

Let radp(W ) ∶= min{α ∣ Np(α,W ) = 1}. Then it holds that

Eε sup
w∈W

n

∑
t=1

εtwt(ε) ≤ inf
α>0

{4αn + 12∫
rad2(W )

α

√
n logN2(δ,W )dδ}. (24)

A.6. Details from Section 7

We first define a suitable notion of sequential cover for the log loss setting:

Definition 36 For a fixed X -valued binary tree x, define N∞(α,F ,x) to be the size of the smallest
set of [0,1]-valued binary trees V such that

∀f ∈ F , ε ∈ {±1}n, ∃v ∈ V s.t. max
t∈[n]

∣f(xt(ε)) − vt(ε)∣ ≤ α.

Further, define N∞(α,F) = supxN∞(α,F ,x).
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We also require a generalization of Definition 36 for general tree classes.

Definition 37 For a class of [0,1]-valued binary trees U , define N∞(α,U) to be the size of the
smallest set of [0,1]-valued binary trees V such that

∀u ∈ U, ε ∈ {±1}n, ∃v ∈ V s.t. max
t∈[n]

∣ut(ε) − vt(ε)∣ ≤ α.

We now turn to the proof of Theorem 13. It follows the same structure as the proof in Ap-
pendix A.5 with a few technical differences related the slightly different notion of cover used and the
non-Lipschitzness of the log loss. We first give one more definition.

Definition 38 For any δ ∈ (0,1/2], we define the truncation to the range [δ,1 − δ] via clipδ(p) =
max{δ,min{1 − δ, p}}.

The following proposition is a simple consequence of the fact that clipδ is 1-Lipschitz.

Proposition 39 For any class of trees U and any δ ∈ (0,1/2], N∞(α, clipδ ○U) ≤ N∞(α,U).

Proof [Proof of Theorem 13] The proof is very similar to that of Theorem 11. When it would
otherwise be repetitive we will only sketch details and instead refer back to the proof of that theorem.

To begin, fix δ ∈ (0,1/2]. We will work with the clipped class Fδ = clipδ ○ F just as in
Cesa-Bianchi and Lugosi (2006). It was shown there that

V log
n (F) ≤ V log

n (Fδ) + δn.

With this restriction, we proceed exactly as in the proof of Theorem 11. First, restrict the learner’s
predictions to [δ,1 − δ] to guarantee boundedness of the loss:

V log
n (Fδ) = ⟪sup

xt∈X
inf

p̂t∈[0,1]
max
yt∈{0,1}

⟫
n

t=1

[
n

∑
t=1

`log(p̂t, yt) − inf
f∈Fδ

n

∑
t=1

`log(f(xt), yt)]

≤ ⟪sup
xt∈X

inf
p̂t∈[δ,1−δ]

max
yt∈{0,1}

⟫
n

t=1

[
n

∑
t=1

`log(p̂t, yt) − inf
f∈Fδ

n

∑
t=1

`log(f(xt), yt)] .

Since compactness holds, we can apply the minimax theorem and manipulate terms in the same
fashion as in the proof of Theorem 11 to arrive at the following expression

= sup
x,p

Ey∼p [
n

∑
t=1

inf
p̂t∈[δ,1−δ]

Eyt∼pt(y) [`log(p̂t, yt)] − inf
f∈F

n

∑
t=1

`log(f(xt(y)), yt)] . (25)

In the final line above x and p are X - and ∆{0,1}-valued binary trees (indexed by {0,1}) of
depth n. The notation “y ∼ p” refers to the process in which we first draw y1 ∼ p1, then draw
yt ∼ pt(y1, . . . , yt−1) for subsequent timesteps t.

Let V γ be a minimal γ-sequential cover of F on the tree x with respect to the L∞ norm in the
sense of Definition 36.

Following the proof of Theorem 11, we define a collection of [δ,1 − δ]-valued binary trees for
each element of V γ , with the tree x fixed. For each tree v ∈ V γ , each f ∈ Fδ, we define a class of
trees Fδv as follows:
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• Initially Fδv = ∅.

• For each f ∈ Fδ and y ∈ {0,1}n with maxt∈[n]∣f(xt(y)) − vt(y)∣ ≤ γ:

– Define a [δ,1 − δ]-valued binary tree uf,y via: For each y′ ∈ {±1}n,

(uf,y)t(y′1∶t−1) ∶= f(xt(y′))1{y′1 = y1, . . . , y
′
t−1 = yt−1}+vt(y′)1{¬(y′1 = y1, . . . , y

′
t−1 = yt−1)}.

(So that uf,y is equal to f ○ x on the path y, and equal to v everywhere else.)

– Add uf,y to Fδv.

Just like the construction in Theorem 11, Fδv has two properties: Its L∞ covering number is
bounded in terms of the L∞ covering number of the class Fδ ○ x, and its L∞ radius is bounded by γ.
These properties are stated in Lemma 40.

On any path y ∈ {0,1}n and for each f ∈ F , there exist v ∈ V γ and u ∈ Fδv such that
f(xt(y)) = ut(y). This is because a v that is γ-close to f on the path y through x is guaranteed by
the cover property of V γ , and so we can take uf,y in Fv as the desired u. This implies that

inf
f∈F

n

∑
t=1

`log(f(xt(y)), yt) ≥ min
v∈V γ

inf
u∈Fδv

n

∑
t=1

`log(ut(y), yt).

Returning to the minimax rate, all the properties of the tree families we have established so far imply

V log
n (Fδ)

≤ sup
x

inf
V γ

inf
{Fδv}v∈V γ

sup
p

Ey∼p [
n

∑
t=1

inf
p̂t∈[δ,1−δ]

Eyt∼pt(y) [`log(p̂t, yt)] − min
v∈V γ

inf
u∈Fδv

n

∑
t=1

`log(ut(y), yt)] .

As in the proof of Theorem 11, we introduce a family of trees representing the minimax optimal
strategy competing with each tree class Fδv. For each v ∈ V γ , we introduce a [δ,1 − δ]-valued binary
tree p̂v, with p̂v

t ∶ {0,1}t−1 → [δ,1 − δ].

= sup
x

inf
V γ

inf
{F

δ
v}v∈V γ

inf
{p̂v

}v∈V γ

sup
p

Ey∼p[
n

∑
t=1

inf
p̂t∈[δ,1−δ]

Eyt∼pt(y) [`log(p̂t, yt)]

− min
v∈V γ

{
n

∑
t=1

`log(p̂v
t (y), yt) −

n

∑
t=1

`log(p̂v
t (y), yt) + inf

u∈Fδv

n

∑
t=1

`log(ut(y), yt)}].

≤ sup
x

inf
V γ

inf
{F

δ
v}v∈V γ

inf
{p̂v

}v∈V γ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
p

Ey∼p[
n

∑
t=1

inf
p̂t∈[δ,1−δ]

Eyt∼pt(y) [`log(p̂t, yt)] − min
v∈V γ

n

∑
t=1

`log(p̂v
t (y), yt)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(⋆)

+ sup
p

Ey∼p [max
v∈V γ

{
n

∑
t=1

`log(p̂v
t (y), yt) − inf

u∈Fδv

n

∑
t=1

`log(ut(y), yt)}]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(⋆⋆)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(26)

We now bound the terms (⋆) and (⋆⋆) individually as follows:
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Term (⋆) We select (p̂t)t≤n using the Aggregating Algorithm as configured in Lemma 41, with W
as the finite collection of sequences {p̂v}v∈V γ . This is possible because p̂v

t only depends on y1∶t−1.

n

∑
t=1

`log(p̂t, yt) − min
v∈V γ

n

∑
t=1

`log(p̂v
t (y), yt) ≤ log∣V γ ∣ + 2.

Since the algorithm’s predictions lie in [δ,1 − δ] they are a valid choice for the infimum in (⋆). This
implies that

(⋆) ≤ sup
x

log∣V γ ∣ ≤ logN∞(γ,Fδ).

Term (⋆⋆) First, note that we can take each tree class Fδv to be [δ,1 − δ]-valued without loss of
generality. We exhibit a deterministic strategy for each class by invoking the generic minimax regret
bound Lemma 42. Since the collection is [δ,1 − δ]-valued, the lemma guarantees existence of a
deterministic strategy (p̂t)t≤n with a regret bound of

n

∑
t=1

`log(p̂t, yt) − inf
u∈Fδv

n

∑
t=1

`log(ut(y), yt)

≤ 2nδ log(1/δ)

+ C
δ

logN∞(γ,Fδv) + inf
α∈(0,γ]

⎧⎪⎪⎨⎪⎪⎩

4nα

δ
+ 30

√
2n

δ
∫

γ

α

√
logN∞(ρ,Fδv)dρ +

8

δ
∫

γ

α
logN∞(ρ,Fδv)dρ

⎫⎪⎪⎬⎪⎪⎭
.

By Lemma 40, N∞(γ,Fδv) ≤ 1, and so we can drop the leading covering number term in the
bound:

≤ 2nδ log(1/δ) + inf
α∈(0,γ]

⎧⎪⎪⎨⎪⎪⎩

4nα

δ
+ 30

√
2n

δ
∫

γ

α

√
logN∞(ρ,Fδv)dρ +

8

δ
∫

γ

α
logN∞(ρ,Fδv)dρ

⎫⎪⎪⎬⎪⎪⎭
.

Lemma 40 also implies that we can upper bound the covering number in terms of that of Fδ:

≤ 2nδ log(1/δ)+ inf
α∈(0,γ]

⎧⎪⎪⎨⎪⎪⎩

4nα

δ
+ 30

√
2n

δ
∫

γ

α

√
log(nN∞(ρ,Fδ,x))dρ + 8

δ
∫

γ

α
log(nN∞(ρ,Fδ,x))dρ

⎫⎪⎪⎬⎪⎪⎭
.

Since the regret inequality holds deterministically and uniformly for all sequences y for each v, we
have that

(⋆⋆)

≤ 2nδ log(1/δ) + inf
α∈(0,γ]

⎧⎪⎪⎨⎪⎪⎩

4nα

δ
+ 30

√
2n

δ
∫

γ

α

√
log(nN∞(ρ,Fδ,x))dρ + 8

δ
∫

γ

α
log(nN∞(ρ,Fδ,x))dρ

⎫⎪⎪⎬⎪⎪⎭
.

Final bound We combine (⋆) and (⋆⋆), take the supremum over x, and apply Proposition 39 to
conclude that V log

n (F) is bounded by

3nδ log(1/δ) + logN∞(γ,F)

+ inf
α∈(0,γ]

⎧⎪⎪⎨⎪⎪⎩

4nα

δ
+ 30

√
2n

δ
∫

γ

α

√
log(nN∞(ρ,F))dρ + 8

δ
∫

γ

α
log(nN∞(ρ,F))dρ

⎫⎪⎪⎬⎪⎪⎭
.

The theorem statement uses that we are free to choose any value for δ and γ.
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The remaining lemmas in this section mirror those used in the proof of Theorem 11, with the
most substantive difference being that we required a more refined chaining bound for general classes
under the log loss from Rakhlin and Sridharan (2015a). We omit their proofs.

Lemma 40 Let Fδv be defined as in the proof of Theorem 11 for trees v and x and scale γ. Then it
holds that

1. N∞(γ,Fδv) ≤ 1.

2. N∞(α,Fδv) ≤ n ⋅ N∞(α,Fδ,x) for all α > 0.

Note that the covering number (Definition 37) was defined for trees indexed by {±1}n, but trees in
Fδv are indexed by {0,1}n. We overload the covering number in the natural way in the lemma above
and subsequent lemmas.

Lemma 41 (Cesa-Bianchi and Lugosi (2006)) Let W be any class of [δ,1 − δ]-valued binary
trees of depth n. Then Vovk’s Aggregating Algorithm configured with W as a benchmark class of
experts generates predictions (p̂t)t≤n that enjoy regret

n

∑
t=1

`log(p̂t, yt) − min
w∈W

n

∑
t=1

`log(wt(y), yt) ≤ log∣W∣. (27)

Furthermore, the predictions (p̂t)t≤n lie in [δ,1 − δ].

Lemma 42 (Extracted from Rakhlin and Sridharan (2015a)) Let W be any class of [δ,1 − δ]-
valued binary trees of depth n. Then there exists a deterministic prediction strategy (p̂t)t≤n that
enjoys regret

n

∑
t=1

`log(p̂t, yt) − inf
w∈W

n

∑
t=1

`log(wt(y), yt)

≤ 2nδ log(1/δ) + C
δ

logN∞(γ,W )

+ inf
α∈(0,γ]

⎧⎪⎪⎨⎪⎪⎩

4nα

δ
+ 30

√
2n

δ
∫

γ

α

√
logN∞(ρ,W )dρ + 8

δ
∫

γ

α
logN∞(ρ,W )dρ

⎫⎪⎪⎬⎪⎪⎭
,

for all γ > 0 and for some absolute constant C > 0. The predictions (p̂t)t≤n lie in [δ,1 − δ].

Appendix B. Efficient Implementation

In this section we discuss an efficient (i.e. polynomial time in the parameters of the problem)
randomized implementation of Algorithm 1. The main idea is to exploit the log-concavity of the
density of Pt in the algorithm and to use well-established Markov chain Monte Carlo samplers
for such densities to collect enough matrices W sampled from the distribution to approximate the
prediction ẑt sufficiently well to ensure the increase in regret is small.

Fix a round t. Recall that the density onW we wish to sample from in round t of the algorithm is

Pt(W ) ∝ exp(− 1
L∑

t−1
s=1`(Wxs, ys)).

For notational convenience, define the function Ft ∶ W → R as Ft(W ) ∶= exp(− 1
L∑

t−1
s=1`(Wxs, ys)).

It is easy to check that Ft is log-concave.
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Assumption 1 We have access to a sampler that makes poly(1/ε, n, d,B,R) queries to Ft and
produces a sample W with distribution P̃t such that dTV(P̃t, Pt) ≤ ε.

Such samplers are well-known in the literature: for example, the hit-and-run sampler (Lovász
and Vempala, 2006), the projected Langevin Monte Carlo sampler (Bubeck et al., 2015), and the
Dikin walk sampler (Narayanan and Rakhlin, 2017). It is easy to derive appropriate bounds on all
the relevant parameters of Ft that are involved in the analysis of these samplers so that the samplers
run in polynomial time. While this gives a theoretically efficient implementation, the running time
bounds are too loose to be practical (for example, see the calculations below for projected Langevin
Monte Carlo sampler). We have not attempted to improve these running time bounds; that is a
direction for future work.

Example 3 (Bubeck et al. (2015)) Let W have density P ∝ e−f for some β-smooth, S-Lipschitz
convex function f over a convex body W contained in a euclidian ball of radius D in dimen-
sion d. Projected Langevin Monte Carlo produces a sample from P̃ with dTV(P̃ , P ) ≤ ε after

O(D
6 max{d,DS,Dβ}12

ε12
) evaluations. For our setting, when ∥xt∥2 ≤ R and ∥yt∥1 ≤ L, the loss

w ↦ `(⟨w,xt⟩, yt) is O(RL)-Lipschitz and smooth. We therefore have S,β ≤ RLn and D = B,
which yields the following bound on the number of queries to Ft:

O(B
6 max{dK,BRLn}12

ε12
).

Given access to a sampler, we can now prove Proposition 4. In the following, we use the phrase
“with high probability” to indicate that the statement referred to holds with probability at least 1 − δ
for any δ > 0. We also use the notation Õ(⋅) and Ω̃(⋅) to suppress logarithmic dependence on 1/δ, d,
K, and n.
Proof [Proof of Proposition 4.] The idea is very straightforward: for some parameters m ∈ N
and ε > 0 to be specified later, in each round t, simply use the sampler with error tolerance ε

2

repeatedly m times to collect samples W (i) for i ∈ [m] and then approximate the prediction by
z̃t = σ+(smoothµ(Ei∼[m][σ(W (i)xt)])). Here, “i ∼ [m]” denotes sampling i uniformly from [m],
and m = poly(n, d,B,R,1/δ) will be chosen to be large enough to ensure that this approximation
incurs only 1/n additional loss in each round, with high probability, and thus at most O(1) additional
loss over all n rounds.

It remains to provide appropriate bounds on m. In the following, we will fix the round t and drop
the subscript t from Pt, P̃t, xt, yt, etc. for notational clarity.

Define the distributions p = smoothµ(EW∼P [σ(Wx)]), p̃ = smoothµ(EW∼P̃ [σ(Wx)]) and
˜̃p = smoothµ(Ei∼[m][σ(W (i)x)]). Then standard Chernoff-Hoeffding bounds and a union bound
over all k ∈ [K] imply that if m = Ω̃(1/ε2), then with high probability, we have ∥p̃ − ˜̃p∥∞ ≤ ε

2 .
Furthermore, the sampler ensures dTV(P̃ , P ) ≤ ε

2 , which implies that ∥p − p̃∥∞ ≤ ε
2 since each

coordinate of p and p̃ are i n [0,1. Thus, by the triangle inequality, we have ∥p − ˜̃p∥∞ ≤ ε.
We now bound the excess loss for using ˜̃p instead of p in the algorithm, using the fact the

weighted multiclass logistic loss can be equivalently viewed as a weighted multiclass log loss after
passing the logits through the softmax function σ. Thus, the additional loss equals

∑
k∈[K]

yk log(pk˜̃pk ) ≤ ∑
k∈[K]

yk log( ˜̃pk+ε
˜̃pk

) ≤ ∑
k∈[K]

yk log(1 + εK
µ ) ≤ εKL

µ .
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The first inequality above follows from the bound ∥p − ˜̃p∥∞ ≤ ε, and the second from the fact that
˜̃pk ≥ µ

K for all k ∈ [K], and the third from log(1 + a) ≤ a for all a ∈ R+ and ∥y∥1 ≤ L. Thus, setting
ε = µ

KLn ensures that the additional loss is at most 1/n with high probability, as required.
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